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DIFFUSION OF HEAT FROM A LINE SOURCE IN ISOTROPIC TURBULENCE ‘

By MAHINDIIRS. UBUHOIand STANLEYCORIWN

SUMMARY

An experinwntd and andytzkd study hus been made of 8ome
featww oj the turbulenth.euidi$ti behind a line heatedwire
stretchedperpendicular to a j%wing tiotnpi.c tdml.ence. The
mean temperature distributions huve been 7WWWed With S318-

tematic variations in wind speed, size oj twbulence-prodwing
grid, and down-streamloeaiim of heat source. Tlw natureoj
thet~peratwey%tua$ionj. eld has been studied.

A comparison oj .hgrangian and Eukriun anuly8esjor dif-
jwiun in a nwideeaying turbulence yields an expression for
turin.d.ent-lkml-tiansjer coe&ent in i%rrn.soj tw$u.kmeevilwity
and a .Lugran@n “scale.”

Tlw ratio oj Eu.ki-ianto Lagran@an microscale himbeen de-
terminedtheoreticallyby generakziion of a Twultof Heisenberg
and, w“th arbitraq conai!anistaken from independent source3,
shows rough agreementwith ezperinwnl.alrewk%.

A convemkntjorm hQ.Sbeen dedwdjor the criterion of inkr-
changeability of imimtanemu space and time derivatw~ in a
jhwing turbulence.

INTRODUCTION

One of the most striking aspects of turbulent motion in
fluids is its dispersive proper~. This “convective difhmion,”
illustrated by the generaJ statistical tendency of (noncon-
tiguous) fluid elements to get farther apart with increasing
time, was probably first observed long before the era of
anrdytical fluid mechmica. An analytical start on this
problem was ‘not made, however, until the now-classic work
by Taylor in 1921 on diilusion by continuous movements
(reference 1). NTotonly did this paper lay a groundwork for
the study of turbulent d~usion but it also represented a
forward step in the ideas essential to development of a gen-
eral statistical theory of turbulence, afield whioh had scarcely
progressed since Reynolds’ original formulation of the equa-
tions of motion for a flow in which mean and fluctuating
pmrts could be distinguished.

The diffusive action of a turbulent flow may manifest itself
in various ways, depcmiing upon the initial and/or boundary
conditions and upon the interests of the observer. The fol-
lowing possible memuwa of the difTusive powers are neither
mlmustive nor mutually independent:

(1) The average rate of dispersion of partioles from a iixed
source

(2) The average rate of increase of spacing between differ=
ent particles

ISUMAM NAOA T.N ~10, “Dilhmlonof Heat From a LIue%- ~ ~tmPb l’Lu~ -
lonca” by bfablader S. U&ml and SkmleYCormlni1952.

(3) The average rate of transport of particle concentration
under a given mean concentration gradient

(4) The average rate of increase of the length of a fluid line
(5) The average rate of increase-of the area of a fluid sur-

face
The word “particles” means simply indelibly tagged fluid
elements, much smaller than the smalleat length associated
with the turbulence.

The present report is concerned primarily with measure
(1). .The measurements have all been made in the thermal
wake of a long thin heated wire mounted perpendicular to
an isotropic turbulent air flow and producing no turbulent
wake. Here the tagging is thermal, and the degree of in-
delibility (negligibility of molecuhw diffusion) is one of the
matters to be investigated.

The diilusive property (for swhra) of a turbulent’ flow is
apparently a secondary characteristic at least in the sense
that it need not explicitly enter the dynamical problem. The
diffusion may be regarded aa a kinematic phenomenon, to be
deduced from the dynamical solution ta the problem if and
when the latter is obtained. Thus the objective of research
ou turbulent diflusion may be to seek a connection between
the diffushe and the dynamical statistical variables, even
before the complete d“amical theory is available.

Measure (3) is usually termed the .“turbulent transport”
or “transfer” problem. Although of extensive practical im-
portance, it has not yet been subjected to genuine theoretical
study.

