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THEORETICAL AND ANALOG STUDIES OF THE EFFECTS OF NONLINEAR STABILITY
DERIVATIVES ON THE LONGITUDINAL MOTIONS OF AN AIRCRAFT IN

RESPONSE TO STEP CONTROL DEFLECTIONS AND TO THE
INFLUENCE OF PROPORTIONAL AUTOMATIC CONTROL 1
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SUMMARY

A W.@ has been made of the efiects oj two n.on.hear stability
derimztizas,cawed by the nonlinear zariatiorw oj pi.tching-
momentand lift we- with angle of alta.ck,on the longitudin-
al motions of an aircraft. l’h-eoreticulmethoo%involving the
Laplace tran9fonnati4m and the procedures of nonlinear
mechanics have been prtwmted along with eledricakn.slog re-
sults jor tb responws of a canard aircrajt to step control deflec-
tions and to the in$uence of two typm of propotiiomd automatic
control.

In all ca.wxexcept tie tzrampleil.ktrating tb procedurw oj
nonlinear mechanics, the nmdinear zariattiw have bee-nap-
proximated by three linear segmem%. The principaJ meaw oj
studyirq the e$ecti oj the nmdinearitia were throughthe charac-
terigtti of t.lu time responws in angle of attack and, in gome
c(z.w8,pitching V.dOCity. The chang.n in th period and damping
of the oscillutimwdue to the nunhearitia have been di.wuxsed.
The e~eet-sof the autopilot proportiwudtiy constunt on system
stabW.tywere do invA@ed. The occurrence of continuo-w
hunting osciUa$imswas predicted and demon.stra&dfor tb &-
titude stubi&@ion sy8i!&n with proporthud controt?jor certain
wnlinear pitching-moment variations and autopilot adjust-
ments.

INTRODUCI’ION

In the classical treatments of the study of aircraft dynamics
an assumption is usually made that the forces and moments
resulting from small disturbances in position, velocity, and
acceleration are linear variations with these quantities.
However, some aircraft configurations do not exhibit linear
force and moment characteristics in some flight conditions
and, therefore, the linearized methods cannot be a satisfac-
tory approxinmtion over an appreciable range of the param-
eter involved. This report is concerned with the problam
of aircraft dynamics as aifected by nonlinear stabili~ de-
rivatives and, in particular, with the short-p ariod longitudi-
nal mode of motion of an aircraft flying at ixmstant velocity.
Consideration is also given to the problem of applying simple
forms of automatic control to such an aircraft.

The present work is presented in two independent parts.
The first part considers several analytical approaches that
may be used in the analysis and the study of the transient
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motions of the aircraft. These methods inolude the use of
the operational calculus (Laplace transformation), the sta-
bility criterion of Routh, and the theories of nonlinenr
mechanim. The second part presents some of the results
obtained by using electrical analog equipment. The cases
prwented are for a hypothetical canard aircraft assumed to
be flying at supersonic speed.

SYMBOLS

angle of attack, positive when nose is above
relative wind vector, radians unless other-
m“se noted

aircraft attitude or pitch angle, positive when
nose is above horizontal, radians

aircraft elevator deflection angle, positive
when trailing edge is down, radians unless
otherwise noted

aircraft veloci~, fps
dynamic pressure, lb/sq ft
wing (reference) area, sq ft
mean aerodynamic chord, ft
mas9 of aircraft, slugs
pitching moment of inertia, slug-ft2
differential operator, d/dt
time
pitching-moment coefficient,

Pitching moment/@’Z
lift Coefficient, Lift/@S

941



RI?PO”RT 1241—NA’ITONW ADVISORY COMWTI’EE FOR AERONA’U’ITCS

slope of a linear segment repremnting a por-
tion of nonlinear C.(a) function, per radian

slope of a linear segment reprewnting a por-
tion of nonlinear CJa) function, per radian

constants used in equations (6) and (9) and
detined in appOIldiX

constants used in equations (2) and (3),
respectively

undamped natural frequency of aircraft alone,
radians/see

nondimensional damping ratio of aircraft
mode of motion

Laplace tiansfomn variable
generrd autopilot constant, ratio of control

surface deflection to applied error angle

reference or desired angle of attack for closed-
loop system with angl~f-attack feedback,
radians

reference or d&red attitude angle for cJosed-
loop attitud~tabilization system, radians

constits required in cubic repremutation of
nonlinear C.(a) function (eq. (12))

slope of trajectory in phase-plane example,
old/da

ANALYSIS

The analysis of the effects of nonlinear stabili~ derivativ~
on the longitudinal motions of a canard aircraft is presented
in three sections: the tit is a statement of the problem and
the assumptions involved; the secorid is a theoretical or
rmalyticnl solution for the required transients and the study
of stability; and the third is a discussion of the methods of
nonlinear mechanics for th~e dynamical studiw.

STATEMENTOF PROBLEM

The purpose of this report is to present methods for deter-
mining the nature of the transient responses of aircraft having
nonlinenr stability derivatives and to show some qualitative
redts of prehinary investigations.

In the present report, consideration is given to the longitud-
inal motions of a canard configuration with the angle-of-
attack transients resulting from step elevator deflections
serving to illustrate the effects of the nonlinear stability
derivatives. Two longitudinal-stability derivatives were con-
sidered to have nonlinenr characteristics which were caused
by the variations of pitching-moment coefficient and lift co-
efficient with angle of attack. The main emphasis herein
was placed on the effects of the nonlinear variation of pit&-
ing-moment coefficient with angle of attack since the slope
of this curve is a measure of the static stability of the aircraft.
J?igure 1 illustrates the nature of the nonlinearities under dis-
cussion. Such nonlinearities would be apparent from wind-
tunnel te9ts.

In the analysis and study of the aircraft longitudinal
motions, two degrees of freedom with constant forward
velocity and disturbances from level flight have been ss-

sumed. This assumption results in a consideration of tho
short-period mode of motion only; therefore, only the effects
of the nonlinemities on this “mode will be apparent.

In addition to studying transients of the aircraft in re-
sponse to step elevator inputs, consideration was also g-iven
to the response characteristics resulting when such an air-

J
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Figure l.—Typical nonlinearitiea in pitching-moment and Uft
coeffloients.

ai (al-a) K, 8
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(a) Angle-of-attack stabilization.
(b) Attitude stabilization.

FIGURE2.—Blook diagramE illustrating the two types of proportional
automatio control under consideration.
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cmf t is subjected to simple forms of automatic stabilization.
Two cases were investigated in this respect and are illustrated
by block diagrams in figure 2. In both cases the automatic
control consists of an error-sensing device and a zero-lag
proportional servomotor. In figure 2 (a) angle-of-attack
stabilization is considered with the control-surface deflec-
tion ~being proportional to the difference between a reference
angle of attack af and the actual angle of attack a. In
figure 2(b) attitude stabilization is considered where the
control-surface deflection ~ is proportional to the difference
between a reference attitude angle O,and the actual attitude 0.

