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SQUARE PLATE WITH CLAMPED EDGES UNDER NORMAL PRESSURE PRODUCING
LARGE DEFLECTIONS

By SauueL Levy

SUMMARY

A theoretical analysis 1s given for the stresses and
deflections of a square plate with camped edges under
normal pressure producing large deflections. Values of
the bending siress and membrane stress at the center of the
plate and at the midpoint of the edge are given for center
deflections up to 1.9 times the plafe thickness. The shape
of the deflected surface iz given for low pressures and for
the highest pressure considered. Convergence of the
solution is considered and it 18 estimated that the possible
error 18 less than 2 percent. The resulls are compared
with the only previous approrimete analysis known io

the author and agree within & percent. They are also.

shown to compare favorably with the known ezact solufione
for the long rectangular plate and the circular plate.

INTRODUCTION

An exact solution for the small deflections of a plate
with clamped edges was given by Hencky in reference 1
and an approximate solution for large deflections was
presented by Way in reference 2. In a previous paper
(reference 3) there is presented a solution of the
fundemental von Ké4rmén large-deflection equations for
a simply supported rectangular plate under combined
edge compression and lateral loading.

In the present paper & theoretical analysis is given
for the stresses and deflections of a square plate under
normal pressure producing large deflections. The edge
supports are assumed to clamp the plate rigidly against
rotations and displacements normsal to the edge but to
permit displacements parallel to the edge.. The analysis
replaces the edge bending moments by an equivalent
pressure distribution and then applies the general
solution for the simply supported rectangular plate.

The results for small deflections obtained by the.

analysis agree exactly with those of Hencky and for
large deflections differ by less than 5 percent from the
approximate solution of Way.

The work was carried on with the financial assistance
of the National Advisory Committee for Aeronautics.
Acknowledgement is made to the Bureau of Aeronautics,

Navy Department, for its cooperation in a program of

tests of rectangular plates under normal pressure thst

furnished the background for the preparation of this
paper. The author is grateful for the assistance of
members of the Engineering Mechanics Section of the
National Bureau of Standards, particularly that of
Dr. Walter Ramberg and Mr. Samuel Greenman.

FUNDAMENTAL EQUATIONS
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FiGURE 1.—Uniform normal pressure on a elamped square plate.

Consider an initially flat square plate of uniform
t.hlckness (fig. 1) and let
e length of sides.
k thickness.
p normal pressure, assumed uniform.
@ normal dlspla.cement of points of middle
surface.
E Young’s modulus.
p  Poisson’s ratio.
ERs . o1
D=W.1_.—’)- flexural rigidity of plate.
x,y coordinate axes lying along edges of plate with
their origin &t one-corner.
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My, my, edge bending moments per unit length sbout
x and ¥ axes, respect:vely

normal stress, T

shearing stress. :

tensile strain, unit elongat,lon

shearing strain.

extreme-fiber stresses in directions of axes.

median-fiber stresses in directions of axes.

extreme-fiber bending stresses in directions of
axes.

Wn,» deflection coeﬂiclents
F stress function,

[ P

Oz, Oy
r ’

Og, O,
2y

Oz, Oy

bm,s stress coefficients.
%:, ¢, average median-fiber stresses in z and y
directions, respectively.
pa(z, y) auxiliary pressure replacing edge moments.
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FIGURE 2.—Auxiliary pressure distribution for applying edge moments along the
edges. .'

. (8) =0, =0,
(b) y=0, y=a.

po(z, ) uniform normal pressure p expressed &s a
Fourier series.
P, Y)=Dalz, Y)+2:(z, ¥).
p,. coefficient in Fourier . series . for pressure,
Pz, ).
¢ moment arm of auxiliary pressure distribu-

tion, p.(z, ¥).
k., &, moment coefficients.
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EXPRESSIONS FOR STRESSES AND STRAINS

The general equations for stresses and strains are
developed by Timoshenko in reference 4 {(ch. IX) and
are also given in reference 3. The stresses at the
middle surface of the plate are related to the stress
funetion F by:

o =2
» ayﬂ
. OF
% =% 1)
. __OF
T ™ " 320y

the extreme-fiber bending stresses in the plate are
related to the deﬂeotions by

L (b’w b’w
7e’ == 2(1-—#’)

b’w b’w

#arz ()

