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TWO-DIMENSIONAL COMPRESSIBLE FLOW IN TURBOMACHINES WITH CONIC FLOW
SURFACES

By Jorx D. StaXITZ

SUMMARY

<A general method of analysis is developed for two-dimensional,
sleady, compressible flow in stators or rotors of radial- and
mired-flow turbomachines with conie flow surfaces (surfaces of
right circular cones generated by center line of flow passage in
the arial-radial plane). The variables taken inlo account are:
(11 tip speed of the rotor, (£) flow rate, (8} blade shape, ({) raria~
tion in passage height with radius, (5) number of blades, and
(8) cone angle of the fluw surface. Relaxation methods are used
to golre the nonlinear differential equation for the stream function.

The analysis indicaies that: (1) The solution oblained for a
given, turbomachine also applies to certain other (equiralent)
turbomachines with a larger or smaller number of like passages
(same spacing of the blades on the conic flow surface, same blade-
thickness distribution, and so forth) but with different cone
angles; (2) for the same number of similar blades, the blade
loading ia less for mixed-flow than for radiel-flow turbomachines;
and (8} any solution obtained for an outflow turbomachine with
shockless (smooth) entry is also the solution for an inflow turbo-
machine with shockless entry and with the flow direction and
blade rotation (if any) rerersed.

Two numerical examples are presented; one for compressible
and the other for incompressible flow in a centrifugal compressor
with thin, straight blades. The solutions were obiained in a
region of the compressor, including the impeller tip, that was
assumed fo be unaffected by the inlel configuration of the im-
peller or by the diffuser ranes (if any). Both exramples are for
the same impeller (18° included angle beiween blades on conic
flow surface) with the same tip speed (equivalent to a tip Mach
number of 1.5 for the compressible-flow example), with the same
flow rate, and with a constant flow area normal to the flow
surface. The resulis of these examples are giren by plote of the
streamlines, constant relocity-ratio lines, and constant presgure-
ratio lines.

It i8 concluded from the examples that, if the fluid in high-
speed, rotating, radial- and mired-flow blade sysiems is com-
pressible, incompressible solutions gire poor quantitative resulis
(exception, the slip factor) and, in some respects, poor gualita-

tive results.
INTRODUCTION

Increased knowledge of flow conditions within rediel- and
mixed-flow compressors and turbines should indicate means
of improving performance of these turbomachines. For
example, boundary-layer separation, which decreases the
efficiency of these machines, can be minimized or eliminated

by aerodynamic design based on knowledge of the velocity
gradients that result from various design configurations.

For e given set of operating conditions, the fiow conditions

within redial- and mixed-flow turbomachines depend on the
geometry of the machine (three-dimensional-flow effects)
and on the properties of the fluid (compressibility and vis-
cosity). Most treatments of the problem have been con-
cerned with the two-dimensional-flow effects for incom-
pressible, nonviscous fluids. (For example, see references 1
to 5.)

In the analysis reported herein, compressibility is consid-
ered. This consideration is especially important in radisl-
and mixed-low turbomachines because the large pressure
ratios per stage result in density changes that greatly affect
the fluid velocities, and so forth. The analysis is developed
for two-dimensional, compressible, nonviscous, steady flow
through stators or rotors of radiel- and mixed-flow turbo-
machines in which the center line of the flow passage in the
axial-radiel plane generates the surface of e right circular
cone when rotated ebout the axis of the machine. The two-
dimensional-low pattern is considered to lie upon this surface.

The solution of two-dimensional, compressible-flow equa-
tions can be accomplished by relaxstion methods, which
were developed by Southwell (references 6 and 7) end
which have been applied to compressible-flow problems by
Emmons (reference 8). It is essentially the procedure out-
lined in reference 8 thet is employed in the numerical solu-
tion. of the differential equation obtained in this analysis.

The enslysis is developed for turbomechines with arbi-
trary blade shapes and is epplied, in the numericel exemples,
to a flow region, including the impeller tip, of a centrifugal

compressor with straight, thin blades that lie on conic radii =

(elements). A simplified analysis for straight blades lying
on conic radii is developed that checks the results of the
relaxation solution within the impeller except for the flow
region near the impeller tip.

This analysis was developed at the NACA Cleveland
laboratory in 1947.

ANALYSIS
PRELIMINARY CONSIDERATIONS

This analysis develops a general method whereby the
streamlines, velocity distribution, and pressure distribution
can be determined for steedy, two-dimensional compressibls
flow in stetors or rotors of radial- and mixed-flow torbo-
machines with arbitrary blede shapes and varying passege
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heights. The radial component of the flow may be in the
direction of increasing radius (outflow turbomachine) or in
the direction of decreasing radius (inflow turbomachine).
Conio flow surface.—The analysis is limited to turboma-
chines in which the center line of the passage in the axial-
radial plene generates the surface of a right circular cone,
with the cone angle a (fig. 1), when rotated about the axis
of the machine. (All symbols are defined in appendix A.)
The two-dimensional-flow patiern is considered to Lie upon
this cone surface (hereinafter referred to as “conic flow sur-
face”). For mixed-flow turbomachines the cone angle « is
less than 180° but greater than 0°. For the special case in
which « is 180°, the conic flow surface becomes flat and is
normal to the exis of the machine. Such turbomachines
(a=180°) are designated radial-flow machines. For the
special case in which « is 0°, the conic flow surface becomes
cylindriea] and is concentric with the axis of the machine.
Such turbomachines (a=Q°). are designated axial-low
machines. Axial-flow machines are not considered in this
analysis for reasons that are subsequently discussed.
Coordinate gystem.—The developed view of a conic fiow
surface is shown in figure 2. The dimensionless, conic
coordinates R and @ of this conic flow surface are relative to

of rotation
rofor blades

Fassage f ot A Y -

FrauRk 1.—~Fluid partfcle on coordinate uystem relative to hlades. Blades may bestationary

(stator blades) or rotating (rotor blades). Center line of Sow Dassage gemerntes surface of
right efroular cone with cone angle a,
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Oirectiorr of rototion
for rofor blodes

(RReeS

Frourr 2.—Fluid perticls on developed view of conic fow surface., This surface may Lo
stationary (stator blades) or rotating (rotor blodes). R and #, dimensionless coordinates
relative to blades; J7, passage-height ratio normal to conlo flow surfoce; Uand V), tungential
and radlal components, respectively, of relative veloeity ratio Q.

the blades. The blades, and therefore the coordinate sys-
tem, may be stationary (stator blades) or rotating (rolor
blades). The conic-radius ratio R is defined as

R=L 4N

where ris the conic radius (distance along eonic element from
apex of cone) and where the subscript T refers to the blade tip
(either the nose or the tail of tho blade, whichever has the
larger conic radius). The passage-height ratio 77 (figs. 1 and
2) is normal to the conic fow surface and is a continuous
function of the conic-radius ratio R

He =f(R) @

where A is the passage height at eny conic-radius ratio R.

Velocity ratios~—A fluid particle on a developed conie
flow surface has a relative tangential-velocily ratio U (fig. 2)
and a radial-velocity ratio ¥ (fig. 2) that are related to the
relative velocity ratio Q by

Q=1-wr+vx @s)
where ..
U=; - (3b)
V=; (3¢)
where

¢ local speed of sound

g velocity of fluid reletive to blades

u tangential component of ¢ (positive in dircction of
increasing )

v radial (along conic element) component of ¢ (positive
in direction of increasing conie-radius ratio)



TWO-DIMENSIONAL COMPRESSIBLE FLOW IN TURBOMACHINES WITH CONIC FLOW SURFACES

Subseript:
o absolute stagnation condition in region of uniform
flow upstream of blades

The relative velocity ratio @ is defined on & coordinate sys-
tem that is relative to the blades, therefore the velocity ¢
(end u) is absolute for a stetionary coordinate system (stator
blades) and relatire for a rotating coordinate system (rotor
blades).

Assumptions and limitations.—This analysis assumes that
the flow varies only along the conic flow surface, that is,
that flow conditions are uniform across the passege normael
to the conic flow surface. In order to satisfy this assump-
tion it is necessary that: (1) The gradient of 2 with respect
to r be smell; and (2) the cone angle « (fig. 1) be sufficiently
large. The allowable varietion in « from 180° will depend
on the relative magnitudes of » and » and on the desired
accuracy. For small values of « the flow must be assumed to
exist in concentric annuli, each with negligible passage
height. For the hypothetical limiting case in which the
ratio Afr epproaches zero everywhere along the conic flow
surface, the enalysis is accurate for all values of a.

The analysis essumes that steady flow exists relative to
the biades. The relative motion between stator and rotor
blades introduces pulsations that make the flow unsteady.
These pulsations rapidly diminish, however, as the stators
and the rotors are moved apart so that the relative flow may
be treated as steady (between boundaries, which are far
enough upstream and downstream of the blades to obtain
uniform flow) provided the stators and the rotors are not
too close together.

DIFFERENTIAL EQUATIONS FOR FLOW IN R&-PLANE

The differential equations for steady, two-dimensional,
compressible flow are developed from the continuity equa~
tion, the equation for absolute irrotational motion, and the
general energy equeation. _ .

Continuity and stream function.—From steady-flow con-
tinuity considerations for the fluid particle in figure 2

GrmGm-

where p is the weight density of the fluid, and where the
coordinate subscripts (R and 8, in this case) refer to partial
derivatives with respect to the coordinates.

