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THEORETICAL CHARACTERISTICS IN SUPERSONIC FLOW OF TWO TYPES OF CONTROL
SURFACES;ON TRIANGULAR WINGS

By WarreN A. Tucker and Roserr 1. NeLsox

SUMMARY

Methods based on the linearized theory for supersonic flow
were used to find the characteristics of two types of control
surfaces on thin triangular wings. The first fype, the constant-
chord partial-span flap, was considered to extend either outboard
Jfrom the center of the wing or inboard from the wing tip. The
second type, the fulltriangulariip flap, was treated only for
the case in which the 1lach number component normal to the
leading edge is supersonic. For each type, expressions were
Jound for the lift, rolling-moment, pitching-moment, and Ringe-
moment characteristics.

Caleulations were made from the equations to tllustrate
various points of inferest. A major conclusion was that flaps
aof the triangular-tip category are more suttable than constant-
chord flaps for use as control surfaces on iriangular wings,
particularly when used as ailerons. Not only s the effective-
ness of the triangular-tip flap in general greater than that of the
constani-chord flap haring the same area but the problem of
providing hinge-moment balance is inherently simpler for the
triangular-tip flap.

INTRODUCTION

There is a certain amount of interest in the use of wings

having triangular plan forms for flight at supersonic speeds,

and some work has been done on the aerodynamiec character-
istics of such wings (references 1 to 5). Investigation of the
characteristics of control surfaces which might be used on
triangular wings was therefore considered desirable.

A variety of control-surface arrangements has been sug-
gested for use on triangular wings. Two such arrangements
are the constant-chord partial-span flap (extending either
outboard from the center of the wing or inboard from the
tip of the wing) and the full-triangular-tip flap, which is
located at the tip of the wing and has a plan form geometri-
cally similar to that of the wing. (See fig.1.) The analysis
of these two types of control surface forms the subject of the
present report. The full-triangular-tip flap is treated only
for the case in which the Mach lines from the apex of the
wing lie behind the leading edge (supersonic leading edge);
the subsonic-leading-edge case is analyzed in reference 6,
together with more general types of triangular-tip controls.

Methods based on the linearized equations for supersonic
flow are used in the analysis, so the results are subject to
the usual limitations of the linearized theory. Viscous
effects have been neglected.
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(8} Unthoard constant-chord flapa,

(b) Inboard constant-chord flape:

(&) Full-triangular-tip flapa.

Frerer 1.—The control-surface configurations In vestigated.
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SYMBOLS

maximum wing span

total maximum flap span normal to free
stream

total maximum flap span parallel to hinge
line (b/=b; for constant-chord flap;
see fig. 1)

wing root chord

wing local chord

wing mean aerodynamic chord

b2
3 [

flap chord _
flap root-mean-square chord perpendicular
to hinge Iine

Lift coefﬁc1ent< )
pitching-moment coefficient . ‘about wmg

aerodynamic center (ES"E
rolling-moment coefficient (—lz)
hinge-moment coefficient (——-,—_-;)

lifting pressure coefficient <E)

complete elliptic integral of second kind
with modulus vI—m? (used in table I,
equation (6))

hinge moment of two flaps

lift of two flaps

rolling moment of two flaps, each deflected
an amount & in opposite directions

free-stream Mach number; pitching moment
of two flaps about wing aerodynamic

center (at % c)

lifting pressure
. pl”
free-stream dynamic pressure (—21)

wing area
area of two Haps

frec-stream velocity

vertical disturbance velocity (577)

Cartesian coordinates parallel and normal,
respectively, to free-stream direction (for
field points)

Cartesian coordinates parallel and normal
to free-stream direction (for source points)

angle of attack

] angle of flap deflection in free-stream
direction

€ wing semijapex angle

=tant <

{=tan-. o

i Mach angle (tan—I é—)

_By_ yk

= =

T tan p

p free-stream density

) disturbance-velocity potential

¢z disturbance velocity in z-direction

Subseripts:

a partial derivative of cocficient with respeet
to & (examplo: Ch, %Q‘

8 partial derivative of coefficient with re-
spect to §

C, partial derivative of coefficient with re-
spect to (',

© : infinite-span or two-dimensional wing
condition

All angles are in radians, unless otherwise specified.
ANALYSIS

The two types of control surfaces (constant-chord flap and
full-triangular-tip flap) are most conveniently considered
separately. For each case the control-surface characteristics
to be determined are as follows:

Cyy  lift coefficient due to flap deflection
C,; rolling-moment coeflicient due to flap deflection

Cmc,, pitching-moment coefficient due to flap lift

"Cy;  hinge-moment coefficient due to flap deflection
C,, hinge-moment coefficient due to angle of attack

CONSTANT-CHORD PARTIAL-SPAN FLAP

Pressure distributions.—Any of the aforementioned control-
surface characteristics can be found for the constani-chord
partial-span flap if the pressure distributions due to flap
deflection at constant angle of attack and due to angle of
attack at constant flap deflection are known. This fact is
true because of the principle of superposition.