2(1 —ﬂ(
I 25 232,)
"= STy

and the extreme-fiber bending stresses at the edges of

the plate are related to the hending moments per unit
length by:

. a-'=

T

v 0my
r hz
o [E=0, 2=0)
oy I‘"}lT'
} (3)
" 8m,
G r=l-"—h?'
 6m, (y=0,y=a)
o y= 2
The strains at the middle surface of the plate are;
b"F azF
——-E(a', [.la',\— Ly
, a’F b’F)
= . 4
v o'n 1»“7) E( Ys] [ et a_y 4
ro_20+p) , _ 2(14w) OF
V=" F TT TR d:dy

RELATIONS BETWEEN EDGE MOMENTS AND LATERAL PRESSURE

The required edge moments, m,, m, will be replaced
by aa suxiliary pressure distribution’p, (z,¥) necar the
edges of the plate as shown in figure 2. If this pressure
distribution is expressed by a Fourier series (reference 5,
p. 295) aad the value of ¢ approaches zero, the auxiliary
pressure 18

PalZ, )=

r=138,5.. e=1,385..
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Express m, and m, by a Fourier series, where £, and
k. are coefficients to be determined sand where for a
square plate &k, =k, when s=r,

4a?
m,=?-p

. rEE
k, sin —
a

re=l, 3, 5. . | (6)

=1,3,35...

Inserting equation (6) in equation (5) gives

2 Z o
Pl ?/)“( )P (rk,+ sk, sin "% sin

r=1,3,85.. &=1, 8, §.

The uniform normal pressure p may also be expressed
by a Fourier series (reference 5, p. 295) es,

pite)=(2) 2(%) sin " 5in #7V ()

re=1,35.. &=13,5...

The addition of the uniform normal pressure p;(z,y)
and the auxiliary pressure replacing the edge moments
Pe(z,y) is obtained by adding equations (7) and (8) and
gives

Pc(xfy)—( ) 22(—+rk +sk)sm— i "y (9)

r=] g=1

pr..=(§)’p<;1-s+rk.+sk,) (10)

RELATION BETWEEN STRESS FUNCTION F, DEFLECTION iz, AND
PRESSURE COEFFICIENTS pr..

where

Since the edge moments m, and m, have been re-
placed by the auxiliary pressure distribution p.(z,y)
(equation (7)), the general solution for the simply
supported rectangular plate given in reference 1 may
be applied. This solution was derived in terms of
Fourier series from the von K4rmén equations (refer-
ence 6). The form of von Kérmén’s equations used is
that given on page 343 of reference 4.

OF NF O*F o%w
Erah e EK

a_xf"z _by“+?>_y‘=102+ (1)
(a=Fa=w+a=Fa’w o, OF 2w’
D\ 3y 22T o Dyt “2xdy 0z

t_ o Y
ox2 oyt

For the square plate the general solution describes the
deflection by the Fourier series,

=. E E W x sin 2% gin %-y (12)

®=185...8=,3,8...

the pressure by the Fourier series previously given in
equation (9).

pxy)= E E Pr.e SID ? sin s%y (13}

r=1,35...¢=1,35..

and the stress function F by the Founer series and
polynomials,

(14)
F__E + _=3/_+ B o8 BEL oo NTY ry

m=0,2,4...2=0,2,4.

and shows that for zero displacement normal to the
edges of the plate,

(15)

and

nawt, ,

see A=l 3. 5.

The generel solution (reference 3) gives general equa-
tions from which the membrane stress function . co-

| efficients by . can be calculated in terms of the deflection

function coefficients w.x. For the special case where

a@=> (square plate), in the present paper the first 23

of these coefficients b, . are,

bo.2=62.o=£(w1,12+9’wu!+2731 10 5— 18w a1 3
+25’U?1.s — 2wy 2wy 8- )
bo.s 64.0—-64(101 100 3+ 9wy Ws 3— Wy W 5 . . )
bz.z=—“§<‘w1.lw1.s—2w1,s’+4w1,:w1,a—9wuwx,n .
B . ' (16)
box=bsn=m(wl.32+9wuz+21£’1.1w1.5 ced)

