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APPROXIMATE STRESS ANALYSIS OF MULTISTRINGER BEAMS WITH SHEAR
DEFORMATION OF THE FLANGES

By Paun Kumn

SUMMARY

The problem of skin-stringer combinations used as
arially loaded panels or as corvers for box beams is con-
sidered from the point of view of the practical siress
analyst. By a simple substitution the problem is reduced
to the problem of the single-siringer sfructure, which
has been treafed in N. A. C. A. Report No. 608. The
method of making this substitution is essentially empiri-
cal; in order fo justify it, comparisong are shown befween
calculations and strain-gage tests of three beams tested
by the author and of one compression panel and three
beams fested and reported elsewhere.

INTRODUCTION

A combination of a plate and stringers is frequently
used as a structural element. Figure 1 (g) shows such
a combination used as & tension member; figure 1 (b)
shows one used as the tension side of a beam. The
stress distribution in structures of this type is materi-
ally influenced by the shear deformation of the plate.
In aeronautical structures, where the plate often con-
sists of a thin sheet that may be allowed to buckle
into a diagonal-tension field, it becomes necessary to
consider the effect of this shear deformation more
carefully than is customary in other types of structure.

Reference 1 discusses in detail the fundamental prin-
ciples and the simplifying assumptions that permit &
mathematical approach to the solution of the problem.
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FiGuex 1.—S8kin-stringer combinations as struotural elements.

It is shown that numericel solutions can be obtained if
there is only & single central stringer (fig. 2). A
thorough familiarity with the method of analyzing
single-stringer structures as given therein is presup-
posed. For multistringer structures the mathematics
becomes so complex that there is very slight possibility
of obtaining sufficiently general solutions on the basis

of the assumptions that were used for the smgle
stringer structures.

Methods combining a desirable degree of accuracy
with a reasonable degree of generality will, in all

.
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FiéurE 2 —Bingle-stringer struetures.

probability, be methods of successive approximation.
Attempts to develop such & method have thus far
failed because the convergence is prohibitively slow.
When such & method is found, it is not likely to be very
rapid. Approximate methods developed in the interim,
such as the one to be presented in this paper, wil
therefore retain their velue by furnishing a very useful
first approximatiorr.

The method presented herein was devised to answer
the urgent need for estimating the effects of shear
deformation. It aims chiefly at rapidity end ease of
application, which are achieved at the expense of intro-
ducing some empiricism. The experimental evidence
presented is believed to be sufficient to prove that the
method depicts reasonably well the influence of the
shear deformation on the stringer stresses.

METHOD OF ANALYSIS

It is customary to designate tensile stresses and forces
as positive. Figures, derivations, and formules pre-
sented herein desal, in general, with tension members.
The only differences between tension members and
compression members are quantitative differences in
the effective widths and in the effective shearing stiff-
nesses of the sheet. In the case of beams, the side not
under consideration at the moment, i. e., the compres-
sion side in most of the discussion of this paper, is
assumed to be concentrated at the shear web (figs.
1 (b) and 2 (b)).in such a location that the effective

depth is not changed.
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The investigation of reference 1 was restricted to
symmetrical structures as indicated in figures 1 and 2.
The same restriction will be made in the present paper,
and formulas and numerical data must be understood
to apply to the half structure unless otherwise specified.

In order to unify the terminology, the designations
and symbols used in reference 1 for beams are extended
in the present paper to axially loaded panels. (See
appendix A for a list of symbols.) The directly loaded
stringer of an axially loaded panel will therefore be
referred to as the “fange” (subscript F) and the other
stringers attached to the sheet as ‘longitudinals” or
“stringers” (subseript L). This procedure is justified
because the axially loaded panel may be considered as
the cover of a box beam in pure bending under the
assumptions made. ' _

It is assumed in all cases that the longitudinals are
distributed uniformly along the chord. It is furthermore
assumed that camber 1is moderate, not exceeding the
amounts found, for instance, in wing beams. Finally, it
18 assumed that the effective shear stiffness and the sheet
thickness are constant along the chord.

GENERAL PRINCIPLES OF METHOD OF ANALYSIS

The mathematics of the multistringer beam with
variable cross section is too complex to admit of ready
solution. Broadly speaking, two methods of procedure
may be used in such a case. One method would be to
use approximate methods of solving the equations; the
other method would be to idealize and simplify the
physical concept of the structure until the mathematical
relations become manageable. The second method is
used in this paper.

The results obtained in reference 1 show that the
highest stresses occur at the flange and that they
decrease from the flange toward the center line of the
structure. The stress in the flange and the closely
related stress in the longitudinal adjacent to the flange
are therefore of paramount interest to the analyst.

In beams with cambered cover, which were not
treated in reference 1, the highest stress in the longi-
tudinals may occur adjacent to the flange or it may
occur at the center line of the beam. When it occurs
at the center line, the stress there also becomes a
matter of concern to the analyst.

It is quite obvious that, in genersl, the most impor-
tant physical actions will take place around the flanges,
partly because the loads are applied there and partly
because the stresses reach a maximum there as long as
there is no violation of the basic requirement that the
camber be very moderate. Consequently, any sim-
plification that may be made should affect as little as
possible the picture of the physical relations in the
immediate vicinity of the flanges.

In conformance with this requirement; the simplifica-
tion necessary for obtaining a solution was achieved by
using a ‘“‘substitute structure’’ obtained by leaving the

REPORT NO. 636—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

flange (and shear web) intact but replacing the longitu-
dinals that are actually uniformly distributed over the
width of the sheet by a single longitudinal equivalent to
them as far as action on the flange is concerned. This
substitution reduces the problem of the multistringer
structure to that of the single-stringer structure, which
can be analyzed as shown in reference 1. The method
of substituting (temporarily) a simplified strueture for
the actual one corresponds in part to the method of
using “phantom members” in trusses.

The substitute structure is used only to calculate the
stresses in the part that it has in common with the
actual structure, namely, the flange and the skin ad-
jacent to the flange. After this object has been
aftained, the substitute structure is discarded. The
stresses in the actual distributed longitudinals are then
obtained by using the method described in reference 1
for distributing “‘corrected forces.”

It is clear that, in any given case, at least one equiva-
lent single longitudinal exists. Whether or not there is
a general method for finding this equivalent longitu-
dinal, however, is a question that could be answered
theoretically only if all the exact mathematical solu-
tions were known. They are not known, and the
method of finding the equivalent longitudinal is there-
fore essentially empirical and must be justified by tests.
This requirement is not such a serious drawback as it
may seem to be, because the basic simplifications used
are such that experimental verification is required in any
event.