A dimensionless stream function  satisfies the continuity
equation (4) if defined as

Vo f‘ VHR (48)

and
RS —f UH (4b)

Absolute irrotational motion.—In the absence of viscosity, -

shoek, nonuniform heat addition, end so forth, the absolute
motion of & fluid perticle is irrotational. The dimension-
less ebsolute circulation dI' about the particle in figure 2
is therefore zero, and

024TTE— 51— 19
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dr=0=[(RM+ U) Rd6]zdR—[VdR]«d0
where the blade-tip Mach number Afy is defined by

o &
rrSik 3
Mo 2 (5)

Co

where w is the angular velocity of the rotor and where
(RM+U) is the tengential component of the absolute
velocity ratio. (For stator blades 1f, is zero.) After simpli-
fication,

— M=+ U3¢ ®

Substitution of the stream function ¢ as defined by eque-
tions (4a) and (4b) gives

23:H B =g+ Y2+ Y Vallog, H) o

n(osr)F(eer),  ©

where the double coordinate subseripts (RR and 66, in this
case) refer to second partial derivatives with respect to the
coordinates,

General energy equation.—The general energy equation is
used to determine the density ratio pfp, in the differential
equation (7). When expressed in terms of the velocity
ratios defined by equations (3b) and (3¢c), the general energy
equetion becomes

2 |
Joy T+ [(RALr+ UV +VI=J6 A2 0—2)  (8)
where
J mechanical equivalent of heat
¢, specific heat at constant pressure
T static (stream) temperature
g gravitational acceleration

Subseript:

U upstream boundery (boundary in region of uniform flow
upstream of blades)

gnd where the “whirl” ratio X is defined by

A\=RRM+T) 9)
which is the whirl or absolute moment of momentum (ra.dius

times absolute tangential velocity, » sin %X(wr sin g+u))

divided by a constant { 7r sin %Xc. - Thelast term in equa~-

2
tion. (8) is the work done on the fluid and is equal to %
times the change in whirl ratio. The total work done on
the flvid is given by the last term in equation (8) with A equal
to Ap (where subscript D refers to downstream boundary,
the boundary in the region of uniform flow downstream of the

bledes). This totel work is positive for compressors and
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negative for turbines. The whirl ratios Ay and \p are con-

stant in the uniform flow regions upstream and downstream

of the blades (constant absolute moment of momentum).
Rearrangement of equation (8} with

e*=(y—1)Jge,T,
where v is the ratio of specific heats, results in

T, —1+ [(RMT)’ @ —2AIrhc] (10)

from which

&

Also, from equations (3a), (4a), and (4b)

P __ E72% Ys 4

ex={ (%) +()] a2
Equations (11) and (12} together with the general differential
equation (7) provide three equations with three unknowns:
¢, Q, and p/p,. The solution of these equetions determines
the steady, two-dimensionel flow of compressible fluid
through turbomachines with arbitrary blede shape, with
arbitrary variation in the pessage-height ratio, and with
constant cone angle.

1

1477 (R —@—2ata) (D)

METHOD OF BOLUTION

Equation (7), which is nonlinear, can be solved (together
with equations (11} end (12)) by relaxation methods.

Relaxation methods—Values of ¢ are estimated at each
point of a grid system placed within the boundaries of the
problem, and the residuals R, which result from the estimated
values of y, are computed for each grid point by expressing
the differential equation for ¢ in finite-difference form with
the sum of all terms equal to R instead of zero. The solu-
tion is then obtained by systematically varying (relaxing)
the values of ¢ at the grid points inside the boundaries
until the values of R approach zero.

Transformation of coordinetes.—For the numerical solu-
tion of this problem by relaxation methods, it is convenient
(but not necessery) to select a new set of coordinates (refer-
ence 8) so that blades of erbitrary shape in the physical plane
(R.0 coordinates) become thin, straight, and perallel in the
transformed plane (£ coordinates). Thus a grid of equally
spaced points can be placed between the blades. This trans-
formation of coordinates is represented by the general
analytic function

ER, 0)+in(R, 0)=f[R exp (i)] (13)

where the Cartesian coordinetes ¢ and 5 in the &y-plane cor-
respond to velocity potential lines (¢=constant) end stream
lines (p=constant) in the Ré-plane for incompressible flow
past the blades, which, fer purposes of the transformation,
are considered to be stationary («=0) and to have a con-
stant height (H=1). Equstion (13), in specific form for &
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given blade shape, determines { and 4 as functions of R
and 8

(13a)

=7 (R:a)

Equation (7), in terms of the transformed coordinate;r. £
and y given by equation (13a), becomes (appendix B)

2—”—,@,%— Vetdn—vi (log. —) —¥ (Iog. _) _

WYt (g, Bl Bal (9
and equation (12) becomes

QE=F (be+e 4 (15)
where H is now a funetion of £ and 5 (given by equations (2)
and (13a)) and where the coefficients u;, o and g, are deriv-
atives of equation (13a) defined by .

t=—na= (168)

m=§=& (16b)

QI.= (ud+ Pt’)“

where the subseript 4 indicates that the coefficients corre-
spond to incompressible velocities in the Ré-plane.

For certain simple blade shapes, equation (13) is & simple
analytic expression that determines {(R,0) and ¢(R,6) (equa-
tions (132)) directly. For arbitrary blade shapes, however, a
specific expression for equation (13) is not readily available
and it is easier to obtain #(R,0) and 3(R,6) by relaxation
solutions of the Laplace equations for £ and n in the Ré-
plane (appendix C).

Finite-difference equations.—In order to solve the system
of equations (equations (11), (14), and (15)} by relaxation
methods, equations (14) and (15} must first be changed to
finite-difference form. This change is accomplished with
the aid of the following equations (reference 7, p. 10), which
are based on first-order differences: (Note that higher-order
differences could be used, which would result in more com-~
plex finite-difference equations but which would enable
larger grid spacing, and therefore fewer grid points, for the
same degree of approximation.)

(16¢)

Femgy Fi—F)

F!“‘§16 (FI_FJ
. e an
FEE’*‘F (Fi+ F,—2F)

Fys (Frt Fe—2F) |
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FIGCRE §.—Bample grid showing grid spacing & and mmmerios] subsoript convention for
adjacent grid points.

where

F any twice-differentieble function of two variables (¢ and
, in this case)
b grid spacing
Subscripts:
1,2,3,4 grid points adjacent to point being considered
(F with no subseript)

A sample grid is shown in figure 3. The grid spacing b is
arbitrary. However, the smaller the value of b, that is, the
lerger the number of grid points, the greater is the aceuracy
of the approximate, finite-difference equations (17).

VWith the aid of equations (17), equation (14) becomes

bttt ity — B (10g, 21 _jog, )
=) P2 P
722 (log. 2—tog2)—

.ﬁ, [ —¥a) 0s— (Pa—V)ud X

[(log, H,—log, Hy)2,— (log, Hy—log, H)u]—

2L:‘ITH-6’ _"J_=R
gy Pe

(18)
where the residual R has & nonzero value when the values of
¥ do not satisfly the differential equation (14) from which
equation (18) was obtained.

Equation (15) in finite-difference form becomes
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QL = f% 10—+ Ga—b T (19)

After the values of ¥ have been estimated at the grid
points inside the boundaries, the system of equations (11),
(18), and (19) provides three equations with three unknowns

pﬁ: @, and R at each grid point. Equetions (11) and (19)

determine the values of the density ratios in equation (18),
which is then solved for the residual R.

BOUNDARY CONSIDERATIONS

The velues of ¢ at the grid points inside the boundaries
depend upon the velues of ¥ at the grid points along the
boundaries. These boundary velues of ¢ are determined
by the design characteristics and the operating conditions
of the turbomachine.

Loocation of boundaries.—The boundaries of the flow field
in the Ré-plane (fig. 4(a)) are the blade surfaces and the
upstream and downstream boundaries at constant values of
R, which are any distance far enough from the blades to
insure uniform flow conditions at these boundaries. The
upstream and downstream boundaries enclose all the blades;

Downstream boundary for oufflow
turbomachine, or upstream boun—
dary for inflow furbomachine,

or R[ ————
[

~ — — —Quasi boundaries

‘‘‘‘‘

Upstreom boundary for wfﬂ;;f-\-
furbaomachine or deowrnatream
baundory for inflow turbo-

machine, R, or By

(2)
(2) Physical Re-piane,

———— Quasi boundares

Ficvae +.—Eoundaries of typleal two-dimensional fiow fleld for arbitrary blade shape,
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however, from symmetry considerations, the low conditions
along lines of constant R are cyclic with a period equal to
the blade spacing so that the solution need be obtained only
in a region that encloses the equivalent flow between two
blades. This region is bounded by any two blades, the
upstream and downstream boundaries, and by quasi bound-
aries between the two blades and the upstream and dawn-
stream boundaries (fig. 4(a)). These quasi boundaries may
bhave any reasonable, continuous shape but must have the
same angular spacing A¢ (fig. 4(a)) as the blades, where

A6=-2_é-r sin 5 (20)

where B is. the number of blades (or passages). It is
convenient to select as the shape of these quasi boundaries
the incompressible, stagnation streamlines (copstant u) that
are determined in appendix C with stagnation points at the
nose and the tail of the blade.

