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RECOMMENDATIONS FOR NUMERICAL SOLUTION OF REINFORCED-
PANEL AND FUSELAGE-RING PROBLEMS

By N. J. Horr and Pavr A. LiBsY

SUMMARY

Procedures are recommended for soleving the equations of equi-
{ibrium of reinforeed panels and isolated fuselage rings as rep-
resented by the external loads and the operations table established
acecording to Southwell's method. From the solution of these
equations the stress distribution ean be easily determined. The
recommendations are based on the experience of the past 4 years
in applying numerical procedures to monocoque stress analysis
at the Polytechnic Institute of Brooklyn Aeronautical Labora-
tories. The method of systematic relarations, the matriz-cal-
culus method, and several other methods applicable Tn special
cases are discussed.

Definite recommendations are made for obtaining the solution
of reinforced-panel problems which are generally designated as
shear lag problems. The procedures recommended are demon-
strated in the analysis of a number of panels, sereral of which
were discussed in previous PIBAL reports, whereas others are
shown for the first Hme.

In the case of fuselage rings it is not possible to make definite
recommendations for the solution of the equilibrium equations
for all rings and loadings. Howerer, suggestions based on the
latest experience are made and demonstrated on several rings.

INTRODUCTION

The application of the indirect methods of Cross (refer-
ence 1) and Southwell (reference 2) to the analysis of mono-
eoque struetures has been shown in a series of investigations
(references 3 to 8) carried out at the Polytechnic Institute
of Brooklyn Aeronautical Laboratories. These indirect
methods are likely to lead to solutions of problems in stress
analysis that are intractable by direct analytical methods
because the structure is tapered, it has large cutouts, its rein-
forcing elements are distributed irregularly, or the like.

The distorted shape corresponding to equilibrium under
the applied loads is determined first in the indirect methods.
From it the stresses, forces, and moments required ecan be
caleulated without difficulty. This approach is justified by
the comparative ease with which the stresses in a complex
structure can be determined for an individual displacement
of one point and with which the final distorted shape of 2 com-
plex structure can be represented by a summation of such
individual displacements.

The complete structure is considered to be composed of
appropriate elements and its degrees of freedom are the dis-
placements of the several reference points on the boundary
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of each element. Each of these points is displaced in turn
and the reactions at the reference points caused by the dis-
placement are listed. If by suitable displacements of all
points the reaction forces and moments are made equal and
opposite to the external loads at each point, the whole strue-
ture is in equilibrium and its distorted shape is determined.
In applying the indirect methods to monocoque structures
the terminology of Southwell (reference 2} has been retained.
Thus, the elements which compose the complete structure
are ““units” and the determination of the forces and moments
due to a displacement of a boundary point of such units is
termed the “unit problem.” The magnitudes of these forces
and moments are given by “influence coefficients.” The
complete effect of a displacement is given in an “operations
table,” and the step-by-step process, which can be em-
ployed to determine the equilibrium distoried shape, is
called the “method of systematic relaxations.” At each
step of this process forces and moments referred to as “re-
siduals’ remain unbalanced at each point in the structure.
A running account of the residuals and of the displacements
or “operations” undertaken is kept in the “relaxation table.”
The operations table along with the external forces con-
stitutes a system of linear equations, which are equal in
number to the degrees of freedom of the structure and which
have as variables the displacements. Xach equation repre-
sents the condition of equilibrium for the force or moment

associated with one degree of freedom. Vhen the methodof

systematic relaxations is applied an approximate solution
to this system of equations and accordingly an approximate
equilibrium state of the struecture are found.

The indireet method of analysis just outlined has been
applied at PIBAL to the reinforced-panel and ring com-
ponents of a monocoque structure as well as to complete
circular cylinders with and without cutouts. In references
3 and 4 the stress distribution in the sheet and stringers of a
reinforced panel was determined under loads applied parallel
to the stringers. Fuselage rings with and without internal

bracing elements were investigated in reference 5. The

determination of the influence coefficients for the ring unit
problem was found to involve considerable computational
work and therefore appropriate graphs and tables are given
in reference 6 to facilitate their caleulation. In references 7
and 8 the elements, namely, the reinforced panel and the
ring, are combined into a circudar cylinder and the stress
distribution in the cylinder was investigated for the case
when the loading is a pure bending moment.
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In the application of the indirect-stress-analysis methods
to the problems mentioned the major obstacle has been to
find an approximate solution of the system of equations with
a reasonable expenditure of effort. In each problem it has
been readily possible to establish satisfactory units and to
combine them to represent the complex structure. During
the past 4 vears considerable experience has been gained at
PIBAL in overcoming this obstacle to the wider application
of numeriecal procedures in the analysis of monccoque struc-
tures. On the basis of this experience some recommendations
can be made as to the most expeditious method of solving
reinforced-panel and fuselage-ring problems after the opera-
tions table has been established as described in references 3
to 5.

In many problems solution of the set of linear equations
by means of matrix algebra was found easier and less time
consuming than the determination of the displacements by
systematic relaxations. In other cases special methods, such
as the growing-unit method, proved to be most expeditious.

Tt is assumed that the reader is familiar with the termi-
nology of Southwell’s relaxation method and with the solu-
tion of the unit problem as well as the establishment of the
operations table for both the reinforced-panel and fuselage—
ring problems. Complete details of these are given in
references 3 to 6.

This work, carried out at the Polytechnic Institute of
Brooklyn, was sponsored by and conducted with the financial
assistance of the National Advisory Committee for Aero-
nautics. Mr. Arnold O. Ostrand contributed the growing-unit
method for reinforced pancls. The authors also wish to
acknowledge their indebtedness to the following members of
the staff of the Polytechnic Institute of Brooklyn: Professors
George B. Hoadley and William MacLean of the Depart-
ment of Electrical Engincering for their work on the electric
analogue, Mr. Burton Erickson for carrying out the major
portion of the computations, and Dr. Bruno A. Boley for his
editorial advice.

SYMBOLS

A cross-sectional area of stringer and effective sheet

AtoQ points on a ring or a reinforced panel; group
operations ' '

AF effective shear area of ring section

distance between adjacent longitudinal stringers

distance between adjacent transverse stringers

electrical conductance

Young’s modulus of elasticity

tensile force in stringer; applied external load

shear modulus of elasticity

horizontal direction

moment of inertia of cross section;

current
Ito XX group operations
L length of straight bar or length of arc of curved
bar

bending moment

moment acting on & joint

shear flow

radial foree acting at a joint; electrical resistance

tangential forece acting on a joint

N Y o e

electrical

RS
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t sheet thickness

% displacement of a joint in tangential direction

Vv ~ electrical potential; vertical direction

o displacement of & joint in radial direction; dis-

placement of a joint in vertical direction

Uprock vertical block displacement

w rotation of a joint

z magnitude of group operation to be determined
z, Y rectangular coordinates

Y _ force in y-axis direction

8 angle subtended by ring segment

¥ section-length parameter (ALY T)

£ ratio of effective shear area to tension arca (L1*/4)
b summation

REINFORCED PANELS
INTRODUCTION

In this scction plane and slightly curved reinforced panels
are discussed when the loads are applied in the plane of the
flat pancls or tangentially to the surface of the slightly
curved panels.

In most airplane struetures there is a predominant diree-
tion in which the major forces act and in which the major
reinforcing elements lie.  When the panel is symmetrie and
symmetrically loaded experience has shown that it suffices
to consider displacements and force ecuilibrium in the
predominant direction only. Even when the structure or
the loads are nonsymmetric, the displacements and forces
in the transverse direction are usually of secondary impor-
tance but they may be considered in a more refined analysis,

In references 3 and 4 numerical procedures for the deter-
mination of the stress distribution in reinforced panels
subjected to axial stringer loads are develeped and demon-
strated on several flat and curved pancls with and without
cutouts. The results obtained by means of these procedures
are in good agreement with those of tests.

Solution of the system of cquations represented bv the
operations table and the external forees can be found by
several methods, five of which are deseribed herein. The
various conditions of loading and structure which suggest
the use of one method rather than another are discussed.

RELAXATION METHOD

For most reinforced-panel problems the relaxation method
of solution is the most suitable. Simple group and block
operations lead to a rapid elimination of the residuals and
require little initiative on the part of the computer familiar
with the sequence of step-by-step operations. The method,
however, is not efficient in the case of panels with many
bays in the direction of the stringer loads or panels with
sheet covering of large shearing rigidity, since large forees
are then introduced into adjacent stringers when one
stringer is balanced. These forces in turn must be liquidated
in successive operations with the consequenee that the
procedure becomes time consuming. Also in problems
involving many leading conditions it may be expeditious
to use the electric-analogy method described in the seetion
entitled “Electric Analogue,” since in the relaxation
method each new loading requires new step-by-step
operations.
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In this section panels are discussed which are not excluded
from application of the relaxation method by the foregoing
considerations. They may be classified according to the
boundary conditions of the stringers into four groups.
Recommendations for each group follow with a fifth sub-
section added containing suggestions for panels in which
transverse forces and displacements are considered.

(a) Panels with boundary conditions at both ends of
stringers specified in terms of force.—The following two
procedures are recommended for liquidating the residuals on
a panel of this group:

First procedure:

1. Counsider each stringer isolated by cutting the sheet and
the transverse reinforcing elements. Select the stringer for
which the algebraic sum of the external forces is the largest.
Displace the entire stringer as a rigid body (block displace-
ment) until this sum vanishes.

2. Balance one end joint of the stringer by displacing the
adjacent joint on the same stringer.

3. After step 2 is completed the end joint is balanced but
the joint that was moved is unbalaneed. Displace the third
joint on the same stringer until the second joint is balanced.

4. Continue the procedure until the second end joint is
moved. In thislast step both the end joint and the adjacent
one will be approximately balanced at the same time since
the algebraic sum of all the forces acting upon the stringer
was zero after completion of step 1 and this equilibrium has
been disturbed only slightly by the shear forces transmitted
by the sheet during the individual operations.

5. Stringer 1 is now approximately balanced. Carry out
the same procedure with the other stringers of the panel
successively.

6. When all the stringers are approximately balanced,
refurn to the first stringer and balance it again by under-
taking steps 1 to 4. Repeat the procedure with the other
stringers until all the residual forces can be considered negli-
gible for engineering purposes.

Second procedure:

1. Consider each stringer isolated by cutting the sheet and
the transverse reinforcing elements. Select the stringer for
which the algebraic sum of the external forces is the largest.
Displace the entire stringer as a rigid body (block displace-
ment) until this sum vanishes.

2. Displace one end point of this stringer so as to balance
the residual thereon.

3. Displace by equal amounts the adjacent joint on the
same stringer and the end joint which was balanced in step
2 so as to balance this second joint. The equilibrium of the
end joint will be disturbed only by a small amount due to
shear in the sheet.

4. Displace by equal amounts the third joint on the same
stringer and the two joints that were placed in approximate
balance by the operation described in step 3 so as to balance
this third joint.

5. Continue this procedure until the joint next to the
midjoint of the stringer is balanced by equal displacements
of all the joints situated between it and the end joint first
displaced.

6. Repeat the process described in steps 2 to 5, starting
from the other end joint of the stringer and continuing to
the midjoint from this direction. After thisstep is completed
this stringer will be in approximate balance, the only resid-
uals being those introduced by shear in the sheet.

7. Consider next the stringer on either side of the approxi-
mately balanced stringer. Undertake a block displacement
so as to equilibrate externally the stringer under its residual
forces.

8. Start at one end joint of this stringer and apply steps
2 to 6. This second stringer will be placed in approximate
balance thereby, while the balance of the first stringer will
be disturbed only through the shear in the sheet.

9. Either return to the first balanced stringer or proceed
to the next stringer on the other side. Each newly consid-
ered stringer is first externally equilibrated under the external
and residual forces by a block displacemeni. Then from
each free end the residuals are balanced by group displace-
ments involving equal displacements of all the joints situated
between the one in question and the free end. Continue to
balance individual stringers until all are balanced.

The relaxation tables for the panel shown in figure 1, for
which table 1 is the operations table, are used to demon-
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FicTrE 1.—Reinforced panel with conditions at both ends specified in terms of force.

strate the first and second procedures and are given as tables
2 and 3, respectively. It will be noticed that this operations
table considers the displacements of only the joints on the
left half of the panel. The panel is symmetrical and is
symmetrically loaded. Therefore, the displacements in the
balancing process are undertaken symmetrically and only
those of the left side joints need be considered, those of the
right being correspondingly equal. Since this panel has
only three bays along each axially loaded stringer, the
internal balancing process is undertaken from one end of
the stringer only.
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(b) Panels with boundary conditions at one end of stringers
specified in terms of force and at other in terms of displace-
ment.—This type of problem occurs, for instance, when one
end of the panel is attached to a rigid body which is either
held fixed in its position or is displaced a given amount.
The recommended procedure for panels of this group is the
same as the second procedure for panels in case (a) with
two exceptions: (1) No block displacements are needed (or
possible) to equilibrate the stringers externally and (2) the
internal balaneing process can be started only from the one
free end of each stringer. .

The method is demonstrated on the panel shown in figure 2.
It is identical with the panel used for case (a) with the excep-
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TFicURE 2.—Reinforced panel with conditions at one end specified in terms of force and at
the other in terms of displacements.

tion of the fixed lower ends of the vertical stringers. The
operations table is identical with that of the previous panel
except that no block and no vy- and ve-displacements are ad-
missible. The relaxation table is given as table 4.

(¢) Panels with boundary conditions at both ends of
stringer specified in terms of displacement.—Experience on
panels of this type indicates that, although no systematic
process of balancing the residuals can be recommended, the
direct relaxation process is rapidly convergent. By starting
from the midpoint joints on & stringer and by balancing
successive joints toward the two fixed ends, the equilibrium
position can be approximated rapidly. A further sugges-
tion regarding this type of panel is contained in the later
section ‘*Niles Tables.”

(d) Panels with irregularly specified boundary condi-
tions.—For such panels a combination of the methods
discussed under cases (a), (b), and (¢) is recommended. By
judicious use of bloek and group operations similar to those
of cases (a) and (b) rapid convergence of the relaxation
procedure will be obtained. .