THEOE~CAL METHODS

Equations of motion,-The longitudinal equations of mo-
tion of an aircraft having two degrees of freedom with
constant forward velocity and disturbances from level flight

d
in terms of the differential operator D=a are

The terms which are nonlinear functions of angle of attack
nro written as Cm(a) and CL(a) and represent, respectively,
the pitching-moment coefficient and lift coefficient that exist
at the instrmtaneous angle of attack.

Based on the usual mwmptiom of limmr variations of Cm
cmd CL with a, equations (1) remain as ordinary linear differ-
ential equations with constant coefficients and are handled
by familiar mathematical methods. The types of non-
linearities illustrated in figure 1, however, obviously make
linearization of these parameters over the entire range of
angle of attack an inadequate approximation. Since the
methods for the solution of linear differential equations are
so well known, rm approximation of the nonlinear functions
with linear segments, for which the equations cm be written
for n specified range of angle of attack, seems advisable.
~iguro 3 is an illustration of this method of representing a
nonlinear function. The three straight lines shown are
used to represent a variation of pitching-moment coefficient
with angle of attack simihw to that shown in figure 1 w-here
the slope at outer a is twice the slope at central a. Each
segment of this representation can be expresmd as follows:

(?.(a) =k,a+u

where Icl and u must be speciikd for each range of angle of
attack. In general, therefore, the representation of the
nonlinearitiw are written as

Cm(a)=k~a+u (2)

cL(a) ‘k~a+~ (3)

where the values of kl, h, u, and q are constants and apply
only for a specified range of angle of attack.

The substitution of equations (2) and (3) into equations
(1) redts in linear differential equations with constant co-
efficients, namely,
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(4)

These equations apply only to the region of angle of attack
in which the given constants are as defined.

Aimraft tramients.-Since variations in angle of attack
following step elevator deflections may be in regions where
the definition of the nonlinear functions has changed, com-
plete knowledge of the motion is required and solutions of
the equations must be written in terms of necmary condi-
tions existing at an arbi@ry time. In other words, the
values of the angles and their rates of change must be known
at the time one set of equations ceases to apply so that the
same conditions and, therefore, continui~ may be satisiied
when the next set of equations becomes applicable. With
these considerations the use of operational methods based
on the Laplace transformation affords a means of handling
the W3icultiw already noted and provides the required
analytical expressions for the desired transient responses.
References 1 to 4 give adequate discussions of the use of the
Laplace transformation in the solution of differential equa-
tions. Since the usual forms of the Laplace transformation
require the initial conditions at zero time, it k convenient
to make solutions for the required motions for each range
of angle of attack and it may be nec-ary to redefine the
time as zero whenever the equations must be changed be-
cause of the representation of the nonlinewitk Such a
procedure. is obviously time consuming and tedious since
solutions for all the parameter are required for a complete
definition of initial conditions. A rather complete discussion
of this procedure can be found in reference 5.

a.{ }-

a <-a,
— k,= -2

u = -E+l)a,

L

o
Amjle of atfack, u

FIGURE 3.—Ilhmtration of the method of approximating nonlinear
functions with linear segments. C.(.) =kw + u.
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Closed-loop stability.-!lhe stability of a complete closed-
loop system consisting of the ticraft and automatic-control
unit, such as illustrated in figure 2, has been theorized by
many authors when the system is linear throughout. (See,
for example, refs. 2, 6, 7, and 8.) Briefly, this procedure is
to plot the flequency response (ref. 9) of the aircraft as a
Nyquist diagram (refs. 2, 7, and 8) or as an amplitude-phase
plot (refs. 2 and 6) and then to determine the autopilot ccm-
stant K required to make the system stable and give, as
closely as possible, the desired response. Since the fre-
quency-response method requires a completely linear system,
such a method wm.not be applied in the conventional manner
and have meaning because of the dehition of the nonlinear
functions.

This st~bility of the closed-loop system, however, can be
examined by the methods of Routh and Hurwitz described
in references 10, 11, and 12. This procedure requires the
characteristic equations that exist for each region used in
the representation of the nonlinear functions. If these in-
vestigations indicate stability in all regions of the paranietric
representation, the stability of the closed loop is generally
assured. Such methods could also be used, of course, to
determine the values of the autopilot constant K required
to insure complete stability.

The application of this technique for the cases of angle-of-
attwk feedback and attitude stabilization is as follows:

(a) Angle-of-attack feedback: The control equation is
written as follows for the angle-of-attack feedback system
(see fig. 2(a)):

6=K1(cq—a) (5)

When equation (5) is substituted into equations (4) and the
Laplace transformations of the resulting expressions are
formed, the solution for a can be written in terms of the
transform variable as

(6)

where the term ~.C. (s)]= is the function of s (involving
the initial conditions and constants) that results when the
control equation and equations (4) have been transformed
and solved for a(s) and the other coefficients are constants.
Th~e expressions are tabulated in terms of the aircraft
parameters in the appendix.

The stability criteria of the characteristic equation of
equation (6) are

2{wm+K,a>0

}

(7)
w.2+K1b>0

The inequalities (7) allow a thorough investigation of the
effect-s of KI on .stabili@. Th~e criteria must be checked
in each range of a used in defining the nonlinear functions
which appear in equations (1) if the type of motion is to be
completely invAigated. The typ~ of motion possible are
similar to those of a simple spri.q-mass system with viscous
damping, which also has a quadratic characteristic equation
(see, for example, refs. 2 and 13). The equation which
describes the attitude variations as this type of system
operates can be determined by solving for 8(s) after equations
(4) and (5) are transformed as dewribed previously.

The angle-of-attack feedback system does not exhibit a
zero error at steady state even for the completely linear case.
This condition may be seen by applying the iinal-vahm
theorem (see, for example, ref. 2, pp. 72-73) to equation ((3)
and noting that the steady-state angle of attack dots not
equal the input at and, hence, the error af— a does not tcmd
to zero. This characteristic also is present when the non-
linear functions are considered. For the nonlinearities
considered herein, all a transients are completely stable, that
is, exhibit steady-tate values.

(b) Attitude stabilization: The control equation is written
as follows when attitude stabilization is considered (see fig,
2(b)):

a=lC2(e,-e) (8)

When equation (8) is substituted into equations (4) ancl the
transformations are made, the complete closed-loop solution
for 0(8) becomtw .

(q

where [1.C. (s)]0 is the function of s (involving initial con-
ditions and constants) that results when the control equation
and equations (4) have been transformed and solved for
0(s), and the other factors are constants as defied in the
appendix

The criteria for stability of the cubic characteristic equa-
tion of equation (9) require that all coefficients be positive
and that

(2@J (uJ+K”) –K~>o (10)

These criteria allow a complete investigation of the eflect of
Kz on stability and should be checked for mch angleof-
attack range where definition of the nonlinear functions
changes. The angl~of-attack variation a(s) for this system
can be solved for from the transformed equations (4) after
the control equation (8) is considered.

