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ON THE PARTICULAR INTEGRALS OF THE PRANDTL-BUSEMANN ITERATION EQUATIONS
FOR THE FLOW OF A COMPRESSIBLE FLUID*

By CaiBL KAPLAN i

SUMMARY

The particular integrals of the second-order and third-order
Prandil-Busemann iteration egquations for the flow of a com-
pressible fluid are obtained by means of the method in which
the complex conjugate variables z and z are wuiilized as the
independent variables of the analysis. The assumption ig made
that the Prandil-Glauert solution of the linearized or first-order

iteration equation for the two-dimensional flow of a compressible

Auid is known. The forms of the particular integrals, derived
Jor subsonie flow, are readily adapted to supersonic flows with
only a change in sign of one of the parameters of the problem.

INTRODUCTION

For the past several years iteration methods have been
increasingly applied to the solution of compressible-flow
problems. The most useful method from the point of view
of aeronautical applications and the one discussed in this
report is based on small perturbations with respect to the
undisturbed filow. The Prandtl-Glauert and Ackeret solu-
tions in two-dimensional subsonic and supersonic flow,
respectively, obtained by means of the linearization of the
fundamental nonlinear differential equation for ecompressible
flow, are presumed to be known and are taken as the initial
steps in this iteration process. Higher-order solutions are
then obtained by retaining appropriate powers and products
of the perturbation quantities. This method of iteration
has been variously labeled the Ackeret iteration process and
the Prandtl-Busemann small perturbation method when
Iimited to two-dimensional subsonic flow. The procedure
has been extended in recent years to both two-dimensional
and axisymmetrical supersonie-flow problems.

In a recent publication (reference 1}, Van Dyke succeeded
in obtaining by trial the particular integral of the nonhomo-
geneous second-order iteration equation for the velocity
potential in supersonic flow. The general solution is then
easily obtained by adding solutions of the homogepeous
equation with proper regard to the boundary conditions at
the surface of the solid and at infinity.

The purpose of the present report is to show a procedure
by means of which the particuler integrals of the higher-
than-first-order iteration equations can be derived in a

systematic manner. The explicit expressions obtained for
the particular integrals of the second- and third-order itera-
tion equations are believed to yield essentially the solution
of the problem of high subsonic flow past an arbitrary two-
dimensional profile, since it is never a difficult problem to
supply the solutions of the homogeneous equation necessary
for the fulfillment of the boundary conditions. It is note- .
worthy that the particular integra.ls derived for subsonic

ﬁow, can be adapted to supersonic flow with simply a change

in sign of one of the parameters. -

FUNDAMENTAL EQUATIONS

The fundamental nonlinear differential equation governing
the flow of a compressible fluid is

() S e—o) Sp—uwr (SpH5p)=0 (M)

where

X, Y rectangular Cartesian coordinates in flow plane

u, v fuid velocity components along .X- and Y -axis, respec-
tively T

¢ local speed of sound

The condition for irrotational motion is that

du_2dv
Y X

and leads to & velocity potential & defined by

@

If the body is held fized in a uniform stream of velocity U,
the relation between the local speed of sound ¢ and the speed

of the fluid v/u*+:* is given for adiabatic processes by

2 _ 2 )
S=4 5 a1 3)

cm

1 Supersedes NACA TN 2159, “On the Particular Integrals of the Prandtl-Basemann Iteration Equations for the Flow of a Compressible Fluld" by Carl Eaplan, 1950.
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where

¢, sound speed in undisturbed fluid ... . o

¥  ratio of specific heats at constant pressure and constant
volume

M. Mach number of undisturbed stream (Ufe,,)

With the introduction of & characteristic length I as unit
of length and the undisturbed stream velocity U as unit of
velocity, the quantities X, ¥, %, v, and & for the remainder
of the analysis denote, respectively, the nondimensional
quantities X/I, ¥/l, /U, v/U, and &/UI, while ¢ and ¢, retain
their original meanings. By means of equations (2), equa-
tions (1) and (3) then become, respectively,

2 2 '
(%’—M.,’uz) Pxx +(ci‘_Mrw2”2)‘I’rY'—2M,’<I>x<1’y‘1’xr =0
N " (4)

and

Y=L M1 —(u+ o) (5)

where the subscripts X and Y denote partial dlﬁ‘erenuatlons
with respect to the designated variables.

In order to abtain the iteration equations based on small
perturbations of the undisturbed stream, the assumption is

made that the velocity potential & can be expanded in the

form

<I>=X+‘I’1+‘I’s+¢'a+ LR oo ' (6)

For the purpose of defining and controlling the iteration
procedure, the function &, and its derivatives are then
regarded as small compared with the preceding approxima-
tion ¥, and its derivatives.