(e) Panels in which transverse displacements and forces
are considered.—There are two gencral procedures for

treating panels in which the transverse displacements and
forces, usually considered negligible, are treated. These are
described in the following paragraphs:

First procedure:

The procedure discussed under cases (a) and (b) can be
applied to panels with cutouts. The stringers are approxi-
mately balanced in the direction of the major axial forees
by these procedures and then the residuals normal to this
direction are considered. The same step-by-step operations
can be applied in balancing transverse stiffeners under these
transverse axial forces. The process of first balancing the
stringers in one dircetion, then balancing the stiffeners in
the normal direction, and then returning te the originally
balanced stringers will be quite rapidly convergent for
panels with sheet of low shearing rigidity.

Second procedure:

For panels with cutouts requiring consideration of the
transverse forces another procedure, which is demonstrated
in reference 4, can be used. The panel is first considered Lo
have continuous sheet and stringers, as if the cutout did not
exist, and the displacements for equilibrium of this panel
under the external loads are determined by the usual meth-
ods. These displacements are then applied as a first approxi-
mation to the distorted shape of the actual panel with cut-
outs. -Displacements leading to a closer approximation are
then undertaken. This proeedure is found to be reasonably
successful for the cases investigated in reference 4.

MATRIX-CALCULUS METHOD

The operations table together with the external forees can
be considered as a system of lincar equilibrium equations
with the magnitudes of the displacements as the unknowns.
Therefore, the methods of matrix calculus can be applied to
find the solution of this system by direct mathematical
means. The method deseribed in reference 9 is recom-
mended since a check on the calculations is maintained at
each step in the process of solution.

Matrix methods of solution have several advantages.
After the operations table is established by trained engincer-
ing personnel, the solution can be obtained by computing
personnel familiar with the matrix-caleulus method. Under
some conditions this economic advantage may be important.
For reinforced panels with sheet of high shearing rigidity
the relaxation procedures are slowly convergent even when
the recommendations given in the preceding section are ob-
served. The matrix-caleulus method is not affected by this
physical characteristic of the structure.

When the number of equations is greater than 30 or 40,
the work of computation becomes inconveniently large.
Therefore, for panels having a sheet covering of small shear-
ing rigidity relaxation methods are recommended. When
the sheet covering is very rigid in shear the matrix method
is likely to be more advantageous because the routinge opera-
tions of the matrix method ecan always be carried out if
enough time is allowed.

The equations of equilibrium for the panel shown in figure
1 are given by table 1 and are presented as follows to illus-
trate how the operations table and the external forees can
be considered as a system of equilibrium equations:
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—55.205+2.000+51.205 =0
2.0005—101.621-4.0007+46.8¢,+2.00¢ =0
51.205+4.000—110.427+2.000,+51.201 =0

46.80+2.000,—101.6:,--4.000¢
+46.8u5x-L2.0005=
- (1)

2.000z+51.2c,+4.000,—110.40x
+2.000y+451.200=0

46.80;+2.000z—50.82
+-2.000,+60X104=0

2.000,151.20+2.0005
—55.20,+60X 10’==0J

In considering the operations table and the external forces
as a system of equilibrium equations, care must be taken to
restrain enough joints so that the position of the panel as a
rigid body is fixed. In the present case w4 and zp are as-
sumed to be zero, and since only displacements in the y-
direction are considered in this problem, this restraint is
sufficient.

GROWING-UNIT METHOD

For reinforced panels with sheet of high shearing rigidity
or with a large number of bays in the direction of the axial
forces, the relaxation procedure is not rapidly convergent.
In such problems either the matrix-caleulus or the growing-
unit method is recommended. The latter can be applied
only to panels the boundary conditions of which are specified
in terms of force at least at one end of the stringers.

The growing-unit method applied to reinforced panels is
as follows: The joint at the free end of an arbitrarily selected
unbalanced stringer, called hereinafter the principal joint
and the principal stringer, respectively, is displaced so as to
liquidate the residual on this joint. At the same time the
joints lying on adjacent parallel stringers and the same
transverse stiffener are displaced so that the residuals that
would be otherwise introduced by shear from the balancing
of the prineipal joint as well as any external forces applied
to these joints are likewise liquidated. In the second opera-
tion the next joint on the principal stringer is relaxed while
the previously balanced joints on the first transverse stiffener
and the joints on the second transverse stiffener are kept in
balance by suitable displacements. After this second opera-
tion no residuals remain at the joints of the first two trans-
verse stiffeners. After a sufficient number of repetitions of
the proecedure all residuals will be confined to reaction points
or will be liquidated; the panel will then be in equilibrium.

This procedure is demonstrated on the panel shown in
figure 3. The physical properties of the panel are the same
as those of the previously discussed panels except for the
additional bay in the direction of the axial forces. Actually
the convergence of the relaxation method for this panel
would be quite rapid, but for convenience the growing-unit
method, applicable when this convergence is slow, is demon-
strated thereon. Table 5 is the operations table for this
panel and contains not only the individual operations but
also the group operations of the growing-unit method.
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FiGURE 3.—Reinforced panel with 12 bays.

Table 6 is the relaxation table in which these group opera-
tions are used.

The group operations given in table 5 require some ex-
planation. In order to avoid intreducing a Yjp-residual
when joint A is relaxed by application of operation (1), a
rp-displacement is applied, the magnitude of which can be
calculated from the equation

—55.205+2.00=0 2)

Thus operation (9) is 1z=(2/55.2)=0.0362 and (10) is &
group operation equal to the sum of operations (1) and (9},
which liquidates the residual ¥, without introducing e
Y z-unbalance.

After operation (10} is used, unbalances exist at joinis
E and F, that is, on the second transverse stiffener. In
order to balance these without disturbing the recently
established balance at A and B, two group operations are
developed: One permitting the balancing of E and one per-
mitting the balancing of F. The magnitudes of #, and vy

ment of rz=1 is undertaken are given by the following
equations:

—50.80412.0005+46.8=0
L

2.0004—55205+2.00=0

These are satisfied by v,=0.921, operation (11), and vrp=
0.0695, operation (12). Operation (13) is therefore estab-
lished as the sum of operations (3), (11}, and (12). The
magnitudes of v, and ¢y required to mainfain the balance of
A and B when a displacement of vp=1 is undertaken are
given by the following equations:

—50.804+2.000542.00=0
L e

2.000,—55.2v5+51.2=0
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These are satisfied by v4=0.0758, operation (14), and vz=
(.923, operation (15). Operation (16) is the sum of opera-
tions (4), (14), and (15). Since group operations (13) and
(16) both introduce Y- and Ye-forces, the magnitudes zs
and z;¢ of these groups required to liquidate the —111-pound
and —9-pound residuals at E and F, respectively, are given
by the following equations:

—58.33313—}—9.49315——111:0
L

9.43313‘_62.61;16—9:0

Thus z3=—1.975 and x,=—0.444. Joints E and F are
balanced without disturbing the balance of A and B by the
use of these multiples of operations (13) and (16).

In eliminating the residuals at joints J and K multiples of
operations (13) and (16} are applied since these operations
permit displacements of E and F to be undertaken while the
balance at A and B is left undisturbed. When joint J is
displaced a unit amount, multiples of operations (13) and
(16), defined by the following equations, are used so that
the balance at A, B, E, and F is maintained:

—58.3:513—}—9.49;16—{—4:6.8:0}
(6)

9.423—62.62;4--2.00=0

The solution to these equations is 2,;=0.828, operation (17),
and #,;=0.158, operation (18). Operation (19) is the sum
of operations (5), (17), and (18).

In a similar manner all the individual and group displace-
ments described in table 4 are found. It may be mentioned
that in the present example no shearing stresses were set
up in the middle bays because of the symmetry of structure
and loading. The original operations table was already
established in a manner which complied with these require-
ments of symmetry. When such is not the case or when
there is & greater number of stringers in the panel, displace-
ments of principal stringer joints will, in general, cause
residuals to appear at more joints so that three or more,
rather than two, simultancous equations have to be solved
at each step.

NILES TABLES

In reference 10, Niles demonstrates for the solution of rein-
forced-panel problems a method which essentially parallels
the previously described relaxation method. The Niles
method is a procedure for balancing a stringer by the use of
tables which give the displacements of each joint on the
stringer required to liquidate a residual en a given joint of
the stringer. The tables are worked out for various end
conditions and sheet shearing rigidities.

Sinece reference 10 contains tables only for sheet of rela-
tively low shearing rigidity, the Niles method is limited in
this respect in the same way as the relaxation method.
However, the tables can be employed on stringers with the
boundary conditions at both ends specified in terms of dis-
placement; for such problems no step-by-step routine relaxa-
tion method has been recommended. Also by use of the
tables exact balance of a stringer is gained after a single
displacement of each joint, whereas in the relaxation method,

REPORY 434—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

because of the shear, small unbalances remain after cach
joint is moved.

On the other hand, the relaxation method can be applied
to stringers with irregularly spaced joints for which no tables
were set up by Niles.

Since in reference 10 several examples of the procedure are
given, no application of the Niles method is shown herein.

ELECTRIC ANALOGUE

Another convenient method of solving the problem of force
distribution in a reinforced panel is that in which the voltages
are measured in an electric network which is so construeted
as to make it a complete analogue of the reinforced panel.
When suitable electrie equipment is available, an analegous
network can be hooked up and tested with very little work.
A particularly attractive property of the siress-analysis
procedure by means of electric measurement is the case with
which the effect upon the stress distribution of changes in
[oading and in dimensions of the various structural elements
of the reinforced panel ean be investigated. This permits
the development of an efficient design with little analylic
worls.

The analogy between the forces transmitted through the
different struetural elements of the reinforced panel and the
currents flowing through the various branches of the direct-
current network can be explained with the aid of figures £
and 5. The problem investigated is the so-called “one-
dimensional shear lag.” It is assumed that the transverse
stiffeners are infinitely rigid so that the vertical, or longi-
tudinal, displacements » alone need to be determined.  The
portion of the sheet covering considered effcetive in tension
or compression is added to the cross-scctional area of ecach
stringer and the panecls of sheet are assumed (o carry shear
stresses only. A consequence of these assumptions is that
the shearing stress must be constant in each panel.
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FIGURE 4—Forces transmitted through structural elements of
reinforced panel.
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FInrRE 5.—Currents fliowing through branches of
direct-current network analogous to reinforced
panel of figure 4.

The analogous direct-current network contains as many
binding posts as the number of joints in the reinforced panel.
Adjacent binding posts are connected by conductors having
prescribed resistances R. Predetermined electric currents 7,
which correspond to the forces F applied to joints A and B
of the reinforced panel, are introduced into the network at
points A and B.

It is now recalled that in the relaxation method the joints
of the panel are first assumed to be rigidly fixed to a rigid
wall behind the panel. The external loads are first applied
to these rigid pegs, referred to as the “constraints.” The
panel is obviously in equilibrium under these conditions but
this artifieial equilibrium is entirely different from that pre-
vailing in the actual panel, which is not attached to any rigid
wall. The actual state of equilibrium is approached by the
step-by-step procedure of the relaxation method, in each
step of which one single constraint is removed and the cor-
responding joint is displaced until it reaches its equilibrium
position in the system in which all the other joints are still
rigidly fixed.

For instance when joint 1 of the reinforced panel is moved
through a distance v in the positive direction, this displace-~
ment imposes forces upon all the adjacent joints numbered
from 2 to 9. Three typical forces are given by the equations:

Ed G -

Fg[:U T_‘%—) ({)
b

Fm:”% (8)

Fa=r —(;—bg 9
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where

Fa, Fy, Fg forces acting upon joints 8, 9, and 6, respective-
Iy, because of displacement of joint 1

E modulus of elasticity of stringer
éq shear modulus of sheet

¢ thickness of sheet

v displacement of joint 1

In the case of the analogous network it can be assumed
that the potential of each binding post is zero at the outset.
If there is no potential difference, no current flows between
the posts. It can be imagined that the currents introduced
at points A and B are taken out of the system by means of
some imaginary conductors. However, the actual distribu-
tion of currents in the network prevails without the aid of
the imaginary conductors. This actual state can be
approached also by means of a step-by-step, approximation-
type caleulation. For instance it can be assumed first that
the potential of binding post 1 is elevated to the value V.
After this change there is a potential difference between
binding posts 1 and 8 and consequently a current will flow
from post 1 to post 8. The magnitude of this current can
be calculated from the equation

ISLZV[R&:CMV (10)

where Ry is the resistance and Cy=1/Fy is the conductance
of the conductor between posts 1 and 8. Similarly the cur-
rent flowing from post 1 to post 9 is

Iglzcelr (11)
The current flowing from post 1 to post 6 is
IGL:OGET” (12)

Comparison of eguations (7) to (9) with equations (10) to
(12) reveals an analogy between the effects of a displacement
v of joint 1 and the raising of the voltage of binding post 1
by an amount V. The current caused by the change in
potential corresponds to the force caused by the displace-
ment, provided that the conductance of each conductor is
made equal to the influence coefficient in the corresponding

force equation. Hence
EA  Gbt
CSL:_ZJ—_-E (13)
Gbt
091 = 'E (1 4)
bt
051 = g—a (1 5)

In the relaxation procedure the equilibrium state is
approached by displacing individually the joints and sum-
ming the effects of each displacement. In exactly the same
way the actual distribution of the currents in the network
can be determined by changing individually the voltages of
each binding post and summing the effects of these changes.
In the reinforced panel equilibrium is obtained when at each
joint the sum of the external forces and of all the internal
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forces caused by the displacements is zero. The forces are
considered positive if they are directed as the positive dis-
placements. In the form of an equation,

SF=0 (16)

An analogous equation in the direct-current network is
furnished by XKirchhoff’s first law, according to which the
sum of the currents flowing into any binding post must be
zero. Currents in the direction of any binding post are
considered as positive. In the form of an equation,

2I=0 (17)

Comparison of the last two equations reveals that the
conditions of equilibrium for the reinforced panel and Kirch-
hoff’s first law in the case of the direct-current network
complete the analogy of the two systems considered. It is
possible therefore to construct an electric network with the
same configuration of binding posts as that of the joints of
the reinforced panel. The conductances of the conductors
connecting the binding posts must be so chosen as to make
them proportional to the corresponding influence coefficients
In the operations table of the reinforced panel. If then cur-
rents are introduced at the binding posts which correspond
to the joints at which external loads are applied, the distri-
bution of the currents in the network will be the same as the
distribution of the forces between the various structural
elements of the reinforeed panel.