In the £n-plane (fig. 4(b)), the blade surfaces become lines
of constant » and the quasi boundaries become extensions of
these same lines. 'The upstream and downstream boundaries
in the gy-plane are straight (appendix C) but, in general,
are not at right angles to the lines of constant . The two
blade surfaces are generally different lengths in this plane
(Bg. 4(b)).

v along blade boundaries.—The boundery velues of ¢
along the blede surfaces are constant and can be determined
from the following considerations:

The differential flow rate between adjacent streamlines
is shown in figure 6 and is given by

dw= pvhsrHRA0— puhsroHdR

where w is the flow rate between streamlines. From equa-
tions (3b), (3c), (4a), and (4b),

dw=pchsrr(Vedf+¥zdR)
dw=pstohrrrdy (21)

If w and ¥ are assigned valnes of zero along the positive
blade surface (the blade surface in the direction of increasing
0), equation (21) can be integrated across the passage to the
negative blade surface (the hlade surface in the direction of
decreasing 6) to give

Bkt @

or

where W is the total flow rate through the turbomachine
and the subscript n refers to the negative blade surface.
Equation (22) can be simplified by the following consider-
ations: .

The flow area as of the annulus at the tip of the blades is
given by

ar=2rx s'm%r,h,-
from which equation (22) combined with equation (20)

becomes
Ya=0¢Al (28)
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where the flow coefficient ¢ is defined by

] H'
PATCy

¢ (24)
Equation (23) determines the boundary value of ¥ on the
negative blade surfece as a function of the operating param-
eter ¢ and the design parameter Af.

Equation (28) was developed for through flow in the
direction of increasing radius ratio (outflow turbomachines),
that is, for positive values of the radial-velocity ratio V7
For through flow in the direction of decreasing radius ratio
(inflow turbomachines), that is, negative values of 1’, the
magnitude of ¢, is given by equation (23) but the sign is
changed from positive to negative.

¥ slong quasi boundaries extending from positive blade
surface.—Because the quasi boundaries in the £p-planc en-
close the_equivalent flow between two blades (sce section
Looation of boundaries), the valuee of ¥ at pointls along the
quasi boundaries extending from the negative blade surfeco
(ig. 4(h)) are ¢, greater (outflow machine), or ¢, less
(inflow machine) than the values of ¥ at corresponding grid
points (corresponding to the same value of R) along the
quasi boundaries extending from the positive blade surface.
Therefore, the values of ¢ along the guasi boundaries extend-
ing from the negative blade surface are not recorded or
relaxed.

Estimated values of the stream function ¢ along the quasi
bounderies extending from the positive blade surface in the
tp-plane (fig. 4(b)) can be obtained by assuming, aus & firat

Froune 5.—Fluid partidle between adjnocent sireamlines. Radlal component of fluw rate,
pehr HRA, tangential component of flow rate, —puk, s FIdR,
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The cone angles for the equiv-

approximation, that the flow conditions upstream and down-
stream of the blades in the Ré-plene (fig. 4(a)) are uniform,
that is, the flow conditions are a function of only R. The
veriation in ¢ with ¢ along the quasi bounderies extending
from the positive blade surface can then be determined
(appendix D) from continuity and from the whirl ratios Ag
and Ap, which for uniform flow remain constent upstream
and downstream of the blades (conservation of moment of
momentum). The whirl ratio Ay is specified and the whirl
ratio Ap is determined, for a given blade shepe and operating
condition, by the Joukowski condition, which requires that
the rear stagnation point occur at the blade tail (or, in the
case of infinitely thin blades or blades with cusped tails, the
flow must be tengent to the blade surfaces at the tail). The
velue of Ap can be estimated from considerations given in
eppendix D.

The values of ¥ along the quasi bounderies extending from
the positive blade surface (which values are obtained from
the preceding variation in ¢ with £) are estimated values
end must therefore be relaxed.

¢ salong upstream and downstream boundaries.— The
value of ¢ at any point along the upstream or downstream
boundary (fig. 4(b)) is determined by the integrated veria-
tion in ¢ along the quasi boundary from the fixed (zero}
value of ¥ on the positive blade surface and by the integrated
variation in ¥ along the upstream or downstream boundary
to the point in question. The variation in ¢ elong the quasi
boundaries was estimated in the previous section, and the
variation in ¥ along the upstream and downstream bound-
aries is constant (uniform flow conditions assumed at these
boundaries) and is of such megnitude that the change in ¢
from one quasi boundary to the next is equal to ¥,.

The values of ¢ along the upsiream and downstream
boundaries (Yr and ¥p, respectively) are considered fixed
during a relexation solution. But these values of ¢, for the
initial relaxation solution, are dependent upon the estimeted
variation in ¥ along the quasi boundaries extending from the
positive blede surfece. In general, therefore, these velues of
¥ and ¥p do not result in a solution that exactly satisfies the
prescribed whirl ratio My upstream of the blades and the
Joukowski condition (which, together with the blade shape
and the operating conditions, determines Ap) downstream of
the blades. It is therefore usually necessary, after the initial
relaxetion solution, to adjust (by methods developed in
appendixes E and F) the velues of ¥y and ¢p (keeping,
however, the same uniform variation in ¢ along these
boundaries). The relaxation solution is then repeeted using
these new values of ¥ and ¢¥p that satisfy Az and the Jou-
kowski condition.

ADDITIONAL CONSIDERATIONS

Equivalent turbomachines with different cone angles.—
The flow field for the flow that passes between any two
bledes is the same for all blade passages in a given turbo-
mechine. Therefore, the solution obtained for the flow
field in a given turbomachine also applies to certein other
(equivelent) turbomachines with a larger or smaller number
of like passages having the same angular spacing of the
blades Af, blade-thickness distribution, and so forth, but
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with different cone angles a.
alent turbomachines are determined by the number of
passages B in the machine and are given by equation (20) es

a—=2 gin-t B8
2x

Also, from equation (20),

2r . a
B=34""3
so that a radial-filow turbomachine (@=180°) hes more
blades than an equivalent mixed-low turbomeachine
{2<<180°), which has the same blade loading, and so forth.
Furthermore, if the number of blades in the equivalent
mixed-flow turbomachine is increased to equal the number
of blades in the radial-low turbomachine, the blade loading
in the mixed-flow machine is decreased, so that, in general,
for the same number of similar blades, the blade loading is
less for mixed-flow than for radiel-low turbomachines.

Equivalent outflow and inflow turbomachines. —Any solu-
tion obtained for an outflow turbomachine with shockless
(smooth) entry is also a solution for an inflow turbomachine
with shockless entry and with the flow direction and blade
rotation (if any) reversed. The shockless entry for the out-
flow machine corresponds to the Joukowski condition for the
inflow machine and, vice verse.

Axial-flow turbomsachines.—For axial- flow turbomeachines,
the cone angle « becomes zero and the flow field is assumed
to lie on a cylindrical surface about the exis of the machine.
For e cylindrical surface, the conic radius r is infinite end
therefore the angle # is zero. As a result, the cylindrical
flow surface degenerates into a single point (1,0) on the
developed conic flow surface (R,0) in figure 2, so that no
solution can be obtained for axial-flow turbomachines on the
developed conic flow surface for which this enalysis was

developed.
NUMERICAL PROCEDURE

A detailed outline of the numericel procedures for the
relaxation solution of compreesible-flow problems is given
in reference 8. The emphasis is placed herein on those
features of the solution that are peculiar to the flow in
turbomachines with coniec flow surfaces.

The complete relaxation solution is conveniently divided
into two sections. In the first section, the initiel relaxation
solution is obtained using epproximate values of ¥p and ¢z
that are estimated to satisfy the Joukowski condition and the
prescribed whirl ratio Ay. In the second section, the ap-
proximate values of ¥ and ¢y are adjusted to satisfy the
Joukowski condition and the prescribed Ay, and the final
relaxation solution is obtained. A brief outline of the nu-
merical procedure for the initial relaxetion solution follows.

F—INITIAL BELAXATION SOLUTION

Design characteristics and operating conditions.—In
order to solve the system of equations (11), (14), and (15)
for the stream funetion ¢, it is necessary that the following
design characteristics and operating conditions be specified:
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Design characteristics: .
(1) Passage-height ratio H which is a function of the
conic-radius ratio &

H=f(R) )
(2) Cone angle «, which is constant (fig. 1)
(3) Arbitrary blade shape;which determines (appendix C)
E=EtR,0) }

1=n(R,0)
from which the coefficients u,, »,, and ¢;in equations
(14) and (15) are obtained by equations (16a), (16b),
and (18c), respectively.
(4) Number of blades B, which together with the cone
angle «, determines the angular blade spacing A#

(13a)

2r .
A0=—B sm% (20)
Operating conditions:
(6) Whirl ratio upstream of blades Ay, where \ is defined

by
A=RRM,+U) ©

The value of Ay results from the configuration of the
turbomachine ahead of the blades (design character-
istic) and from the flow rate through the machine
(operating condition).

(6) Tip Mach number Afs, which is defined as

. a
wry 81N =

M,r== o 2 . . (5)
For stator blades A, is zero.
(7) Flow cocfficient ¢, which is defined as
WT
¢=par, 24)

This coefficient is proportional to the standard equiv-

alent flow-rate parameter TT'-\/GIG (reference 9)
where

# ratio of upstream absolute stagnation tempemture

to standard sea-level temperature

3 ratio of upstream absolute stagnaetion pressure to
standard ses-level pressure

(8) Ratio of specific heats v, which for a given problem is

considered constant

Boundery values of ¢.—The locations of the boundaries in
the &g-plane are discussed under Location of boundaries in
the section ANALYSIS. The boundary values of ¢ are
determined by the design characteristics and operatling con-
ditions outlined in the previous section and by the Joukowski
condition. The various boundary values of ¥ are shown on
the relaxation grid for an outflow turbomachine in the
&n-plene in figure 6. The manner in which these boundary
values are obtained is summarized as follows:

(1) The value of the stream function along the positive
blade surface in figure 6 is arbitrarily set equel to zero.
(See section  along blade boundaries.)