The method of finding the equivalent single longitu-
dinal isas follows: Remove from thesheet cach individual
stringer of cross-sectional area A at a distance y from
the center line and attach, at the center line of the
structure, a substitute stringer with a cross-sectional
ares

Ag=A2r

er

(1)

where ¢, is the stress in the actual stringer and o¢; the
stress in the actual center-line siringer. The ratio
oyfoce, may be considered as the “effectiveness’ of the
stringer at y relative to the stringer at the center line
y=0; the use of this factor in expression (1) tends to
counteract the loss of effectiveness caused by moving
the stringer from its original location to the center line.
The sum of the individual substitute stringers attached
at the center line constitutes the single equivalent
longitudinal.

As the stresses o, and o¢,, are unknown at the outset,
for a first approximation, the ratio o,/oc, is obtained
from equation (17) of the constant-stress solution given
in reference 1. With the stresses thus computed, a
second approximation might be made. In all cases in-
vestigated thus far, it was found that the second approx-
imation agreed with the first one within the limits of
experimental accuracy. The use of the second approxi-
mation is therefore considered unnecessary. (It must
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be borne in mind that the method of finding the equ va-
lent longitudinal is essentially empirical. Conse-
quently, there is no valid reason to believe that the
second approximation must be better than the first one.)

ANALYSIS QF AXTALLY LOADED PANEL

As an example of the analysis of an axially loaded
panel, the analysis of the compression panel with seven
stiffeners, described in reference 2, will be discussed in
detail. The pertinent data on this panel are given in
figures 8 (2) and 3 (b).

Estimate of effective areas and of effective shear
stiffness.—The test results are given in reference 2 for
2P=2,000, 4,000, and 6,000 pounds. The analysis will
be made for 2P=4,000 or P=2,000 pounds. It will
become apparent that the conditions at this Ioad are
the same as for very small loads, so that the analysis
will be valid for any load between 0 and 4,000 pounds.

The mean stress in the panel (reference 2) is

rar= 2 )=2,860 Ib.feq. in.
This stress is fairly close to the compressive buckling
stress of the sheet; the effective width of the sheet will
therefore be taken as equal to the actual width. The
effective stringer area for the flange is therefore

A=0.180142}0.024=0.228 sq. in.

and for the sum of the other stringers
A;=2.50.088410<0.024=0.460 sq. in.

The force at the bottom of the edge stringer is approxi-
mately

Fr=2,860:0.228=652 Ib.

leaving 1,348 pounds to be transmitted by shear in the
sheet to the other stringers. The average shear stress
in the sheet next to the edge stringer is therefore

1,348 .
T—m—-l,l'?o lb./sq .
The critical buckling stress for 0.024-inch dural sheet,
4 inches wide and assumed simply supported, is, accord-
ing to Timoshenko,

Terts=1,730 Ib.[sq. in.

This value is so far above the actual stress that there is
no possibility of & diagonal-tension field forming and
reducing the shear stiffness, so that G,/E=0.40 may be
taken.
Determination of substitute structure.—Figure 3 (c)
shows the ecross section of the idealized structure
189778—38— 81
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assumed for the analysis. The stringer areas given on
this figure are effective areas that include the effective
width of the sheet; the sheet is now assumed to carry
only shear.

If there are at least two infermediate stringers be-
tween the center stringer and the flange, the calculation
of the substitute stringer may be simplified by using &
formula derived on the assumption that there are in-
finitely many intermediate stringers; that is, on the

P=2000 | Symmetrical about ¢
! [ t=002
' I A=g./80 | A-a0ss 1 :
A t
T T i 1
s
(&) ¢
t-0024
Al B| c| b| L=48
4,-0228 4700
| ot i
- 4 —x— 4 —p— 44—
()
t=0.024
iz —i. A =0228 4, = 0500
4\
(@) [ 12
¢ @)

FieGRE 8.—Compression panel used for sample analysis.

assumption that the area A; of the intermediate
stringers is distributed uniformly along the width & of
the sheet. The derivation of this formula is as follows:
According to the constant-stress solution (reference I,
equation (17))

2¥ —cosh Ky (2)
fs:4
where
Ey=EbX5
and, in the case of a constant cross section,
_ | ABE
-Ksb——\ tTG: (3)

The area of an individual stringer is now

Az

dA.L=7dy

and the area of the substitute stringer that replaces
it at the center line is, according to equation (1),

dAm=‘%l‘dy cosh Ky
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The total area of the substitute stringer located at the
center line is therefore

) .
A= L cosh Ky dy=A,,%

In the case under consideration

_ [2X0460X12
Kb \/0024><48=><040 =0.706. ..

(4)

so that

Aze=0. 460X—8;—06,é==0 500 sq. in.

Figure 3 (d) shows the cross section of the substitute
structure.

Analysis of substitute structure.—The substitute
structure of figure 3 (d) can be analyzed by applying the
formulas given in appendix B. By formula (A-1)

0.40X0.024/ 1
2
Ki=—~=75 \0.228+0.500)

K=0.0715

riAx 1

pEBs;

FIGURE 4.—Free-body dlagram for oslculeting shear stress.

For any station along the span, the stresses and forces
cen now be calculated. For example, at the bottom of
the panel (z=0), by formula (A-3)

( _I_ALS cosh K:z:)
LS Ar cosh K I
.)000 <1+ 0.500X1.00
~0.228+0.500 0.228X15.53
=3,134 Ib./sq. in.

With the computation of or the substitute structure has
served its purpose and is discarded. It is important
not to confuse it with the actual strueture in any of the
following computations.

Calculation of stresses in longitudinals.—The total
force Fy, in the actual longitudinals is

FL=P—'FF=P—O'FAF

or, at =0,
F;=2,000—3,134<0.228=1,286 1b.

This force is to be distributed ovér the longitudinals
by the method given in reference 1, equations (21) and
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(22).7In order to apply this method, computo tho
average stress

F, 1,286
Loy AI‘ 0562800 Ib./sq. in.
and the ratio
Tre_ 2,800 _
or 3,134 0.804

With this ratio as abscissa, read from figure 18 of ref-
erence 1 (redrawn to a larger scale)

15=0.605
and calculate
__op 3,134 .
O-CL_GQsh 16_1‘:188—2,040 lb./Sq. m.

For the other two stringers, which are located
at y=%b and y=%b, the stress will be, for stringer C,

o=o¢r, cosh Yy=2,640X cosh 0.202=2,694 lb./sq. in.

and, for stringer B,
0=2,6403<cosh 0.404=2,860 Ib./sq. in.

The shear stress 7 at uny point in the sheet is obtained
most conveniently by considering the cquilibrium of
an element Az cut out of the structure as indicated in
figure 4, taking advantage of the faect that the shear
stress is zerq at the center line. The shear stress in
the first panel next to the flange, which is the most
important one for design purposcs, will be obtained
automatically as part of the solution of the substiluto
structure if the numerical trial-and-error method of
solution is used, or by using formula (A-2) from ap-
pendix B in the case of a constant-section panel.