In the first applications of the relaxation proeess to rein-
forced panels each joint was displaced until equilibrium was
established. It was noted in the section dealing with the
solution of the problem by matrix methods that this pro-
cedure permitted rigid body displacements of the structure.
Rigid body displacements can be eliminated if one or more
joints are considered as rigidly fixed. In the case of the
reinforced panel of figure 4 the degree of freedom of motion
of each joint is one, because the problem is considered as a
one-dimensional shear lag problem. Consequently it suffices
to fix one single joint so that it is prevented from displacing
vertically. However, if joint C, for instance, is fixed, the
symmetry of the structure and loading requires the simul-
tancous fixation of joint D. ’

In the analogous network binding posts C and D are given
predetermined values of the potentials by connecting them
to the ground. It is customary to attribute the value zero
to the potential of the ground. Consequently V¢ and 17,
arc zero just as in the reinforeed panel v and v, are zero.

It will be noticed that in figure 4 the direction of F at
joints A and B is upward, whereas the direction of I at bind-
ing posts A and B in figure 5 is downward. This corresponds
to the difference in the sign convention in the two systems.
In the panel upward forces were considered positive and in
the network currents flowing toward the binding posts were
given the positive sign. The directions of the forces and the
currents at points C and D are the same. This again corre-
sponds to the correct signs required by the sign convention
since the downward forces at these points are negative just
as the currents which flow away from the binding posts are
negative. Hence the reinforced panel is under the action of
external tensile forces, whereas through the network currents
are flowing in the downward direction.

In the case under discussion it is easy encugh to introduce
the two equal currents at posis A and B and to regulate
their magnitude by means of an adjustable rheostat. How-
ever, when there are a number of impressed currents of differ-
ent magnitude stipulated, their adjustment may become a
lengthy trial-and-error procedure. In such cases it is ad-
vantageous to employ a number of commercially available
electronic devices, known as constant-current generators,
which have the property of maintaining a constant current
independently of the properties of the network.

When the construction of the network is completed and
the required external currents are introduced, the deflection of
any joint of the reinforced panel can be obtained by measur-
ing the potential of the corresponding post in the network
with respect to the ground. This quantity multiplied by the
conversion factor is the relative displacement of the corre-
sponding joint of the reinforced panel with respeet to the
fixed points C and B. In most cases, however, the displace-
ment quantities are of interest only indirectly and the main
quantities sought are the forees in the stringers and the shear
stresses in the sheet. These quantities can be obtained in a
simple manner by multiplying potential differences by the
appropriate conduetances and by the conversion factor.

For instance when the force in stringer segment 1-8 ig
sought, the voltage drop between posts 1 and 8 must be
measured and multiplied by the conductance Cy and the
conversion factor. This is a consequence of cquations (7)
and (10). Similarly when the shear stress in panel 1689 ig
required, the voltage drops in conductors 1-6 and 8-9 have
to be measured. From figure 4 the average displacement of
stringer segment 6-9 is (#+%)/2 and the average displace-
ment of stringer segment 1-8 is (5, +24}/2. The difference of
these two average displacements multiplied by Gibfa is the
shear force transmitted from the panel to stringer segment
6-9. Consequently the sum of the displacement differences
vg—o; and v—vy multiplied by the influence coefficient 1-6
is the shear force sought. In other words the sum of the
voltage drops from post 1 to post 6 and from post 8 Lo post 0
multiplied by the conductance Cy and the conversion factor
is the shear force in question. This shear force divided by
the length b gives the average shear flow in panel 1689 and
this shear flow divided by the thickness of the sheet is the
average shear stress.

With the cooperation of the Department of Electrical
Engineering a network was constructed at the Polytechnic
Institute of Brooklyn which was the analogue of the rein-
foreed pancl investigated earlier at PIBAL both experiment-
ally and by relaxation methods. The results of these
investigations are described in reference 3. The constant
currents were introduced by means of constant-current
generators. In the electrical system the unit of the potential
was chosen as 1 volt and that of the current as 100 milli-
amperes. Then the unit of the conductance had 1o be a
millimho and that of the resistance, a kilohun. In the
mechanical system the unit displacement was 107* inch and
the unit force, 1 pound. Consequently in this problem the
voltage differences had to be multiplied by the conversion
factor 10*inch per volt in order to oblain displacements,
The factor converting currents into forces was 10 pounds per
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ampere. The results of the measurements were in excellent
agreement with the results quoted in reference 3.

Similar experiments were carried out by Newton and Engle
at the Curtiss-Yright Corporation, Airplane Division, in
St. Louis and are described in two reporis [isted as references
11 and 12. Newton’s approach to the problem is fundamen-
tally the same as the argument given herein. However, his
electric network is slightly simpler since it does not contain
the conductors arranged diagonally in the system shown in
figure 5. The network of figure 5 was chosen in this report
in preference to Newton’s simpler network since by this
presentation the identity of the conductances of the network
and the influence coefficients used in the other part of this
report could be established.

It should be mentioned that in many cases it is possible
to construet a dual type of network in which the currents
correspond to the displacements of the joints of the rein-
forced panel and the potential differences correspond to the
forces in the stringers and in the sheet covering of the
panels. In this type of network the external loads can be
introduced more easily as impressed potential differences.
However, the network deseribed herein is more advantageous
sinece it can always be constructed directly from the geometry
of the reinforced panel.

The usefulness of the analogue with the direct-current
network breaks down when the infiuence coefficient in equa-
tion (7) becomes negative. In such a case the econductance
and consequently the resistance of the corresponding branch
of the network should be negative; this is obviously impos-
sible. However, the situation can be usually remedied in
the case of one-dimensional shear lag problems. The funda-
mental assumptions of the problem are not changed if a
number of additional horizontal bracing elements are intro-
duced in the panel since all of them are assumed to he
infinitely rigid. If, however, the panel length & is reduced
to one-half its original value, then the negative term in the
influence coefficient appearing in equation (7) is halved and
the positive term is doubled. In most cases this will suffice
to change the sien of the influence coefficient. When such
is not the case distance & can be reduced in any other suita-
ble ratio.

Negative influence coefficients can be realized if the anal-
ogous network is fed by an alternating current. The
quantity corresponding in en alternating-current eireuit to
the resistance of the direct-current circuit is the impedance.
In the impedance the induetance retards the phase of the
current and the capaecitance advances it so that the two
have opposite effects. If one is designated as positive, the
other is negative. However, no inductance Is entirely free
of resistance and for this reason the accuracy of a compli-
cated alternating-current network may not be sufficient for
the solution of some of the problems encountered in practice.

The use of the electric analogue for solution of shear lag
problems is recommended when several similar panels with
many loading conditions are to be analyzed. For such a
case the construetion of the analogous network, the varia-
tion of the loading by varying the impressed currents, and
the determination of the potentials at the binding posts
would be simpler than any analytic method of solution.
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FUSELAGE RINGS

INTRODUCTION

In reference 5 numerical procedures for the determination
of the bending-moment distribution in fuselage rings are
developed and demonstrated on several simple and internally
braced fuselage rings. The nnmber of redundant internal
bracing elements increases litile the work involved in estab-
lishing the operations table for the ring and affects not at all
the amount of numerical work in the solution of the opera-
tions table. This nonsensitivity to the number of redund-
ances constitutes the advantage of this method in the analy-
sis of fuselage rings.

The methods suggested for the solution of the system of
equations represented by the operations table and the
external forces are three: Relaxation, mairix-calculus, and
growing-unit. The latter two may be considered as direct
mathematical methods and as in reinforced-panel problems
require only computing personnel. For the analysis of
isolated fuselage rings of complex shape the use of these
direct methods is recommended since an accurate solution
is assured in a reasonable length of time, whereas the relaxa-
tion method may not lead to sufficiently accurate results
even after considerable effort has been expended. However,
for simply shaped rings and for problems of stress distribu-
tion in sheet, stringer, and ring combinations, application of
the relaxation method to fuselage rings is advaniageous.
For this reason the relaxation method for fuselage-ring
problems is presented and new, more rapidly convergent
procedures are developed.

It has not been found possible to make conecrete recom-
mendations for relaxation proecedures which are rapidly con-
vergent for all types of ring and loading. However, satis-
factory procedures for several distinet types of ring and
loading are demonstrated and explained in some detail. It
is felt that consideration of these examples will suggest to the
analyst means of solving more rapidly other ring and eylinder
problems which are not efficiently attacked by direct mathe-
matical means. The procedures, which involve essentially
appropriate combined operations, are demonstrated on two
rings solved in reference 5 by the usual relaxation methods
and on a new internally braced ring. Application of the
growing-unit and matrix-caleulus methods to the latter
problem is made to demonstrate these methods and to
verify the results of the relaxation procedure.

TORSION OF A CIRCULAR RING

~

In reference 5 the bending-moment distribution for a
simple circular ring with antisymmetric loading consisting
of concentrated forces and distributed and constant shear
flow is determined by application of numerical methods.
The dimensions and loading for this ring are shown in figure
6 and the operations table is given as table 7. Relaxzation
methods are applied to the solution of this ring problem in
reference 5. By a process of increasing all the residuals in
such a proportion that one key operation would liquidate
them all to within the desired degree of accuracy, the resid-
uals were reduced to within 2 percent of the maximum
applied Joad in 12 operations.
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FioUre 6.—Circular ring with antisymmetric loads.

In the present report combined operations which increase
the rate of convergence are demonstrated. Tangential and
angular displacements of A and C balance these points in
four operations and place all remaining residuals at B.
Since no tangential forces exist at A and C, the force residual
at B must be vertical and the moment residual, equal to the
couple of the vertical forces. Suppose the residual moment
at B is liquidated by a rotation of that joint while the balance
of A and C is preserved by suitable displacements of A and C.
Then from equilibrium considerations the residual forces at
B must also be liquidated. Thus in five operations balance
will be obtained. This procedure is used and proves to be
satisfactory.

In order to balance the residuals at A two combined
operations are developed. The first combines a unit angular
displacement w4 with a tangential displacement w4 such that
no tangential force at A results when the two individual
operations are simultaneously applied. The forces. and
moments introduced by the individual operations as well as
by the combination are given in the following table:

S~ Forces and
\ moments
\ Ny Ta Ng RE Tr Nei| Te

Operation \
wa=10"%radian.. ... ___ —281.95 ;—49,079 |—29.966 |—4.738 | 64.675 [ )
Ua=—093848X10~¢in____ 46.060 | 40.079 |—60.696 | 21.060 {—48.347 al 0
== Operation A=1_.___. —235.89 0 -30.662 | 16.327 | 16.328 [i] 1}

The second operation combines a unit tangential displace-
ment %, with an angular rotation w, such that at A no
moment arises from the combined operation. The forces
and moments introduced by the individual operations as
well as by the combined operation are given in the following
table:

\ Forces and
~ moments

Na N Ng Rs T
Operation \

Ne¢ | Te

uA=10-8in. ... —49.079 | —52.206 | 64675 | —22.441 51.516 | O a
wa=—0.,17407X10-2

radian. .ooooe.oo_.| 490.079 8.5432| 5.2162 0.82387|—11.258 | 0 0
Z—»Operation B=1... Y] —43.753 | 60.891 | —21.617 40.258 | © (1]
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Thus by using the necessary amounts of the combined
operations A and B joint A is balanced in two operations.
Two similar operations are found for joint C and are given
as follows without explanation:

"~ _ Forees and
moments
Nst Ta N& Ra Ta Ne Te
Qperation
we=10"3 radian..._.__ 0 4] 56, 512 8.842 6.632 |—157.829 |~L.003
we=—4.8510<10"2 in.| 0 0 |—32.192 |—2.5435 |[—0.33250 7. 5368 1. 563
Z—Operation C=1.._.}| 0 0 24,320 6. 2085 86,2935 [—150.31 4]
Forees and
momenis
Nii Ta Ng R Tr Ne¢ Te
Operation
e=10"%in_._..._... 0 0 6. 632 0. 524 0.0%85 | —1,553 |—0.322
we=—0.0038987 X 10~%
radiap oo [} 0 +—0.55930 |—0.08752 | —0.0358 1. 563 0.01547
s>OperationD=1.. [ o] o 60725 | o.#3345| coom| 0 -0, 30183

In order to balance the residuals at B without disturbing the
balance at A and C obtained by use of operations A to D,
combined operations Involving tangential and angular
displacements of A and C and a unit rotation of B are devel-
oped. If joint A is to remain in balance when a rolation
of B is undertaken, joint A musl be rotated and displaeed
in such. a manner that the tangential force and the moment
introduced at A by this rotation of B are equilibrated. Since
the angular displacement introduces tangential forces at
A and the tangential displacement introduces moments, two
simultaneous equations must be solved for the unknown
tangential and angular displacements. The equations for
A are:

—281.95w, —40.079u,—29.966 X 1073=0]
—49.079w,—52.296u,+64.675 X 10~3=0{

(18)
The solution to these equations is w,=—0.38434X1078
radian and %,=1.5974X107° inch. A unit rotation of B
and tangential and angular displacements of C are combined
in equations (19) so that the tangential foree and moment
introduced at C by the combined operations are zcro.

—157.899wc—1.563'uc-{-56.5117><10'3=0} (19)

—1.568we—0.322u¢~+6.632 X 107%=0

The solution to these equations is we=0.16180X 107 radian
and %e=19.811107% inch.