Most of thesemiempirieal “theories” of turbulent @msport,
for both scalar and vector properties, employ an Eulerian
formulation of the basic equations, and up to now they have
been unable to relate the turbulent transport correlation to
other statistical functions describing the flow. Taylor
(referenw 1) showed that in the simple case of a homogeneous
field of isotropic turbulence, and even in a deeaying isotropic
turbulence (reference 2), a Lagrangian formulation of the
transport (i. e., diflusion; the terms will be used interchange-
ably) problem leads to some importamt results.~

Up to the present time little theoretical or experimental
work has been done to find relations, if any, between the
Lagrangian statistical measures of a turbulent field with its
Eulernan statistical measures. Since turbulence dynamics
seems best handled in the latter terms and turbulent diffusion
in the former, it is evident that such a connection is impor-

*Inhb temwldgenedk+tlmr of Taylor’s work on case (l), Batchelor(referenceS) k
ohamnto rail this an “Eukrtan” snrdysbid-bbu? omlyrasa(?I as “hgrangiam” In
kep~ with ~fiU81Y a~Pw3 IIomand5JtnrGIMJtbCZ3SHare Mmn* 0) mvolrm a
--~ G9~volv@FL@. ~ffMmCO@ht~~a*~
and Ggmngtan) problem.
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tant. Hence, one of the purposea of the present experiments
has been to compare the magnitude of some of these quanti-
ties under variations in the turbulent field. For example,
the postulates of Taylor and Heisenberg on a relation between
Lagrangian and EuIerian rnicroscales can be examined and,
in corrected form, compared with experiment.

The turbulent diffusion from a fixed line sourm can be set
up analytically as an ordinary (lhderian) “heat-transfer”
problem, permitting a start to be made in relating measures
(1) and (3) of the diffusive power of a turbulent flow, under
certain simplifying assumptions.

Measures (4) and (especially) (5) may well be classed as
characteristic of the “turbulent-mixing” problem rather than
*ion in the common connotation.

E~erhnental work on diifusion from a fixed 10MJ source
in a turbulent flow has been meager. In isotropic turbulence,
there have been th6 measurements of Schubauer (referenea
4), Siions (reported by Taylor in reference 2), Dupuis
(reported by Kamp6 de Feriet in reference 5), Frenkiel (refer-
ence 6), and Collis (reference 7). - Of th~e, O~Y the data of
Siions and C611isare estensive enough to permit conlident
computation? of the Iiagrangian correlation function. ~ In
turbulent shear flow-; Skramstad and Schubauer (reference 8),
Dryden (reference 9), and the present authom (reference 10)
have measured distributions close to a ,source; KaEnske and
Pien (reference 11) and Van Driest (reference 12) have made
measurements somewhat farther downstream.

None of these studi= wds repeated with a systematic
variation of the properties of the turbulence. In spite of

, the poor precision inherent in this type of measurement, it
was hoped that such. an approach would at least show up
some general trends in the relations between Euhmian and
Lagrangian variables.

This investigation has been conducted at the Aeronautics
Department of the Johns Hopkins Uhivereity under the
sponsorship and with the financial assistance of the National
Advisory Canmittee for Aeronautics. The authors would
like to acknowledge the assistance of M-R. Alan Kistler,
George Stierhoff, and Allen GaW and Miss Patricia O’Brien,
as well as the helpful criticism of Dr. Francis H. Clauser and
Dr. C. C. Lin.

SYMBOLS

c root-mean-square molecular velocity
C* ‘specific heat per unit volume at constant pre+

sure
f(r) Eulerian velocity correlation coeilicietit (nota-

tion of Von K6rm6n and Howarth)

J
--

H=2pcD~ e dy
o

w= 5
2pcpJof(W

j width of rectangular heat pulse
k thermal conductivity
k= turbulent-heat-transfer coefficient

L
‘demansdew”’(’’d’)
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‘( J“RJT)d”)
Lagrangian scale L.=

Lagrangian scale for nondecaying and decny-

( Lm~(’)dO
ing turbulence ~=

mixing length
grid mesh size

Ml= Jo
v%(ddv

P@) probability density of fluctuating temperature
static pressure

:. turbulence Reynolds number based on Euler-

‘msde(-%
RJ,) La&~an &rrelation coefficient for nonde-

caying turbulence
R,(q) Lagrangian correlation as a function of q for

nondecaying and decaying turbulence

R~ turbulence Reynolds number based on Euler-

‘anficrosc~e@’=+9
r scalar distance between two points

8 average on-center spacing of pulw

““lmmm”
t
D
UJ

d +7
7
v

U’=,/@
w

x

x
Z.