(2) The value of the stream funetion along the negative
blede surfaece in figure 6 is given by

¥a=0¢Al (23)

The stream function y, is positive for outflow turboma-
chines and negative for inflow machines. (Sce scetion ¢
along blade boundaries.)

(8) The values of the stream function along the quasi
boundaries extending upstream and downstream of the posi-
tive blade surface depend on the specified whirl ratio Ay
upstream of the blades and, for & given blade shapo and
operating conditions, on the Joukowski condition downstream
of the blades. The method for cstimating ¥ along these quasi
boundaries is given in appendix D. Values of ¢ are not
recorded or relaxed along the quasi boundaries extending
from the negative blade surface for reasons given in tho
section ¢ along quasi boundaries extending from positive
blade surface.

(4) The values of the stream funetion along the upstream
and downstream boundaries vary uniformly (steady-flow
condition} in the direction of increasing 3 at the rate of ¥,
per unit of #. (This rate is positive for outflow turbo-
machines and negative for inflow machines.) The magni-
tude of ¢ is fixed at the intersection of the quasi boundaries
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(extending from the positive blade surface) with the upstream
or downstream boundary by the variation in ¢ elong these
quasi boundaries.

@rid layout.—A system of equally spaced grid points
placed on the flow field in the &4-plene is shown in figure 6.
The grid spacing b is selected so that an integral number of
spacings occur between the blades. The smeller the grid
spacing, the greater is the accuracy of the finite-difference
equations (18) and (19), but also, the greater is the number
of grid points and therefore the lgbor involved in obtaining
the solution.

For reasons given in the section ¢ along quasi boundaries
extending from posgitive blade surface, grid points are not
located on the quasi boundaries extending from the negative
blade surface.

It is convenient (appendix E) to locate the grid system so
that a grid point lies at the blade tail on the positive blade
surface. In this case, the grid point on the blade nose of the
positive blade surface is generslly not equally spaced from
the interior grid points. .Also, because the upstream and
downstreem boundaries are not normel, in general, to the
£-axis (fig. 6), the grid points on these boundaries are usually
not equally spaced from the interior grid points. In order to
account for these unequal spacings of the boundary grid
points, the finite-difference equetions (18) and (19} must be
modified at the adjacent interior grid points (to be subse-
quently discussed).

After estimating (or assuming) the values of ¢ at the
interior grid points, the problem resolves itself into two
parts: (1) calculation of the residuals R at the interior grid
points and elong the quasi boundaries extending from the
positive blade surface (which residuals result from the
estimated values of ¢ at these points); and (2) relaxstion
(elimination) of these residuals by suitable adjustments in
the values of ¥ at these grid points.

Reaiduals.—The residuals at equally spaced interior points
of the grid system are computed from equation (18). The
density ratios in equation (18) are determined by equation (11)
with the aid of equation (19). At the interior grid points
adjacent to the blade surfaces, the solution of equation (18)
requires the density ratios at the grid points on the
blade surfaces; these ratios can be determined by extra-
polating the values of p/p, obtained et interior grid points or
by equations (11) end (19) at the boundary grid points
using extrepolated values of ¥ beyond the boundaries.

In generel, the grid points along the upstream and down-
stream boundaries are unequally spaced from the adjacent
interior grid points (fig. 6) so that at these interior grid
points the finite-difference equations (18) and (19) must be
modified to account for the unequal grid spacing (reference 7,
pp. 73-74). This unequal grid spacing elso exists, in
general, between the nose of the positive blade surface and
the adjacent grid point on the quasi boundary (fig. 6).

In order to compute the residuals at grid points slong the
quesi boundaries extending from the positive blade surface
(fig. 6), equations (18) and (19) require values of ¥, that lie
outside the flow field enclosed by the quasi boundaries
(fig. 7). From symmetry considerations and because the
quasi boundaries enclose the equivalent flow between two
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blades (see section XLoostion of boundaries), the values of
¥4 equal ¢, less (or greater, for inflow turbomachines) than
the values of ¥ at corresponding positions (same value of
R, that is, same increment of £ from the tail, or nose, of the
blades) along the row of interior grid points adjacent to the
quasi boundary extending from the negative blade surface.
That is,

Vi=vu—va (25)

where ¢, corresponding to y, for a given grid point along
the quasi boundary extending from the positive blade sur-
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Figtex 7.—Relaxation grid In fe-plane showing values of ¢ used In equation (37).

face, is shown in figure 7. In general, ¥, does not lie on a
grid point and the value of ¥, is therefore obtained by linear
interpolation between the adjacent grid points ¢ and ¥
(fig. 7). Therefore,

V=Vt Wo—va) (26)

where ' is defined in figure 7. From equations (25) and (26),
h=ba— bty Ga—t) @n

Equation (27) determines the value of ¥ required by equa-
tions (18) and (19) in order to compute the residuels elong
the quasi bounderies extending from the positive blade
surface.

If all the estimated values of ¥ are correct, the value of R
is zero at ell grid points. If, however, the estimated values
of ¥ are incorrect, the velues of R are finite and may be
positive or negative.

Relaxation.—After the residuels are computed, it remains
to relax (that is, reduce) these residuals by suitable changes
in the velues of ¥. In order to determine the magnitude
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of the required changes in ¥ at the equally spaced interior
grid points, all terms of the finite-difference equation (18)
are assumed to remain constant except the terms ¥, +ya+vs+
¥«—4¥. A change in the value of ¢ therefore causes &
four-fold change of opposite sign in the value of R, and this
change in ¢ also causes an equal change in the values of R
at each of the adjacent grid points (because relative to these
points the change in ¢ amounts to a change in y;, ¥u, va, or
¥). At grid points that are unequally spaced from adjacent
pointe (for example, at the grid points edjacent to the up-
stream and downstreem boundaries, fig. 6) & change in
¥ changes R an amount that depends on the coefficient of ¢
in the finite-difference form of equation (14) developed for
unequal spacing. (See previous section.) Also, the result-
ing chenge in R at adjacent grid points depends on the coef-
ficients for the terms ¥, ¥, ¥a, and ¥, in this finite-difference
equation. In perticular,itshould be noted from equation (27)
that changes in ¢z and ¥, have a weighted effect upon
the residuals at the corresponding adjacent grid points along
the quesi boundaries extending from the positive blade
surface, and vice versa.

These changes in ¢ and R are recorded on the grid sheet as
the work progresses. By continually reducing (relaxing)
the larger residuals (any desired amount), the values of all
residuals gradueally approach zero. When this condition is
reached, the residuals are recomputed using the complete
finite-difference equation and taking into account the new
values of the density ratio. After the new values of R have
been computed, the relaxation procedure is repeeted and this
cycle is continued as often as necessary to achieve the de-
sired eccuracy.

N—FINAL SOLUTION

The whirl ratio Ay upstreem of the blades and the
Joukowski condition downstream of the blades are governed
by the values of the stream function specified along the up-
stream and downstream boundaries (Yy and y¢p). In
section I, these values of Y7 and ¢ were determined from
the estimated variation in ¢ along the quasi bounderies ex-
tending from the positive blade surface (see section
Boundary values of y) and, in general, do not result in a
solution that exactly satisfies the prescribed value of Ay and
the Joukowski condition. In section II, ¥y and ¢ are there-
fore adjusted to satisfy these conditions and the relaxation
solution is repeated to obtain the final distribution of ¢ in
the flow field.

Joukowski condition,—If the Joukowski condition is satis-
fied, the rear stagnation point occurs at the tail of the blade,
or, in case of infinitely thin blades or blades with cusped
tails, the flow is tangent to the blade surfaces at the tail.
In cither case, from appendix E,

O0=4y.'— 69+ L' —vd E2)

where ¢* is the value of ¥ after the Joukowski condition is
satisfied and where the subseripts a, b, ¢, and d refer to the
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grid points along the quasi boundary extending from ihoe
positive blade surface on the #p-plane (shown in fig. 8). If
equation (E2) is not satisfied by the values of ¥, ¥, ¥., and
¥a resulting from the initial relaxation solution (section I},
the values of ¢, elong the downstream houndary are adjusted
by methods given in appendix E. As a result of adjusting
¥, the values of ¢ at all other grid points in the flow ficld ere
chenged by amounts that are estimated by methods devel-
oped in appendix E.

Upstream whirl ratio Ay.—If the upstream whirl ratio is
satisfied, the whirl ratio at any point in the region of uniforin
flow upstream of the blades is equal to the preseribed value
Ay, and ¢; at that point is given by equation (F2) developed
in appendix F

1 P Ay

= ww—2 B (Y~ratr) | (F2)
where ¢;* is the value of ¥ if the specified value of Ay is
obtained. In generel, equation (¥2) is cvaluated at
the upstream boundary where, because conditions are
uniform, ¥, is constant. If ¢; obtained from the initial
relaxation solution (section I) is not equal to the value ¢,*
given by equation (F2), the values of ¢y along the upstream
boundary are adjusted by methods given in appendix F.
As a result of adjusting ¢y, the values of ¢ at all other
grid points in the flow field are changed by amounts that are
estimated by methods developed in appendix F.

It should be noted that the corrections for My effect the
Joukowski condition, and vice versa. For low-solidity
blades these interrelations should be considered, but for
high-solidity blades the effect of changes in ¢ on Ay and the
effect of changes in ¥ on the Joukowski condition are gen-
erally small and cen be neglected.