The pressure distributions over certain regions of the
flaps and over the wings are already known. For both the
inboard flaps and the outboard flaps, the pressure due to
flap deflection in the region between the Mach cones spring-
ing from the inner and outer corners of the Aap is equal Lo the
pressure on an infinite-span wing at an angle of atlack.
The pressure due to flap deflection in the tip Maeh cone of
the outboard flap when the Mach lines are ahead of the
leading edge has been found from material in reference 7.
The pressure distributions over the wing due to angle of
attack have been found in reference 2 (Mach lines behind the
leading edge) and reference 4 (Mach lines ahead of the
leading edge).



CHARACTERISTICS OF TWO TYPES OF CONTROL SURFACES ON TRIANGULAR WINGS

There remain to be determined only the pressure distribu-
tions due to flap deflection in the following regions: First,
the inner Mach cone of the outboard flap and the inner and
outer Mach cones of the inboard flap (all three cases are
identical}; end, second, the tip of the outboard flap when
the Mach lines are behind the leading edge. The pressure

distribution for the first case is given in appendix A and for
the second case, in appendix B.

The various pressure distributions are shown graphically
in figures 2 and 3.
tions are as follows:
For figure 2 (a},

The equetions for the pressure distribu-
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For figure 2 (c),

&=i cos™I~—
& =B d
Cn_4
8 B
Cr=0C5,

For figure 3 (a),

Y el & L1

Pressure on section A-A Pres

@ ©
(8) m&1 (reference 2}.

(©) m&i (reference 4).
FIGCRE 3.—Pressure distributions due to angle of attack.

Pressure on section A—~A

(a) Outbosrd flap; m&L

Pressure on section A-A

(b} Outboard flap; mS1.

) Aﬂm

Pressure orr section A-A

(¢) Inhoard flap.

Fraurk 2.—Pressure distzfbutions doe to flap deflectlon. Constant-chord flaps.
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Derivation of control-surface characteristics.—Once the
pressure distributions are known, the various controlsurface
characteristics can be found by integrating the pressure over
the proper areas, multiplying by appropriate center-of-
pressure distances when necessary, and dividing by the proper
dimensions to form coefficients. Giving all the derivations
for the cases treated in the present report would cause the
report to be unduly lengthy; therefore, only one sample
derivation is given.

The example chosen is Cy, for the outboard flap for the
case in which the Mach lines are ahead of the leading edge.
The equations for the pressure distribution are found from
figure 2. Consider first the inner Mach cone. Integrating
the pressure only over the part of the flap contained in the
Mach cone (since the pressure on the wing contributes no
hinge moment) gives for the lift on this part of the flap

_L 20[ (T—l)
g B\ 7
and, since the pressure distribution in the Mach cone is

c, behind the
The hinge moment on this part of tl)e flap is then

H 2 2f(x—1\_ 4¢ <1?_1)

7 3’B”<r )‘ 3P\«
Next, for the part of the flap contained between the inner
and outer Mach cones, the pressure over this entire region
is noted to be constant at the two-dimensional value, so
that the hinge moment can be found simply by multiplying

the pressure by the moment of the trapezoidal area about the
hinge line which gives

conical, the center of pressure of this Lift is 5

hinge line.

The lift in the tip region has been found from integration of
the pressure distribution to be

N
%=%‘, Bm+1)

and, since the flow in the tip region is comical, the hinge
momens is

H 2

H—-20% amtn——1% Gmty)

Adding the three hinge moments gives the total hinge

moment
§= +2T+4. CI o
gé ﬂ 3r &

The hinge-moment coefficient is formed by dividing the
total hinge moment by 54,22, which in this case is found
to be

bl bef 2 ¢f

2 2 3™7%
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Performing the division yields

The other control-surface characteristics may be derived
in a similar manner. Before giving the final equations,
however, a short discussion of the range of applicability is
advisable.