Az=x —zo
Y

Y’

Y.

II
z

time
mean velocity
instan~aneous

tion

in x-direction
vqlocity fluctuation in z-clirec-

mean velocity in y-direction
instantaneous velocity fluctuation in ?J-

direetion

instantaneous velocity fluctuation in z-
direction

distance traveled in z-direction by a fluid
particle I

distance downstream from grid
location of heating wire .

distance traveled in y-direction by a fluid
particle

root-mea+.,. quare displacement of a fluicl

(’mparticle in @.irection Y =
root-mean-square displacement of a molecule
distance in direction of measured diffusion
distance in direction of heating wire
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Subscripts:
ma.z
min

instrmtrmeous temperature (measured above
ambient room temperature)

mean temperature

maximum mean temperature at a cross sec-
tion, a function of Ax

instantaneous temperature difference

temperature difference of rectangular heat
pulse

dimensionless empirical constant
mean free path of a molecule
Eulerian microscale of turbtience

6=(-AI,)?
Lagrangian microscah of turbulence for non-

‘( (-R?(O))decaying turbulence &=

Lagrangian microscale of turbulence for
nondecaying and decaying turbulence

kinematic viscosity

\

density
time difference
mean value or ensemble average

maximum
minimum

EQUIPMENT AND PROCEDURE

AERODYNAMIC EQUIPMENT

The wind tunnel (fig. 1) is an open-return NI?L type tunnel
with a 2- by 2-foot working section and a free-stream turbu-
lence level of v’/~=O.O6 percent and u’/U=O.O5 percent at
a mean velocity of 26 feet per second. The turbulence-
producing grids were as follows:

Dm[grmtlon Type M% ~ $&- Soudlt’

m.)

1 I

● Tbe O.fO-in.mmb wasset Lndheotionofmeesnreddii?ndon.

~
‘Cheeseclothween Over-allIenqth-42$ ft
All 0!h6r screefts - *24 WiIW mesh

FIGUREl.-Sketoh of open-return wind tunneL
sq~f)g~~n~

They were mounted in turn at the upstream end of the work-
ing section.

The heat source was an 0.008-inch-diameter platinum wire
stretched vertically across the tunnel at various distances
from the grid. It was heated by direct current to tempera-
tures between 500° and 700° C, with the latter figure only
at the highest operating velocity of 38.0 feet per second.
The wire Reynolds numbers at this condition and at the two
other velocities were as follows:

8.5 am I I 64
1% 19

z: % 1s7 19 I
A preliminary iuveatigatirm was made without grids to

insure that these operating conditions did not generate o
vortex street downstream of the heated wire. .

With the grids in place, the mean momentum-wake became
practically undetectable with total-head tube and manometer
at distances greater than 1 or 2 inches downstream of the
heating wire.

MEASURING RQUIPMENT AND PROCEDURES

The mean-temperature distributions were measured with a
Chromel-Alumel thermocouple and a Leeds and Northrup
type K–2 potentiometer. The cold junction was kept out-
side of the wind tunnel.

The shadowgraph technique was used to photograph the
laminar thermal wake close to the source with no grid in the
wind tunnel. This information was applied to the problem
of “correcting” the thermal wake in turbulent flow for the
effects of molecular dMusion and of finite source size. Figure
2 (a) is a shadowgraph of the wire wake with no grid in the
tunnel; figure 2 (b) is a typical time cmposure with grid-
produced turbulence. A resistance-thermometer traverse of
the laminm wake in a flow of very small turbulence showed
that the temperature profde had already become very nearly
Gaussian at a distance of 1 inch (125 wire diameters) down-
stream. The white lines on tie sides of the dark wake
shadow in figure 2 (a) correspond to the minimums in the
second derivative of the density profile. For small tempera-
ture di.flerences these coincide with the maximums in the
second derivative of the temperature profile. Although the
temperature differences are not small in the immediate
vicinity of the wire, this condition is reasonably well satisfied
at relatively small values of Ax as evidenced by the parabolic
spread of this laminar wake.