If the forces and moments introduced by the three sets of
displacements (unit rotation of B, the tangential and angular
displacements of A, and the tangential and angular displace-
ments of C) are combined, a combined operation is obtained
such that only forces and moments at B and radial forces
at A and C are introduced. These latter forces are of no
interest. in the relaxation procedure since they are cqui-
librated automatically by the other half of the ring. The
combined operation from these three sets of displacements is
given in the following table:
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Forces end
moments .
\ N Ts' Ng Rg Te Ne Te
Operation ~.
wp=10~radien_ ... —29, 666 64.675 —439. 849 31, 443 —50. 642 56. 5117 6.632
wa=—0.3343%103 radfan._______. 108.37 18.863 13,517 1. 8iv1 —24. 857 0 0
Ua=1.5974XI0-3m_ .. __. —78.309 | —83.538 1¢3.31 —35. 847 §2.292 V) [
we=0.16130X10-3 radian_._..___. G 0 9. 1436 1. 4306 10730 ~25 58 —@. 252589
ue=19.811 X103 in.. ... 0 [¢] 131.3% 10. 381 1.3570 —30.96¢ —6.3781
E—OQperation E=1. ... 0 [V —184.49 9. 2267 9.2230 0 0

The relaxation table using these five combined operations,
A to E, is given as table 8. The balancing process was
carried out on a slide rule and after five operations all the
residuals were reduced to negligible quantities. From the
magnitudes of these group operations the total individual
displacements of A, B, and C can be found and the unknown
radial forces at A and C calculated.

The procedure just described involves essentially the
development of group operations so that full advantage of
the symmetry properties of the ring may be realized. This
method is applicable to other rings. The internally braced
circular ring subjected to antisymmetric loads and analyzed
in reference 5 can be treated in the same way as this simple
ring. If these rings had been symmetrically loaded, the
force residuals at B, after A and C had been balanced by
simple radial displacements, would have a herizontal
resultant. By combining radial and tangential displace-
ments of A and C such that the resultant force introduced at
B is horizontal and such that A and C remain in balance, the
horizontal resultant at B could be liquidated by application
of such & combined operation. The moment residual at B
is not necessarily eliminated when the force residual at B is
balanced. Joint B must be rotated while A and C are dis-
placed radialiy so that the moment at B is liquidated and
joints A and C are kept in balance. If the process of liqui-
dating first the residual force and then the moment at B,
preserving in each operation the balance at A and C, is not
rapidly convergent, two equations for the equilibrium of B
can be established and solved for the required amounts of the
combined operations.

Thus the foregoing procedures for both the symmetrical
and antisymmetrical loading can be applied to any ring
singly symmetrical with only one joint between the center
line of symmetry joints. It may, therefore, be advantageous
in some ring problems to combine several bars, as in the
methed of the growing unit, such that only one joint be-
tween the boundary joints has independent degrees of
freedom. This will permit use of the foregoing procedure.

Sufficient aceuracy for most engineering purposes can be
obtained in the computations of this procedure by the use of
a slide rule throughout. Although the combined operations
shown herein were obtained by the use of a computing
machine carrying five significant figures, the procedure was

first demonstrated with the use of a slide rule for all calcula-
tions. The results of the two sets of caleculations are In
good agreement, thus indicating the sufficiency of slide-rule
4CCUracy.

EGG-SHAPED RING

Figure 7 shows the dimensions of, and loading on, a ring
which is analyzed in reference 5. The operations table for
this ring is given as table 9. In this ring there are two
points B and C between the center line of symmetry points
A and D. By making the degrees of freedom of either
point B or C dependent on the other and on the adjacent
center line of the symmetry point, one point with independent
degrees of freedom is established between A and D and the
method discussed previously can be used.

500 /b
g

20" Radius

500 /b
Fi1cURE 7.—Egg-shaped ring with symmeiric loads.
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However, in order to demonstrate the simplicity and
effectiveness of group operations, another approach is used.
The center lines of symmetry points A and D are balanced by
simple radial displacements of A and B. The midpoint of
bar BC is assumed restrained tangentially so that only equal
and opposite tangential displacements of B and C are under-
taken. DBecause of the large extensional stiffness of bar BC
as compared with the bending rigidity of the circular seg-
ments and because the ring is almost symmetrical about a
horizontal axis, such displacements of B and C liquidate ap-
proximately equal and opposite tangential residual forces at
B and C, such as those which will be obtained at these points
when the residuals associated with the other degrees of free-
dom are small.

If the balance at A and D is preserved by appropriate com-
binations of the radial displacements of A and D with the
required displacements of B and C and if the tangential resid-
uals at B and C are not considered until the foregoing opera-
tion will liquidate them both, main attention is focused on
the radial force and moment residuals at Band C. Inorder
to balance these, no specific method of convergence is used
but the state of the residuals after each step is considered
before the next operation is selected. In this problem of
egg-shaped rings and many other rings and in the complete
eylinder problems this approach, utilizing physical proper-
ties of the system and eliminating or reducing extraneous
forces and moments at each step in the rclaxation process,
may be the most satisfactory method of solution.

Table 10 is the relaxation table for the ring in question.
The first two operations involve only radial displacements
which balance the 500-pound forces at Aand D. The largest
residual then is the radial force of 451 pounds at C. If point
C is displaced radially so as to balance this residual, a large
moment and a large radial force are introduced at B. In
order to reduce these extraneous forces and moments and
to keep joints A and D balanced, radial displacements of A,
B, and D and a rotation of B are combined as shown by the
following operations:

—3.34833v,4+4-8.92216wp—2.69614v;=0
8.922162,—327.866wz+11.4697v5-+8.10267 X107*=0
—2.696140,+11.4697wp—4.0099105+0.66158 X 1071=0
—12.24000,—1.11900107*=0

(20)
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The solution of this system of equations is: r4=—0.26384{¢
10~*inch, wp=0.03279 <10 * radian, rz=0.43618:X10"* inch,
and vp=~0.90243<10~* inch.

The forces and moments introduced by each of the individual
operations and by the combination are given in the following
table:

~ Forcés and
. moments
\ Re Ng Fid Tz
Operation
Ye=10in. . Q 8. 10267 0. 66158 Q
94=—0.26384 X104 in. ... 0.88343 —2,351 0.71138 | —~1.01°8
% p=0.03279X10-4 radfan. ... ... . 0.29238 | —10.751 0.37612 | —Q. {2363
#p=043518X10~4in. ... ... —1.176Q 50028 —1. 7401 1, 4084
2p=—0.00242X10~* in..........._. a i} 0 1]
E—=Operation F=1_..__..__.__.. 0 3} 0 0.0219
Furces and
~ moments
\ Ne¢ Re Te Rp
Operation
e=10"4in_ .. —2.95622 —1. 80205 —0.88929 | —1.119%)
pa=—0.28384 X104 i _._....... 1] 4] 1] 0
w0 p=0.03279X10~4 radian. ... ... —2.0082 0. 26570 0 0
pp=0.43618X20~in ... ... —3. 5342 0. 28857 0 0
op=—0.20242X10#~ In ..o 6. 6350 1. 00381 0. 03026 1, 1180
Z->Operation F=1. ... ~1.8636 —0.33798 0. 04587 0

The use of combined operation Fis desirable in balancing the
radial residual force at C, sinee it also reduces the moment
residual at C and adjusts the tangential residuals at B and C
in the desired manner.

The residual considered after use of operation F is llz=
402 pounds. In order to balance it by a displacement
vy while the balance at A is preserved, a v,-displacement
must be undertaken as well. If ¢3=10"* inch, then

2.60614 .
4= T3 319885010 348933>< 104=—0.80522>< 10~* inch.
moments introduced by these individual operations as
well as by the combinations are given in the following table:

The forces and

Foreces and
moments
R4 Ng Rs T N¢ Re Te Rp
Operation .
vp=10"4in. . .. o ooooa... —2. 69514 11.4697 —4.00991 3. 4352 —8. 10267 0. 66158 0 Q
24=—0.80522X10~4 in..._..... 2. 6961 —-7.1843 2.1710 —3.1049 Q 0 0 0
Z—=Operation G=1.._........ 0 4,2854 —1.83891 0. 2403 —8. 10267 0. 66158 @ Q

Consider the effect of eliminating the Rz-residual by use of
operation G. The moment residual N, would also be re-
duced by roughly 1000 inch-pounds, the Tp-residual would
be brought in closer agreement with the Tg-residual, an

Re-residual of about 30 percent of the previous Fe-residual
of 451 pounds would be introduced, and a large Ne-residual
would be introduced. The last two effects are undesirable,
However, by use of operation F again, the Fe-residual ean he
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balanced without introducing a new Rp-residual. The large
Noresidual is not so easily balanced unless & new combina-
tion involving joints A, B, and D is evolved.

Suppose, therefore, that a rotation of C and a radial dis-
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placement of D are combined so that a moment at C can be
eliminated and so that the balance of D is preserved by use
of the combination. The individual operations and the
combinations are given in the following table:

TForces and
moments
Ry Ng Ra Tz Ne Re Te Rp
Operation

we=104radian.. ... f —61.242 —8. 10267 0 —288. 367 —2.95622 —5.24867 —7.3524

up=—592M4X104in_. . __..__... a a 1] a 43. 595 6. 63500 6. 157 7.3524
I E—Operation H=7______________ 0 —61.242 —8 1027 a —244.772 3.6788 0. 90308 0
i

If operations G and H are combined so that the moment at C introduced by the combination is zero, the resulting

forces and moments are given in the following table:

&\\ Forces and |
. moments
i \ Ra Na Ry Tg N¢ Re Tec Rp
|
. Operation \
([ Q 4.2854 —1.83s891 0.2403 —8. 10267 0.66158 0 1]
-0, M3 (HY . . \] 2.0273 0.26822 g 8.10267 —0.12178 —0.029%6 Q
} E—=Operation {=%___________.__.__ 1] 6.3127 —1.5707 0.2403 1] I 0. 53850 —0.02%%6 b}

Use of operation | results in liquidation of the Rp-residual,
in reduction in the Ngresidual, in adjustment of the Tp-
and Tp-residuals toward the desired equality, and in intro-
duection of an Rg-residual of 138 pounds. The latter can
be balanced by the use of operation F, which will preserve
the balance of A and D and will not affect the Nz and
B presiduals.

After this fifth operation the 73 and Tresiduals are
approximately equal and opposite as desired. Therefore, a
group operation, involving equal and opposite tangential
displacements of B and C and sufficient radial displacements
of A and D so that the latter remain balanced, is developed
in the following table:

. Forces and |
moments i
i R N Rs Tp
!
Qperation i
|
wp=10—*in. .. .. ... 'l 3.96771 —13.1034 3.4352 | —30.9566
Ue=—104 I ool K 0 a —26.2058
| A= LISSOXI0® I oo ooeoo.i —3.967T 10.573 | —3.1949 107
ep=0.53669X 10~ in__.___...___... o0 o o I o
Z-0peration J=T.. .../ 0 —2.554 | 0.2:03 i-sum
Forees and |
moments &
Ne R¢ Te Ep
Operation \
’
P S | o o f 26,2038 ; 0
He=—104 0 oo 5.24667 0.85929 ; 2088 | 1037
Pa= LIRS0 Moo oo 0 0 Ioo I e
! 5p=0.83609X107 M. [ 6157 | —o.9362%6 | —o.86807 | ~10373
0.01697 | &24m: ’ 0
!

Z—Operation 4 =1 ,-_i —0.9050

Use of operation J liquidates the Ts- and Tc-residuals and
affects little the balance in the other degrees of freedom.
The remaining residuals are considered negligibly small, the
moment of 309 inch-pounds being approximately 3 percent
of the maximum moment in the ring. As in the previous
problem the individual displacements can be determined
from the magnitudes of the group operations and thus the
unknown moments and tangential forces at A and D eal-
culated.

Although the calculations of the group operations shown
herein have been carried out on a computing machine with
five significant figures maintained wherever possible, suffi-
cient accuracy for engineering purposes can be obtained by
the use of a slide rule. In developing this procedure a slide
rule was used for all computations and the results agreed
satisfactorily with those shown herein.

OVAL-SHAPED RING WITH INTERNAL BRACING

The ring shown in figure 8 is used as a third example of
the new relaxation procedures. As a check on the results
of this procedure the system of equafions given by the
operations table and external forees is also solved by the
exget mathematical methods of matrix caleulus and of the
growing-unit method. In order that the charts and tables
of reference 6 could be used in determining the influence
coefficients, the following physical characteristics of the
elemenis of the ring are assumed:

Segments AB and EF:

~,=Af'=500
A*
=57=0.10
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f=45°
EIl=10% lb-in.?
I.=18.85in.
Segments BC, CD, and DE:

AL
Y=
,4”1 *

=500

B3=30°
ETI=10° lb-in.*

L=18.85in.
Segment EG: B
'y=fléf:=400
e=2"0.10
B=0°

Ef=10% Ib-in.?

L=16.97 in.

1000 /b C /000 /6
—_— —

1000 /b 1000 /b
- —

)

Firure 8.—~0val-shaped ring with positive directions of forces and moments shown.

Because of the symmetry about a line through AGF only
one-half of the ring need be considered. dJoints A, G, and F
are then restrained from rotating or displacing tangentially
and cannot be subjected to radial forces. The assumed
positive directions of the displacements and of the forces

and moments at each joint are shown in figure 8. Irom
the foregoing assumptions, the influence coeflicients and the
operations table given in table 11 are determined,

The horizontal external forces of 1000 pounds at C and D
are resolved into their tangential and radial components.
Thus the external forces are:

R:=965.93 1b

Te=—258.82 b

Rp=—965.931b
p=—258.82 b

The matrix-caleulus solution of the system of equations
given by these external forees and by the operations {able
is first obtained so that the equilibrium of the ring as given
by this solution will provide a cheek on the whole setup.
Joint G is considered fixed so that a unique solution {o this
system of equations is obtained; thus there are 14 degrees
of freedom to be considered. The 14 unknowns are found
by the method of reference 9 to he:

2, =—605.73X 107 in. )
wp=140.82510"% radian
1p=235.144<107% in.
up=—2300.06}10"% in.
we=—11.445X107% radian
2o="064.55X 1072 in,
Ue=—T2.282 1073 in.
wp=—22.975X107° radian
pp=—04.734 X107 in.
Up="00.130< 1072 in.
wp=6.2337 % 107? radian
pp=—42.621 % 1072 in.

wr=232.513X107% in.

vp=—44.648 107 in.

-

‘These displacements give the following values of the
unknown moments and tangential reactions at A, F, and G
on the bars rather than on the joints:

N.==—3118.8 in.-Ib)
T,=402.51Ib
[»=105.43 in.-lb
Tr=—182.57 1b L 23)
Ng=—371.06 in.-lb

Rz=0.431b

Te=584.981b )
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Figure 9 is the bending-moment diagram for the ring with
these reactions applied.