Range of applicability.—Both in the discussion of pressure
distributions and in the sample derivation of one of the
control-surface characteristics, the Maeh lines were (acitly
assumed to have had the positions shown in figure 2. Many
other cases are possible; for example, two Mach lines may
intersect or 2 Mach line from one corner of a flap may cross
the leading edge of the wing. These various cases have bueen
examined to determine over just what range each cquation
is applicable. The method used to determine the range of
applicability is given in appendix C. The limits are con-
veniently expressed as the minimum and maximum valucs
of by/b that can be used for given values of ¢;/¢ and m; it is
in this form that the limits are given in tables I to IV.

FULL-TRIANGULAR-TIP FLAP

The analysis of the full-triangular-tip flap is for the most
part very simple for the case in which the wing leading edge
is supersonic (m>1) because thero is no change in pressure
over the main surface of the wing when the flap is defleeted.
Each flap can therefore be regarded as an isolated triangular
wing so that the lift and center of pressure are known from
reference 2. The problem of finding the derivatives C’,_,
Cy, OmcL and Gy, is then mainly one of simple algebra.

This simple concept cannot be used to determine the
derivative Ch,. Instead, a suitable integration of the pres-
sure distribution of figure 3 (2) must be performed over the
surface of the flap in much the same manner as for the
constant-chord flap.

The range of applicability of the resulting equations for
the characteristics of the full-triangular-tip flap is limited
only by the conditions that the wing leading edge must be
supersonic {m_>1) and that the two flaps must not be so

large as to interfere plysically with cach other (%[ §0.5).

Although in calculating hinge moments the flap hinge line
has been assumed to lie along the inboard edge of thoe fap,
as shown in figure 1, it could equally well be in the alternate
position shown. (The distance between the hinge line and
the trailing edge is arbitrary.) Under the assumptions of
the present theory, the only derivatives affected by the
change would be the hinge-moment derivatives C, and C,,.

RESULTS AND DISCUSSION

The resulting equations for the control-swriace character-
istics are presented in tables I to IV, together with the range
of applicability of each equation.
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A comparison of inboard and outboard constent-chord
flaps is afforded by figure 4, in which some of the control-
surface characteristics are shown for a ratio of flap area to
wing area of 0.2 and a value of m=0.8. As would be ex-
pected, the characteristics of the two types of flaps tend to
become identical as the ratio of flap span to wing span
approaches unity. Another point to notice is that small-
chord largespan flaps are the most efficient when the Iift
per unit hinge moment (—ecL/H) is used as a criterion.
This finding is consistent with subsonic experience with
plain flaps.

The curve of (', 8 for outboard flaps in figure 4 shows the
interesting fact that for a given flap-area ratio an optimum
flap-span ratio exists which gives the greatest rolling-moment
effectiveness. This optimum flap-span ratio has been found
by differentiation of equations (2) and (8) (tables I and IT)
and is shown in figure 5 for various values of m. For m>1
{supersonic leading edge) the resultant flap is a half-triangular-
tip control rotating about an axis normal to the stream,
as shown by the small sketch in figure 5. The results shown
in figure 5 are strictly applicable only to wings having zero
thickness. The effect of finite thickness is discussed in the
following paragraphs.

The half-triangular-tip flap and the constant-chord full-span
flap can both be regarded as limiting cases of the constant-
chord peartialspan flap. The half-triangular-tip flap can
also be thought of as belonging to the family of which

.3
2 S —
—
Qs
hj
Q
Vi
a
24
el
/6 /‘//
[
P
E //
: \ e
v /
&8 -
a .2 5 .8 .o

K4
Flap span ratio, b‘.-/b

375

the full-triangular-tip flap is & member. A comparison of
the characteristics of the three flaps is therefore of interest.
Such a comparison is given in figure 6 for a particular wing
and ratio of flap area to wing area. The information neces-
sary to obtain results for the triangular-tip flaps at Mach
numbers less than +/2 was taken from reference 6.