B .
bz.¢=b4.z=m(—w1.1101.3+25w1,32+9wl,1w:.3
+9w1,1'¢01 s—49w; sy s+ 81wy qwy 5. . L)

bo.a=6s.u —~(w, AWrs-..)
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E
62.a=bn.2=4—-6'6(‘"w1.xwx 519wy gy 3+ 16w gwy 5. . .)
E
b4,4=éz(—wl.sg+8‘w1,swx,a— Qw; 4t . )
E
boso=bws=grr 800(101,5 )
bg,g=bs,g=m(—’w1._awl,s'{'_sl‘wuwl,a cel)

by s=>bs .4=m(— 0w, 5wy 3— 40w, g 5
E ) . -!—169?01__52 e .)
b bs 4= 1600( g'wa 3wl b )

b,,,=a£(—wu’ o)

The family of equations relating the pressure co-
efficienta p,, and the deflection coefficients wn .. are
also given by the general solution (reference 3). For
the special case a=b (square plate), presented in this
paper, the first 22 terms in each of these equations are
given in table 1 for Poisson’s ratio p=0.316. Advan-
tage has been taken of the relation wy s=1, », Which
holds for a square plate under symmetrical loads, to
reduce the size of table 1 as well as equations (16). As
an example of the use of table 1, the first few terms of
the first equation (giving the relation between p,; and
the wy 4's) are given in equation (17).

0= —ﬁﬁ—w 3705 4.0, 490( )

—0.375(—Ed)2(‘£k¥ﬁ)+. ..

MAGNITUDE OF EDGE MOMENTS m.: AND m,

a7

The edge moments m, and m, must now be deter-
mined to satisfy the condition of zero slope at the edges
of the plate. Setting the slope, perpendicular to the
edges z=0 and z=a, equal to zero gives

(aw),.o.,-, Z E—wusm’—”—y (18)

m=i,3,5... a=},3,8

and setting the slope perpendlcular to the edges y=0
and y=a to zero gives,

)L

m=1,3,5...

- P, sin T2 (19)

=138,

Equations (18) or (19) are equxvalent to the family
of equations

O=WI,1+3W1,3+5WI‘_5+7W1.7+.'. .
O=1p 1+ 3w 3+ 5wy s+ Tws 2 +. . :

(20}
0=y 1+ 35 3+ Sws 5+ Twy 1+ .

(16)
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The deflection coefficients ww,» must now be deter-
mined from table 1 by solving each cquation for the
linear term in terms of the cubic terms and the pressure
cocflicients p,5. The deflection coefficients w., thus
obtained are now substituted in equations (20); and,
for the pressure coefficients p,,, are substituted there
values as given by cquation (10). The resulting
equations are.

0=2.835--7.66k,+ 0.324k;- 0.0800%;-}-0.0303%;

+0.0145k4 . . . + K,
0=0.0523+0. 324k,+1 713k.+0 1405k,

+0.0675k,+0.0360k;+ . . . + K,
0=0.00680-0.0800k,+-0. 1405k,+ 0.956ks 1)
+0.0690k,-0.0433k+ . . . + K, a

0=0.001767+0.0303k,+ 0. 0675k,+0 06890k,
+0.660k;-+0.0402k,- . K;

0=0.000648-+0.0145k,4-0. 0360k3+ 0.0433k,
+0.0402k,+0.505k,+ . . . + K,

where K; . . . K, arc functions of the pressure p and
of the cubes of the deflection functions wy 4. The first
22 terms in the equations for the first five coeflicients
K, are given in table 2. As an example of the use of

table 2,
w, x) (un 3 )

(22)

Ky===0. sos’-’ﬁﬁ (‘-‘ﬁd) +0. nosz’}i wEht

+0.1072F B (1, l) ("’= s)_

SOLUTION OF EQUATIONS

VALUES OF DEFLECTION COEFFICIENTS w.,, AND EDGE MOMENT
COEFFICIENTS k,

The method of obtaining the required values of the
deflection coefficients wm . and the edge moment

cocfficients k, consists of assuming velues for 4 T and

then solving for %%:—4, Wis s—u%i Y N 0 T 1)