After the values of ¥p and ¥y have been adjusted and the
resulting changes in ¢ at the grid points in the flow field have
been estimated, the relaxation methods are repeated to
eliminate the small residuals that result from the new velues
of y at the grid points in the Aow field. After the correct dis-
tribution of ¢ has been determined, the pressure and velocity-
ratio distributions can be obtained from the density
ratio and equations (4a) and (4b). If more detailed infor-
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mation of flow conditions in certain regions of the flow field
is desired, the grid spacing b can be reduced and the relaxa-
tion methods repeated in these regions.

Accuracy.—No quantitative evaluation vf the accuracy of
relaxation solutions is available (reference 10, p. 176).
Because the computed velocities depend on differences in
the values of ¥ at adjacent grid points, that is, the small
difference of large numbers, however, it is important to know
the values of ¥ with sufficient accuracy to assure the desired
accuracy for the velocity calculations. In the numerieal
examples of the present report, the values of ¥ were computed
to the nearest 0.00001 compared with the maximum velue
of ¢, at the negative blade surface, of 0.15700.

NUMERICAL EXAMPLES

Two numerical examples are presented; one for compressi-
ble and the other for incompressible flow through the im-
peller of a centrifugal compressor. Both examples are for
the same impeller geometry with the same tip speed and
weight flow.

Flow fleld.—A diagram of the impeller and vaneless por-
tion of the diffuser is shown in figure 9. The cone angle «,
shown in figure 9, is 180° (radial-flow compressor), but the
solution applies to certain other cone angles less than 180°
(mixed-low compressors) given by equation (20) for an
integral number of similar passages B with the same included
angle A8 between blades on the conic flow surface. (See sec-
tion Equivalent turbomachines with different cone angles.)
The solutions are obtained in a flow field (fig. 9) that is
considered to be unaffected by the inlet configuration of
the impeller and by the diffuser venes (if any); that is, the
impeller inlet end the diffuser vanes must be far enough
removed not to affect the flow appreciebly in the flow field
investigated. In this flow field, the impeller blades are
thin and straight and the passage-height ratio H varies in
such a manner thet the flow area normal to the conic flow
surface remains constant.

The values of the stream function along the boundary
between blades (R=0.6752 in fig. 9) are determined from a
simplified analysis (appendix G), which assumes that for
straight thin blades the component of the relative flow
normal to the bledes is zero. This assumption is satisfactory
(appendix G) at radius ratios within the impeller sufficiently
far from the tip (at radius ratios less than 0.80 for the
numerical examples of this report).

Transformation of coordinates.—For thin, straight blades
lying on conic radii (elements), the transformation of co-
ordinates is given directly by the analytie function

E+in=Al,10g. [B exp (6)]

from which
E=lo& R
Af
and
_ 8
1=2As

0247T8—31—20
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FIgURE 9.—Compressor-design characteristics for nnmerical examples.

so that, from equations (16e), (16b), and (16¢) the coeffi-
cients in equations (18) and (19) become

u;=0

and

1
=0—Fz5

Incompressible solution.—The incompressible solution
was obtained from equation (18) for the same impeller-tip
Mach number Jf, and for the same flow coefficient ¢ used
in the compressible solution but with the density ratio pfp,
consant and equal to 1.0. Because for incompressible fluids
the speed of sound is infinite, )/, ¢, and the velocity ratios
for the incompressible solution are fictitious quantities, the
definitions of which contain a constant, finite speed of sound
that is equal to ¢, for the compressible solution. The same
value of the impeller-tip speed (and of the compressor flow
rate) therefore results from the same value of )/ (and of ¢)
for the compressible and incompressible solutions.

Design charsocteristics and operating conditions.—The
numerical examples have been computed for the following
design characteristics end operating conditions:

Design characteristics:

(1) Constant flow eree normal to conic flow surface,
H=R"

(2) Cone angle a, 180° (or certain other values of o less
than 180° given by equation (20) for the same value
of Af but for different integral values of B)

(3) Straight thin blades along radii

(4) Number of blades B, 20 (or other integral values of B
less than 20 for the same value of Af but for certain
different values of « less than 180° given by equa-
tion (20))

(6) Whirl ratio upstream of blades A\g, 0

(6) Tip Mach number 1, 1.5

(7) Flow coefficient ¢, 0.5

(8) Ratio of specific heats v, 1.4 (for compressible solution

only)
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From equation (20) the included angle A¢ between blades
on the conic flow swrface is equal to 18°. The results of the
numerical examples are presented in figures 10 to 12. These
figures are discussed in the following paragraphs.

Streamlines.—The streamline configurations (relative to
the impeller) for the two examples are shown in figure 10.
The streamlines are designated in such a manner (y/¢,) that
the value of a streamline indicates the ratio of the flow that
lies between the streamline and the positive blade surface to
the total flow in the passage. For a given density ratio, the
streamline spacing is indicative of the velocities relative to
the impeller, with close spacing indicating high velocities
and wide spacing indicating low velocities.

In the compressible-low example (fig. 10(a)), an eddy is

attached to the positive blade surface. The fluid in this
eddy rotates (relative to the impeller) in the opposite direc-
tion to that of the impeller so that the absolute motion of the
fluid is irrotational. The size of the eddy (for a given im-
peller) depends on the relative magnitudes of the volume
flow rate through the compressor and the impeller-tip speed.
If the flow rate is zero through the rotating impeller, the eddy
occupies the entire flow passage and as the compressor flow
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rete incresses (for the same impeller-tip speed) the eddy de-
creases in size until it finally disappears. The flow ratle at
which the eddy diseppears increases as the impeller-tip speed
increases. The eddy does not exist in the incompressible-
flow example (fig. 10(b)) because, elthough the weight flow
rate is the same for both examples, the volume flow rate is
higher for the incompressible-flow example as a result of tho
lower fluid density in the region investigated.

The flow directions in the vaneless diffuser are greatly
different for the compressible- and incompressible-flow ex-
amples. (Compare figs. 10(2) and 10(b).) This differenco
results from the higher volume flow rate for theincompressible-
flow example. This higher volume flow rate requires
higher radial velocitics so that for the same tangential
velocities the flow directions are different in the two exemples.
(From considerations of constant moment of momentum in
the vaneless diffuger, the tangential velocities should be about
the same in both examples because the tangential velocities
are about the same at the impeller tip. See subsequent
section Lines of constant pressure ratio.)
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Lines of constant relative velocity retio.—Lines of consiant
velocity ratio relative to the impeller are shown for the two
examples in figure 11. The constant ¢, in the denominator
of the velocity ratio is the same for both examples and is
equal to the absolute stagnetion speed of sound upstream of
the impeller for the compressible-flow example. The general
characteristics of these plots are similar. The velocities
elong the negative blade surface are higher then along the
positive blade surface except at the tip of the blade where
the velocities become equsl on both blade surfaces (as re-
quired by the Joukowski condition). The maximum velocity
occurs on the negative blade surface at a radius ratio well
within the impeller and the flow decelerates along the surface
of the blade from this point to the blade tip. This decelera-
tion, which becomes rapid near the blade tip, is conducive to
boundery-layer separation, which lowers the compressor
efficiency. If the boundary-layer wake in the vaneless dif-
fuser is neglected, the velocities become essentielly uniform
at a radius retio of about 1.15.

In the compressible example (fig. 11(a)), the velocity
retios are low at the impeller tip because of the high density
retios that result from the high tip speed of the impeller.
These velocities would be considerably higher if the effective
flow area were reduced by boundary-layer separation, which
might be expected in & real compressor.
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Lines of constant pressure ratio.—Lines of constant static-
pressure ratio (local stetic pressure divided by absolute
stagnation pressure upstream of the blades) are shown for
the two examples in figure 12. The general characteristics
of these plots are the same. The pressure is higher on the
positive blade surface then on the negative blade surface
except at the blade tip where the pressures are equal. This
difference in pressure accounts for the impeller torque.

The higher pressure ratios in the compressible-flow example
than in the incompressible-flow example result from the
lower relative velocity ratios in the compressible-low ex-
ample and from the fact that for the same amount of work
per pound of fluid the pressure ratio is greater for compressible
than for incompressible fluids. (That the work per pound
of fluid is about the same for both examples at correspond-
ing points is seen from the last term in equation (8). This
term is the work per pound of fluid and has about the same
values for both examples because the whirl ratio A is deter-
mined principally by the tangential motion of the blades,
which is the same in both examples.)

Slip factor.—The impeller slip factor is defined as the ratio
of the average absolute tangential velocity of the fluid at the
impeller tip to the impeller-tip speed. A method for com-
puting the slip factor from e relaxetion solution is outlined
in appendix H. The slip factor is 0.899 for the compressible-
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flow example and 0.802 for the incompressible exemple.
It is concluded that the slip factors are essentially equal
for both examples. :

Compressibility effeots.--Figure 10 indicates a large com-
pressibility effect upon the streamline configuration in high-
speed, rotafing, radial- and mixed-Sow blade systems.
Figures 11 and 12 indicate large compressibility effects
upon the magnitudes of the velocity ratios and pressure
ratios, but the distribution of these quantities is similar.
(For example, the velocities accelerate and decelerate at
approximately corresponding positions of the flow field in
both examples.) It is concluded that, if the fluid in high-
speed, rotating, radial- and mixed-flow turbomechines is
compressible, incompressible solutions give poor quenti-
tative results (exception, the slip factor) and, in some
respects, poor qualitative results.

SUMMARY OF RESULTS AND CONCLUSIONS

A general method of analysis has been developed for two-
dimensionsl, steady, compresaible low in stators or rotors of
radial- and mixed-flow turbomachines with erbitrary blade
shapes, arbitrary variations in the passage height, and with
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conic flow surfaces (surfaces of right circular cones generated
by center line of flow passage in axiel-radial plane).