From equations (2) and (6),

U=Pr=1+Sx+Pox+Ppx+ . . .

and
v=8y=&y+ &y +Pr+ . . .
When these expressions for u, v are introduced into equation

(4), together with the expression for ¢*/c,? given by equation
(5), and the powers and products of ®,and their derivatives

are grouped according to the assumptions of the small per-

turbation method, the following iteration equations for the
first three approximations &, &, and &, result:

(l_ﬂfmz)élxx+<pxrr=0 (7)

axx+Porr =M 2{(y+ 1)@ 1xP1xx+
(y—1)&1xP1yy +2&1vP1xy] (8)

(1—-AML,

(1—M Bdyzx+Pypy =202 {(‘% ‘I’lx2+‘1’zx) (v+1Dxx+

(v— 1)¢IYY]+% ‘I’u'g[(‘)’— 1)¢1xx+(7+ 1)‘:’1? rl+
‘I’u:[(’)"l' l)q’zxx‘l'(’)’— 1)®sry] +-2(®, x5y Pix v+

q’sr¢1xr+¢1r¢’zxr)} (9)

For slender bodies, the first few steps of this iteration process
may be expected to yield an accurate result with the excep-~
tion of a small region in the neighborhood of a stagnation
point. Even at stagnation points, the iteration method has
been shown to represent correctly the effect of compressibility
(reference 2). The aceuracy of the calculations obviously de-
pends upon the number of terms determined, each additional
term reducing the region of inaccuracy in the neighborhood
of a stagnation point.

The iteration equations .(7), (8), and (9) may be put into
more familiar forms by the introduction of a new set of
independent variables » and y, where

z=X )
(10
y=YJ1—-2_?

Thus, for M, <1, equation (7) is transformed into a Laplace
equation; whereas equations (8) and (9) are transformed into
Poisson equations with the right-hand sides composed of,
respectively, double products and triple products of previ-
ously determined perturbation quantities. It is further as-
sumed that the solution of equation (7) is available. This’
initial step in the approximation to the exact nonlinear solu-
tion 1s usually easily obtained, as it represents the Prandtl-
Glauert approximation (reference 3, appendix B). The
purpose of the present report is then to derive explicit ex-~
pressions for the particular solutions of the second- and
third-order iteration equations (8) and (9)."" -~ ~— °°

CALCULATION OF THE PARTICULAR INTEGRAL OF THE
SECOND-ORDER ITERATION EQUATION

By introducing the independent variables z and y defined
by equation (10), the second-order iteration equation (8)
becomes

q’w‘l‘@gy':zﬂf‘,’[(l +G)¢1=‘pm+ ‘1’1,‘1"1“] (l 1)
where

v+1 M2
2 g

pi=1—AM?
and where use has been made of Laplace’s equation

Qlu‘l" q’lw= 0



PARTICULAR INTEGRALS OF PRANDTL-BUSEMANN ITERATION EQUATIONS FOR FLOW OF A COMPRESSIBLE FLUID

The procedure for obtaining the particular integrals of the
higher-order iteration equations is based on the use of the
complex conjugate variables z and Z as independent varizbles.
Thus,

Z=r—1y

and the equivalence of operators

o o 6 0
3z oz

d .r0 0
5= (55733)

2 2 o
37 27T 23z035 o7

2 ot 2 @
57 o7 2oz0% oF

Then equation (7) for &, becomes

0*®,

Yy YA

0 (12)

The most general real solution of this equation is

&= [wi(2)+ (2] (13)

or
&, =R.P. wi(z2)=R.P.%:(7)

where w;(z) is an arbitrary analytic function of z, w,(z) is its
conjugate complex, and where the symbol R.P. stands for
‘‘real part of.” The imaginary part of w:(2) is a function ¢,
say, related to &, by means of the Cauchy-Riemann equations
and hence also satisfies Laplace’s equation. The funetion
Y does not represent the stream function of the actual com-
pressible low and does not appear in the final expressions
of the particular integrals. The following relations will be
found useful and are easily verified:

1 —
‘I’x=§ (w1 +wy)
1 —
'1’1:=§ (Wrs+-15)
t —
¢11=§ (w1, —Wiz)
4 —
q’ln='§ (wlu_wu!)