By examining the equilibrium of one-half the ring under
these reactions and the external forces, the accuracy of the
operations table is established. Since K. and Ry are zero,
the summation of forces in the vertical direction is simply:

SFy=R,=0.431b (24)
The summation of forces in the horizontal direction is:
SFp=T:—T»—Te=0.101b (25)
The summation of moments about point G is:

12
0.70711

S =N+ 214[24+ +24(o.70711)]+

N Npt Tr(24)(1—0.70711) — 1000 (2 X 36 X 0.25882)
= —3118.91+402.49(57.941) —371.06+105.43 —
182.56(7.0204) —18,635.04
—17.45 in.-1b (26)

The equilibrium conditions for the half ring are approxi-
mately satisfied, the maximum percent error being 2 moment
of less than 0.1 percent of the applied couple of 18,635 inch-
pounds. It is considered that the accuracy of the operations
table is established by this equilibrium check.

Approximately 20 man-hours by an unskilled computing-
machine operator were required to solve this system of 14
equations. Tt is estimated that a skilled operator familiar
with the Crout method would require about 10 man-hours.

In applyving the Crout method to this problem the co-
efficients of the linear equations are assumed to be mathe-
matically exaet and, therefore, as many figures as could be
carried on the 10-bank eomputing machine are used through-
out the computation. In this way an accurate solution is
obtained and the additional computing work is not great.
Afterward the values of the unknowns can be rounded off to
the physically correct number of significant figures.

Use of the growing-unit method of solution on this ring is
demonstrated as follows. This method is deseribed in detail
on pages 39 to 46 of reference 5. It is demonstrated on this
new ring as an application of the procedure to a ring with
many intermediate joints between the center line of sym-
metry points. In applying the growing-unit method to this
ring the units are combined into bars of increasing length
until displacements of all points are known such that the
only unbalanced foreces remaining act in the radial direction
at A and F when unit radial displacements are undertaken at
A and F. Then these forces at A and F can be eliminated
by appropriate radial displacements of A and F and the final
distorted shape determined.

The first units to be combined are AB and BC. In order
to effect this combination, the displacements of B required
to maintain the balance of B during a unit radial displace-
ment of A and unit radial, tangential, and rotational dis-
placements of C must be determined. The displacements of
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B required to maintain the balance of B while point A is
displaced radially 1072 inch are given by the equations:

Np=—454.34w5+6.723815— )

78.411up-+5.9020X1073=0
R,=6.7238uw;—12.09305+ o
0.55690u;—4.5778 X 10~3=0 - @0

Tp=—78.411w510.5569005—
84.510up+14.662X107*=0

7

The solution to these equations is: wgz=—0.026434>1073
radian, ¢p=—0.38424X107° inch, and uz=0.19549X 1073
inch.

If the forces and moments at points A and C due to a
displacement #,=10"? inch and due to the foregoing dis-
placements wp, 75, and ug are summed, the following equa-
tions are obtained:

R,=—266181b
Ne=10.699 in.-b
Re=—188711b
Te=3.2614Ib J

The displacements Np, R, and T are zero since that is ihe
condition satisfied by equations (27).

The displacements of B required to maintain balance at B
during unit rotational, radial, or tangential displacements
of C are determined in a similar manner and are collected in
table 12.

The forces and moments given in the last seven rows of
this table constitute the influence coefficients for a new unit
of the ring, namely, the segment ABC. This unit is not a
bar, the center line of which is an arc of a circle, but rather
one composed of two ares of circles. This combining of
units, extended until the entire ring is one segment, is the
main prineiple of the growing-unit method.

Each column of table 12 represents a group displacement
made up of individual displacements of points A, B, and C.
Let these group displacements be identified by the Roman
numeral given at the head of each column. For example,
group Il is made up of the displacements we=1073 radian,
wp=—0.21631X107% radian, rp=-—0.23971X10"% inch,
wp=0.74197X107% inch, and ra=rte=uc=0. The moment
at C, for instance, caused by the application of xy units of
the group displacement I1 is then

No=—389.561y (29)

With a similar notation for all other forces and group dis-
placements, equations (30) may be set up representing the
requirements for equilibrium of joint C under the external
forces acting at that point, balance of B being maintained.

Ne=—3889.56rp—10.093r—53.77loy=0 b
Be=—10.093r1—6.7520r;1—10.615r+965.93=0 L (30)
Te=—583.TT1rp—10.6150mr—54.199—258.82=0
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The solution to this system is xy=1.0476, ¢;;=217.61, and
rrv=—48.436, and the following forces and moments are
introduced at A and D:

R,=—557.431b
Np=—2,666.6 in.-1b
@1
R,=184.66 1b
T5=626.46 1b

The forces and moments at D are added to the external forces
applied to the ring at D and are balanced after the unit
problem for the segment at ABCD is established. The
R ,—force is not balanced until the complete ring is one seg-
ment and until the R.— and Rz residuals can be balanced
together.

The next unit to be considered is the combination of the
ABC segment with bar CD into the segment ABCD. The
problem is to find the forces and moments at A, D, and E
due (1) to a unit radial displacement of A with joint D fixed
and (2) to unit radial, tangential, and rotational displace-
ments of D with A and E fixed. Joints B and C are free to
displace so as to maintain the balance at B and C in each
of these four cases. By determining the magnitudes of
@11, @, and oy required to balance C in each of these four
cases, the required displacements of both B and C are im-
plicitly determined and the unit problem for segment ABCD
is solved.

The magnitudes of the #y~, -, and z-operations re-
quired to balance joint C when A is displaced radially 1073
ineh and B permitted to displace so as to remain in balance
are given by the following equations:

Ne=—389.562;;—10.093r1:—53.771r,v+10.699=0
Rc= '—10‘0931'11"‘6.75291'111— 10.6151‘1\3— 1.8871=0 (32)
Te=—>53.7T1ry;— 106152 —54.1992,v+3.2615=0

The forces and moments at C to be balanced are given in
group 1 in table 12. The solution to these equations is
rp=0.021497, app=—0.53843, and xv=0.14430. Use_ of
these multiples of operations II, III, and IV and of a unit
amount of group I results in the following forces and moments
at A and D:

R,=—0.94505 b

Np=6.7928 in.-Ib
(33)
Rp=~0.74924 1b

Tp=0.77749 1b

The forces and moments given by groups V, VI, VII, and
VIIT in table 13 are the influence coefficients for segment
ABCD. For example, the forces and moments introduced
at A, D, and E due to a unit radial displacement of D with
A and E fixed and with B and C in balance are given by VII.
With these sets of coefficients it is possible to balance joint
D while the balance of B and C is preserved. The forces

and moments to be balanced at D are (1) the external forees
on the ring at D and (2) the forces and moments which are
introduced at D by the balancing of C and which are given
by equations (31). The residuals to be balanced at D are
thus:

Np=—2666.6 in.-Ib
Rp=—965.931184.66=—781.27 I 34
Tp=—258.824+626.46=367.64 [b

The equations which condition the balancing of joint D,
from consideration of groups VI, VII, and VIII, are secen
to be:

Np= —346.881'\;1_ 16.6971‘\"11—“43.745},’\'1[1—2666.6—_-O
RDZ —'16.697.1'\;1—“5.65001'\;11— 12.4581’"[[[_781 27=0 (35)
TD= _'4’3.7451'\!1_'12.4:581’\;1[—‘50.8171'"”['{_' 367.64=0

The solution to these equations is a2y;=~—3.3100,
ay=—2328.09, and 2vn=90.518, which give the following
forces and moments:

Ek.,=293711b

Ng=4880.4 in.-lb
(36)
Ry=—522.691b

Te=—149.69 lb

As in the balancing of C, a tangential force and moment are
introduced at A by this balancing of D, but because of
symmetry the equilibrium of A is not disturbed by these.
The R,-forces will be balanced later and the residuals at E
will be balanced when the influence coefficients for segment
ABCDE have been determined.

In order to find the influence coefficients for bar ABCDE,
the forces and moments at A and E due to a radial displace-
ment of A with E fixed and at A, E, and F due to unit radial,
tangential, and rotational displacements of E with A and F
fixed must be determined. By determining the magnitudes
of groups VI, VII, and VIII required to balance D in cach
of these four cases, the required displacements of B, C, and
D and the required forces and moments are determined.

The magnitudes of the groups VI, VII, and VIII required
to balance D when joint A is moved radially 107% inch are
given by the following equations:

ND= —346.881\-'1—‘16.697.1"11—43.745.{'\'11["{’” 6.7928=0
R,=—16.6972v1—5.6500ry;1—12.458p¢1;—0.74924=0 > (37)
TD= —43.7451\11'—‘ 12.458.17\,'11_50.817.{'"11[“{‘ 0.77749=0

The forces and moments at D to be balanced by groups VI,
VII, and VIII are given by V in table 13 and are the constant
terms in equation (37). The solution of these equations is
yr=0.028042, zv;;=—0.42660, and &y;;;=0.005744. The
summation of forces and moments due to a unit magnitude
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of group V and the foregoing multiples of groups VI, VII,
and VIII are:

R,=-—0.36050 lb

Np=4.1055 in.-Ib A
(38)
Rz=—0.31703 b

£=0.19226 b

In a similar manper the complete set of influence coeffi-
cients for segment ABCDE is determined and is given in
table 14. For example, the forces and moments in group XI
are the forces and moments introduced at A, E, F, and G by
a unit radial displacement of E with A, F, and G fixed and
with points B, C, and D {ree to displace so as to remain in
equilibrium. With these influence coefficients joint E can
be balanced while the balance of B, C, and D is preserved.

The forces and moments to be balanced at joint E are
those introduced by the balancing of joint D with groups VI,
VII, and VIII and are given by equation (36).

The equations in rx, g1, and rxn balancing joint E under
these loads are:

Np=—533.92rx—38.099rx1—29.57 Qg +4888.4=0
Ry=—38.09%rx—49.295r5;—53.432rxn—522.69=0 ¢ (39)

|

Tp=—29.57%rc—53.432rx:—76.32204; —149.69=0

The solution to these equations is zx=11.184, rg;=—>51.518,
and rx=29.771 and the foreces at A, F, and G introduced by
this balancing of E are:

R,=679741b
By=—266.68 1b (40)
R;=70.66S 1b

The tangential forces and the moments introduced at A, F,
and G are not eonsidered in this balaneing of the half ring,
since these are equilibrated by the forces and moments from
the other half of the ring.

The final combination of units will be the combination of
bar EF with the unit ABCDE. ¥hen this union is effected,
the influence coefficients for the half ring as a unit will have
been determined and the radial forces at A and F can be
balanced simultaneously. The radial forces at joints A and
F due to a unit radial displacement of A with F fixed and to a
unit radial displacement of F with A fixed must be deter-
mined. In both cases joints B, C, D, and E are displaced so
as to remain balanced.

The equations giving the magnitudes of groups X, XI, and
X1II required to balanee joints B, C, D, and E when joint A
is displaced radially as in group IX are:

Np=—533.92rx—38.099rxr—29.57 9y +4.1055=0
Re=—388.0992x—49.2950rx;—53.432rxy—0.31703=0 (41}

Te=—29.579rx—53.4320rx;—76.322rx;+0.19226 =0

The solution to these equations is xx=0.0094398, ru=
—0.051804, and rx;=0.035128 and the forces introduced by
2 unit magnitude of IX and by these muliiples of groups
X, XI, and XTI are:

R.=—0.29857 lb
Rr=—0.33361 Ib (42)
+=0.035176 1b

The equations giving the magnitudes of groups X, XI, and
XIT required to balance joints B, C, D, and E when joint
F is displaced radially 1073 inch are:

;\73: —533 .921’2_ 38 .Oggl‘xg _29.5791'1;[1 —5.9020=0
Rg— —-38.099rx —19.205057—53.432r5;;—4.5778=0 » (43)
Te=—29.5T0rc—53.432r51—76.322r;;— 14.662=0

The solution to these equations is ry=—0.017182, rz:=
0.50354, and rxp=—0.53797 and the forces introduced at
A, F, and G by a radial displacement of F of 107% inch and
by the foregoing multiples of groups X, XI, and XIT are:

R,=—0.33361 Ib"
Ry=—144701b (44)
Rz=1.1156 1b

The forces given by equations (42} and (44) represent the
influence coefficients for the entire half ring and are labeled
groups XIII and XTIV, respectively. These forces permit
calculation of the multiples of groups XIIT and X1V required
to balance the radial forces at A and F. These forces are the
total forces remaining from the balaneing of C, D, and E;
R, is given by the sum of the B -forces of equations (31},
(36), and (40) and 1s:

R, =—557.43+293.71+67.974=—195.751b

The Rsforce is the force introduced by the balancing of
E alone and is given by equation (40). Tt is:

Rr=-—266.681b

The equations giving the magnitudes of groups X1II and
XIV required to balance joints A and F under those loads are:

R.= —O.QQSéTIm—O.33361rxn»—195.75=0}
(45)
Rp=—0.33361rxm—1.4470rx vy —266.68=0

The solution to these equations is rgn=—605.73 and
rgrv=—44.646. The radial foree at G introduced by this
balancing is —71.114 pounds, but the Rgforce given by
equation (40) in the balancing of E is 70.668 pounds. The
difference between the two, —0.146 pound, is considered
pegligibly small compared to the applied loads of 1000
pounds.

With the balancing of joints A and F and the substantia-
tion of the balance at G, the entire half ring is balanced.
The total deflections in each degree of freedom can now be
caleulated and used to determine the unknown bending
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moments and tangential forces at A, F, and G. In order
to calculate these deflections the balancing equations (30},
(35), (39), and (45) give the magnitudes of the group opera-
tions involved while the equations determining the group
influence coefficients give the individual operations involved
in each group.

Table 15 gives the magnitude of all group displacements
from I to XIV implied in a unit application of any one group.
For example, row X in this table indicates that a unit
magnitude of group X (that is, 2x=1) is equivalent to the
sum of the effects of Xy=2.1885, Xynu=—4.6760,
Xyr=—0.16186, and wg=10"° radian, or the sum of the
effects of X;y=2.9219, X;;=1.7552, X;;=—0.19736, wp=
1073 radian, wp=—0.16186 X 107° radian, v,=—4.6760 X
107® inch, and #,=2.1885 X 107% inch. During the solu-
tion of the problem the magnitude of group X which was
explicitly used was 11.184, as given in the last column of
table 15.