For the completely linear ewe when stability is asmnwl,
equation (9) reveals that the system is a zero-error system,
the output tending to equal the input and the error (Oi–O)
tending to equal zero. For the nordinearitiea considered
herein, two conditions aflecting operation of the system can
exist, and thwe conditions result primarily from the non-
limmr C.(a) function. @’or normal CL(CY)functions whore
the slope remains positive and is not greatly changed in the
angle-of-attack regions, this nonlinearity will not affect tho
stability or “oscillatory characteristics to any appreciable
extent.) For the system having a nonlinear C.(a) function
and a Kz satidying the stability criteria for all values of a, it
may be shown from the examination of steady-state a and
steady-state 8 following a step input 0~ that the system re-
mains a zero-error system. Consider secondly the ewe
where the C..(a) function has an unstable slope at central a

and a stable slope at outer a and a Kj such that stabili~ is
assured at outer a but not at central a. The instability at
cential a means that the angl~of-attack motion in this
region is divergent to outer a; that is, no stendy-state a can
Oxist at central a. Upon examination of a(s) it will also be
noted that no steady-state a can exist at outer a; however,
the motion at outar a is stable, and the a tends to the region
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of central a where the motion has been shown to be divergent.
This process is summarized as follows:

(1) At central a, the angle-of-attack motion is always
divergent to outer a.

(2) No steady~tate a exists at outer a.
(3) The tendency of the motion at outer a is toward the

region of central a.
It is concluded, therefore, that the angle-of-attack motion

should, after some initial transients, become some form of
continuous hunting oscillation (nonsinusoidal) rendering the
complete system continuously oscillatory. A constant-
amplitude, constant-period motion would also be suggested
from tho summary of the angle-of-attack tendencies when
examined on an energy basis, an ener~ balance becoming
established between that energy fed in by the unstable
mode and that dissipated in the stable regions.

In summary, the attitud~tabilization analysis reveals
the following significant facts:

(1) The autopilot proportionality constant K, can be
adjusted for complete stability at all values of a and renders
the system a zero-position-error system for the nonlinearities
considered herein.

(2) If the C..(a) nonlinearity is such that the constant K,
assures stabili~ at outer a but not at csntral a, continuous
hunting oscillations can exist.

Closed-loop transients,-Equations (6) and (9) are com-
pletely espressed when cq(s) and Ot(s) are known. For a step
function of unit magnitude,

0~(8)=aJS)=~

Upon substitution into the proper equations, the transform
function is known and the inverse transformation to a(t)

or o(t) or both a(t) and d(t) can be determined.

METHODSOFNONLINEARMECHANICS

I’or the types of nonlinear functions represented in figure
1, the use of a cubic equation is suggested as a possible
representation of the nonlinearity over an adequate range
of angle of attack. Such a cubic representation would, of
course, make the differential equations of motion of the
aircraft nonlinear. To many such problems, however, the
methods of nonlimw mechaniw have proved a useful means
of satisfactory analysis, although the results are seldom
available as the familiar time responses. References 14 and
16 rdlord very complete discussions of the methods and
technique9 used in applications of the theory of nonlinear
mechanic9.

l?or the present report a single application of the methods
of nonlinear mechanics will be discussed in detail to illustrate
the application and usefulrmw of such methods to the problem
considered. For the case chosen and, in general, for the
cn.scs where the principles of nonlinear mechanics are readily
applicable, the procedure is to rewrite the differential equa-
tions of motion into rm independent system, that is, into a
system of equations in which time appears only as a differ-
ential dt. Such a representation is possible for many cas~
or can be derived by a suitable change in variable. After
such a rem”sion, n phase plane can be defined and the cbarac-
tmistica of the motion can be determined bv trai ectories in
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this phase plane. The coordinates of the phase plane will
usually allow the traj ectoriea to describe successive stat~
that the system may take as time proceeds but will usually
not indicate the times at which the various states exist. For
example, trajectories of displacement against rate of displace-
ment would be sufficient to describe the succ~ve states of
motion of an oscillating system having one degree of freedom.
The graphical representation of trajectories in the phase
plane is facilitated by the construction of a fanily of isoclines
where each isocline is a locus of points where the trajectories
have a given slope (ref. 15, pp. 10-11 and 248-252). Inves-
tigation of the singularities in the phase plane indicates the
type of motions which remdt from given initial conditiom,
such as steady hunting oscillations or aperiodic or oscillatory
responses that are either divergent or convergent. Refer-
ences 16 and 17 are two examples of applications of the
technique9 of nonlinear mechank to cases in which an
automatic-control component has rendered a system es-sen-
tially nonlinear.

The example chosen for this discussion is an aircraft
having a nonlinear variation of pitching-moment coefficient
with angle of attack under the iniluence of angle-of-attack
stabilization (fig. 2(a)). The following assumptions are
made: (1) the other coaikients are constants as listed in
the appendix, (2) the reference angle of attack a, equals
zero, and (3) the nonlinear pitching-moment variation has
a positive slope for small positive and negative values of
angle of attack. As a consequence of the second assump-
tion, the following equation will apply:

6= —Kla (11)

For the representation of the nonlinear function C.(a),
consider the Cm curve in figure 1 having a positive slope at
small value of a. If the a intercepts are symmetrical about
a= O, a cubic representation of this curve would take the
form

O.(a) =tid-C1a (12)

where Q and q are constants.
Considering a simplitled notation for the equations of

motion (eq. 4) and substituting equations (11) and (12)
remdt in

@D20+~D0—COd+C~ a=~(—K1a)

b,D6+ bJ2a+ b3a=0 }
(13)

where CL6and Om&have been assumed to be zero. The com-
plete definition of constants is given in the appendix Equa-
tions (13) are rewritten a9 follows to illustrate that they
can be reduced to an independent system:

(14a)

(14b)

ad
where 4=Z and use is made of the equation b~= —bl. These

equations suggest that the complete motions can be exam-
ined by the instantaneous stat= of a and 8. This idea is
also apparent from the Laplace transform procedure sug-
gested in a previous section since only the initial values
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of a and 4 are required for a definition of the motion.
Therefore, the a,d plane is the phase plane for these con-
siderations.

Before actual trajectorim are drawn in this plane, a
fwnily of isoclinm is determined. The slope of any path
in the phase plane is d6/daand is determined by the division
of equation (14a) by equation (14b). The resulting equa-
tion is

Lf dO/dais assigned a constant value A, equation (15) can be
reduced to the form

wh~ch is the isocline reprwmting the locus of all points in
the phase plane where trajectories must have the slope X.

The singularities of the system are defined as the equilib-
rium positions (steady +tate values) that the system may
attain and are determined from equations (14) by using

1.2.