The curves of figures 5 and 6, having been obtained by
the use of linearized theory, are strictly applicable only to
wings of zero thickness. When wings having finite thickness
are considered, the picture will change considerably. The
effect of thickness will be to decrease the effectiveness of the
constant-chord flaps; this effect is discussed in references 8
and 9. However, the streamwise sections of the triangular-
tip flaps for the most part appear more as complete airfoil
sections than as sections of trailing-edge flaps.
of finite thickness on the lift of a2 complete airfoil section is
very small, so it is to be expected that the effectiveness of
the triangular-tip flaps would change very little when finite
thickness is considered. There are some experimental data
which support these statements. TWhen the curves of figure
6 are viewed with these considerations in mind, the con-
clusion is reached that triangular-tip flaps are more effective
as controls on triangular wings than are constant-chord
faps, particularly so far as rolling moments are concerned.

No hinge moments are shown in figure 6 for the reason
that they depend on the Iocation of the hinge Iine. For
either of the triangular-tip flaps the value of Cy, theoretically
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Ficusz 4—Comparison of control-surface charactesistics of tnboard and oatbosrd constsnt-chord faps. =0.2; mm0A.
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FiaURE 5—Flap span ratio required for maximum rolling-moment effectiveness. Outboard
constant-chord flaps.

will be zero at all supersonic Mach numbers if the hinge line
passes through the center of area of the flap and is parallel
to the trailing edge. In & practical case, the chordwise
location of the center of pressure of the load due to flap
deflection will probably not be at the center of area, and it
will also probably shift some slight amount with Mach
number. However, the problem of hinge-moment balance
will certainly be less serious for triangular-tip flaps than for

other types.
CONCLUDING REMARKS

The control-surface characteristics of constant-chord flaps
and triangular-tip flaps on triangular wings were found by
the use of methods based on the linearized theory for super-
sonic flow. Because of their generally higher effectiveness
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and less serious hinge-moment problems, triangular-tip flaps
were concluded to be more satisfactory than constant-chord
flaps for this application.

LANGLEY AERONAUTICAL I.ABORATORY,
NaTioNaL Apvisory COMMITTEE FOR AERONAUTICS,
LavaLeY Frewp, Va., July 21, 1949.



APPENDIX A
PRESSURE DISTRIBUTION OVER INBOARD CORNER OF FLAP

The flap in figure 7 may be represented by & uniform dis-
tribution of sources and sinks. If the chordwise gap between
wing and flap is considered sealed, the pressure distribution
due to flap deflection may be determined by the method of
reference 2.

The equation for the surface velocity potential at a point
(z,y) due to a uniform source distribution is given by
reference 2 as

__'_1_ w dt dy
¢($,y) - Tff\[(x—f)’—ﬁz(y_ﬂ)s

where w is the vertical velocity and the area of integration
is over the fore-cone of (z,4). Thus,

=_1_p n —B{x—¥} d;,:
#&y) TJ; dﬂf VE—)'—Fy—n?

The first integration (reference 10, equation 260.01) gives

__w(n _ - —B(x—1)
sy ==2"dn[ —cosh I

z—§

8(y—)

__wn T
r.l; cosh ﬁln—yld"

Differentiation under the integrel sign with respect to z re-
sults in

w(ih d'q
2\Ly =_=-— I=lﬂ.-
#EN="2 ) T

w dn

T ) V=R 2=

This integral can be evaluated (reference 10, equation
380.001) to give

— 14
ony =—2[ L i BB

where at 7,
_z+By
=78

Thus,

oy == 5[ —oiart B0 o 0]

-5 e 2)

924778—51. 25

FicGRE 7.—Noiation used in appendixes A and B,

Since ¢, is constant along lines %=constant, a new variable

v=%§’-’ 1s introduced.

Then,
8:2,9) = (G+sin »)
or
é:(x,7) =—T—ﬂ; cos~! (—»)

From reference 2 (taking into account upper and lower
surfaces),

Since %=a,
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APPENDIX B
PRESSURE ON OUTER CORNER OF OUTBOARD FLAPS (m>1)

The pressure within the Mach cone over the outboard
corner of the flap when the Mach line lies behind the leading
edge of the flap (see fig. 7) may be determined in a manner
similar to that of appendix A. The equation for the poten-

tial is then the two-dimensional value —% minus the

contribution from the source distribution in area A. Then,
we, w (h dg
=42 [P
¢ o Vo—0—FG—m

nJ‘:—ﬂh ) d
0 V@E—8*—By—n)?
The first integration (reference 10, equation 260.01) gives