From table 15 the total magnitudes of each group opera-
tion may be found. For example, the total magnitude of
group VIis:

vr=(1)(—3.3100)+ (0.028042) (0)+ (—0.16186) (11.184) -
(0.037474)(—51.518)+ (—0.0022427)(20.771) +
(0.024494) (—605.73) 4 (0.022857) (— 44.646)
=—22.975 (46)

The total displacement wj, is:

wp==(yv1) X10¥=—22.975x107? radian (464)

Similarly the displacements of all points except point B
may be calculated from table 15 and are given in the last
row of that table.. -

Point B was displaced during the application of groups I,
II, III, and IV, and therefore the magnitude of its dis-
placement must be calculated as indicated in the following
example:

wp={—0.026434 X 107%)(—605.73) +

(—0.21631 X107 (—11.444)+

(0.035554X107%)(664.55)+ (47

(0.017847 X 107%)(—72.286)

=40.825<107% inch

where the first number in each preduct is the magnitude of
wp involved in each unit application of groups I, II, III,
and IV, respectively.

The total displacements used are assembled in equations
(47a).

v4=—0605.73 X103 in.
wp==40.825>10"% radian
vp=235.144><107% in.
Up=—300.0610"% in.
Wwe=—11.444> 1072 radian
ve="064.55X10"% in.
Ue=—72.286<107% in.
wp=—22.975% 107 radian [
vp=—04.731X107% in.
up=900.127 X107 in.
wr=06.2331 <107 radian
vp=—42.620<X107% in.
up=232.511X107% in.
vr=—44.646 <107% in, J

(47a)

These total displacements constitute the unknowns of the
system of equations given by the operations table and the
external forces; comparison between this growing-unit and
the matrix-calculus solutions given by equations (47a) and
(22), respectively, indicates good agreement for the dis-
placements. In fact, the forees and moments given by the
two methods differ by less than 1 percent and therefore are
given only for the matrix method (cquation (23)).

Several gencral remarks are made about the growing-unit
method:

(a) In determining the influence coeflicients and in balane-
ing the external foreces and moments, sets of cquations with
the same left-hand sides but with different constunt icvins
are used several times. This simplifies solution of the cqua-
tions and reduces the computational work eonsiderably.

(b) In order to obtain sufficient accuracy of solution for
rings with many joints, caleculating machines must be used;
five significant figures were carried throughout the caleula-
tions. However, on the simpler rings such as the circular
ring and the egg-shaped ring diseussed previously, slide-rule
aceuracy for determining the displacements in a combined
operation is probably sufficient for engineering purposcs.

{¢) A check on the influence cocfficients for composite
bars is obtained by applying Maxwell’s theorem of reciprocal
deflections. This is a valuable device for assuring accuracy
at each stage.

In applying the new relaxation procedures to this ring, it
would have been possible to use the general method de-
scribed for the cgg-shaped ring, that is, to consider thic resi-
duals after each operation and develop a satisfactory com-
bined operation to reduce as many residuals as possible.
However, the number of degrees of freedom involved in this
ring is large and, therefore, the number of residuals to be
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considered In testing the efficacy of a particular operation is
large.

The loading on the ring provides a clue to overcoming
this difficulty. No external loads are applied at A, B, E,
F, and G; moreover, A, F, and G are points along the center
line of symmetry. Therefore, if in balancing D and E the
balance at the other joints is preserved by suitable dis-
placements, attention is fixed on the two joints D and E
and the procedure described for the egg-shaped ring can be
used effectively. It will be recognized that this procedure
is essentially & combination of growing-unit and relaxation
methods of solution.

In executing the proposed method the bar ABCD, free
only to displace radially at A and fixed at D, is considered
first. The equations giving the displacements of A and B
required to maintain balance of these points while joint C
is rotated through 1072 radian are:

R,—=—7.13100:+5.9020wp—1.5T78r5+ |
14.662uz=0
Np=5.90200, — 1543410, 6.7238r,—
78.4112,—38.489 < 1073=0 _
> (48)

RB: _4.57780‘.1+6-723Su’3_12.0932’3_["
0.55690uz—1.8576X107*=0

Tp—=14.6620, —78.41 15+ 0.5560005—
$4.51015-+45.876 <1073 =0 J

The solution to these equations is r,=4.0195>107% inch,
wp=—0.32255 10~ radian, rp=—1.7842<107® inch, and
up=1.5277 % 107% inch. These displacements combined with
the unit rotation of C yield:

Np=—2346.56 in.-Ib )
R.=—17.678 lb

T.=—40.663 Ib "
D=—3S 489 in.b - (+9)
RDZ Ib

The moment and tangential force introduced at A are not
considered until the balancing of the ring is complete.

In a similar manner the forces and moments for unit radial
and tangential displacements of C are determined, as shown
in table 16. The forces and moments given by groups XV,
XVI, and XVII constitute the influence coefficients for the
displacements of C with A and D fixed and with joints A and
B balanced. Use of these coefficients permits focusing of
attention on C and D, the joints at which the external forces
are applied when C is being balanced.

The forces and moments introduced at C and D when D
is displaced a unit amount in each degree of freedom and
when E, F, and G are displaced so as to maintain the balance
thereof are calculated and shown in table 17.

Table 18 is an operations table consisting of unit magni-

tudes of group operations XV to XX. Table 19 is the relax-
ation table for this ring which uses these group operations.
The external forces applied at C and D are given in the first
row of table 19.

A discussion of each step in the relaxation process is given
as follows:

tep 1.—Because of the antisymmetry of the loading and

of the quasisymmetry of the ring about a horizontal axis
operations rxv=1 and rxc=—1 are applied as a first ap-
proximation to the deflected shape. The forces and moments
introduced are as given in the following table:

Farees and
moments

N¢ Re Te Nbp Ep Tb
Operation
VD=1 —17.678 —35.4150 | —12.928 [ —1.8576 | —2.2277 | 13.781
(XIXp=—1_________ —1.8576 22277 13.%781 |—11.335 6. 2441 |—12. 706

=—+Operation K=1.._j—19.536 | —3.1873 0.853 |—13.393 4.0164 1078

Operation K is used to balance the Rg-residual; the same
operation reduces the other force residuals but introduces
large Ng- and Np-residuals.

Step 2.—In order to reduce these moment residuals an
antisymmeftrical combination of we and wp is made, as shown
as group operation L:

Forcss and
moments
Ne Rc Te Np Ep Tp
Qperation ;
(XV)y=1..coeo ... —346.56 |—17.678 | —40.662 —38.180 ! L8576 45,578
(XVIIIy=1......._.__. —38.489 | ~1.857B 45,876 1—392. 46 11.535 —42.305
=->0peratizn L=1. _.: —385.0¢4 [—10.536 5.214 [—430.95 | 13.393 3.57

However, use of operation L by itself would reintroduce large
R and Rpresiduals, and therefore operations K and L
are combined so that the Rqresidual will be smaller and the
R presidual eliminated, as shown in the following table:

Forces and :
moments

Ne Re¢ Te Np Ep To
Operation
Operation L=1_..___ —385.04 | ~19.536 5,214 |—430.95 13.383 | 3.571
—3.336 X0 peratmn
| €3. 145 10,828 | —2.84 44,660 | —13.303 | —3.3816
=—»Qperation fA=1 |—319.90 —8. 908 2,370 |—-386. 28 4] —0.0137

The new force residuals introduced by operation M are less
than 30 percent of the original residuals and, therefore, the
rate of convergence is felt to be adequate.

Step 8.—The radial residuals at C and D have the same
sign and, therefore, symmetrical displacements v and vp are
undertaken. It is seen that such a combination would
introduce large tangential residuals at C and D. Therefore,
a tangential displacement of C (D could have been chosen
instead) such as to eliminate the T¢- and Tpr-forces is under-
taken. The forces and moments introduced by the individ-
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ual displacements and by the combination are denoted as
operation N.

Farees and

r moments Ne Re re Np Bp T
Operation )
(XVD=1__._.._.._.. —17.678 | —5.4150 | —12.928 | —1.8576 | —2.2277 | 13.781
(RIX)=1. ... 1.8576 | —2.2977 | —13.781 | 11535 | —6.2441 | 12.706
03201 (XVID)....| 21632 | 6.8773 | 26.709 | —24.406 | 7.3316 |—26. 387
ZoOperation N=1._.|  5.811 | —0.7653 | 0 ] —14.730 | —1.1400 | —0.100

The use of operation N reduces substantially all the residuals
except Ne.

Step 4—1In order to reduce N¢ and at the same time keep
the Te- and Tpresiduals small, 2 combination of groups
XV and XX is made. Group XX is included since a force
inereasing the residual Tp would be introduced by the use
of XV alone.

\Forces and

moments
\ Ne Re¢ Te Np Rp To
GOperation

—38.489 1. 857

1.4 0 D —346.55 | —17.678 | —40.662 45.876
0.91279X (XX). ... 41.875 | 12,579 | 45.616 | —38.616 | 11.507 |—45.876
E—-0peration C=1..._. —304.67 | —5.000 | 4.954 | —77.105 | 13.455 [ 0

Steps 5 and 6.—After operation O is used, the largest
force residual is approximately 6 percent of the applied
forces and the moment residuals are small. It was con-
sidered desirable to reduce further the force residuals.
Therefore, operation | was used again so as to reduce Rp,
the largest force residual, and then XVII was used so as to
reduce the resulting Te-residual. After this sixth step the
largest residual of 4 percent of the external force is con-
sidered small enough.

A check table using the total displacements is used as a
check on the accuracy of the combined operations and on
the relaxation {able. The total individual displacements are
caleulated as discussed in the previous two examples and are

as follows:
vy =—596.18>107% In.

wp=236.779<107% radian
15=0.22394>(107% in.’
Up=—2304.60X107% in.
Wwe=—14.321078 radian
2¢="561.66><107* in,
Ue=—114.6141072% in.
wp=—18.4%10"% radian L (50)
vp=—133.66X107% in.
Up=3.7242> 1073 In.
Wr=T7.4813%107? radian
rp=230.607 %1072 in.
Up=—41.708 X107 in.
2p=>59.979X107% in,
r6=114.523<107% in. J
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It is pointed out that certain of these displacements differ
considerably from those given by the exaet solutions of the
matrix-caleulus and growing-unit methods, mainly becnuse
the relaxation solution is approximate and in it joint G is
permitted to displace radially.

The unknown reactions given by the foregoing relaxation
procedure are:

N.o=—2851.1 in.db )
T,=380.211
[p=140.16 m.-1h
(51)
w=—224.001b
Neg=—440.45 in.-lb
Te=0648.18 1b

Consideration of the equilibrium of the half ring gives:

S Fy—380.214-224.00 — 648.18 = —43.88 b
ZFV—:O
ZM o= —2851.14-380.21(57.041)—440.454- [ (52)
140.16—224.09(7.0294) — 18,635
=—1331.8 in.-1b

The moment equilibrium unbalance is approximately 7 per-
cent of the applied moment and is considered satisfactory
for engineering purposes. If a more accurate representation
of the final deflected shape and consequently of the bending-
moment diagram is desired, several more operations in the
relaxation table could be undertaken and the residuals at
C and D further reduced.

The bending-moment diagram given by the reactions of
equation (51) is shown in figure 9 along with that of the
exact solutions. The external unbalanced moment of 1331.8
inch-pounds is applied linearly along the ring as a distributed
moment. If this unbalance is not distributed i this man-
ner, it would be coneentrated at either joint A or joint F,
depending on the direction in which the bending moments
are calculated, and would lead to large errors in the hending
moment in the neighborhood of that joint. It is seen from
figure 9 that the agreement between the exact and relaxation
solutions is good.

It is pointed out that, by slightly modifying the determi-
nation of the influence coeflicient for joint D when E is fixed
and F and G are free to displace radially, a table similar to
table 17 could be established and solved by matrix-caleun-
lus methods. The slight modification is to make V=0
in the cquations corresponding to table 17. Sueh a solution
is essentially the growing-unit method, exeept that the ring
is combined from joints C and D to A and F, respeetively,
rather than from A to F. The total displacenients in each
degree of freedom will be the same in each approach.

CONCLUSIONS

This report contains recommendations as o the choice of
the most expeditious method of solution of the simultancous
linear equations represented by the operations table and the
external loads. The operations table is first established in
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FIGURE 9 —Bending-moment disgram for oval-shaped ring with internal braciog.

accordance with Southwell’s suggestions and, together with
the external loads, defines completely the problem of stress
distribution in a reinforced panel or of the moment distribu-
tion in a fuselage ring. However, the following generalized
suggestions can be made:

1. In most reinforced-panel problems the use of the re-
laxation procedure is advantageous.

2. Solution of the equations defining a reinforced-panel
problem by means of the electric analogue is advisable when
many closely related problems have to be investigated.

3. Ring problems are best solved by matrix methods.

4. In very complicated ring problems a combination of
matrix methods with the growing-unit and relaxation methods
mey become advisable.