Panels with variable cross section.—In the caso of a
panel with variable cross section, the panel is divided
into & convenient number of bays as deseribed in
reference 1. For each bay, the cross-sectional area of
the substitute longitudinal is computed by using for-
mula (4). In the computation of Kb by formula (3),
the average values in the bay are used for A, b, ¢, and
GJE. The length L is again the total length of the
panel (not of the bay). The analysis of the sub-
stitute structure is made by the trial-and-error method
described in reference 1. After this step, the procedure
is identical with the procedure for constant-section
panels,

ANALYSIS OF BEAMS WITH FLAT COVERS

The analysis of beams with flat covers is so closely
analogous to the analysis of exially loaded panecls that
no deteiled example need be given. The substitute
structure is found exactly as for an axially loaded
panel. The resulting beam with a single longitudinal
is analyzed by the trial-and-error method described in
reference 1, or by formulas if applieable. The total
force F at any section can then be distributed over the
longitudinals as previously described.
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ANALYSIS OF BEAMS WITH CAMBERED COVERS

The cambered beam with a single longitudinal,—The
basie problem of the beam with a single longitudinal and
a cambered cover was not treated in reference 1. It
will now be briefly discussed.

Figure 5 shows an element of length dr cut out of
the beam. With the help of this diagram, the funda-
mentsal equations of equilibrium can be written exactly
as in the case of the beam with a flat cover (reference
1, equations (8a) and (3b) ).

dFy=Sy 22— ds, (58)

W

The equation that expresses the relation between
shear stress and longitudinal stresses is slightly more
complicated than in the case of a flat cover. The
ordinary bending theory may be taken to give the
limiting case of no. shear deformation. The deforma-
tions that determine the shear strain must therefore
be measured from the plane cross section of the engi-
neering bending theory as a reference base, resulting
in the equation

d1'="'EG'[;I[(0'r— orp) — (op—ozp)ldr (5¢)

where the subseript P denotes stresses obtained with
the engineering bending theory, which assumes plane
sections to remain plane.

These equations can be used to obtain numerical
solutions by the trial-and-error method, using finite
differences A in place of the differentials d. Appendix
B gives the analytical solution for two cases that corre-
spond to the solutions given for a beam with a flat
cover in reference 1.

tIn reference 1, equation (8h) is written Incorrectly with a minus sign ahead of ¢ F.

4
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The cambered beam with many longitudinals.—In
the treatment of the cambered beem with many
longitudinals shown in figure 6 (a), various degrees of
refinement are possible. The following method, devised

F1GURE b.—Free-body dlagrams and notatiorn for single-stringer beam with cambered
COver.

to utilize the method developed for axially loaded panels
and for beams with flat covers, is believed to be ade-
quate for practical purposes. Attention is called again
to the basic assumption stated previously, i. e., that
the camber is moderate.

The analysis is again divided into two steps: the
celculation of the flange stresses o slong the span by
means of the substitute structure, and the subsequent
distribution of the force Fy over the longitudinals at
any station.

The area of the substitute stringer is calculated by
equation (4), using for b the developed width of the
cover sheet. The camber of the substitute beam may,
for practical purposes, be taken as ¢s=¥% ¢ (fig. 6 (b)).

4
LT
=] e
J "%

T |
@ 3

FiGuaE 6.—Cambered-cover beam.
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The distribution of the force F; cannot be made
directly by the method used for flat panels. In the
flat panel, the longitudinal stress is uniform along the
chord in the limiting case of infinite shear stiffness; in
the case of finite shear stiffness, the shear strain is
defined directly by the longitudinal strains. In the
cambered cover with infinite shear stiffness, the stress
varies along the chord according to the straight-line law
of the ordinary bending theory; in the cambered cover
with finite shear stiffness, the shear strains are defined
by the differences between the longitudinal strains and
the corresponding strains of the ordinary bending
theory as indicated by equation (5c).

These differences between the cambered and the flat

cover may be interpreted as arising from the fact that

the cambered cover has bending stiffness of ifs own
because it has a “beam depth’” equal to its camber.

L7030

&z
Yo Lrr-¥g) ’

58k42 :

/|
A

G446

p:

/ v
L
'500 Lo

2.0 3.0

Yb
FIGURE 7.—Graph for Jocetion of resultant force an cover.

In the single-stringer beam it was not diflicult-to take
care of the effect of this bending stiffness mathematically
by introducing the terms ozp and ¢zp into equation (5¢).
In the multistringer beam it is more convenient to
introduce & physical equivalent, namely, an auxiliary
system of longitudinal stresses distributed over the
cover in such a menner as to make the stress uniform
in the limiting case of infinite shear stiffness. In figure
6 (c) the broken line shows the stresses given by the
ordinary bending theory, the full line shows the umi-
form stress, denoted by ¢y, and the cross-hatched area
between the two lines indicates the auxiliary stresses
necessary to achieve the uniform stress distribution.
The magnitude of the uniform stress is determined by
the condition that, when the auxiliary stresses act on
the flange Ay and on the longitudinals A;, they must
not-change the bending moment acting at the section,
i. e., they must have zero moment about the assumed
centroidal line of the lower cover. The auxiliary
stresses will be denoted by a second subsecript A placed

REPORT NO. 636—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

after the first subscript, which denotes the stringer or
flange where the stress is measured.

With the auxiliary stressos assumed active, the
method of finding the distribution of the stresses along
the chord is analogous ta the method used for flut
panels and will be shown in detail for & numerical
example. From the stresses thus calculated, the
auxiliary stresses are subtracted to obtain the final
stresses. : -

One step not necessery in the analysis of flat panecls
is required for cambered covers. As indicated in figure
6 (d), it is necessary to locate the resultant force Fp*
acting on the cover (exclusive of the flange) when tho
actual and the auxiliary stresses are acting. The
vertical location Ak of this resultant determinos the
effective depth of the beam

he=hp+Ah )
when the combined stresses are acting. The exact cal-
culation of Ak would require a very tedious integration
involving the stress distribution and the shape of the
cover, which has to be repeated several times for each
cross section with slightly differing values of stress
distribution. For practical purposes, it will therefore
be advisable to-simplify the problem, although thero
will be a slight loss in accuracy, by finding tho lateral
location y; of the resultant and by assuming that Ak is
determined by the intersection of the line y=y. and
the straight line joining F and L, as indicated in figure

6 (d). Under the assumption of moderate camber, ¥
is given by
f: o¥y dA
'yL=_.—_
f : c*dA