.8 ‘

.4

f
/

-.8-

-1.2
-2.0

When tbe numerical values for the constants as givcm in
the appendix are used, the following equation results for
the isoclimss:

t#=
–309(10)ad+(4.51A+ 257) a

h+4.02

where x is the slope in radians per second per radian. The
singularities are found from equations (14) when conditions
of equation (17) are imposed and are

(1) a=O, 4=0
(2) a= O.0278 radian= l.59°, 4=0.1254 radians per second
(3) a= –0.0278 radian= – 1.59°, 4=—0.1254 radians pm

second
Figure 4 is a plot of the a,d phase plane and shows some

isoclin~ for various x It is important to note that the
trajectories or paths which describe the motion have a
definite direction that depends on the position in tho phase
plane. This direction is determined from equations (14)
by considering the value of equation (14a) to be a vector
component in the Odirection and the value of equation (14b)
to be a vector component in the a direction. The direction
of the resultant of these two components is the direction of
the trajectory at that point in the phase plane; this resultant
vector is termed the phase velocity at that point since the
vector components determined from equations (14) ore thcm-
selv~ velocities. The arrows shown on the isoclines w-e not
phase-velocity vectors but indicate onlv the direction of the
phase velocity on the various isoclines.”

(uda—=- -_
dt (it-o 07)

,1= -2 \

A=-8

‘4.02 \
72

/
~

Angle of Ot

-20 -2

-4.02’

I I I
.4 .8 1.2

k,a, deg

FIGURE 4.—The phase plane (a, ~ for the example ifluatrating the methode of nonlinear mechanics. Three trajectories are shown; fsoolinos of
constant x are labeled.
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Several trajectories are shown in figure 4 for various initial
conditions; these were drawn by the graphical method dis-
cussed in reference 15, pages 248–252. It is evident from
them trajectories and from the directions of phase veloci@-
on the given isoclines thwi the two singularities (+ 1.59°,
+0. 1254) are points of stable equilibrium; that is, the
motion following a disturbance will oscillate about and tend
to one of these stable stat=. A singularity of this type is
termed (refs. 15 and 16) a “stable focus” which means that
the motion tends to this equilibrium in an oscillatory manner.
The other singularity at (0,0) is an umstable equilibrium
point. This instability is evidenced by the fact that the
slightest disturbance from this point results in a motion to
ono of the stable foci. This singularity at the origin is
termed a “saddle point.”

In this brief discussion it is evident that much can be
learned about the characteristic of the system without
resorting to actual solution of the nonli.mmr differential
equations. The results pr~ented for this case from an
inspection of the nature of the phase plane cw also be
verified by the application of the various theorems presented
in references 14 nnd 15, which nllow a determination of the
stability of singularities and of such an imporhmt proper@-
ns the existence or nonexistence of stendy oscillations in the
system. The methods of nonlinear mechanics, however, are
relatively new and, in their present state of development,
they cannot be expected to hnndle an extreme variety of
problems. The methods become quite involved even for
systems having two degrees of freedom in which deihition of
the motion requires more than two quantities; the methods
become almost impowible when more degrees of freedom are
introduced.

ANALOG RESULTS AND DISCUSSION

As a part of the investigation of the effects of nonlinear
stability derivatives on the transient longitudinal motions
of an riircraf t, the problem was studied through the use of
electrical analog equipment. The analogs employed were
the Engine and Control Simulator manufactured by Phil-
brick Researches, Inc., and the Reeves Electronic Analog
Computer (hereinafter designated the Philbrick Analog and
the REAC, respectively), the units being, respectively, at the
Lewis Flight Propulsion Laboratory and the Anw Aero-
nautical Laboratory of the NACA, Dwxiptions of the
analog units are available from various sources, for example,
references 18 and 19.

The nordinesrities considered in these studies included
both nonlinear functions repremnted in equations (4), that is,
the nonlinear variations of pitching-moment coefficient and
lift coefficient with angle of attack. In all problems pre-
sented for both analogs, the nonlinear functions were repre-
sented by straight-line segments although the methods of
representation used in the two analogs diilered. The other
bnsic constrmts used are tabulated in the appendix, and the
nonlinear functions are defied when presented. The
presentation and discussion of results are given in two sec-
tions: (1) aircraft transient raponses and (2) closed-loop
transient responses. The first section conti analog solu-
tions of the transients in angle of attack (and, in some cases,
rate of pitching) resulting from step deflections of the canard
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elevator control surface. The second section presents some
solutions for the closed-loop cases shown in figure 2. In both
sections various types of nonlinear functions were chosen ns
being possibly representative of the nonlinearities likely for
the wumed canard contiewation.

The results from the Philbrick Amdog were obtained by
photographing an oscilloscope; the REAC results were made
with recording elements. The intent of the Philbrick studi~
was to survey qualitatively a wide range of nonlinear func-
tions by observing and recording the more unusual tran-
sient conditions. For this reason high accuracy in aircraft
simulation wns not required and the results are discussed in
this light. In the REAC problems more exact solutions were
required, the accuracy in fial a and # transients being esti-
mated at approximately 2 percent and tho accurncy of
individual REAC components being considerably better.

AIRCBAF3!TRANSIENTRJHPONSIH

The analog results presented herein are aircraft transient
responses in angle of attack (and pitching veloci~) due to
step deflections of the canard elevator surfaces. Although
only a few nordimmr situations are discussed in detail, the
remarks which summarize the report are based on a much
larger number of cases for which analog solutions were ob-
tained.

case I. Nonlinear C.(a): ~=nkl, O<n< 1, .-.2”<A2”;

dC.
~=kl, a< —2°, a>2°.—In case I the nonlinear function

is the pitching-moment coeflkient due to angle of
attack where the slope at values of a less than —2°
and greater than 2° is larger than the value of the slope in the
region —2°< &2°. IrI this case, the slope is shays nega-
tive and stability is wwred. Since the frequency of the
transient oscillations is determined principally by this slope,
changes in the frequency (period) are expected as the region
in which the value of the steady -tate angle of attack changes
because of various elevator deflections. Little change in the
damping envelope is expected.

Results from the Pbilbrick Analog are premnted in figure
5. In this run the value of kl Tss equal to —5.14 and the
slope for –2°< a<2° is 0.463k,= –2.38. The a transient
shown in figure 5(a) is the completely linear case where
C.(a) =kla. The total transient time shown represents
1.325 seconds. When the described nonlinearity in C=(a)

is introduced, the results are shown by the four remaining
records of figure 5. Curves of figures 5(b) and 5(d) are
two a transients, whereas curves of figures 5(c) and 6(e) me
the corresponding nonlinearitks. These nonlinearities were
photographed by using the output of the element generating
the nordinear function ns the vertical coordinate of the
oscilloscope and the angle of attack as the horizontal co-
ordinate. Hence, the region of angle of attack covered in
the transiexks of figures 5(b) and 5(d) is shown again by the
region of the nonlinearity pictured. The large spots shown
on the nonlinearities represent the trim values of a due to the
old and new 6 input. Hence, figure 5(c) shows that the
vahm of ~ change in such a way as to make the trim values
of a change from one extreme of the nordin earity to the other.
Since the slopes at these outer values of a are the same as that



948 RDPOItT 1241—NATIONAL ADVISORY COMMSTT’EE FOR AERONAUTICS

(a) Linear cxwj ~=–5.14.