PorLyrecENIC INSTITUTE OF BROOKLYYN,
BroorLyN, N. Y., June 25, 1847.
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TABLE 1.—OPERATIONS TABLE FOR REINFORCED PANEL

[Foreos are In 1b; displacements, in in. X 10-4]

Yu Ye ¥z Yr Y Yx Y Yo
Operation
va=l. . _______ {—80.8 2.00] 46.8 2.00 S,
2. {H 2.2 00 51.2 —
6.8 2.0 4.00 2.00
A L2 —110.4 51.2
2.00 4.00
51,2 —110.4
—— 2.00
———- 51.2
8.00 8.00
—8.00 8.00] -8.00 4.00] —4.00
(1) pa=er=1____.[ —4.00 4,00} —54.8 6.00] 46.8 2.00 —— .
(Roa=vp=vs=1_] —4.00, 4.00f —=8.00 8.00| —54.8 6.00] 46.8 2.00
(3) vp=vr=1._._. 4.00f —4.00 8.00| —50.2 2.00 51.2 I .
(4) vp=vr=rg=1_ 4.00; —4.00 8,00 —&.00 6.00] —39.2 2.00] 51.2

TABLE 2.—RELAXATION TABLE FOR REINFORCED
PANEL—PROCEDURE 1

Cyeles of operations shown should be repeated until residuals are considered negligibly small.
Forces are in 1b; displacements, in in. X10~4]

= ~
Force
Yz Y Y& ¥r Yr Yr ¥u Yo
Operation
External forces.....__ =120 | e e e e 60 60
Thlock 1=—2.5. ... 10| —10 20| —20 20| —20 10} —10
—110 | —10 20| —20 20 | —20 70 50
vE=235 . .. 110 5| —238 9 110 & [\ 0
4] -5 =218 -1 130 | —15 70 50
r=485 oo [ 0 218 9] —473 19 218 g
Q -5 ¢ —~2 [ —343 4 288 52
ON=T.33 e 0 0 [} 0 343 14 | —372 14
0 -3 0 -2 0 18] —84 73
Ublock 8=8.5 ool 14 ] —14 2 —28 28| —28 14| —14
147 —19 281 —30 28 =10 =70 59
pr=0371 . ... 1 19 1 —41 1 19 Q 4]
15 o] 28 —71 29 G —%0 53
#R=1.385 e 0 0 3 71 51 —153 3 71
15 0 32 0 34 | —144 —67 130
00=2.81 . s 4} 0 o} 0 5 144 5| —153
15 ¢ 32 0 36 0] —62| —26
Ublock 1=1.0 ... —4 4 -8 8 —8 8 —4 4
11 4 24 8 31 8 —66 —22
pe=—0.235 .........] =11 1} 24 -1 -1 Q 0 0
0 4 48 7 20 8] —66 | —22
pr=-1025__..__..... 0 4] —48 —2 104 —4 | —48 -2
0 4 0 5 124 4| —114 | —24
oN=—285 ... 0 i 1] 0 —124 —& 135 —5
3 4 ¢ 5 0 -1 21 —29

TABLE 3.—RELAXATION TABLE FOR REINFORCED

PANEL—PROCEDURE 2

[Forces are in 1b; displacements, in in, X 10-4]

Fores
Ya Yp Y Yr Y Yx Yw Yo
Operation
External forces....._. =120 oo B 60 | 60
Pblock 1=—2.5...- 10 | =i6 2077527 TEZ®T] 0 (-10
—110 | —10 0 |20 20 |~20 | w0 | %
Da=—2165 . 110 | —438 —100.3] —4.3 o 0 o | o
: o | —14.3] —sL3l —24.3] 20 | -2 [ w0 | %0
)=—1482..______ 59 —590 8.3 -89 -co.4f —30 o0 o
5.9 —20.28 0 | —33.9 —10.4 —23.00 7 | o
(@)=—0.901. ...___ 3.6 —3a.8] 72 —7.20 404 —&4 —422 —13
0.5 —23.8] 7.2 —10.4 o | -4 o278 42
Dblock 1=—1.850.. ... -7.4 7.4 —148 148 ~1.8 w8 74 7.4
2.1 —16.4] —7.0l —25.6] —14.8} —13.6] 20.4] 8.6
05=—0.297 .. —0.8) 16,4 —o0.¢f —15.2 o 0 o | o
sl o | -s2 —a0.8 —11.8) —13.0] 204 556
(=-0.689....____.| —28 28 -41 4.8 -—14 —353 o | 0
-1.3 28 -—123 o | -18.2) —43.0 20.4 ss6
(=—0825. .. -3.3] 33 -66 66 —50 489 Ziol-123
~4.8 61 —18.90 6.6 —2r.2 o | 188 m3
Oblock 152 =108 . _ 4.3 —4.3 8.6 -86 88 -850 43 —43
—0.3] 18l —10.3 ~o.0 —12.6] -g08 221 eo0
()=—0.188.______._. 0.8 —0.8) 103 ~L1 —8g8 -04 0 0
0.5 1ol 6 | —31] —2n.4 -00 21 o0
(9 =—0.390. . _____ 16 - 3.1 -3l 214 -—23 183 -0.8
21 -0.6] 31 —62% o |-113 48 sz
ook 2=~0.412._.__.[ —16 1.6 -33 23 -z3 ‘33 -1d 18
0.5 1.0 —o0.2 —29 —33 —so 39 65
(4)=—0.135ccoco_._.. —6.5 08 -1i i -0 g0l —0.3] 0.9
0 1.5 —13 —18 -41 o zol —0.3

TABLE 4—RELAXATION TABLE FOR REINFORCED
PANEL—FIXED ENDS

[Forces are in Ib; displacements, in in.x10-1]

Torce

Y Yp Y& Yr ¥ I'x Y& Yo

Operation
External furces..._...] =120 || e [RPT RN
Pam—236. ... ..o 120 |"Z&F|Siaee TSI DU
0 f—a7|-m06) =47 ... e ],
W=—202. ..} 81| —81] 106 l—1201 | Zerd ¥ ie o
81]-128| 0 [-168]—0t4|~to0|.....
@=—3723....._.__.| 6.8 —6.9] 13.8|—13.8] o044 [—10.3 |=80/67|"Z83
15.0 [—12.7 | 13.8 [-30.6 | o0 |—1431-80.6]| 3.4
2=—0.357. ... —0.8 ] 187 | 0.8 =188 |eerr e b
4.2 0 18.0]—48.9| o0 |-14.3|—s0.6] 3.4
(By=—083 .o, “24| 3.4) 51| 89| —1L7| 423 ...
10.8] 34| 7ol o —1.7 |-56.6 |~80.6 | —a.4
(=—0950. . _____.__ —~3.8| 28| —T6| 76| —57| 66| —L8|-40.1
700 72| 03| 76| —74] 0 |-80.5|-625
94=0.1875.._ ... —7.0( 0.3] 6.4} 03[ e
] 0 7.5 671 79| -r4] o |-g25|-s25
=012 .o....| =0.5| 0.5] —67! 07| 58] 02|t
—0.5| 80| o 86| —16| o0.2l-s25{—52.5
(2)=—00292._____... 0.1]—01| o0.2|—-02] 16|-03]-14|-01
' —0.4| 79| 0.2] 84 0 |—-0C1|-83.9|-520
vp=0.143. _____.._._. 03| -ne| o3| 78| ..
] —0.1] 0 0.5 157 0 | —0.1|-82.0|-526
@=0265... ... | Li|-v1] 1U6|-157| 0.5[ 186 |eol .
Lo| —1.1 2.1 4] 0.5 13.5 |—83. 8% |—E52.6
=028 ...} 09|—-00] 18f-Ls| 1ntl-1z35| 0.8 1.7
Le|—20| 39|-18! 1o| o |-s3.4]|-10.9
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TABLE 5—~QPERATIONS TABLE FOR REINFORCED PANEL—GROWING-UNIT METHOD

[Forces are in 1b; displacements, in in. X104

Forces
¥u Ys Yz Yr ¥s Y= Yy Ye Ye Ys
Operation
—59.8 16. 8 22 SR (U SR SEURUNORIN SN Su—
2 2 ) - S U SRV SN SO S -
46.8 —10L.6 4 46.8 2
2 4 —110.4 2 L2 .-
__________________ 46.8 2 —101.6 4 46.8
__________ - 2 512 4 —110.4 2
R S 46. 8 2 —10L.6
__________________________________ 2 5.2 4
€9} 0.0362X (oo —2 Q.07 18 | ..
{10y ()49 . 0 46.¢ 3.8
{11) 0.921%(1). 1.85 43.2 1.85
(12¢ 0.0695X (%) —3.8 0.1 3.5
(13) (N+an+ ¢ —58.3 9.4 2 L
{14) 0.0758X(1) a2 3.5 (175 SRR SR R
(15} 0.923X(2)..__ —51.3 1.85 7 T S R
(16) (4)-+(14)4-(15). i3 9.4 —62.6 2 5.2 | oo
{17} 0.828X(E3). oo —48.3 7.9 38.8 LT -
(18} 0LIS8X(IB) oo 1.5 —0.9 0.3 81 | ...
(19) (Y (I +(1S) e 0 0 —62.5 13.8 16.8
€20) 030X —4.9 1.6 8.0 08 | —comoeo
7.9 —52.8 L7 432} L.
] 0 13.7 —66.9 2
________ —49. 4 0.9 37.0
(: 2.6 —12.7 0.38
(25) (7 0 1 —64.2
(26} 0.21X(19)_ —13.1 2.9 9.8
(27} 081X (22 ... 1.1 —54.1 1.61
(28) BY () (2o ooomcocal oo | emmmeen | mmeemeee ) mmeeeee- [ 0 15. 4

TABLE 6—RELAXATION TABLE FOR REINFORCED PANEL—GROWING-UNIT METHOD
[Forees are in Ib; displacements, in in. X 10—
Force
Y Yp Ye Yr Y Yz Yy Yo Ye Ys
Operation .
JOR T T ) o Vs - T S & | R EUURINUNE SN IR SNSRI EEpoRI It SRR SEPSHIRSSI SEPBYLLLR SRR
=237 X (10) o el 26 1] ... —1IL k' T TR
a | o —111 e I U
—1.975 X {13) . el o 115.2 —18.8 —82.5 —4.0
—0.A444 X (IB) e} e —4.2 1 .. —0.9 —22.7
............ 4] [ —03.4 —26.7 R R e ————
B W5 T ¢ 1) JUUI N [N S S ——— P 103.7 —22.9 —T77.6 —3.3 | oceee | emee
LY G ¢>.3 SN [ T S —— —10.2 49.6 —L3 —37.9 . | e
_______________________ 4] 0 —79.1 —41.2 P R
B 50" v2:) [N [N SPUUII SR SR S SRS 93.2 —22.4 —6i.9 —2.9
—0.925 X (28) i o] e ) e ] ieeen e b e | s —14.2 £3.6 —1.8 —47. 4
0 4] —69.7 —50.3
TABLE 7.—QPERATIONS TABLE FOR CIRCULAR RING
Forces and
moments
Na Ty Ng Rep Tg Ne Te
(in.-Ib} (b} (in.-1b) (1b} 1b) (in.-1b) (th)
Operation \
(Wwa=103radian_ ... —281.95 —49. 079 —20. 966 —4£.733 64.675
(2 #4=103 1D .. eees —49.079 —52.266 64.675 —22, 441 51. 516
(3) wp=10"% radian —29. 966 64.675 —439. 849 3L 443 —350.642
(4) vp=10"3in.__ —4. 7 —22. 441 31.4 —12.338 20.14
(5) up=10"2in 64.673 51. 516 —50.642 20.14 —52.618 N
(6) we=10"3rz 56. 5117 8.842 6.632 57.
(7Y ue=10"3in___ 6. 632 0.524 0.0685 —1.56 —0.322

271
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TABLE 8.—RELAXATION TABLE FOR CIRCULAR RING

Forces and
moments
Na Ty Ng Er Ty e Te
(in.-1b} (b} (in.-1b} (b} (lb) (in.~1b} (ib)
Operation
External forees. ..o .. —1.84 —8.75 —55.0 59.5 38.1 —53.1 —23.9
—0.00778X (A) - 1.84 0 0.7 -1 —0.1 0 Q
i —8.75 —54.3 59.4 38.0 —53.1 —23.9
—0.2X(8).. —— ¢ 8.75 —14.0 4.3 —8.0 g o]
) 0 0 ~68.3 83.7 30.9 ~53.1 —23.9
—0.353 X (C e e e, 4] 4] —8.6 —2.2 —-2.2 53.1 0
0 ] —76.9 61.5 27.8 0 —23.9
=7 KD - e 4] G —472 —34.0 —0.2 s} 2.9
0 o —549 27.5 27.6 0 i
=2 B8l ) - e e 4] 0 549 —-27.5 —27.5 0 0
N o 0 0 0 0 0.1 0 0
[ Check-table results ... ... 0.0171 0.0030 0. 5095 —0.0043 —0.0053 —0.0726 —0.0121
TABLE 9.—OPERATIONS TABLE FOR EGG-SHAPED RING
Forces and
moments
\ B
\ Np Ry Tr Ne Re Te Rp
tin.-1b) () b (in.-1b} ) (It (b)
Operation
(1) 2a=10"4 N oo 8.92216 —2.60G14 b3 75 U AN SUSUR PR SRS
2) w =10~ redian__ —327. 866 11. 4697 —13.1014 —61.242 8. 10287 0
(3) op=104in._ 1]1. 4697 —4. 00991 3. 4352 —8 10267 0. 66158 0
{4) up=10"*in__ —13.1014 3. 4352 —30. 9566 o] 26. 2058 -
(8) we=10"*radian.. —61.242 —8. 10267 —288.367 —2, 05622 —5. 24067 —7.83524
(6) pc=10"in_ ___ 8.10267 0. 66158 —2. 95622 —1.90205 —{. 83029 —1, 1180
(7) ue=10%in 26. 2058 —85. 24667 —(. 88029 —27.0833 —-1.0376
(8) 8o =104 10 oo e e L —7.3524 —1. 11500 —1.0375 —1.2400
TABLE 10.—RELAXATION TABLE FOR_EGG-SHAPED RING
Forees and
moments
Ra Ng Rp Te Ne Re Te R
{Ib} (in.-1b) (Ib) (Ib) (in-Ib) [613)) (1t} (b
Operation .
External forces. —~500 0 0 0 0 0 —500
=492 () e e 500 ~1330 402 —582 b} Q i} 4]
Q —1330 402 —592 0 0 ] —500
— 403K e e e e 0 4] V] 2960 451 418 &00
0 —1330 402 —592 2060 451 418 0
R 215 € ) [i] 0 o} 29 —2485 —451 63 0
0 —1330 402 —563 75 0 481 0
256 K1) e e e e 0 1615 —402 62 o] 138 -8 v}
¢ 285 [0} —3501 475 138 473 0
409><(F).._..._--»_-..T-_._---___ 0] ¢ a 9 —760 —138 19 1]
0 285 0 —492° —285 ¢ 452 1]
~9 44X Y T 4] 24 -2 493 9 v —492 0
. 0 309 —2 I —276 o o 0
Check table. oooo ool —Q0. 465 309.971 —2.231 0.938 —230. 405 —0. 202 —0.35L —0, 27¢
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TABLE 11.—OPERATIONS TABLE FOR OVAL-SHAPED RING
Forces and
moments
Ra Ngp Rzr Ta Ne Re Te Np
(b} (in.-ib) (b {ab) (in.-1b) ) (1b} (in.-1b)
Operation
g4=10"%in 5. 9020 —4.5778 14662 | ooaoa--
wp=10-3radian._ —454 34 6.7238 —78. 411 —38. 489 1.8576 45. 876
ep=10"%in 6.7 —12. (93 0. 55600 —L. 8576 —2. 2277 13.781
xp=10"*in —78. 411 0. 55690 —84 510 45.876 —13.781 49974
we=10-3radian . ..o —38. 439 —1.8576 45,876 —432.37 0 ~-77.623
ve=10—%in____ 18576 —2.2277 ~13.781 0 —9.9231 Q
#e=10"3in__. _...... - 45,876 13,781 49,974 —77.623 0 —100.34
—38.439 —1.8576 45.876
- 1.8576 —2. 2277 —13.781
R - - 45.876 13.781 49,674
wgp=1073 radian__.
gg=10"3%in...____
wg=10"3in____ .o
gr=10"in______..___
eG=10~2in___
Forces and
moments
Rp Tp Nz Re Tg Rr RG
b} (Ib) (in-1o) (1) (b} (i) (Ib)
Operation \
P S (1 o 3 1« S R (ISR, [P
wa=10radian. ... — .-
vp=10"%In
yp=10~%in_____________ —
we=10-3 radian. 1. 8571 . - -
gc=10"1in___ —2.2277
ue=10~3in._.. —13.781
wp=10-4radian. - [} 1.8576 45. 876
gp=10"3in..._. —9.9231 —2.2277 13.78L
up=10%in_ ___ —13.781 10,974
wr=10~3radian_ —1.8578 —18.056 —67.020
ep=10%in__._. —2.2277 —53.957 —40. 533
uz=10"%in_ 13.781 —40. —126.37
er=10"30in_____ ... - —4. 5778 —14. 662
oG=10""io. .. .___ 1.3355 --1.3355