1 —
q’!.lz=§ (wlu + wlit)

911

Then
28, 81-=R.P. (w01 +W15) Wiae

2@1,@1;,= —R. P. ('wl,—ﬁu-) Wiz

. and equation (11) for the second approximation ®. becomes

@ur=3 M.IR.P. [0+ +0) Turore]

=i AL R.P. [% (w.D.+(2+ aj (wul_lfﬁ)::l

If ®, is defined to be the real part of a nonanalytic function
wa(z,Z), then

W M. [% (D42 +0) ("’“E")':l (14)

This equation can be integrated immediately by inspection
and yields the general solution

"’FE Af_2 [5 2w+ (24 o) Biwu+F (2)] (15)

where, because only the real part ®; of w, is of interest, only
one arbitrary analytic function F(z) need be included. The
function F(z) satisfies Laplace’s equation and is so chosen
as to satisfy the required boundary conditions at the surface
of the body and at infinity. The part of the expression on
the right-hand side of equation (15), excluding the arbitrary
function F(z), is the particular integral of equation (14) and
may be expressed in real form in the following manner:
Suppose

F(z)=—§ 2w (2 + o+ f(2) (16)

where f(2) is again an arbitrary analytic function of 2.
Then with the aid of the relation

wu=3 (i %) @+ i) =B — iy
where use has been made of the Cauchy-Riemann conditions
&=y
Qy=—V1
the expression for &,, obtained from equation (15}, becomes

¢,=%M.= [—20y®.3,-2 (24 0) 8@+ R. P. f(2)] (17)

The expression on the right-hand side of this equation,
excluding R.P. f(2), namely,

=212 [(1 +§) @I—% a-yfbl,:l &y, (18)
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corresponds precisely to the particuler integral obtained by Van Dyke (reference 1) for two—dir_nensiornal supersonic flow
with ¢ replaced by —o, where for supersonic flow the definition of ¢ is

=T M -1 .

1t is rather noteworthy that the particular integral of the second-order iteration equation (8) can be obtaned for both sub-
sonic and supersonic flows by simply interchanging the sign of the parameter .

CALCULATION OF THE PARTICULAR INTEGRAL OF THE THIRD-ORDER ITERATION EQUATION

In this section, the particular integral of equation (9) involving only &;, ®,, and their derivatives is derived. For this
purpose, the variables z,y and the parameter ¢ are introduced. Equation (9) then takes the following form:

Byos By =2 M, 2 { (1 0)@reeBpat B1aBa) 4+ [28%(1 + 6)— 1]B1uBryB1ey -+ (1 + o) [25*(1 T a')—% S A
';‘ (o8*— 1)¢13¢1y2+‘1’1sy‘1’w+‘1’1y‘1’m} (19)

Use is again made of the complex conjugate variables z and Z as independent variables. Thus,
&,=R.P.wy(2,7)
®p.=R.P. (Wa+we)
@ =R.P. 10, —wa) =~ : : : IR - L
Ppre=R.P.(Was + 2o+ Worz) - = - S o

Bary=R. P. i (Wass— W)
28.2=R. P. 5 (010 + B Ve
Binbry=—R.P. (0= Tir 1

Bt Bon=R.P. 3 (W + B} 0+ W)+ R. P. 3 W Trr) Wase-+ 205+ 01)

Sioy=—R.P. ; (=T 0u—ws) .
BPory=—R.P. 3 (Wrs— T tres— 01z
BB Biy=—R.P. ; (0T e

Then equation (19), with ®;—=R. P. wy(2,3), can. be written as follows:
W=t (1= B 0 i+ 0T 00T+ (1 — N2t o) T+ g+ O ) +
T (1—B0[8%1 1 20)— (1 —20)wrwias+ 1 (1 —BBXA+ 5o+ 20%)+ o(3+20) B+
§ (L—B0BY2+ 50+ 20%)+(—~2-+ 0+ 2090 Turtie

Introducing the expressions for wy(z,2) and its derivatives with respect to z and Z from equation (15) yields for wyy the
following equation:

e (1B e B e 5 5 (1 — B o2+ N ET s Wistdrele+15 (L — o (0 F ol 5 (1—Bo61@+ o)+
(4430 B35 (1 —EVe @+ YD EBalst 15 (1 =Y+ O 0BT+ 1 (| — BV + I BuaFdat

o (1B o B e+ s (1— B0 X6+, (1= B[BE+100+30)+ o6+ o) Tumwrn?  (20)
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In the derivation of this expression for wy,z, free use was made of the fact that insofar as the real part &; of 1w is con-
cerned, terms of the nature g(z)k(Z) and g(z)h(z) are equivalent. It is important to note that this type of operatlon leaves
unaltered the real part &; of w;. Since &; is the quantity sought in the calculations, changes in the imaginery part of W,
are of no consequence in the final results, .