52
successive approximation from the simultancous equa-
tions in table 1 and equations (10) and (21). Thesc

caleulations have been made for 10 velues of E#L
The corresponding values of the first 36 deflection

k, are given in table 3 and table 4, respectively. The
error arising from the use of only the first 22 terms in
the cquations in table 1 will be considered in a later

section.
CENTER DEFLECTION

From équation (12) the center defiection is

.n=1,334,

Weenter=

m=1,3,5
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The center deflection was obtained by substituting the
values of s, from table 3 in equation (23) with the

20
/. Lmeor theory . 5,
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3 e
a 100 . 200 300 400

Fressure ratio. pa*/ER*
F1auRE 3.—Center deflection of square plate with clamped edges. x, 0.316.

results given in table 5 and figure 3. Figure 3 shows
that the deflection pressure curve deviates increasingly
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from & straight line with increasing deflection. The
deviation exceeds 10 percent for deflections exceeding
about one-half of the plate thickness.
SHAPE OF DEFLECTED SURFACE
The lateral deflection of the plate is obtained by
substituting the deflection coefficients wwm.x (table 3)

in equation (12). This calculation has been made
along the center line x=a/2 for very smgll deflections

w—‘;"’<<1 and for the highest deflection caleulated

wru ter

5 =1.902 with the results given in figure 4. Itis

apparent that, as the center deflection increases under
incressing normsl pressure, catenary tensions become

/
& A
/3
% ety
b 7
s <
9 tinear fhegry! = L1
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| e
s €
- %/ //o/‘/::
/ i 0
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Fiaorx 5.—Stresses perpendicular to edge at its midpoint and at the center of &
clamped square plate In any direction. x, 0.316; ¢"a%/EAf, extreme-fiber bending
stress ratlo; «’e}/ER?, membrane stress ratio; ea!fER?, extrems-fihar xtress ratlo;
pat/ER4, pressure ratio.

é ulfgl Em!dpo)lnt of edge) %, ﬁc:{lg: ((m.ldpo)[n.t of edge)
wal/ER! (center! o, e center)
E Z, #'a¥{ R (center) F, ¢’e3/ ERt (midpoint of edge}

appreciable and the inflection point is shlfted toward
the edges of the plate.

BENDING STRESS AT MIDPOINT OF EDGE

The extreme-fiber bending stress at the edge was
obtained by substituting equations (6) in equations (3).
This substitution gives, for the extreme-fiber bending

. stress perpendicular to the edge at its midpoint,
-2) (29,

’ 2% p
<%%:)ﬂf¢ntutafmc = Ez‘(k‘ kst les—kt- .

The values of &k, and % given in table 4 were su_b-_l_

stituted in equation (24) with the results given in table
5 and in figure 5. Figure 5 shows that the bending
stress perpendicular to the edge at its midpoint deviates
increasingly from & straight line with increasing pressure.

The deviation exceeds 6 percent when the deflection is -

greater than one-half of the plate thickness.

BENDING STRESS AT CENTER OF PLATE

The extreme-fiber bending stresses are obtained by
substituting equation (12) in equations (2). This
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substitution gives for the stress at the center of the
plate in“any direction,

a”a®

Eftz)ccnlcr aof plate

'(1—,:2)2 Z (=1 e+ umy L 25)

The values of % given in table 3 were substituted in

equation (25} with the results given in table 5 and in
figure 5. Figure 5 shows tbat the bending stress at the
center of the plate is less than one-half of the bending
stress perpendicular to the edge at its midpoint.

MEMBRANE STRESSES

The membrane stresses in the plate are obtained by
substituting .cquation (14) in equations (1) and using
equations (15) and cquations (16) to determine the
values of the stress coefficients 7,, 7,, and by ,. This
substitution gives for the membrane stress perpendicular
to the cdge at its midpoint,

a'a W, Wi\ /W3
-1 =3.042 fad
(E]Lz midpoint of edg 3 ( ) +5 24( ( h )
2
_.2_67<%Xu_73£)+ 1.28(&- "ﬂﬁ) +1 551(’»_‘7}%5)
—36.20( 2 *X’“’“ a)-|- 1 95(“‘ *X“‘%é)+27.&a7("‘—;‘;£)’
—-74.5(“%‘)('%5)-1-103.7(1‘2—-5 ... 26)

and, for the membrane stress at the center of the plate
in any direction,

%;)csum a.fplatc=3'042<‘w_l‘l) 5 44( le 3)
+4.45(‘%‘;‘X‘”" *)+ 10. 33(“" X’Uh s)+ 55. 09<w1 3)
—55.06( 42 )( 42 ) —o3.08(%4: ‘XwT'-")+27.37(w-f@)