=5,1,.(Yb—coth Yb+csch Yb)

where Y is the parameter introduced in reference 1,
equation (21), for the purpose of distributing stresses
chordwise. The value of y./b is plotted in figure 7
against Y% for ready reference. With the proposed
gimplification, the value of Ak is then given by

Ah=c(1—y./b) @)

NUMERICAL EXAMPLE FOR ANALYSIS OF A
CAMBERED BEAM

Figure 8 (a) shows the cross section of the beam
assumed for the sample analysis. The root section will
be analyzed for a load P of 250 pounds acting at the tip;
the length L of the beam is 108 inches. It is assumed
that the effective width of the sheet has been estimated
and that the value 4;=:0.85 sq. in. includes the effective
width.
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The next step is to estimate the effective shear
modulus. If the presence of camber and of shear
deformation is neglected the maximum shear stress in
the sheet will be given by formula (A-8) of a,ppendJ.x
B as

P4, 250X0.85
Tma— ¢k Ay 0.0115X3X1.65

The buckling shear stress of a long dural plate 0.0115
inch thick and 1.80 inches wide is
Ter1=1,960 1b./sq. in.
The maximum shear stress being only about twice the
critical stress, the average shear stress is sufficiently
close to the critical to neglect diagonal-tension effects
on shear stiffness and to set G.=@ or G,/E=040.
Equation (3) then gives

_ 2X0.85X9
Kb \/ 0.01

3,730 Ib./sq. in

=0.5635

15X108%X0.40
Inserting this value in equation (4) gives
0.561
0.535

The cross section of the substitute beam is shown in
figure 8 (b). Since the substitute beam is of uniform
cross section, it can be solved snalytically. Formula
(A-14) gives

1
K,=0.‘.;0><o.0115<1 t3 1 )

Arg=0.85 ~oo==0.892 sq in.

9 0.80 ' 0.892
K=0.0378 . KL=4.08
Formula (A-12) then gives for =108 inches

_ 97,0000.94], , 1.94X0.892/ , , 1)0.999
P=""920 [1"‘ 004080\ 13/208

or=4,830 Ib./sq. in.
This computation completes the first step and the
substitute beam is discarded.

The next step is to calculate the stresses In the actual
beam by the ordinary bending theory:

27,000X0.94 ;
oF _—W =2,630 1b./sq. in.
o
G.C,LP=L00£6>§2_'%=3,220 Ib./sq. in.

Figure 8 (¢) shows the chordwise distribution of the
stresses according to the ordinary bending theory as well
as the auxiliary stresses. In order to show that the
auxiliary stresses indicated by figure 8 (¢} fulfill the
requirements, a check on their total moment is made.

1,955X3 X0.80 = 4,690
837X3.4X0.189 = 538
—381X3.8X0.189 = —202

—1,399<4.2X0.189 =—1,111
—2,617X4.6X0.189 =—2,188
—3,635X5.0X0.0945=—1,717

10

The moment is zero with a negligible error. The flange
stress used for calculating the chordwise stress distribu-
tion is therefore

= o5+ o7a=4,830+1,955=6,785 1b./sq. in.
The moment furnished by the flange is
—6,7850.80X3.00=16,280 in.-Ib.

b'-9-005 Acs=0.892
-0.8
a8\, K e ":_f—i.?jé-/a
T 1-aoms T T
PR -
| 206 l 286 !
Ao=L2] ¢ ¢ ° P
1-9.65 ~8.20
) o)

8,000/ ¥
£
6.000
3 G -
g ] "] X 3
% 4.000{ % F /
L}
1%
& Gr @
z000] | =955 %

| Cep

oL

(e {d)

F16URE 8.—Cambered-cover beam for sample analysis.

The moment to be furnished by the cover longitudinals
is therefore

A *=27,000—16,280=10,720 in.-1b.
Assuming k,=3.77 inches, the force F* becomes

_ 10,720 __
3.77

Fpr=

The average stress is therefore

v 2,840

OLap W-—3 ,345

and the ratio

With this value as abscissa, read from figure 18 of
reference 1
¥o=1.94
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and, with this value,
yr/b=0.613
from figure 7 so that

AR=2(1—0.613)=0.77 in.

P | | P
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FI1GURE 0.—Stresses In axially loaded panel (experimental dats from reference 2).

and
he=3.00+0.77=3.77 in.

which agrees with the assumed value. If it did not
agree, & new trial would have to be made.
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The stress at the center line is given by

s__or* 6785
CL =Cosh Y5 3.551

From this stress the actual stress is obtained by sub-
tracting the auxiliary stress

oo *=1,910—(—3,635)=5,545 Ib./sq. in.
Table I shows the calculation of the stresses «* in the
aother stringers by the formula
oy*=0ce* cosh ¥y

and of the final stresses; figure 8 (d) shows graphically
the final stress distribution.

=1,910

TABLE I
g Fad . .
Stringer oo | ¥y loosh Yi| gy g0 iny|anssq. tn | absq. o
Center lne.._| 0.0 ¢ 1000 1,910 ~3, 835 5, 546
........... .2 .358 L0768 2,056 -4, 517 4,572
2_---—.__ A i 1818 2,514 -1,300 3,913
: S .0 L1684 1.758 3,360 —281 4,641
———————— .8 1 552 2 468 4,710 837 8,873
Flange.._...... 1.0 1L 3. 851 0,788 1,955 4,830

EXPERIMENTAL STUDIES
AXIALLY LOADED PANELS

Experimental results for a panel loaded in compres-
sion are described in reference 2. This panel was shown
in figure 3 and served as a numerical example for the
proposed method of analysis. The results of the
analysis as well as the experimental results are shown
in figure 9.

GENERAL REMARKS ON ANALYSIS OF BEAM TESTS

In the analysis of beam tests, some difficulty is met
in establishing the idealized section. It is-easy to
define locations for the longitudinals but fixing the
location, and particularly the size, of the flanges pre-
sents difficulties, because part of the shear web must
be considered as furnishing a contribution to the
idealized flange.

In order to-reduce arbitrariness to a minimum, the
following procedure was adopted for all beam analyses.
First, the centroidal axis and the geometric moment of
inertia of the cross section in question were computed.
If the sheet was considered to be only partly effective
in carrying normal stresses, the proper effective width
was used in these computations. Next, the locations of
the idealized flanges were fixed. On that side of the
beam where the shear deformation was being ealeulated,
the flange was assumed to be in the plane of the cover
sheet. On the other side, which was without cover
except in one case, the flange was assumed to be located
at its estimated centroid. The cross-sectional areas of
the two idealized flanges (tension and compression} were
then computed from the conditions that the idealized
section must have the same centroidal axis and the same
moment of inertia as the actual section. For this
idealized section, the analysis was then made by using
the previously described methods.
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GENERAL REMARES ON N. A. C. A. BEAM TESTS

The available published test date were not sufficient
for an adequate check of the theory developed. A
number of beams were therefore tested by the N. A. C.
A. The first of these beams was discussed in reference
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FIGURE 10.—Cross section of N. A. C, A. beam 2.