Equation (20) can be integrated immediately by inspection and yields the following result:
4= 35 (1~ B e 0 Dt 1 (L~ 000 Pyt 1 (1 —BPo(2+ )T Bttt 1 (L —BIeIBH2+ o)+ (4 SN Brw -
35 (1= o2+ o) FBurwn ™+ 5 (1 — B2+ oV BBty (1~ 8P+ )P+ F) 4y (1= B+ o Byt
g5 (L —F)e%36™ 5)Zwnt+ 35 (1B +100+ 30N+ o(6+ 50T [ witdz @y

Equation (21) is the particular integral of equation (20). The most general solution is obtained by adding an arbltrary
analytic function G(z), satisfying the homogeneous or Laplace equation Gz=0. An arbitrery function of Z, customarily in-
cluded in the general solution, need not be considered here because only the real part &; of w; is of mterest. In fact, the
omitted arbitrary function is the complex conjugate G(Z).

In order to obtain the desired form of @; (the real part of w,) from equation (21), F(z) is replaced by its expression
given in equation (16), and the real part of f(2) in equation (17) is replaced by

R.P. f(z)=ﬂ%m2<b,+2ay¢h§>l,—2(2+0)¢1¢>1,
The final form of the particular integral of the third-order iteration equation (9) then becomes
Bo=—3 (1~ )Y@ty + B +5 (1 — B2+ oHeuBr+ 20)+
§ (1B 0 i, — 84— (L~ B 0 i Buny -+ (1 — B8+ 50)+ 3(— 2+ )BT+
15 (1 —B90l10—0)—(10+7 )Ty 0y + 5 (1 —BPe(2+ Oy BB uBrar + Dusuz) +

%(1—52)[(—16—100’+ﬂ+(16+226+702)52}¢’1‘1’u2—%(1—52)0'[(6+50')+3(2+0’)1321‘I’1‘I’1:2_ T

5 (1—B92 + )8 reet 5 (1 —BD[o(6+ 50)+(B-H 100+ 8N | (@11~ da+28..8,, dy] 22)
The corresponding expression for &, for supersonic flow is obtained by simply replacing ¢ by —o with -
++1 A2 --
T2 M 1 o

and §* by —g* with §*=3/,*—1. The physical plane variables X and ¥ are easily inserted into both equations (18) and
(22) by means of the transformation equations (10),

z=X -
y=pY

It is pointed out that the forms of the two particular integrals, equations (18) and (22), derived in this report are identical
for both subsonic and supersonic flow. The apparent differences are caused by a change in sign of the parameter g2 Thus
B* and o are positive for both subsonic and supersonic flow. Actually, of course, the functions represented by &, fIJ,,
®;, . . . aredifferent for the two types of flow. For subsonic flow, these functions are derived from anslytic and nonanalytic
functions of z end Z; whereas for supersonic flow, they involve the real “characteristics’ variables z+ 8.

Note that the last term of the expression on the right-hand side of equation (22) contains the indefinite integral

I=f[(©ug—§1,2)dx+2¢u§u dy] (23)
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It is obvious from the corresponding complex integral in

equation (21) that the integrand of equation (23) ig an exact -

differential. This fact can also be easily verified with the
help of Laplace’s equation

‘1’13,—,-(131”: 0 )
Thus,

o]
& @i—a)—3 22.,) (24)

Equation (24) represents the necessary and sufficient condi-

tion that the integrand of equation (23).be an exact differ-
ential. Further, according to the theory of exact differential
equations, the integral I may be expressed as follows:

where
M=o,—&,2

N=2¢u¢u
and where byf M dz is meant the result of integrating

M dx with y considered constant.
the parentheses, namely

The expression within

a x
N-5 f Mdz

is a function of ¥ only." This statement can be verified as

I=f’de+f (N—a% f’de) dy  (25)
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follows:. Thus,

0 o [* ON 2 0 (¥

a(N-a f ll:{dz)—a—x-—b—y—a-; f Mdz  (20)
and because y is considered constant in the process of inte-
grating M dz, it is clear that

o f "Mdz=M
ozx
Hence the right-hand side of equation (26) is - oy

which vanishes because of the condition for the existence of
an exact differential.
Note that in general it is simpler to perform the complex

integration fwl.’dz rather than transform to a real integral

and then perform the integration.

LaNGLEY AERONAUTICAL LABORATORY,
NaTroNaL Apvisory COMMITTEE FOR AERONAUTICS,
Lanerey Freun, Va., May 28, 19560.
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