+-100.8(wT‘-’X"i’;i=5)+143.3("’T‘-‘) +... @7)

’.”;-“ given in table 3 have been substituted

in equations (26) and (27) with the results given in
table 5 and in figure 5. Figure 5 shows that for pres-

sures less than the maximum computed <p e 402) the

membrane siresses are smaller than the corresponding
extreme-fiber bending stresses_and that they change
only a small amount in going from the edge to the center
of the plate. .

CONYERGENCE OF SOLUTION

An exact solution would require the use of an infinite
number of terms in the equations of tables 1 and 2.
In the present solution only the first 22 terms were
used. The effect of limiting the number of terms is
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brought out by the comparison in table 6 of the solution
for 2, 3, 6, and 22 terms. For example, the use of only
the first six terms in the first equa.t,ion of table 1,
excluding cubic terms mvolvmg —I—-: —E'f: cte., as fac-
tors, gives the equation

™ [(7 10| 1

—0.375("" ‘) ("" *’)+ 6. vs( X"ﬁ—‘)
—3.25(%7)

the use of only the first three terms in the first equation

of table 1, excluding cubic terms involving —}ii’ t—%"-ﬂ

. f)= ‘U’ll

(2811_)

—;f“: elc., as factors, gives the equation
1 oy 3705340, 490(“-" ')

and the use of only the first two terms in the first equa-
tion of table 1, excluding all cubic terms, gives the

cquation
y 10t W,
_-E'Eﬁ"r -4-0.370 .

It is evident from table 6 that the convergence is
rapid for the center deflection. The cbnvergence is
somewhat slower in the case of the bending stress at the
midpoint of the edge. It is estimated from table 6
that the possible error in table 5 is less than 2 percent.

0== (28b)

(28¢}

COMPARISON WITH THE RESULTS OBTAINED BY
PREVIOUS AUTHORS

THE CLAMPED RECTANGULAR PLATE WITH SMALL DEFLECTIONS

"The earliest work on the problem of the clamped
rectangular plate known to the author is that in 1902
by Kofilovich (reference 7). Kofalovich solved the
problem by wusing trigonometric series. In 1913
Hencky (reference 1), using & method which he eredits
to M. Levy, made a thorough analysis of the moments
and deflections for plates with small deflections. In
1914 Boobnov (see p. 222 of reference 4) extended the
scope of Kofdlovich’s earlier work. Since that time
additional work on the problem extending the analysis
to different types of loading and a wider range of plate
sizes has been done by N4dai (reference 8), Timoshenko
(references 4 and 9), Wojtaszak (reference 10}, Evans
(reference 11}, Young (reference 12), and Pickett
(reference 13). The results of these authors for the
square plate with clamped edges agree closely with
Hencky’s results presented in reference 1. The present
paper gives, for small deflections, & value of the center
deflection of 0.001263 pa*/D as compared with Hencky’s
value of 0.001265 pa*/D; and a value of the bending
moment perpendicular to the edge at midpoint of 0.0512
a’p as compared with Hencky's value of 0.513 a'p.
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THE CLAMPED RECTANGULAR PLATE WITH LARGE DEFLECTIONS

The only previous anelysis of square plates with
clamped edges under normel pressure producing large

a0
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&

hy

cﬂ'ﬂﬂ" oe/lection r'offou wa.-.nl-r'Lh

4
oA
_/ + Referernce 2,u=03 |
/ o Fresent soluffor, =038
K- 7
o 100 200 . 500

Pressure ralio.pa%ER+
FiGURE 6.—Comparison of Way's solutlon (reference 2) nsing the Ritz energy method
and the present solution for the center deflection.