TABLE 12—GROUP OPERATIONS IN GROWING-UNIT METHOD
N p=—454.34w 5+6.72385 p—78.411u p— (R.ILB,

FOR SEGMENT ABC

in N g—equation)=40

[R5= 6.72351 p—12.0830 5 1-0.556001: p—(R. E.S. In P.B—equation)=0]
Tp=—78.4111w p-+0.556%07 p—84.510u g— (R . H.8. in Tp—equstion)=0,

Group

I

jas

Displacement

g4=10"¢ in.
we=sc=uc=0

we=16"7 radian
ve=rc=c=0

gc=10-% n.
ga=we=uc=0

uc=10-3 in.
ga=we=gc=0

Operation
(—1(3% Xright-hand side in equation for:
Npg, in.-1b 5.0620 —38. 459 1. 8576 45.876
Rp, Ib___ —£ 5778 —1.8576 —2 2277 13. 781
Ta lb 1% 862 43876 —I13.781 49.974
€103 X displacements of joint 8:
we,radian. ..o | —0.026434 —(.21631 0. 035534 0.017847
L7 T0 1« RO —0.38424 —0.23971 —0. 17333 1. 1763
Up, I e - 0. 19549 074187 —Q 19720 0.38233
Resaltant forees and moments:
R, 1D et —2 6618 —1.8871 3. 2615
1G. 699 —10. 693 —33.771
—L &7 —6. 7529 —10. 615
. 2615 —10. 615 —54.199
0 —1.857% 45.878
[1] —2. 2577 —13.781
1] 13.781 49.974
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TABLE 13.—GROUP OPERATIONS IN GROWING-UNIT &

—-—389 36x1r~-10.093z11—53.771lxrv—(R. H. 8. in Ne)y=0
10.093211—6.75292:1—10.615r1v— (R, H. 8. in R¢y=0
Te=—583.77T1x11—10.615z111—54.199x1v—(R. H. 8. in Pc}=0

{ETHOD FOR SEGMENT ABCD

]

Group v VI l VII VIII
\\ Displacement N
~
Iy=1 wp=10- radian =10-% in. up=10-% in,
) wp=vp=up=0 (D=ep=up=0 | =wp=up=0 | (D=wp=rp=0
\\
Operation \
(—1) X right-hand side in equatlon for:
Ne,imAbo — 10. 699 —38.489 1.8576 45,876
Re, b e ~1,8871 —1.8576 ~2,2277 13.781
TC, o) —- [ 3.26_15 45.876 —13. 781 49,974
\Iagmtudes of (II) (III), and (EFV):
0.021497 —0, 25201 0.046327 —0. 06085019
—0. 53843 —2.3436 0. 10521 0.85346
0. 14430 1. 5564 -~0.32084 0. 7047
(. 94505 6.7928 —0. 74924 0. 77748
6. 7928 —346.88 —16.697 —43.745
—0.74924 —16. 607 —5.6500 —12,458
0. 77749 —43. 745 —12,458 —50.817
[ —-38. 489 —18. 576 45,876
0 1.8576 —2.2277 —13.781
¢ 45.876 13.781 40,674

TABLE 14.—GROUP OPERATIONS

IN GROWING-UNIT

Ng=—346.88rvr—16.60z yrr —43.745rv 17— (R. H. S. in N5)=0
Rp=—16.69Trrr—5.6500zyrr—12.458z vrir—(R. H. S. in Rg)=0
Trp=—43.7457 v 1—12.4587 vrr—50.817zvrrr—(R. H. 8. in T5)=0
Group 1X X XI XIT
Displacement
(V=1 wg=10"% radian g5=10"%in, ux=10-3n.
wp=vs=ug=0 | (Vi=pg=ug=0 | (V)=we=uz=0]| (Vimwg=rg=0
\
Operation \
(—1) Xright-hend side in equation for:
6.7928 —38.489 1.8576 45,870
—0.7492¢ —1. 857 —2.2277 13. 781
0.77749 45. 876 —13.781 19. 974
F S N P - 0.023042 —0.16186 0.037474 —0.0022427
—0. 42660 —4.6760 0.35713 0. 59436
0.095744 2.1885 —0.39100 0.83063
—0. 38050 4, 1055 —{.81703 0.19226
4.1055 —533.92 ~—38.09¢ —29, 578
—0. 31703 —38.099 —48, 295 —53, 432
0.19226 —29. 579 —53. 432 —76.322
0 —5.9020 —4. 5778 —14. 602
0 16,025 1.3355 —1.3358
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TABLE 15—DETERMINATION OF TOTAL DISPLACEMENTS IN GROWING-UNIT METHOD

Related tables

¥, 08, and g from table 12

(1), (7). and {IV} from fable 13 or 15

Group operations

Prime displacemont Magnitudes of
group displace-
#54=10-3in. [wc=10"%radian| fe=10"3in. uc=10"*in. =1 wp=10%radian| sp=10-tin. up=10-3in. men%ssgépigmﬂy
I o m v VI v vz balancing
Group operations \
1. 0476
217.61
—48 436
0. 021497 a
—0. 25261 —3.310G
0. 046327 —328. 0y
—{. 0093019 8. 518
—0. (063062 0
—0. 19736 15 184
0. 010939 2 —51. 518
G. Q187 LT84 . 447 52436 . § 28,771
—0. 0030407 —G. 50331 Q. 45975 0. 024404 —0. 46836 (. 16615 —605.73
—0. 0017462 —(. 64546 —{Q. 42003 0. 023857 —0. 058576 —0. /8618 —4£ 646
—1I. 444 664 35 —72. 286 —603.73 —22.975 —94.731 G127 b
Related tables (vD, (VIL,;, and (VII) from table 14 or 15 (), (XT), and (XII) from table 15
S~
~ Prime displacement
Magnitudes of
. group displace-
~ ry=1 w =103 radian ge=10"%in. up=10-% in, =t gp=10r% n. ments explicitly
used in.
X X1 XII X111 XIv balancing

XITL
XIv....

- —0.017182

0. 50354

Taotal displacements. .. e

6. 2331

—42,620

TABLE 16.—GROUP OPERATIONS IN RELAXATION METHOD FOR SEGMENT ABCD

Np= 5.90204—454.34w 5+ 6.72380g— 78.411up—(R.H.S. in Ng¥=0
Rp=—4.577804-+6.7238uw p— 12.0930 5+0.55600u s —(R. H.5. In Rgj=0

[RA=—7.131W4+5.9(}20103— 457780 5+ 14.662uz—(R.H.S. in RA}=0]

Tp= 14.66204—78.411w p--0.556H7 p— 845106 —(R.ELS. In Tp)=0

Group XV VL XVIL
\ Y . = ..
TTe— Displacement we=10"% radian zc=103 In. uc=10-3in.
Operation TTe— gc=lc=up=¥p=uUp=0 we=tc=wp=0p=up=0 we=tc=wp=8p=U4p=0
\
(—108) X right-hand side in eqguaiion for: o 0
R A 1D e Q
Ne,in-bo . —32. 489 18478 45.878
Rg, 1b _. —L 5576 —2.2%7 13.781
Te.lb___ 45,876 —13.781 49. 974
(10} X displacements of joints A and B:
B4, I o 40193 —0.70893 12253
w g, radian. —0.32255 0. 054293 ~—(. 014540
gp, in. .. —L 782 0. 098882 0. 70554
L7205+ P, 15277 —0. 33579 0. 82203
Forees and moments:
Ne,in-lboo o —346. 56 —17.678 —10. 662
R, Wb oeeeaee —17.6378 —5. 4150 —12.928
Te, 1b . —40. 662 —12.928 —50, 203
Np,in-¥b. .. —38. 489 —1.8576 45.876
Rp, b 1.8576 —2, 2277 —13.781
Tp, 10 45. 876 13.781 49.974
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TABLE 17.—GROUP OPERATIONS IN RELAXATION METHOD FOR SEGMENT CDEF-G

N p=—649.24w p~18.05¢0 x — 67.080u g—5.902(0r+16.02.2¢—(R.H.8. in Nx) =0
R #=—18.056w x—>53.957¢ x—40.533u g —4.577¢0r+1.3358t¢—(R.H.S. in Rg}=0
Tp=—67.080w g—40.5330 s —126.37u p—14.6620,— 1.33506—(R. H.8. In Tg)=0
Rp=—59020u g—4.577fp g—14.662u g—7.131Cop

Ra@=16.025w p+1.33550r—1.3355u &

—(R.H.8.in Rr}=0
~1.8886p¢—(R.H.S. in Rg)=0

Group XVIIL XIX XX
—
— Displacement wp=10~% radian vp=10-3in, up=10-%n.
Operation Te— we=vc=ug=tp=up=0 we=te=ttc=wp=up=10 we=tcmiucmitpmiip=0
—38. 489 —1, 8576 45.876
1. 857G —2. 2277 —13. 781
45, 876 13.781 40,974
[i] ¢ 0
0 [\ 0
(10% X displacements of joints E, F, and G:
wg, radian —— —0.1703 —0.032775 --Q. 008778
og,in__ —Q0. 42970 —(. 19092 —0. 78327
i 0. 74456 0.23168 0. 70421
—1.1141 —0. 32667 —1,1229
—2.2753 —0. 57676 —1. 1500
Forces and moments:
Ne, in.-lb e e e o am —38. 489 1. 8576 45. 876
¢, 1b. - —1.8576 —2,2277 13.781
Te 1b.. - 45. 87 —13.871 49.674
Np, in-th__ - —392. 46 11,535 —42, 305
Rp,1b. - - 11. 535 —6. 2441 12,7
/40 7T ¢ R —42, 305 12.706 —5§0.25
TABLE 18.—GROUP-OPERATIONS TABLE FOR RELAXATION METHOD
[Forces and moments at joints A, B, E, F, and G are zero for all operations]
Forces and moments )
Ng Re Te Np Tp
\ (ix.-1b) (b} (Iby (in.-Jb) {Ib)
Operation \
(XV)i=1 —316.45 —17.678 —40.662 —38.489 1.8576 45,876
(XVD —17.678 —5&. 4150 —12.928 —1.857 —2.2277 13. 781
XVID) ~40. 662 —12,928 —50.203 45, 876 ~13, 781 10, 974
(XVIID) —38. 489 —1.8576 X —392.46 11. 535 —42,305
(XIX)=1. 1. 8576 —2,2277 —13 11,535 8. 2441 12,706
(XX)=1.___ 435. 876 13,781 ~42,305 12,706 —50. 259
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TABLE 19.—RELAXATION TABLE FOR GROUP OPERATIONS
Forces and moments
St Ra Ng Re Ts Ne Re Tc Np
P (Ib) (in.-1b) @b) (ib) (in.-Ib) (b (v (in.-Iby
Operation
External loads e [ S 0 966 —259 1}
) S, 302K K o= o —5000 —566 258 —4630
—~5900 Q -1 —4050
2 s —18 44X (M) SO R Y 5000 164 —44 7100
0 164 —45 5
< J AT € ) SRR SIS SR R 1246 —16¢ ] —3150
1246 a —435 — 100
L EX1L:374 (o) T, SR SRS SRR RS LT EEESEEEEE e —1246 —21 20 —31¢
a —a1 ~25 —i14
5 P — 1B TR e o mm e[ 306 a0 —13 210
306 29 —38 —204
L B i 5 € 4 2 4 TR IR IR PR PERER RS 31 10 38 —35
337 3¢ G —239
Cheeck table. . ... _.___ 0.00L 0.310 0.025 0. 136 324.76 42,600 —0. 430 —228. 2%
Forces and moments
Ste Rp Tp '.E‘vrs Rg Tg Rr Rg
Step (Ib) (Ib} (in.-1b) b} (b} () (i)
Qperation
External loads. oo —366 —259
1o BO2X(K) I 1218 326
252 67 - U S i
S 3 5 (., ) T OO 1] Q J SRR SRR
252 72 RN (RO UUSN) JEVSUEVE UMM (AU ROUUSR PSS —
. S, FIAN(NY —244 =2 (A RS JS OSSR (A
8 16
L S, 4.08X{O)y . 53 Q
63 6
[ S B G 1 T, —63 —-17
¢ 29 - R
[ S — 0. (VL) e 1% =38 | me e een PR .
) 10 P I S— -
Cheek table_ . ... ... 5.390 —10.530 —~1734 ~0. 001 —0.730 —0.003 0.047