1; the following ones, designated as N. A. C. A. beams
2, 8, and 4, will be discussed in this paper.

In all N. A. C. A. beams, measureraents were made on
the tension side of the beam in order to eliminate

FIGURE 11.—N. A. C. A. beam 2 under test.

erroneous strain readings caused by local buckling of the
stringers. Furthermore, flat strips could be used for
stringers, making it possible to take strain readings very
close to the sheet.

The load 2P was increased from 0 to 500 pounds (in
the first series of tests) in steps of 50 pounds and

decreased again in steps of 100 pounds. The slope of
the straight line through the test points was used to
determine the stress at P=250 pounds, which will be
shown in the later figures.
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Readings were taken across the entire section of the
beam and on both sides of the stringers. Each point
representing a flange stress in the figures is therefore the
average of two slopes, and each point representing a
stringer stress is the average of four slopes excepting
figures that show the stress distribution along the
entire chord.

A slight deperture was made from the described
method of analysis in the case of N. A. C. A. beams 2
and 3. The uniform distribution of A; along the chord
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angle. Area=(Q.044 5q. In. e, attaching atrip. Area=0.082sq.in. f, cover sheet.
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is not very well approximated in these beams, A, con-
sisting of only two stringers. Consequently, equation
(4) was not used. The two stringers constituting Az
were treated individually on the basis of equations (1)
to (8). This departure also accounts for the fact that,
for beam 38, the substitute camber is not taken as one-
half the actual camber, as recommended for practical
cases with many stringers. For comparison with the
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experimental flange stresses, the stresses calculated for
the idealized flanges of the N. A. C. A. beams wero
corrected to the outside fiber stresses on the assumption
that plane sections remain plane. For the purpose of
celculating the shear deformation, the width of the
sheet was taken between rivet rows for N. A. C. A.
beams 2 and 3.

TESTS ON BEAMS WITH FLAT COVERS

N.A. C. A. beam 2.—N. A, C. A, beam 2 was similar
in design to beam 1 described in reference 1. The
cross sections of the beam are shown in figure 10. The
bulkheads, not shown in this figure, were similar to
those on beam 1 and were spaced to make the bays
about square. The length L of the beam was 108
inches. Figure 11 shows the beam under test and
figure 12 shows the results of the tests and of the
calculations.

Galeit test beams.—Figure 13 shows the cross section
of a type of beam tested at the California Institute of
Technology (reference 3) under a pure bending moment.
Figure 14 (a) shows the experimental and caleulated
results for the beam with ¢=0.025 inch and figure 14 (b)
shows the results for the beam with #=0.050 inch.

Schnadel’s ship medel.—Figure 15 shows the cross
section and the side view of a ship model tested by
Schnadel (reference 4). The model was built of steel.
Measurements were taken only on the outside of the
compression cover (corresponding to the deck of the
vessel) over one quadrant of the beam. Figure 16
shows the experimental results and the results calculated
by the method presented in this paper.
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TESTS ON BEAMS WITH CAMBERED COYER

N. A. C. A. beam 3.—Figure 17 shows the cross sec-
tions of a cambered beam obtained by inserting cam-
bered bulkheads into N. A. C. A. beam 2. Figure 18
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(a) Cross section. (b) Loading disgram.

FI1GURE 15—Cross section and general disgram of Schnadel’s ship model. Dimen-
sfons are in cm and loads In kg.

shows the beam under test. Figure 19 is a view of the
inside of the beam, showing intermediate bulkheads
that were added for tests at high loads to reduce sagging
of the stringers between the main bulkheads. This
sagging is proportional to the square of the stresses
and consequently may become important at high
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stations for three different loads. Two facts are evident
from an inspection of this figure: The differences be-
tween the actual stresses and the stresses of the ordinary
bending theory increase as the root is approached and
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FIGURE 17.—Cross section of N. A. C. A, heam 3.

also as the load increases, because the shearing stiffness
decreases with increase in load.

N. A, C A beam 4—N. A. C. A, beam 4 was tapered
in plan form, in depth, and in stringer area as shown in
figure 22. Figure 23 shows the calculated and experi-
mental stresses in the flange. The experimental
stresses shown in this figure are based on measurements
taken on the outside of the flange but are corrected to
the top edge of the web.
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F1GURE 16.—8tress distribution in Schnadel’s ship model (experimential data from reference 4).

stresses, but it requires attention only in the case of
shallow beams. Figure 20 shows experimental and

calculated stresses in this beam at P=—250 pounds.
A shorter series of measurements was made on beam 3

at higher loads. Figure 21 shows the stresses at four

139778—39——32

Figure 24 shows the chordwise stress distribution at
the station x=91.4 inches. The experimental stresses
shown are not the stresses measured on each stringer
but are weighted averages of the stresses measured on
each stringer and on the skin adjacent to the stringer on
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each side. It was found that the skin stresses were
consistently higher than the stringer stresses; near the
root the difference was as much as 20 percent, but the
difference decreased (roughly proportionally) with
distance from the root. Since the ratio of stringer area
to sheet area was more than 4:1, the weighted average

FIGURE 18.—N. A. . A. beam 3—vlew of closed sids.

stress never differed by more than 5 percent from the
stringer stress proper.

DISCUSSION OF RESULTS

COMPARISON BETWEEN PROPOSED METHODJOF ANALYSIS AND
EXPERIMENTAL RESULTS

The agreement between experiment and calculation is
good for the axially loaded panel (fig. 9). For N. A.

FiauRrE 18.—N. A. Q. A. beam 3—view of open side.

C. A. beams 2 and 3, the agreement is good except for
the root region of the center stringer in beam 3 (figs. 12
and 20).

For N. A. C. A. beam 4, the agreement is reasonably
good for the flange stresses (fig. 23). For the stringer
stresses, which are shown only for the root station in
figure 24, the agreement may be considered fair, if the
differences between the two test series and the differ-
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ences between stringer stresses and skin stresses, pre-
viously mentioned, are considered.
For the Galcit beams, the agreement is somewhat
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poor for the beam with the thin cover (fig. 14 (a)) but is
quite good for the beam with the thick cover (fig. 14

(b)).
For Schnadel’s ship model, the agreement is fair at
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some stations and very poor at others. Study of the
test report shows that the accuracy of the test was, for
a number of reasons, far below the accuracy of all
other tests analyzed in the present paper. This con-
clusion is borne out by inspection of the results in
figure 16. Note, for instance, at station 2 and particu-
larly at station 3, that all experimental stresses are

beams under load shows.that the spanwise variation in
the condition of the sheet is indeed small; it should be
borne in mind that relatively large variations in shear
stiffness influence the stringer stresses but little, as
shown in reference 1. The chordwise variatior, how-
ever, is marked, the outer panels being buckled while
the inner panels are not. This variation was taken
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considerably higher than the calculated ones; hence
the summation of the internal moments would be much
lerger than the external moment. The test was in-
cluded in the analysis because it is the only available
complete test on the limiting case where stringers and
sheet are merged into & single unit, a plate.