deflections that is known to the author is the analysis
by Way (reference 2) in which the Ritz energy method

180
&
A
3‘; s
i vt
a~ A
3
- faofaf siress
g b .4/
8 .4
840 //
a .
% ,/ + Reference 2,u=03 |
/7 o Fresent solufiorr, p=Q3/6
/ Membrane s?Iress | T
- f*—?’ L1 [
’_1’/‘—*/?____\—0/
o 100 200 400 500

200
Pressure rofio, pa4Eh+

FicuRE 7.—Comparison of Way's solution (reference %) using the Ritz energy method
and the present solutiofi for the totel stress and the membrane stress Dperpendicalar
to the edge at its midpoint.

is used with polynomials satisfying the boundary con-
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Although ‘his calculations were made for a Poisson’s
ratio of 0.3, it appears from Way’s analysis of circular
plates (reference i4) that small changes in Poisson’s
ratio do not appreciably alter the solution. In figures
6 and 7 are compared the results obtained by Way in
reference 2 with x=0.3 and the results of the present
paper with p=0.316. The agreement is excellent
(within 5 percent) for both the total stress at the
middle of the side and the center deflection. The
agreement between the membrane stresses is not so

.good. In no case, however, do the membrane stresses

differ by more than 4 percent of the total stress.

THE INFINITE PLATE STRIP AND THE CIRCULAR PLATE

The values of the center deflection and of the extreme-
fiber stresses at the center of the sides for a square
clamped plate with large deflection are compared in
figures 8 and 9 with those for a clamped circular plate

T T T T T T T T]
R, Clomped rectongulor plote (ref. /15) |

Poissori’s rotio, 0.3/8.
5_, Clomped square plote (present paper)
Poissorr’s rofro, O.3/6. v
C, C'/anped arcu/ar-p/az‘e (ref 2) /

ssar?’s ratio, O.

L/ %?/ ‘

/ |

Colculoted points

(o

R a " e
g2 T~
: P
35 // / ‘ %
:S‘AG 7 // N
E // //’/
E 12 / 7 .
3
$
&

N

o 00 200 300

FPressure rotio, patEh4

<00

FicrrE 8.—Variation of deflectfan at center with pressure for square piste, circalar
Dlate, and long rectangular plate.

(reference 14) of diameter ¢ and those for a clamped
long rectangular plate (references 4 and 15) of width a.
As would be expected, the square plate is more rigid
than the long rectangular plate and more flexible than

ditions and containing 11 undetermined constants.

706858 O - 46 -15

the circular plate.
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IR

- R, Clamped long rqcfm;u/ar plofe (ref. 15} 4
Poisson's rofio, %6' . )

S, Clomped square plafe (present paper,
— Po.g:-on‘s rotio, 0.3/é. —
C, Clamped circular plate (reference 2)

Porssor's ratio, 0.3.
/
"
//
80 ,: a% = ,/
% b ,
g pdinrdi 11
§60 4 .///'./.
amas
Q .
S _
30 // (/ -
5 7T
20 j// l
//;/ o Colzuloted points
0 700 200 300 200

FPressure rotio, pat/Eh+

FieuRE 0.—Varlation of maximum extreme-fiber stress at edge with pressure for
square plate, circular plate, and long rectangular plate,

NUMERICAL EXAMPLES
EXAMPLE 1

Calculate the center deflection and the maximum,

extreme-fiber stress for & 10- by 10- by 0.05-inch
aluminum-alloy plate (E=107 lbfin? 1x=0.316) with
clamped edges, subjected to & normal pressure of 2
pounds per square inch.

The pressure ratio is:

at 2% 104
%—h‘=1_0’><'(0—_‘.05) =320

From figure 3, the corresponding deflection ratio is

wt‘ﬂﬂﬂ'=
=7 1.72

so that the center deflection is
Weemter=1.72X0.05=0.0860 inch.
From figure 5, the maximum extreme-fiber stress ratio
for the edge at its midpoint is
oca?