The anslysis indicates that: (1} The solution obtained for
& given turbomachine also applies to certain other (equiva-
lent) turbomachines with a larger or smeller number of like
pessages (same spacing of the blades on the conic flow sur-
face, same blade-thickness distribution, and so forth) but
with different cone angles; (2) for the samoe number of
gimilar blades, the blade loading is less for mixed-flow then
for radial-flow turbomachines; and (3) any solufion obtained
for an outflow turbomachine with shockless (smooth) entry
is also the solution for an inflow turbomachine with shockless
entry and with the flow direction and blade rotation (if eny)
reversed.

Two numerical examples are presented—one for compres-
sible and the other for incompressible flow in a centrifugal
compressor with thin, straight blades lying on conic radii
(elements). The solutions were obtained in a region of the
compressor, including the impeller tip, that was assumed
to be unaffected by the inlet configuration of the impeller
or by the diffuser vanes (if any). Both examples arc for
the same impeller (18° included angle beiween blades on
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the conic flow surface) with the same tip speed (equivalent
to a tip Mach number of 1.5 for the compressible-flow
example), with the seme flow rate (flow coefficient, 0.5},
and with constant flow area normasl to the conic flow surface.
The following results were obtained:

(1) In the compressible-low exampie, an eddy is attached
to the positive blade surface. The fluid in this eddy rotates
in the opposite direction to that of the impeller. This eddy
does not exist in the incompressible-flow example.

(2) In both examples, the maximum velocity occurs on
the negative blade surface &t a radius ratio well within the
impeller and the flow decelerates along the surface of the
blade from this point to the blade tip. This deceleration,
which becomes rapid near the blede tip, is conducive to
boundary-layer separation, which lowers the compressor
efficiency
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(3) If the boundary-layer wake in the vaneless portion
of the diffuser is neglected, the velocities become essentially
uniform &t & radius ratio of ebout 1.15.

(4) The slip factor is 0.899 for the compressible-flow
example and 0.892 for the incompressible example. It is
concluded that the slip factors are essentially equal for
both cases.

(5) If the fluid in high-speed, rotating, radiel- and mixed- _

flow turbomechines is compressible, incompressible solutions
give poor quantitative results (exception, the slip fector)
and, in some respects, poor qualitative results.

Lewis FrieeT ProPULSION LABORATORY,
NaTioNAn ApvisoRY COMMITTEE FOR AERONAUTICS,
CLEvELAND, OmHIO, November 1, 1848.
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APPENDIX A

SYMBOLS
The following symbols are used in this report: 3 Cartesian coordinate in transformed &y-plane
Gp flow area of annulus at tip of blades (corresponds to incompressible velocity poten-
B number of blades (or passages) tial in nonrotating Rf-plane with constant pas-
b grid spacing (fig. 3) sage height, H=1), cquation (13a)
¢ local speed of sound p weight density of fluid
e, specific heat at constent pressure ] flow coefficient, equation (24)
e Cartesian. coordinate in transformed ef-plane, | ¢ dimensionless, compressible stream function,
equation (Cla) _  equations (4a) and (4b)
exp exponentigl, [exp(z)=e"] @ angular velocity of rotor (in direction of increas-
F any twice-differentiable function of two variebles ing 6)
f Ceartesian coordinate in transformed ef-plane, Subseripts:
equation (C1b) A,B,C "~ grid points defined in figure 7
g acceleration due to gravity abed grid points defined in figure 8
H passage-height ratio, Afks D 7 downstream boundary (boundery in region of
h passage height normal to conic flow surface (fig. 1) uniform flow downstream of blades) (fig. 4)
J mechanical equivalent of heat i indicates that u,, v,, and g, obtained from deriva-
M, blade-tip Mach number, equation (5) tives of ¢(R,6) and (R,8), correspond Lo incom-
Q relative velocity ratio, gfe, pressible velocities
q velocity of fluid relative to blades, Vu’+o’ % negative blade surface (blade surface in du'ectmn
R conic-radius ratio (coordinate of conic flow sur- of decreasing 8) (fig. 4(a))
face, R9-plane) (fig. 2), r/re o absolute stagnation condition in region of uniform
R residual flow upstream of blades
r conic redius (distance along conic element from | p positive blade surfece (blade surface in d:rcctlon
apex of cone) (fig. 1) of increasing 6) (fig. 4(a))
T static (stream) temperature T blade tip (either nose or tail of blade, whichever
U relative tangential-velocity ratio, u/e, (fig. 2) has larger conic radius)
u tangential component of ¢ (positive in direction | U upstream boundary (boundary in region of uni-
of increasing 8) form flow upstream of blades) (fig. 4)
\4 radial-velocity ratm, v/, (fig. 2) R0,tn,e, partial derivatives with respect to these coordi-
v radial (along conic element) component of ¢ and f nates
(positive in direction of increasing radius ratio) | RR, 4, second partial derivatives with respect to th('so
W total flow rate through turbomachine EE, 1, coordinates
w flow rate between streamlines tn, ee,
a. cone angle (fig. 1) and ff
T dimensionless absolute.circulation . 1,2,3,4 .. grid points adjacent to point being considered
v ratio of specific heats (fig. 3)
A8 snguler blade spacing (included angle between Superscripts:
blade camber lines in R6-plane), equation (20) | b’ nonuniform grid spacing defined in figure 7
AY changes in ¥ at grid points At change in \b (et any _gnd point) re.sulting.from
" Cartesian coordinate in transformed &y-plane Ay required to satisfy Joukowski condition
. . . Ayt change in ¢ (at any grid point) resulting from
(corresponds to incompressible stream function AV equal to unity
in nonrotating Ra-p]z.me with constant passage ¥ adjusted value of ¢ (at any grid point) after
height, H=1), equation_(13a) Joukowski condition is satisfied
0 angle (coordinate of conic flow surface, Rf-plane) | y,* value of ¥, (at any point in region of uniform flow
(fig. 2) upstream of blades) if specified velues of Ay is
N whirl ratio, equation (9) obtained, equeation (F2)



APPENDIX B
TRANSFORMATION OF COORDINATES FROM R¢-PLANE TO i4-PLANE

If the transformation of coordinates from the Rf-plane to
the £g-plane is represented by the analytic function

ER,0) +in(R,6)=SIR ezp (i6)] (13)

where the coordinates £ and » in the gg-plane correspond to
velocity potential lines ((=constant) and streamlines (n=
constant) in the Rf-plene for incompressible flow past the
blades, which for purposes of the transformation ere con-
gidered to be stationary (#=0) and to have a constant height
(H=1)}, then

(16a)

(18b)

Alsc, if F ie any twice-differentiable function of R and &

Fe=Fiet+Forn
Fen=Fyuta®+2F o fenet Fons®+ Fiknet+ Finze

F5=F€E'—|'Fﬂl

Fu=Fut+2F ot Fou*+ Fibaet Fyne

(B1)

From equations (16a), (16b), and (B1), equation (7)
becomes

B £ Gurtbd @i +o) i (rart FHE)
¥ (En+ %‘l‘ %) -
(Were—vuq) [(loge H)wi—(loge H)u]—
[w; (1og. p%)‘ +¥u (log. f)] (i +od)

gi=u+od

But,
(16¢)

and, because equation (13) is analytic,
tant S50
and

neet 5+ 3==0

so that equation (7) finally becomes

2 Hp _ _ LA £)—
T!_ o Vit va—Ve (Iog. PO)E ¥ (loE- p‘)'
\"Lzl\‘_'&t [Qog, H):oi— (log, H)ud  (14)

Equation (12) in like manner becomes

np__41 3
QL =F )" s



APPENDIX C
E(RS) AND 5(Rs) FOR ARBITRARY BLADE SHAPES

The coordinates ¢ and n of the transformed £y-plane are
functions of R and 6 and correspond to the velocity potential
£(R,0) and the stream function (R,8) for incompressible flow
past blades of erbitrary shape in the physical Ré-plane,
which blades are considered, for purposes of the transforma-
tion, to be stationary (w=0) and to have & constant height
(H=1). In order to determine £(R,0) and »(R,08), it is con-
venient first to transform the blades from the Ré-plane to the
ef-plene (e,f Cartesian coordinates). This transformation is

given by
e+if=log. [R exp (i0)]
from which
e=log, R (C1e)
J=¢ (C1b)

Equations (Cla) and (C1b) relate points in the ef-plane to
points in the Ré-plane and determine a new blade shape in
the e¢f-plane (fig. 13) that corresponds to the original (arbi-
trary) blade shape in the Ré-plane (fig. 4(a)). In effect the
radial cascade in the Rf-plene is transformed into an axial
cascade in the ef-plane.

———— Quos/ bouncdaries

o
o
DHONONOSNNNAANN

N

[

rn'a

FIoURE 13.~Relaxation grid n efplans used to obtain v(a.f).
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The stream function n(e,f) in the ¢f-plane is determined by
the relaxation solution of Laplace’s equation

(C2)

for the specified boundary conditions; and the veloeity
potentiel £(e.f) is obtained from g(ef) by methods discussed
in reference 7 (ch. IV). Finally, ¥(R,0) and #(R,0) arc de-
termined from £(e,f) and n(e,f) and from equations (Cla) and
(C1b).