(b) Q tMIShIIt. (c) Nonlinearity.
(d) a traneient. (e) Nonlinearity.

FIQmm 5.—Philbnck solutions for case I. Airoraft a transience and parts of nonlinearity involved; nonlinear C.(a), $$= -6,14, a<- 2°,

dC.
a>2°; —= —2.38,

da
—2°<.<20; $c~L=3.49, all m

shown for the linear case, the period should remain prac-
tically unchanged (compare figs. 5(a) and 5(b)).

Figure 5 (d) is the a transient when the change in ~ causes
the trim a to change horn a point where the slope is large to
one in the region of reduced slope. The ratio increase in
period (reduction in frequency) shown in figure 5 (d) is ap-
proximately equal to the theoretical variation of being in-
verecly proportional to the square root of the decrease in
slopo. (This variation will apply for lightly damped sys-
tems.) For the three transients shown, the damping envelope
is seen to be essentially unchanged, the time required to reach
steady state being about 1 second in each case.

,

Two solutions from the REAC for this case (reproductions
of actual recordings) are presented in figure 6. For these
solutions the value of kl was —6.0 and n=O.6, and the cases
shown are the results of moving the elevntor in a programmed
manner from 0° to about 8° and after steady state is reached
to about —4:. The variations of 4, a, and 6 with time we
shown in this figure. The slight phase difference betwem
control motion and the transients in the REAC solutions are
due to the recording equipment and not to aircraft dynamics.
The ~2° (+0.035 radian) positions noting the break points
in the nonlinearity are also indicated on the a transient. The
same general characteristic are observed for these two tran-
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FIGUIZE6.—REAC solutions for me I. Aircraft transients; nonlinear Cm(a) function with ~= —6.0, a< —2°, .>2°; ~= —3.0,

—2°<a<20; d(%
~ =3.49, all a.

sients as mentioned previously, namely, the change in period
and approximately the same time required for both transients
to reach stendy stite. The steady-tate values for a and 4
check reasonably well with those predicted theoretically. In
figure 6 the responses show clearly that when the angle-of-
attack variations are such as to be in the region of breaks in
the nonlinearity, the periodicity is not constant; when they,
however, me in an a region where the slope of the nonlinearity
is constant (near steady state), the period does remain con-
stant. For cases such as this illustration where it is rela-
tively certain that the system is very lightly damped, this
change in periodicity and the eventual constant period near
steady state can be attributed to a nonlinearity in the eftec-
tive spring constant of the system, in this case Cm (a).

case II, Nonlinear C=(a): ~=k~, a<–2°, a>2°; ~=

—nkl, O<n< 1, —2°<a<20.—ln case II the varjation of the
pitching-moment coefEcient with angle of attack is nonlinear
and considered to have a positive (unstable) elope in the
range —2°< <2°. A trim angle of attack for a given eJe-
vator deflection 6 cannot be expected to exist in the region
—2°< <2° since in this angle-of-attack region the transients
are divergent. (This condition is shown by the presence of
two real roots of opposite signs of the quadratic characteristic
equation of equations (4), the negative root indicating a
damped subsidence and the positive root indicating the diver-
gent aperiodic mode.)

I?igure 7 presents some Phdbrick solutions for this case
where kl= —0.838, nx 1. The total transient time shown
represents 2.13 seconds. The a transient shown in figure 7 (a)

is for the completely linear we with Cm(a) =kl~ The period
of the damped oscillation is 0.284 second. Figures 7 (b),
7 (d), and 7 (f) area transients for ditbrent ?iconditions, and
figures 7 (c), 7 (e), and 7 (g) are the parts of the nonlimw
function involved in each transient.

From the nonlinearity shown in iigure 7 (c) the change in
trim angle of attack is large with the new * angle of at-
tack well into the region of stable slope. Thereforej little
change is qected or noted in the transient of figure 7 (b)
as compared with the linear case in figure 7 (a). As the
value of 8 is changed and the new trim angle of attack comes
nearer to the break in the nonlinemity (see fig. 7 (e)), the
initial portion of the transient of figure 7 (d) has become
distorted. The characteristics of the oscillations about the
new trim angle of attack, however, remain unchanged. As
the ~ is changed only slightly, a new trim angle of attack is
found to the left of the region of unstable slope as shown in
figure 7 (g). The tit overshoot of this transient (fig. 7 (f))
is to an angle of attack in the unstable region, but the
energy of the system is such that the complete unstable
region is not traversed and the oscillatory characteristics
about the new trim position become established.

Only a very slight change in the 6 was found to be required
for the change in trim angle of attack exhibited in the
transients of figures 7 (d) and 7 (f). Only when the new
trim angle of attack was near the breaks in the nodinewities
did the tra~”ents indicate any peculiarities which might
give an indication of the presence of a nonlinearity in the
system.
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FIGURE7.—PMlbriok solutions for case II.

The REAC solutions presented in

(a) Linear msq

(b) a transient.
(d) a trati~t.
(f) a transient.

~=–O.838

(c) Nordineari@’.
(e) Nordineari@.
(g) Nonlinearity.

~“=–O.838, a<-2°,Aircraft a transients and parts of nonlinearity involved; nonlinear c.(a), da

‘CL 3.49, au a.a>2°; ~=0.838i —2°<a<20; ~=

figure 8 for this csse I
are for a value of kl= ~3.0, n=O.5. ‘The two examPles
shown start from the same values of & trim q and 4 with
the fit changing horn ~.=4° to ~ .= —2° and the second
changing to a= —4°. In both of th~e conditions, the
angle-of-attack variationa are from a point of stable equi-
librium at positive a to a stable trim position at negative a.
The transients indicate that the initial portions give the
only hint of nonlimmrity in the system. As noted previ-
ously, this initial part of the a transients becomw more out

of the ordinary as the now position of trim a approaches tho
break point of the nonlinearity. These slight slope changes
in the a transient are almost unnoticeable in the second
curve. Examination of the # transient%, however, indicdxa
clearly the effect of the nonlinearity on the rate of pitching
in the initial phase of the response. After this tit effect
on the transients, the oscillatory characteristics become very
regular.

‘c’ k,, & –2°,case ~. Nonlinesr C~(a): ~= a>2°;
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Fmmm S.—REAC solutions for case II. Aircraft transients; nonlinear C.(a) function with $$= —3.0, a< —2°, a>2°; ~=1.5, —2°<a<20;

==3.49> all a.
da

‘~=nkf, O<n< 1,
0%

—2o< & 20.—In cage 111 the variation of

lift coe.fllcient with mgle of attack is the nonlinear function
having CLlarger slope at the outer values of ~ Since the
aircraft is lightly damped, the primary contribution of the
lift-curve slope to the oscillatory characteristics is in the
damping of the motion. Since, for this case, the slope of
the pitching-moment-coeilicient curve against angle of

‘ttackkacomtant(%=k’)n oc-ektobe ‘ec’ed
in the period of the transient oscillations.