In all beam ansalyses made for the present paper,
over-all average values of effective shear stiffness were
used. A glance at the photographs of the N. A. C. A.

into account approximately by using a weighted average
value of @, end this procedure may be responsible for
some of the discrepancies between test and calculation.
Theoretically, it might be possible to take this variation
into account more exactly, but there appears to be
little justification to do so when the proposed simplified
method of analysis is used. In practical design, large
chordwise variations of shear stiffness should be
avoided by using heavier skin near the flanges.
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If the far-reaching simplifications involved in the
theory are considered as well as the difficulties of strain-
gage testing of sheet-metal structures, the agreement
between experiments and analysis is, on the whole,
fairly satisfactory. Although the analysis does not
give a perfect picture of details, it does appear to give
a substantially correct picture for the stresses most
important in design work.

To persons unacquainted with strain-gage testing,
the discrepancies between tests and calculations might
appear to be rather large. It should be pointed out,
however, that strain-gage tests of conventional types
of structures, such as trusses and plate girders, fre-
quently show discrepancies fully as large or larger.
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F10URK 22.—Cross sections of N. A. C. A, beam 4.

COMPARISON BETWEEN PROPOSED METHOD OF ANALYSIS AND
YOUNGER’'S SOLUTION

The proposed method of analysis is based on the
same simplified physical concepts as Younger’s method
(reference 1). Younger’s solution is mathematically
more rigorous, but it applies only to a beam of constant
section with a cosine-wave bending moment. For
practical shapes of bending-moment curves, it is neces-
sary to superpose a number of cosine terms.

Comparisons for the case of a concentrated load ap-
plied at the tip show that the substitute-structure
method of ansalysis gives flange stresses at the root that
are as much as 15 percent higher than the stresses cal-
culated by superposing four cosine terms. Judging by
the magnitude of successive terms, four were considered
a sufficient number to give the desired accuracy. The
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stresses in the. longitudinals given by the substitute-
structure method are correspondingly lower than those
given by Younger’s formula. Comparison with experi-
ments for two cases (figs. 9 and 12) shows that Younger's
extended formula is in very much poorer agreement
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with the experiments than the substitute-structure
method. This fact is somewhat surprising, and the
question arises as to what might be the possible reasons
for the poor agreement.

If a diagonal-tension field forms on the sheet, the
shear between flange and longitudinals will not be
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FIGURE 24,—Btresses at first statfon In N. A. C. A. beam 4.

transmitted at right angles to the axis of the beam but,
theoretically, at 45° angles. The theory may therefore
be expected to give reasonably accurate results only if
the bending moment does not change too much over a
spanwise distance equal to the width of the beam.
Obviously, this condition is not fulfilled by the higher
cosine terms after the first one, so that their physical
significance may be seriously questioned.
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The evidence presented by the axially loaded panel
(fig. 9), which did not buckle appreciably at P=1,000
pounds, appears to indicate that even for a shear-resist-
ant panel the superposition of cosine terms does not al-
ways yield a sufficiently close approximation to the phys-
icelfacts. If this defect always exists, then any method
based on the same fundamental physicel concepts and
relying on trigonometric series will be unreliable.

It might be mentioned in passing that the theoreti-
cal treatment given by Schnadel in reference 4 and in
several other papers is of little interest for aeronautical
structures, because it applies only to an isotropic plate
where the shear stiffness is fixed by the theoretical

relation
E

3+

The results therefore contain no provision to take into
account reduced values of @, or plates stiffened by
stringers.

a

THE INFLUENCE OF RIBS

Ribs or bulkheads influence the stresses in the beam
cover in two ways. By virtue of their axial stiffness,
they help to carry tranmsverse stresses in the cover.
This function is unimportant if the sheet does not
buckle into a diagonsal-tension field, but it is, of course,
of paramount importance if 2 diagonal-tension field
forms. Because the rib flanges have bending stiffness
in the plane of the cover, they also tend to reduce the
shear deformation. It was pointed out in reference 1
that this effect can be calculated for a single-stringer
beam and it was stated that in practical cases the effect
is very small. ‘This conclusion, drawn from the celcula-
tions, has been confirmed by tests of N. A. C. A. beam 2.
It should be noted, of course, that these remarks apply
only if the basic requirement of very moderate camber
is fulfilled.

N. A. C. A. beam 2 was tested first with all longitu-
dinals sliding freely over the ribs and held against the
ribs only by their own tension. A second strain survey
was then made of the beam after connecting the longi-
tudinals with the ribs by taper pins. The ribs were
very heavy steel channels, as shown on the drawings
and photographs, but their only effect was to smooth
out & few minor irregularities in the stress-distribution
plots. An extremely heavy tip rib was then added;
this rib reduced the stress in the flange about 6 percent.
Calculation indicated, however, that an equivalent
amount of material used to thicken the skin would have
resulted in increasing the skin thickness by about 500
percent over the entire span and would have reduced
the stress in the flange by about 33 percent.

A brief inspection of figure 25 is sufficient to show why
the rib is quite ineffective. Figure 25 (a) shows the tip
rib acted upon by the longitudinal. In figure 25 (b) it
was assumed that the material contained in the tip rib
is spread out some distance along the span. It is obvi-
ous that this change results in & much stiffer cross beam.

All tests of N. A. C. A. beam 3 were made without
connections between longitudinels and ribs. On N. A.
C. A, beam 4, which had bulkheads of normal size, the
longitudinals were riveted to the bulkhead flange.

THE EFFECTIVE SHEAR MODULUS

The effective shear modulus of a thin sheet framed
by rigid edge members is equal to the shear modulus of
the material as long as the shear stress is lower than the
ceritical or buckling stress. If the stress is increased be-
yond this value, diagonal-tension folds begin to form
and grow. The effective shear modulus gradusally de-
creases, approsching asymptotically the value G.=
% G 'The nature of this transition was investigated
experimenteally by Lahde and Wagner (reference 5).