In order to solve equation (C2), it is first necessary to
determine the boundary conditions. Because the distribu-
tion. of the variations in ¢ along lines of constent ¢ in the
ef-plane is cyclic with a period equal to the blade spacing,
the solution of equation (C2) need be obtained only in a
region (fig. 13) bounded by the surfaces of two adjacent
blades, by lines of constant e that correspond in the Ré-plane to
the upstream and downstream boundaries of the compressible-
flow field (fig. 4 (a)), and by quasi boundarics extending along
lines of constant f from the ends of the blade surfaces to the
upstream and downstream boundaries. (Note that these
quasi boundaries do not generally, and need not, correspon:d
to the quasi boundaries selected for the compressible-flow
field (lines of consiant n). See fig. 13.)

After the location of the boundarics has been determined,
a grid of equally spaced points is placed inside the boundaries
(fig. 13) and this grid is extended to points on the boundaries.
The grid points on the blade boundaries generally are un-
equally spaced from the interior grid points because of the
arbitrery shape of the blades. Values of 4 at points along
the quasi boundaries extending from the negative blade
surface are directly related to values of 5 at points elong the
quasi boundaries extending from the positive blade surface
(see related discussion in section ¥ along quesi boundaries
extending from positive blade surface) and, therefore, only
the values of 5 along the quasi bounderies extending from the
positive blade surface need be recorded (fig. 13) and relaxed.

The values of # at the grid pointa on the boundaries are
next determined. The boundary values of % at grid points
along the blade surface are arbitrarily set equal to 0 along
the positive blade surface (fig. 13) and equal to 1.0 along the
negative blade surface. The values of 5 at grid points along
the quasi boundaries extending from the positive blade surfuce
are estimated in such a manner that the front and rear
stagnation points occur at the interscetion of the mean
camber line with the surface of the blade at the nose and the
tail. The direction of the streamlines is then approximately
equel to the direction of the blade camber line at the ends
of the hlade. This direction is defined in the ef-plane by

tan ﬁ=¥

Nee =0

(C3)
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But along a streamline, dy equals zero so that
dp=0=nde+ndf
d Be
o
Also, if uniform flow is assumed upstream and downstream

of the blades, then from equation (Clb) and the specified
boundary conditions

(CH

i (C5)
Therefore, from equations (C3), (C4), and (C5),

This variation in 5 with ¢ determines estimated values of 5
at grid points along the quasi boundaries extending from the
positive blade surface and in particular this variation deter-
mines the values of n at the intersections of these quasi
boundaries with the upstream and downstreem boundaries
(fig. 13). Along these upstream and downstream boundaries,
the values of n increase uniformly (steady-flow condition)
in the positive direction of f at a unit rate per blade spacing.

After the boundery values of 5 have been determined,
values of 5 are estimated et the interior grid points. These
estimated values are generally in error and must be corrected
by relaxation methods in which equation (C2) is used in
finite-difference form to compute and to relax the residuals.
In addition, the values of 5 along the quasi boundaries extend-
ing from the positive blede surfece were estimated values
and must therefore be relaxed. After the solution for the
distribution of » has been obtained, the condition that the
stegpetion points occur at the nose and the tail of the blades is
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checked (by methods similar to those in appendix E) and,
if not satisfied, the values of n at the grid points along the
upstream end downstream boundaries are adjusted (by
methods similar to those outlined in appendix E).

The function x(e,f) is now known and £(e,f) can be deter-
mined from 5(e,f) by methods given in reference 7 (ch. IV).

The functions %(R,8) and §(R,0) are obtained directly
from n(e,f) and E(e,f) and from equations (Cle) and (Cl1b).
Also, from equations (16) end (C1), the coefficients u; and
v; in equations (18) and (19} become

‘ui=—ﬂn=—% (C7a)

The relaxation solution of equations (11), (14), and (15)
in the transformed Znp-plane requires less time than the solu-
tion of equations (7), (11), and (12) in the physical Rf-plane,
because blades with arbitrery shape in the physical plane
become straight end parallel in the transformed plane,
which results in simpler finite-difference forms for eque-
tions (14) and (16). The transformation of coordinates to the
£y-plane is time-consuming, however, so that, if a solution
for only one set of operating conditions is desired, it would
probably be faster to solve equations (7), (11), and (12) in
the ef-plane where, although the finite-difference equations
must contain coefficients to account for the unequel grid
spacing along the irreguler boundaries, the transformation
of coordinates is given directly by equations (C1a) and (C1b).
If, however, solutions for & number of different operating
conditions for the same blade configuration are desired, then
the transformation of coordinates outlined in this appendix
is desirable, because the same transformation epplies to all
sets of operating conditions for the same blade configuration.



APPENDIX D

ESTIMATED VALUES OF ¢y AT GRID POINTS ALONG QUASI BOUNDARIES EXTENDING FROM POSITIVE BLADE SURFACE
IN &-PLANE

Estimated. values of the stream funection ¢ at grid points
along the quesi boundaries extending from the positive blade
surface in the {y-plane can be obtained by assuming, as a
first epproximation, that the flow conditions upstream and
downstream of the blades in the Ré-plane ere uniform, that
is, the flow conditions are a function of R only. From the
conservation of absolute moment of momentum (whirl)
upstream and downstream of the blades

A=R(RMyF U)=constant 1)
g0 that equation (4b)} becomes
=L B (BM:—}) D2)
In addition, because the flow is considered uniform
\0.=consta.nt= ‘l" (D3)

The variation in ¥ along the quasi boundmes in the Eq-plane
(fig. 6) is then given by -

Ye=v¥rBi+¥ieb,
which, from equations (D2) and (D3) becomes

=L B(RM—}) Bt L D9)
where R; and 6; are obtained from equations (13a) or ap-
pendix C. Equation (D4) gives the estimated variation in
¥ along the quasi boundaries extending from the positive
blade surface in the £7-plane.

In order to integrate equation (D4), it is necessary to
know the variation in density with £ The density ratio is
given by equation (11}

1

y— o1
el (M- @—abt) T
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where, from equation (3a),

¢=0U+17* (D&}
But, from continuity considerations assuming uniform flow,
(-2 \ )
_ £ @R
Peo

so that, from equations (D1}, (D5), and (Do),
X ] ¢ H
@=(p—Batr) +{ -4~
<R ) (Pﬁ HR)

and equation (11) becomes

a
1+151 1 oar, 00—y - \ I
N

Because R is a known function of £ and 7 (equation (13a) or
appendix C), the system of equations (D4) and (D7) can be
solved by numerical methods to obtain the value of ¥ at
grid points along the quasi boundaries extending from the
positive blade surface in the Zy-plane (fig. 6).

The values of ¢ depend on the value of \. Upstream of
the blades M has the specified value A\, Downstream of the
blades A has the value Ap, which for & given blade shapo and
operating condition, is determined by the Joukowski condi-
tion. As a result of the Joukowski condition, the average
flow direction at the exit from the blades is approximately
equal to the blade-exit angle (determined by the mean
camberline). An average value of U, required in equation (9}
to compute an estimated value of Ap, can therefore be
obtained from this angle (adjusted as experience indicates)
and from the average value of V given by continuity con-
giderations (equation (D8)).



APPENDIX E

METHOD OF ADJUSTING VALUES OF y ALONG DOWNSTREAM BOUNDARY TO SATISFY JOUKOWSKI CONDITION

The Joukowski condition requires the rear stagnation point
to occur at the blade tail, or, in case of infinitely thin blades
or blades with cusped tails, the flow must be tangent to the
blade surfaces at the tail. (If the blade tail is somewhat
rounded, the stagnation point is considered to occur at the
intersection of the mean camber Iine with the tail surfece
of the blade.) In the ¢y-plane (fig. 6), this rear stagnation
point occurs at the tail of the thin, straight blade. (See
appendix C.) This condition generally is not satisfied by
the initiel relexation solution for ¥ in the #y-plane, because
for this solution the values of ¥ along the downstream bound-
ary (¥p) were obtained from the estimated variation in ¢
elong the quasi boundaries (appendix D). In order to satisfy
the Joukowski condition, the values of ¥ at the grid points
elong the downstream boundery (¥p) must all be changed
the same required amount (Ayp). This change in ¥»
(denoted by Ayp) results in changes in ¥ (denoted by Ay)
at each of the interior grid points and &t the grid points
along the quasi boundaries. The menner in which the velues
of ¢ are changed by the change in ¥, must satisfy the differ-
ence equation (18). Therefore,

(et )+ (k- A) + () + (-89 —4 P+ A9) —
kA0 — ) (g, B 1og, )

(Yot M) — (Pt A¥) Pa_ 1. Pe)__
4 (log' Pe Iog. Pe

o3 {10 — Gt Sl [k )~k S} X

{ (log, H,—log, Hy)v;— (log, Hy—loge H)u:}—

2MAHD p_
— L=
qi Po

E1)

where the change in density ratio resulting from Ay is con-
sidered negligible. Subtracting equation (18) with R equal
to zero (which condition has been satisfied by the initiel
relaxation) from equation (E1} results in

A +Aya+A¢s+ M.—Mw—%z—% <1°g' ﬁ_hg‘ ?)—

Ags— A,y 1 1
BB (log, 2 —Log, &) — 3l —Mao—(a — b dui X

[(og, H,—log, Hy)2,— (log, Hy—log, Hyu]=R (E1la)

Each of the last three terms on. the left sideof equaltion (E1a)
consists of the product of two quantities that approach zero
as the grid spacing b approaches zero. For the small grid
spacing used in relaxation solutions, these terms are there-
fore of secondary importance and may be neglected so that

Apy+AYst+ A+ Mg — 48y =R (E1b)

The solution of equation (E1b) determines Ay at every

grid point for a specified value of Ayp. Because of the

linearity of equation (E1b), the solution for any specified
value of Ayp is equal to the solution for AYp=1.0 multiplied
by the specified value of Ayp. That is, AY (at eny grid
point) resulting from a specified value of Ay, is equel to AY
(at the grid point) resulting for Ayp=1.0 multiplied by the
specified value of A¢p.