In figure 9 three Philbrick solutions are shown. Figure
9 (a) is the completely linear case with k,=3.49 (n= 1.0)
rmd kl= — 1.90. The transient time is 2.48 seconds, the
period is 0.194 second, and the cycles to damp to one-tenth
amplitude me 3.39. Figure 9 (b) is the transient which
results when the trim a changes from a re.ggon of large slope
(c!CJda) to a region of a of reduced slope. The value of n
is 0.328 in this instance, that is, the slope at central a is
about one-third of the slope at outer a. The period is
essentially unchanged although the number of cycles to
damp to one-tenth amplitude has increased to 4.20. For a
change in trim a from the region of reduced slope to the
region where the slope is the same as the completely linear
case, the transient in figure 9 (c) is csentially the same as
the one shown in figure 9 (a) for the linear case.

The change in slope used in this example is much greater
than would be expected in a practical case; thus this change
indhmtes that the actual effects of this parameter might result
in very little change in the a transient characteristics. It is

also emphasized that a simple examination of the transient
(or even a comparison between figs. 9 (b) and 9 (c)) could
not indicate that the nonlinemi~ was in lift-curve slope
because the effect of variation of damping in pitch C=,

would also be manifested by changing the damping but not
afTecting the period. In actual flight tests, however, normal-
acceleration records might help to isolate this effect as a
nonlinear C~(a).

The REAC solutions shown in figure 10 lmve k,=4.19 and
n= O.834. The linear equation of CL(a)= —3.Oa was also
used in these runs. The variations of 6 shown were from
6=0° to 6~8° to 6=—4°. The periodicity is constant for
these cases even though the variations of a in the second run
are about the break point (a= —0.035 radian) of the non-
lineari@-. Since the two slopes of the nonlinear C.(a) func-
tion are nearly the same, the damping is practically unaffected
in the two casei3; in fact, plots of the logarithm of the peak
amplitudw about steady-state values aggt time for these
two cases indicate essentially the same slope and, therefore,
the same damping, although the second run has a slight
amount of scatter in the points. These cases, which have a
more reasonable value for n than was used in the Philbrick
solutions, indicate the slight efbcts of this parameter under
the conditions invedigated.

Case IV. Nonlinear C=(a) and C&(a).—k case IV the two
nonlinearities used in the REAC solutions for cases I and
JJI were used together in the same run for two transient solu-
tions. These results are shown in figure 11 for 3 changes of
0° to 4° and 0° to 8°. In the iirst transient only the first
overshoot is greater than a=2°, the break point of the non-
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(a) n= 1.0, completely linear =a
(b) ?I=O.32S.
(0) n= O.328.

l?mmm 9.—Pbilbriok solutions for csse III. Aircraft a transients;

‘CL 349, a< –2”,nonlinear CL(.); ~= . a> 2°; %+3.49),

—2°<a<20; ~= —1.90, all .

linearities; hence, the transient characteristic are those
defined entirely by the slopes of the nonlinearities at small a.
In the second transient the period becomes constant after
the first two cycles rmd exhibits characteristics similar to
that of the fhwt transient of figure 6 with the single nonlinear
function C=(a). Th~e results might have been expected
since the nonlinenr C~(a) had so little effect in case III.
Other runs for cases where two nonlinearities were in the
system indicated that the most noticeable changes in the
transients occurred with changes in the C=(a) function, as
indicated previously.

Review of effects of nonlinewities on aircraft transients.—
Nonlinear variations of the pitching moment readted almost

solely in efTects on the period of the transient oscillations.
Differences in the period of the oscillations in the different
regions of angle of attack, due to the difFerent slopes of the
nonlinear function in the9e regions, were an effective way of
noting the presence of this nonlinearity. Another noticeable
effect was the irregularity in the period of the oscillations
when the trim angle of attack for the various elevator deflec-
tions was near a break point of the nonlinearity. When the
trim angle of attack is removed from the break in the non-
linearity, the oscillation characteristics become very regular,
that is, constant period and damping. If only moderato
changes in trim angle of attack result from the control motion
and the nonlinearity or a part thereof is travmsed, the initial
sections of the transients may indicate the presence of the
nordinewity through small slope variations, although the
final oscillatory chractaristica are quite regular. For large
changes in trim angles of attack under the conditions noted,
the small variations in the initial sections of the transient
may become so slight as to be indistinguishable from the
perfectly linear case.

For cases when the nonlinem variation wax in tift coeffi-
cient, large slope changca were required before changes in the
oscillatory characteristics became appreciable for trim angles
of attack in the different regions. This nonlinearity affected
only the damp~~ characteristics of the motions, the period
remaining constant. This effect could be ospected since
very large changea in damping would be required to alter the
period of this lightly damped system.

When the two nonl.inearitiea were considered simultane-
ously, with rwonable variations in each, the predominant
change9 in transient characteristic were similar to thoso
noted for the single nonlinear pitching-moment variation,
that is, the changw in periodicity previously mentioned with
the time to damp remaining essentkdly unaltered.

CLOSED-LOOPTRANSIZNTR~PONSES

The remhs in this section are transient response curvw
illustrating the dynamics of the two closed-loop systems
depicted in figure 2. The discussion is made in two parts:
the closed loop with angle-of-attack feedback and the atti-
tude stabilization; Philbrick and REAC solutions for several
cases are included. The nordinear characteristics are those
previously described for the aircraft; the error~msing devices
and proportional servomotors are considered as zero-lag
systems. The transients are the re9ponses to step input,
comm~d siguds iTIat ~d 6<.

Angle-of-attwk feedbaok.—’l%e block diagram for the sys-
tem with angle-of-attack feedback is shown in figure 2 (a).
Transients from the Philbrick Analog are shown for two
cases: one where the nordimmr function is C~(a) and the
other for the nonlinearity C.(a). REAC solutions wore
made for two different nonlinear functions of pitching-
moment codlicieut.

In the Philbrick solutions the value of KI was approx-
imately unity. For the case with nonlinear C~(a), the
conditions are the same as dwribed for case III. of the
previous section where the lift-curve slope at outer values of
a is greater than the slope at small values of a. The tran-
sients shown in figure 12 resulted from changes in ai that
caused the final values of a to be in regions where the lift-
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‘CL 349, –2°<a<20;l?mmm 1O.—REAC solutions for case III. Aircraft trw-ents; nonlinear CL(.) function with ~=4.19, a< –2°, a>2°; ~= .