In practical structures, the edge members are not
rigid; they have a finite axial stiffness and a finite
bending stifiness. The influence of these stiffnesses
has been treated analytically by Wagner in his original
theory for the case of a fully developed diagonal-tension
field. The influence of edge members with finite stiff-
ness on'the characteristics of a thin sheet in the transi-
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tion zone between shear-resistant sheet and diagonal-
tension field has not been investigated to date. Atkin
offers a method of estimating the characteristics of a
diagonal-tension beam by making tests on square panels
(reference 6). Although this idea is fundamentally
sound, Atkin’s analysis is open to & serious objection.
He claims that the deflection & of 2 test panel can always
be represented as a straight-line function of the load
P, and he sets _
8=FkP

which mesans, in effect, that Atkin’s method takes into
account only the finite stiffness of the edge members.
It disregards the gradual transition from Ge=@G to
G.=%@ in a rigidly framed sheet. In many practical
cases, where the critical stress is not exceeded more than
three or four times, the second factor is probably far
more important than the first.

The tests described in references 2 and 3 were evalu-
ated by their authors to give values of effective shear
stiffness. These analyses have been questioned in &
later paper (rveference 7}, chiefly because the values
obtained were much lower than the theoretical valueg for
the pure diagonal-tension field with rigid edge members.
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A eritical examination shows that in all these analyses
the. shear stiffness’ has been obtained by taking the
differences of slopes of two experimental curves. This
method is extremely sensitive to slight experimental
errors. Unfortunately, experimental errors in strain-
gage tests of sheet-metal structures are quite large, and
the stresses are, furthermore, quite insensitive to
changes in shear stiffness. The results obtained by such
& slope method are therefore very questionable, and in
some cases it is possible to change the calculated values
of the shearing stiffness several hundred percent by
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FIGURE 26.—Test fuselage (data from reference 10). Dimensions are In em and loads
In kg.

varying, for instance, the effective width within its
possible limits.

In view of these circumstances, it appears more
advisable to analyze the tests in such & manner that
over-all average values for the shear stiffness are ob-
tained by utilizing the ordinates of experimental curves
instead of the slopes of these curves. . The procedure
would be to calculate thé stresses under several assump-
tions for the shear stiffness and to find the stress curve
that gives the best agreement with the test results.
Several exnmples of such a procedure are given in refer-
ence 1.

The high-load tests of N. A. C. A, beam 3 were
analyzed in a similar manner. Unfortunately, the
limited number of strain gages necessitated repeat load-
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ings; during these repeat tests, changes occurred in
parts of the beam that prevented a definito analysis. It
was estimated that, at—P=900 pounds, the eflectivo
shear modulus was G,=0.5@G, but no definite estimato
could be made for higher loads. The trouble may have
been partly that the flange was no longer obeying
Hooke’s law at the gage station, the stress being over
30,000 pounds per square inch.

It should be noted that the effective modulus was
well below the theoretical value G,=5( for rigid edge
members, in spite of the fact that the edge members
were much stiffer than they would be in actual construe-
tion and that tension was superimposed on the shear in
the skin,

The opinion is occasionally heard that the shear
modulus of corrugated sheet is appreciably less than
that of flat sheet. There appears to be no published
information to support such an opinion. The analysis
of torque tests of box beams with corrugated covers
(reference 8) leads to the conclusion that up to shear
stresses of around 3,000 pounds per square inch the
shear modulus of corrugated sheet is equal to the
modulus of the material. Small deviations of 5 to 10
percent, which occur in such tests, can probubly be
attributed to inefficiency of the joints in the built-up
boxes because they have been found in practically all
torque tests. Ebner, who has an exceptionally broad
background of experience in tested stressed-skin sirue-
tures, states in reference 9 that the sheer stiffness of
corrugated sheet remains unchanged up to the point of
failure. It is necessary, of course, to make proper
allowance for the difference between developed width
and projected width of a corrugated panel when com-
puting shear deformations.

APPLICATION OF THEQORY TO FUSELAGES

The theory in this paper was devcloped for the ex-
press purpose of furnishing means for analyzing wing
beams or other beams with very moderate camber. It
is of interest, of course, to gain some idea of how well
the theory applies to beams with large camber, sucl as
fuselages. A fuselage test that came to the attention of
the author after the investigation was finished will
therefore be included.

The details of the test-may be found in reference 10.
The most important data are given in figure 26. The
shell represents a fuselage with symmetrical cut-outs,
and the bending moment is introduced in the form of
concentrated forces at the longerons. Between frame a
and the end, the shell was fixed to a test jig by a heavy
steel ring.

The part of the shell between the longerons and the
neutral axis was considered as ‘“‘shear web” and the
remainder as “cover.” The analysis was made by
formula (A-16). Local corrections to the computed
stresses were made between frames e and g, because the
sheet thickness was 0.08 centimeter belween e and
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f, and 0.10 centimeter between f and g resulting, to-
gether with the cut-out, in some changes in effective
areas in this region.

The only variation from the standard procedure out-
lined in this paper was the use of a somewhat more
rational method of determining ¢ than simply assum-
ing eg=H}ec. The substitute camber was determined
by the condition.
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FIGURE 27.—Experimental and calculated stress distribution in foselage with sym-
metrical cut-outs (experimental data from reference 10}.

That is, if the longitudinals are concentrated at the z
location defined by ¢, the moment of inertia must be
the same as in the actual section.

Figure 27 shows the experimental and the calculated

results.
CONCLUDING REMARKS

Large shear deformations are probably always ac-
companied by loss of structural efficiency; efficient
design therefore calls for utilization of all available
means for reducing the shear deformation. In & com-
bination consisting of skin stiffened by individual
stringers, the stringers furnish no contribution to the
shear stifiness. In a combination of flat skin with
corrugated skin, however, all the material carries longi-
tudinal stresses as well as shearing stresses; such a
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combination probably represents, therefore, a close
approach to the best possible efficiency from consider-
ations of uniform stress distribution. It must be
remembered, too, that the shear stiffness of flat sheet
is very adversely affected if it is thin enough to buckle
into diagonsl-tension folds, a condition that does not
develop in corrugated sheet.

For sheet with individual stringers, experimental
studies on individual panels have usually led to the
conclusion that the best efficiency is obtained by mak-
ing the skin as thin as possible, consistent with practical
considerations. If the shear deformation in the actual
structure is taken into account, it becomes evident that
this conclusion will often require serious modification.
It might be worth while in some cases to investigate the
effect of thickening the skin near the wing tip, where the
shear deformations are largest and therefore easiest to
decrease. It might be pointed out that, once an ade-
quate tip rib is provided, shear deformation can be
reduced more efficiently by increasing the skin thickness,
especially near the tip, then by attempting to increase
the (horizontal) bending stiffness of the tip rib.