The procedure for the solution of equation (Elb) is the
same as for equation (18). The boundary values of ¥ along
the blade surfaces and along the upstream boundary (fig. 6)
ere not chenged so that Ay must equel zero along these

ary (fig. 6) is set equal to unity.
The magnitude of Ay, required to satisfy the Joukowsk:
condition can now be determined as follows: If the rear

stegnation point occurs at the blade tail (Joukowski condi-

tion}, then the extrapolated velue for ¢ at the grid point on
the blade tail of the positive blade surface obtained from
the values of ¢ at succeeding points along the quasi boundary
starting at the blade tail must equel zero. The extrapolated
value of ¥ at the blade tail using a third-degree polynomial
and the first four points along the quasi boundary is given by

Yeu=40— 0+ 4¥— Ve

where the subseripts a, b, ¢, and d refer to the grid points
elong the quasi boundary in figure 8. If y5,gq equels zero,

0= 4#-‘ - 6\"&"[' 41’1:‘ - "’d" CEz)

where ! signifies values of ¢ after the Joukowski condition
issatisfied. But,
V'=y+ay E3)

where ¢ is the stream function obtained by the initial
relaxation and Ay* is the change in ¢ that results when the
Joukowski condition is satisfied. Also, from the first part
of this appendix,

ED

where Ay'f is the change in ¢ (at any grid point) resulting
from a unit change in ¢p» (A¥5=1.0) and Ay is the change in
¥p required to satisfy the Joukowski condition. Therefore,
from equations (E2), (E3), and (E4))

M _4¢c+ 6\[’)_ 4*«'[‘ "’t
T AAY T —BA T A — M

Equation (E5) determines the change in ¥p required to
satisfy the Joukowski condition. The changes in ¢ at ell
other grid points are obteined by multiplying A¢* at eech
grid point by Ayp. Because the solution for Ay* is approxi-
mate, the resulting values of ¢* must usually be relaxed to
eliminate small residuals computed by equation (18).
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AYt=AYpAPt

(E5)



APPENDIX F
METHOD OF ADJUSTING VALUES OF y ALONG UPSTREAM BOUNDARY TO OBTAIN SPECIFIED WHIRL RATIO )y

In general, the specified whirl ratio upstream of the blades
Ay is not obtained by the initial relaxation solution, because
for this solution the values of ¢ along the upstream boundary
(¥y) were obtained from the estimated variation in ¥ along
the quasi boundaries (appendix D). In order to obtain the
specified value of Ag, the values of ¢ at the grid points along
the upstream boundary (¢y) must all be changed the same
required amount (Ayy). This chenge in ¢y (denoted by
Ayy) results in changes in ¢ (denoted by Ay) at each of the
interior grid points and at the grid points along the queasi
boundaries. The effect of AYy on the values of Ay is deter-
mined in the same manner a8 the effect of Ayp on. the values
of Ay (eppendix E).

The magnitude of Ay required to obtain the specified
value of Ay can now be determined as follows: Near the
upstream boundary in the region where flow conditions are
essentially uniform, the whirl ratio N\ is constant end equel
to Ay. In this region equation (9) gives

where U is related to the variation in ¢ by equeation (4b)

But,

Y=Vt Ve (F1)

where for uniform flow conditions
"'l=\"l

so that, from equations (16a2) and (16b), equation (F1)
becomes
Va=vV—¥ats (Fla)
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Therefore, from equations (Fle), (4b), and (9)

wer|w—2u(E-ra)] @

where y;* is the value of ¥; at any point in the region of
uniform flow upstream of the blades if the specified whirl
ratio Ay is obtained and where p/p, is considered to be given
by the initial relaxation solution. (In general, equation (F2)
is evaluated at the upstream boundary where, assuming
conditions are uniform, ¢, is constant.)

If ¢, is obtained by the initial relaxation solution at the
point being considered in the region of uniform flow, the Ag,
required to obtain the value of ¥,* (cquation (F2)) corre-
sponding to the specified value of Ay is given by

.2 M £
Mo="pe

where (A¢); is the variation in Ay with £, at the point being
considered, for a unit change in ¢,. Equation (F3) deter-
mines the change in ¥, required to obtain the specified value
of Ag.

The resulting changes in ¢ at the interior grid points and
at the grid points elong the quasi boundaries are determined
from Ayy in the seme manner as the changes in ¢ were deter-
mined from Ayp in appendix E. It should be noted that the
correction for A, will affect the Joukowski condition, and vice
versa. For high-solidity blades, however, the effect of A¢p
on Ay and the effect of AYy on the Joukowski conditlion is
generelly small and can be neglected.

(F3)



APPENDIX G
SIMPLIFIED ANALYSIS FOR ROTORS WITH STRAIGHT BLADES ALONG CONIC RADII

The relaxation methods used in this report are lengthy.
It would therefore be advantageous to have a quicker, al-
though less accurate, means of estimating the flow conditions.
In this appendix, a simplified analysis is developed for rotors
with straight blades along conic radii.

Velocity-ratic distribution,—This simplified analysis is
based on the essumption that for rotors with straight blades
along conic radii the tangential component of the velocity

ratio relative to the blades is zero within the rotor. Equs-
tion (8) therefore reduces to
Ve=2RM, (G1)
which, when integrated, becomes
V=V,1+2RM 0 (G2

where the subscript p refers to the positive blade surface at
which surfece the angle # is considered zero. Equation (G2)
gives the distribution of the radial component of the velocity
ratio across the pessage at constant values of B. The con-
stant of integration V', is determined at each value of B
from considerations given in the next paragraph.
Stream-funotion distribution.—From continuvity

dw=prhrd
or

do  _p
s s VHRdo (G3)

T  Pe

The density ratio is given by equation (11) with ¢ equel to
1" (beceuse U is assumed equal to zero) and V is given by
equation (G2) so that equation (G3) becomes

w=HR{1+151 B (Vs

ORM,o)i—zl[,-k;]} (V,+2RMo8)d0 (G

where the left side of equation (G4) was obtained from
equation (21). Equation (G4) is integrated from the posi-
tive blade surface where ¢ and 0 ere considered equal to
zero s0 that

T

\c—gﬁfr[{ FIo (BM V=2 ]) ~

: 1+15- [(RﬂIz-)’—(V.+2RM1-0)’—2M!'7‘U]} 1]
@5)

Equeation (G5) gives the distribution of ¥ across the passage

at constant values of B. The velocity ratio 77, varies with
R and is obtained from equation (G5) for the condition

¢'='I’n
=0,

when

If the fluid is incompressible, the distribution of ¢ becomes
¢=HR (V,6+RAL &)

Numerical example.—The simplified enelysis has been
epplied to the compressible-flow exemple in this report and
the results are compared with those of the relaxation solu-
tion. The velocity ratio V, along the positive blade surface
has been computed from equation (G5) and the results are
compared in figure 14 with the relaxation solution. The
negative velues of 17, occur where the eddy (fig. 10(a)) is
attached to the blade. The agreement between the re-
lexation solution and the simplified solution is satisfactory
up to a radius ratio of about 0.80. For radius ratios greater
than 0.80, the agreement is unsatisfactory because the
assumption that U and its derivative are negligible is no
longer velid.
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Simplifiad solution
jO0——— Reloxation solution

Y

N

Velocity ratio, ¥V

(2] 2 £ ¥ .8 Le
Ratlo of disfance across passags
from positive blade surface

Fiarer 16.~Comparison of velocity distribution acroes passage for simplified and relaxation
solutions.

The velocity-ratio distributions across the passage at radius
ratios of 0.760 and 0.856 have been computed from equetion
(G2) using values of V, obtained from equation (G5) and
the results are compared in figure 15 with the relaxation
solution. At the 0.760 radius ratio, the velocity distribution
is nearly the same for both solutions, but at the 0.855 radius
ratio the simplified solution has begun to deviate from the
more rigorous relaxation solution.
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Fiaurs 16.—Comperison of stream-function dlatribution seross passage for slmpiified and
relaxation solutions.

The stream-function distributions across the passage at
radius ratios of 0.760 and 0.855 have been computed from
equation (G6) and the results are compared in figure 16
with the relaxation solution. At a radius ratio of 0.760 tho
stream-function distribution is nearly the same for both
solutions, but at 0.855 the simplificd solution has begun to
deviate appreciably from the relaxation solution.



APPENDIX H
PROCEDURE FOR COMPUTING IMPELLER SLIP FACTOR

The impeller slip factor for centrifugal compressors is
defined as the ratio of the average absolute tengential veloc-
ity of the eir at the impeller tip to the tip speed of the
impeller
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The average value of the tangential-velocity ratio relative
to the impeller at the impeller tip is obtained from
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which, from equation (22), becomes
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Equation. (H2) gives e weighted average value of .
This weighted average is also equal to the unweighted average
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This fact can be shown from considerations of the conserve~
tion of moment of momentum in the vaneless diffuser, which

is based upon the weighted average of U7 and from considera- __

tions of constant ebsolute circulation in. the diffuser, which is
based upon the unweighted average of U.

Combining equations (H1) end (H2) results in the follow-
ing expression for the slip factor:
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The velue of the integrand is obtained from the relaxation
solution.
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