9=–3.0, all a #

curve slope is different. I?igum 12 (a) shows the a transient
about a stwdy-state value of a in the region where the lift-

- (%=114)curve slope is reduced The oscillations in

figure 12 (b) are about a- steady-state value of a in an a

region of larger lift-curve slope
(%%”)” ‘eincre=e

in lift-curve slope is seen to improve the damping character-
iatics of the closed-loop system with angle-of-attack feed-
back in much the same way as the aircraft transients were
improved. Invcdgation of the characteristic equation of
this closed loop, the denominator of equation (6), shows that
the principal effect of such a change in lift-curve slope would
be most evident in the damping. Comparison of transients
of figure 12 as well as an emmination of the characteristic
equation indicated that the frequency of the oscillations is
const rmt.

The Philbrick solutions with nonlinear Ca(a) were made
for the case where the slope of the pitching-moment-coeflici-
ent curve was positive (unstable) at small a and stable at
outer a. The outer slopes were — 1.90, and the center slope
was 0.655. Two a transients illustrating the effects of this
nordineari~ on the closed-loop responses are given in figure
13. In figure 13 (a) the change in reference angle crfresults
in a change in the steady~tate value of a fkom one region
of stable slope to the other. In figure 13 (b) the input
change causes the final value of a to be a value in the re@on
of angle of attack where the aircraft has an unstable pitching-

moment curve, and the transient is satisfactory. The
physi~ of this change is explained by the action of the angle-
of-attack feedback which cauw the control-surface deflection
5 to give a moment proportional to the instantmeons a;
thus, this moment adds ta the effective spring constant of
the system. In this instance, the value of KI is large enough
so that this contribution overcome the destabilizing effect
of the spring in the aircraft at central a and renders th?
overall system stable in this region of u This stabti ty could
also be determined from the inequaliti~ (7) which show that
the value of K, used assures complete stability of this closed-
loop system.

REAC solutions were also made for a case where the pitch-
ingmoment curve had an unstable slope at small values of
angle of attack. The same conditions as discussed for
REAQ runs in case II were used in this solution with a value
of dC~

—=–3.o for the stable slopes at outer a and $$=1.5
da

for –2°<a<20. The value of KI was 1.0. The three a

tmmsients of figure 14 are for the at step inputs of 1°,4°, and
8°. The 2° position noting the break in the nordinemity is
ahow-n on ea& Curve. For this case, an examination of the

inequalities (7) reveals that the value of Kl= 1.0 is not large
enough to assure camplete stability in the region —2°<a<20;
hence, no steady-state value of a is possible in this reggon.
Thereforej for even the small input ai= 1°, the find value of a
is greater than the break point of the nordineari@. The
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I?KWRE11.—REAC solutions for case IV. Aircraft transience; nonlimmr C.(u), ~= –6.0, a< –2°, a>2°; ~= –3.0, —2°<a<2”; nonlinear
\

cL(a), 9=4.19, a<–z”, CY>z”; ~=3.49j ‘z”< tZ<Z”.

measured values of steady-state a due to the inputs involved
are 2.49°, 3.21°, and 4.24° compared with the theoretical
values of 2.50°, 3.26°, and 4.30°, respectively. Since the
vrdue of a is greater than 2° after the first cycle for all the
transients shown, the period of the oscillations is essentially
the same for all oase9.

The tin.alREAC solutions are shown for the cash where the

Cm(a) nonlinearity is the same as case I, namely, ~–3.O

dCm=_6 o when a<_20
where —2°<a<z0 and —

da”
, a>2°.

The at inputs were aggin 1°, 4°, and 8°, and the value of KI
was 1.0. The resulting closed-loop a transients are given in
figure 15. In these runs too, the steady-state values of a

check satisfactorily with the theoretical values. Note that
figure 15 (c) for a~= 8° has a final value for a of about 2°;
hence, the oscillations are about the break point of the
nonlinem-ity. The period of this transient is very constant
rmd is different from the period of figures 15 (a) and 15 (b)
which both remain in the region 0<a<2°. The period of
figures 15 (a) and 15 (b) is about 1.17 times the period of
figure 15 (c]. A theoretical value of the change in period,
obtained from consideration of the values defied by the two
slopes of C.(a), is 1.15; this value is close to the measured
value even though the oscillations were not in the region
where this result odd be expected to apply. StabiliQ of
the combination of the aircraft and rmtopiIot with control

proportional to angle of attack was obtained by adjustment
of the autopilot proportional& constant, and the effects of
the nonlinearitiea were similar to those noted for the aircroft
transients to step control deflections.

Examination of figures 14 and 15 indicates that all tlm
cases shown with nonl.inearities in the system exhibit a
steady-state error between the reference af and the actual a.
This characteristic is not due primarily to the nonlinearitios
of the system. An investigation of a linear aircmft in this
system of angle-of-attack f eedback reveals that the complete
system is not a zero-position-emor system; therefore, unless
some form of compensation is included in the loop tho output
will not equal the input at steady state. For the cases shown,
however, adequate compensation of the system with non-
linearity= as described may be no more dii%cult than that
required to make the linear system a zero-position-error
system.

Attitude stabilization .—In the results (REAC) to bo pre-
sented for the problem of attitude stabilization, the only
nonlinearity considered was C.(a). In the tit examplo tho
Cm(a) function used for REAC solutions for case I, dCJda
being negative for all a but having a larger slope &t outer a,
was employed. The secand example is the Urn(a) funotion
for case 11, dC./da having a stable (negative) slope at outer
a and an unstable slope at —2°<a<20 and a K, which does
not assure stibility at central a. The rmalysis in previous
sections indicated that the first example should exhibit
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(a) Steady-state a in region where %=1.14.

(b) Steady-state a in region where %=3.49.

Framm 12.—Philbriok solutions for proportional control system with
dCL

angle-of-attack feedback. a transients, nonlinear CL(~), X=3.49,

‘CL 1.14,a<–2”, a>2”; ~= —2°<a<20; dCm
~= —1.!?0, all a; auto-

pjlot constant KI = 1.0.

constant steady-state values after transients die out, whereas
the second example should show continuous hunting oscilla-
tions. For both cases K2= 1.0.

Figure 16 illustrates the first example where the Cm(a) hss
a negative slope at all a. Figure 16 (a) is for 0,=4.6° and
figure 16 (b) is for 0,= 9°. The upper cuIves in figure 16 (a)
and figure 16 (b) me the a variations, whereas the lower
curves are of the error Oi—d. In both of these cases the
error tends to zero indicating the zero-position-error charac-
teristic of the system. The cubic characteristic equation of
this system, see equation (9), would show an oscillatory
mode of motion superimposed upon the convergent aperiodic
mode and is indicated by the negative real root. From the
clmmcteriatics of the system at central a, the oscillatory
mode damps to one-half amplitude in about on-third of
the time required for the aperiodic mode to damp the same
amount. In figure 16 (b), the period becomes constant only
after the variations of a become less thsn 2°, whereas in
figure 16 (a) the period is constant throughout.