EF=65.0
so that the maximum extreme-fiber stress is

107X (0.05)*

0=65.0—"73

=186,300 pounds per square inch

EXAMPLE 2

Celculate the pressure that will produce a maximum
extreme-fiber stress of 30,000 pounds per square inch in

REPORT NO. 740—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICB

a 15- by 15- by 0.10-inch aluminum-alloy plate with
clamped edges.
The maximum extreme-fiber stress ratio is

ca®_ 30000X15*

BT (010 075

From figure 5, the corresponding pressure ratio is

%=339

so that the normal pressure is .
p=339X10"XX(0.10)*
15*

6.70 pounds per square inch

NaTioNAL BUREAU oF STANDARDS,
Wasmineron, D. C., May 24, 1941.
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TABLE 1L.—EQUATIONS BETWEEN DEFLECTION COEFFICIENTS 1y« AND PRESSURE COEFFICIENTS p,, WHEN
POISSON’S RATIO EQUALS 0.316

SQUARE PLATH WITH CLAMPED EDGES UNDER NORMAL PRESSURE

[Only the first 22 terms have been retatned In these equations]
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TABLE 1.—EQUATIONS BETWEEN DEFLECTION COEFFICIENTS 1, s

POISSON’S RATIO EQUALS 0.816"Continued

» AND PRESSURE COEFFICIENTS p,,. WHEN
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TABLE 1.—EQUATIONS BETWEEN DEFLECTION COEFFICIENTS w,... AND PRESSURE COEFFICIENTS p,. WHEN
POISSON'S RATIO EQUALS 0.816—Concluded
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TABLE 2.—EQUATIONS BETWEEN THE MOMENT COEFFICIENTS K, IN EQUATION (21), THE DEFLECTION
COEFFICIENTS wa,.« AND THE NORMAL PRESSURE p
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TABLE 8.—VALUE

SQUARE PLATE WITH CLAMPED EDGES UNDER NORMAL PRESSURE
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OF DEFLECTION COEFFICIERTS w.,» A8 A FUNCTION OF THE NORMAL PRESSURE p
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TABLE 4,—VALUES OF EDGE MOMENT COEFFICIENTS
k., ks AS FUNCTIONS OF THE NORMAL PREBSURE p

o ka ks & [ b
Q —0.372 0.0379 .0 0. 0084 0. 0045
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318.0 —. 230 . 0048 . 0087 . 0063 . 0038
402.0 —. 216 . 0020 Ny . 0060 . 00368

TABLE 6.—CONVERGENCE OF SOLUTION AS THE'
NUMBER OF TERMS USED IN THE EQUATIONS OF
TABLES 1 AND 2 ARE INCREASED FROM 2 TQ 22

pat Using2 | Using3 | Usings | Using 22
ERi terms terms terms terms
Center defloction %, 4nialh
63,4 0.87 (.76 0. 702 0. 895
184.0 2.52 1.50 .34 1,323
402.0 & 51 115 L g4 1,902

Bending stress perpendicular to edge at its midpoint «/a)/ Eht

63.4 19.4 16.9 16.6 18.97
184.0 56.3 38.1 37.2 38.2
102.0 3.1 5.5 83.8 66.2
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TABLE 5.—CENTER DEFLECTION, BENDING STRESSES
o/, MEMBRANE STRESSES ¢/, AND EXTREME-FIBER
STRESSES ¢ A8 A FUNCTION OF THE LATERAL
PRESSURE »

[=0.316)
Pressure gm“’ Btress at midpolnt of edge | Btress at center of plate
fl“*on (perpendicular to edge) In any direction
o | | e | et | e | | et |
0 [y BT R oo = B ™
] [] 0 [} g 0 0 1]

17.79 . 237 5.36 .11 8.48 2.5 4 6
38.3 471 11.08 47 11.659 4.8 .82 513
0% 4 .86 16,97 1.08 18.03 6.7 1.33 8.0
95,0 912 23.48 1.87 25.32 8.8 L: 11.1
14.9 1121 0.6 2.02 3.8 9.9 3.43 13.3
184.0 1.323 8.2 4.28 42,4 11.1 4.7¢% 189
245.¢ 1. 50 47.0 578 5.8 29 %1} 19.2
318.0 1.714 563 17.60 6.0 13.8 8.08 2.9
402.0 1.902 08.2 9.6 76.8 161 10. G2 25,1