¢(z, y)——-——+w fﬁ dn[ cosh™ _En)

w 7] -1 2—fG—)

fd”[ cosh 3(‘.!/—11)]
—_wx, w (h Y I

N

w (% |

;ﬁ cosh llﬂ(y

=5+ ) OSh—I(ﬂ(y ol

o J ot e

Differentiation with respect to z to obtain ¢, gives

w f L wf'hn dy
sz—ﬂz(y—ﬂ)‘ o+ (@—kn)*—p*(y—)*

kn

+

o =
ot [ cost gl

b (2 )=—

Y dn -
ﬂ+ﬂ'ﬁ =P 1 28—

Qfﬁ d’q
% Jo _\[xz_’g2y2_|_2(ﬂzy_

kx)n—(B*—k®)n*
378

The integrals cen be evaluated (referenee 10, equalion
380.001) to give

. — +8
6a(2, )=_%v+g [_%_Sm-l ﬁy__éﬁfz:lo _

y[ 1 o By—kr— (8 — ﬁ’)n]”?
— =R n Blr—kyy "
55 v )-
_; kr—p
wﬂs*— =
=— rﬁ w—i—sm“ﬁy)
w - kx—pF%
T % Ba—Fy)
B
E{1—
=—2 cos Fy_ W cos™! — ’g

e ﬂs\/l—ﬂ’ s(1-"2%)

Let v_——_—"-ﬁ—} and m=%; then,

o)== [cost vt o cornt (S22

Since C,= —--V Fand w=5T,

)

-1 _’1" —1
= ﬁ cos™! y-- Vi oy cos
When »=1, this expression for C, becomes

___4m
= w1

The pressure is constant at this value everywhere ouibonard
of the Mach cone.



APPENDIX C

METHOD OF DETERMINING THE RANGE OF APPLICABILITY

As an illustrative example, consider an outboard flap with
the Mach lines shead of the leading edge and suppose that
two Mach lines cross on the flap. (See fig. 8) It is to be
determined if the equation for the lift due to flap deflection
(to take a simple example) is the same equation that would
be obtained if the Mach lines did not cross. The test may
be made in the following manner.

First, determine the pressure coefficients in the various
aress indicated by numbers in figure 8. In region 1

C,=C,.
0,.—C,

Po—'

_—AG,

where ACy, is the result of the inboard tip effect so that
AC,,—Cy—Cy,

Similarly,
Cpy=C ,—ACy,

where AC), is the result of the outboard tip effect so that

AC,=C, —Cy,
Now,
Cpy=C5 —AC,,—AC,
or
G, =05, 1+ Cp,— Gy,

The lift per unit flap deflection is

= 5( f C, dS+ f C, dS+ f C,5dS+ f o,*ds)
- ( [; C,.dS+ Jslc,ids+.[&0,,ds+ﬁ‘ C,,dS+
fs‘C',adS— f&C,,dS)
- ( fs St f&+&0,,ds+ fM&G,st)

Now, if the total area affected is written as

SJ”=SL+SB+SS+SL

FiaUvre 8.—Notation used In appendix C,

then
SI—SA=SI’— (Sz+S4) - (Sa'l'S;)

The area covered by the inner Mach eone is S;4+S; and the
area covered by the outer Mach cone is S;-+S;, so that the
final equation for Lf¢é can be written as

;;5 3 [Cpo. (Total area affected—

cone— Area in outer Mach cone) 4 Lift in inner
Mach cone+Lift in outer Mach cone]

Area In inner Mach

which is exactly the same equation that is used when the
Mach lines do not cross.

This method is very convenient to use, since no lengthy
integrations need be performed. Although a lift case was
used as an example, the extension to other cases (hinge
moment, rolling moment, 2nd so forth} is not difficult.

379
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TABLE I.—CHARACTERISTICS OF OQUTBOARD FLAPS ON TRIANGULAR WINGS
[m<C{1, Mach lines ahead of leading edge]

Range
Quantity %%ugtgg:‘ Equation
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TABLE II,—CHARACTERISTICS OF OUTBOARD FLAPS ON TRIANGULAR WINGS
[m>1, Mach lines bebind leading edge]

(o L -9 (s
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TABLE III.—CHARACTERISTICS OF INBOARD FLAPS ON TRIANGULAR WINGS
[m<1 or m>1; Mach lines ahead or behind leading edge]
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TABLE [V.—CHARACTERISTICS OF FULL-TRIANGULAR-TIP FLAPS ON TRIANGULAR WINGS
[m>>1, Mach lines behind leading edge]
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