The results for the second example where the C=(a) func-
tion had m unstable slope in the region —2°<a<20 are
presented in figure 17. Curves in figures ]7 (a), 17 (b), and

17 (c) were results of step inputs of 0~of 0.7°, 4.6°, and 8.7°,
respectively. In each set the time variations of a and O*—O
are shown. Though the initial portions of the responses are
different for the three cases, the resulting hunting oscillations
are essentially the same. These curves show the constan~
amplitude constan&period oscillations predicted iD the
theoretical analysis for this type of nonlinewity.

Stability of the attitude-stabilization system, when the
control-surface deflection is proportional to tb e error in
attitude, could be completely assured for the types of non-
linearities considered herein with proper adjustment of the
autopilot proportionality constant. The existence of con-
tinuous hunting oscillations for a particular nonlinear
pitching-moment variation and improper autopilot adjusb
ment was predicted theoretically and demonstrated by
anfdog solutions. Tbe pilot of a conventional aircraft might
apply control in a manner that is approximately proportional,
though probably with a time lag, and such a bunting oscilla-
tion as described might be realized if that aircraft had a
characteristic lib the nonlinearity in the data of figure 17.

(a) Steady-state a in region where ~=— 1.!20.

(b) Steady-stato a in region where ~=0.655.

FImmE 13.—Philbrick solutions for proportional control system with
angle-of-attauk feedback. a transients and parts of the nonlin-

dCmearity; nonlinear C-(a), ~=— 1.90, a< —2°, a>2°; +0.655,

– 2°<a<20; 2=3.49, all a; autopilot constant F
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(a)

(b)

c)

Fmmm 1.L-REAC

o
\

.2 .4 .6 .8 Lo 1.2
Time, sec

(a) Q= 1°.
(b) ai=4”.
(C) a{=8°.

solutions for propotilonal control system with angl~f-attack feedbaok. No~nw C.(a), ~= 1.5,

dCm_
——–3.0, .<–2°, .>2°; %=3.49, alla; autopilot constant KI= 1.0.da

I.4

—2”<a<2”;
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(a)

(c)

FKlmm 15,—REAC

o .2 ‘ .4 .6 .8 Lo 1.2 1.4
Time, sec

(a) a{= 1°.
(b) a,=4°.
(0) a{=8°.

solutions for proportional control system with angle-of-attaok feedback. Nonlinear C.(a), ~= —3.0, –2°<a<20;

dC
~“= —6.0, a< –2°. a>2°; ~=3.49, alla; autopilot constant KI= 1.0.
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(o)

(b)
o .2 .4 6 .8 Lo 1.2 1.4

Time, sec

(a) 0i=4.6°.
(b) 0{=9”.

FIGURE16.—REAC solutionz for proportional control for attitude stabilization. ATonlinearC.(a), ~= —3.0, – 2°<cr<2”; ~= —6.0, a<–2°,

a> 2°; ‘2=3.49; autopilot constant Kj= 1.0.
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Fmum ~17.—REAC solutions for proportional control for attitude stabilization. .- dC_ATonlinearCm(a), ~=1.5, —2°<a<2 , ~= —3.0, a< —2°,

‘CL 3 49; autopilot constant K,= 1.0.a>2°; ~= .
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CONCLUSIONS

A study has been made concerning the efleots of two non-
linear stability derivatives, caused by the nonlinear varia-
tions of pitching-moment and lift coefikkmts with angle of
attaok, on the longitudinal motions of an airoraft. In
addition to the theoretical methods discussed, the excellent
adaptation of analog equipment to this dynamical study
gave results for the responses of a canard aircraft to step
control deflections and to the influence of two types of
proportional automatic control. From the theoretical con-
siderations and the analog results presented herein, the
following conclusions snrnnwize the investigation:

1. When the nonlinear functions are approximated by a
series of linear segnmnts, the methods of the Laplace trans-
formation allo-w the transient re9ponse9 of the aircraft alone
and also with proportional automatic control to be calcu-
lated. The computational procedure required, however, is
tedious and time ocmsuming.

2. The most noticeable affects of the nonlinear pit&ing-
moment variations on the rc9ponse of the aircraft to step
oontrol deflections w-as in the periodicity of the oscillations.
The occurrence of an irregular period aud of different
constanhperiod oscillations about the various trim angles
of attack was tbe most satisfactory way of noting the presence
of this nonlinem-ity.

3. Nonlinearity in the lift curve affected only the damping
of the transient angle-of-attack oscillations, the period
remaining constant. Large slope changes in this nonlinear
function were required before the tiect on the time to damp
became appreciable.

4. Simultaneous occurrence of the two type9 of nonlinear-
ites considered herein, with reasonable values of each, resulted
in transient characteristics w-hich -were similar to those with
the single nonlinear pitching-moment functiom

5. Stability of the combination of tie aircraft and auto-
pilot with control proportional to angIe of attack was ob-
tained by adjustment of the autopilot proportionality con-
stant, and the eflecks of the nonlinesrities were si.mihu to those
noted for the aircraft transients to step control deflections.

6. Stabili@ of the attitude-stabilization system, when the
control-surface deflection is proportional to the error in
attitude, could be completely assured for the types of non-
linearitiM considered herein with proper adjustment of the
autopilot proportionality constant. The existence of con-
tinuous hunting oscillations for a particular nonlinem
pitching-moment variation and improper autopilot adjust-
ment w-aspredicted theoretically and demonstrated by analog
solutions.

LmmEY &RONAUTIW WoRATorfY,
NATIONa AnvrsoRY COZJMTITEE FOR AERONAUTICS,

lLANQLEY FIELD, VA., Decan.ber 29, 1960.

APPENDIX

FACTORS AND COEFFICIENTS USED IN THE ANALYSIS

l%e complete expressions for the faotors and coefficients

used in the malysis section of the report, in the order in

which they appw in the text are as follows:

l),
a-..—

01

D.c.(s)]==a(o)8+p* ~(o)+d(o)+f--+~~

tikl kl.—— —
‘“2= &b* Q

(When uJ>O and 2~o%>0, a% corresponds to the undamped
natural ilequency of the shorkperiod mode of motion of the
aircraft alone and ~ represents the conventional nondimen-
sional damping ratio.)

@2= —Cmcgv
z

a4= — c“~TV
6=G6

mV
bl=–b,=z

b4=CL8



Emcrs oF Normrm~ sTAB~ DEwAT~13

Valuea umd for example of method of nordimww mechanics
are as follows:

CO=-546

C,=–1.5

al=0.00177

~=0.00712

a4=0

as=l.045

bl=–b2=0.774

b,=o

dC.
ba=–z=-3.49

KI=l.o

For the solutions made on the
Analog equipment, the numerical

Philbrick and Reeves
valuea for the afor+

mentioned constamts al, a2, a4, a6, b,, b,, and bl were used.
T1.Ievaluea for these coeiiicients resulted from the following

flight conditions and stibility derivatives:

hhch number= 1.8

V=2009 ft/sec

g=4800 lb/sq ft

S=2.52 Sq ft

z= 1.4 ft

Ii-=30 slug-ft’

m=4.66 Shl@

c.a=S$#=l.045

CL6=Cmh=o
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