A final word of warning should be given. A method
of stress analysis such as the method deseribed in this
paper deals only with the stress distribution before
failure occurs. If the maximum stress for a given load
is varied by changing the design of the structure, then
the failing stresses may change, too, so that the maxi-
mum stress is not the sole criterion for the efficlency of
the structure. For example, if the skin is mede very
heavy with relation to the stringers, then buckling of
the skin may induce premature failure of the stringers.
Thus far, no mathematieal analysis of this problem has
been published; test results must be used. The subject
of allowable stresses is beyond the scope of this paper,
but is mentioned herein as a warning against drawing
hasty eonclusions.

LangLEY MEMORIAL AERONAUTICAL LABORATORTY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
Langrey Fiewp, Va., April 20, 1938.



APPENDIX A

LIST OF SYMBOLS

A, cross-sectional area (sq. in.).
E, Young’s modulus (Ib./sq. in.}.
F, internal force (Ib.).

@, shear modulus (Ib./sq. in.).

I, geometric moment of inertia.
K, constant.

L, length of panel or beam (in.).
M, bending moment (in.-1b.).

P, external load (Ib.).

S, shear force (Ib.).

b, half-width of beam or panel (in.).
¢, camber of cover (in.).

k, depth of beam (n.}.

t, thickness of cover sheet (in.).
w, running load (Ib./in.).

z, distance along center line.

y, distance from center line.

2, distance from centroidal axis of cross section.
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o, direct (normal) stress (Ib./sq. in.).

7, shear stress (Ib./sq. in.).

* denotes condition where actual and auxiliary
stresses are superposed.

Subseripts have the following significance:

A, auxiliary.

C, cover sheet.

CL, center line.

F, flange.

L, longitudinal.

P, theoretical values assuming that plane sections
remain plane.

S, substitute.

7, total.

U, uniform.

W, shear web.

a, applied.

¢, effective.

0, root section.



APPENDIX B

ANALYTICAL SOLUTIONS FOR STRUCTURES WITH A
SINGLE LONGITUDINAL

GENERAL REMARKS

The sign conventions of reference 1 are retained.
Stresses in stringers are positive when tensile. Shear
stresses in the cover sheet are positive when caused by
positive stresses in the flange F. Shear stresses in the
shear web are positive when causing positive stresses in
the flange F. '

The figures show, first, the half structures and, sec-
ond, the two possible cases of making symmetrical
structures out of these half structures. The formulas
should be applied only to such symmetrical structures.
Theoretically, the formulas also apply to the half strue-
tures if the forces T are applied at the stiff transverse
member at the tip. This procedure would involve the
assumption that the stringers were infinitely stiff in
bending; it is therefore believed that the application of
the formulas to the half structures might easily lead to
Very Serious errors.

Some of the formulas have already been given in ref-
erence 1. 'They are repeated here for convenience and
are written in a slightly different form to bring out more
clearly the correction factor that must be applied to the

h 'y L A
P r 4
i 3
Ao B4
e = L
Z
T I R A A A A bz
(2) (b} (<)

FiGuRE 28.

ordinary bending theory in order to take shear defor-
mation into account. Vhen the shear stiffness ap-
proaches infinity, this correction factor approaches zero.

I—THE AXIALLY LOADED PANEL

(a) The longitudinal built in at the root (fig. 28).—
For the case of an axially loaded panel with the longi-

tudinal built in at the root, the following formulas are
obtained:

Let
Gitr 1 1
=55+ %) (8-1)
Pl 1 bt !
AF---D ‘-AL
L
- b—
I TN LTI
() (v} {c)
FIGGRE 28.
and
AT=AF+AL
Then
_P G, sinh Kz (A2
™Ay EbK cosh KL A-2)
_P A, cosh Kz
“F—E.(“rzm (A-3)
P cosh Kz
=4, 1—osh KL (a~4)

(b) The longitudinal not built in at the root (fig.
29).—The easiest way to treat the case of the longi-
tudinal not built in at the root is. to take advantage of
the symmetry of the structure. When the origin is
teken at the middie of the length L, this case is reduced
to case I (a).

IO-THE BEAM WITH FLAT COVER

The formulas for the beam with flat cover apply to
two cases: beams in which the depth A is constant along
the span, if a concentrated load P is applied at the tip;
and beams in which the depth & tapers linearly to zero
at the tip, if the loading w per foot run is uniform along
the span. In the case of uniform loading, wLf2h is
substituted for P/ in the formulas for shear stress.
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(a) The longitudinal built in at the root (fig. 30).—
P cosh Kz

(1
= {A-5)
ﬁ(H_Ap \ “cosh KL

p b

T <A I___—I T
k
!

Py

(2) (v) (e)

FIGURE 80.

( + sinh Kz
o= —7 Ap Kz cosh KL
M, (1_ sinh Kz
"t=F. A\ Kz cosh KL
where K has the same meaning as in (4-1).
(b) The longitudinal not built in at the root.—The
case of a beam with flat cover and the longitudinal not
built in at the root is of interest as a limiting case for

wings where the skin is not continuous, for example, at
the wing-fuselage joint.

(4-7)

KL cosh Kz

PA’“G @R KL ) 49
B o

IINNI—THE BEAM WITH CAMBERED COVER

As in the case of the beam with flat cover, the formu-
las for the beam with cambered cover are valid for two
cases: for a concentrated load P applied at the tip, if
h and ¢ are constant; and for a uniformly distributed
load w per foot run, if A and ¢ taper linearly to zero at
the tip. For the tapered beam, wL/2 is substituted for
P, and z; and I are teken at the root station in the

(d-6) |

formula for shear stress only.
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(a) The longitudinal built in at the root (fig. 31).—
cosh Kx

__PZL.AL _Cos
Tt 1—cosh KL (A-11)
_ﬁ[z z,,A,r, sinh Ar _
oF= +; A,( - )Ax cosh KT | (312)
RTINS S

In these equations, [ is the geometrie moment of inertia,
25, is the distance of the longitudinal from the oentrmdal
axis, and K is defined by

1+:
G E.1
‘“H( +AL)

(b) The longitudinal not built in at the root.-—The
formulas for the ease of the longitudinal not built in at
the root may be obtained by changing the factors in
parentheses in analogy with cases II (a) and IT (b).

(A-14)

IV—THE BEAM WITH CAMBERED COYER IN “PURE BENDING”

The formulas for the case shown in figure 32 (a) are:

PG smh Kz chw
( ot (A-15)
cosh Kx
or (E e A TS
. b'_ p A_L
4; ) e
A . ) ——
T ! L/
P Cenifroidal axis
Y (a) ) ()
FIGURE 31,

where K is defined by

(A-17)

FIGURE 32,
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‘Tt should be noted that there is shear in the shear web,
because the shear in the cover sheet has a component in
the z direction. For this reason, the cambered cover
cannot be used alone as an axially loaded panel unless
provisions are made to absorb this lateral force, for
instance, by making the panel symmetrical as in figure
32 (b).
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