The standard deviation of the wake could then be com-
puted from the spacing of these two bright lines, with the
assumption of a Gaussian distribution. Since the closest
points of traverae in the turbulent casea were X inch (63 wire
diametem) from the heat source, this was probably a reason-
able assumption.

& pointed out by Taylor (reference 2), the molecular and,
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(a) No grid in tunnel.

(b) Grid-produced turbulence.
FIaURE2.-Shadowgraph time exposu& of wire wake.

the turbulent diffusive phenomena are statistically inde-
pendent, sc that the squnres of the strmdnrd deviations due
to these two effects me additive. Hence the wake spr&d
due to turbulence alone, from a true line source, was obtained
by subtracting the square of the standard deviation of the
larnimr wake (computed from the shadowgraph) from the
square of the standard deviation of the total wake (from
thermocouple traverses with grid turbulence present) at nll
stations. This diilerence was the square of the standard
deviation of the desired phenomena. AU wake-epreod datn
presented in the next section have been corrected in this
fashion.

Parenthetically, it should be remarked that the lamimy

COMMITTEE FOR AERONAUTICS

wake in figure 2 (a) spreads parabolically within the limits
of precisio~, from” at ieast 1 &ch on, so-that the effects of
density diilerences on the flow phenomena must hove been
negligible for this investigation.

The transverse turbulence levels o’/Z behind the grids
were obtained from the initial rate of spread of the mean
thermal wake (method due to Schubrmer (reference 4)) after
the eflects of molecular spread and tite source hnd been
removed. The resulting levels were somewh~t higher than
those obtained with a hot-wire anemometer but were used
because of their consistency with the rest of the mensurocl
diffusion curve.

Free-strewn velocity fl~ctuations (without grids) nncl t,ho
wake temperature fluctuations (with grids) were measured
with the hot-wire anaornetry equipment described in refer-
ence 10. The wires were 0.00026-inch platinum etched
from Wollaston; the compensated response of the system
wns flat within +2 percent over a frequency range from 3
to 12,000 cycles per second.

Oscillogrwns of the temperature fluctuations were recorde~
by photographing a blue oscilloscope tube with fnst 36-
millimeter Nrn in a General Radio type 651-~ cnmem.

Probability densities of the temperature fluctuations at
fixed points in the mean thermnl wake were determined
from photodensitometer traverses of time-exTosure photo-
graphs of a short-persistence (0.001 see) blue oscilloscope
tube with the temperature fluctuations on one pair of platea
and a 30,000 +ycle-per-second sweep on the opposite plates.
The technique is essentially that used by Simmons nnil
Salter (reference 13).

, =ERIMENTAL RESULTS

MEANTHERMAL WAKE.

Complete ma-temperature wakes behind a line source
of heat were measured for 10 dill&ent conditions. Arranged
to indicate the systematic variation of one parameter at n
time, these conditions were ns follows:

l-fn.@d, A(

I

. =-43.* 6, fps.__.-. 8.6
I

w
—

=-25.6 IW :@.4; mid, In. . . . . .

i

&2.5.6fm ~-6&l; @, in.. -...

}

$

&2S.6 flq %fn. @; rt/M..-... 43.4

1% i

&2&6ffI%~-in.@J; IJM. ... ..- 43.4

lE i
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FIGURE3.—Esperimental matter; temperature behind line soume of
beat.

Here ~ is the mean velocity, ii is the grid m~h size, and
cc. is the heat-source location measured from. the grid. Since
some individual cases enter as elements in two sequences,
the total number of elements is more thtin 10.

Two of the many mean-temperature traverses in the
y-dwection (perpendicular to mean flow and to source line)
me shown in figure 3 to give an idea of the amount of exper-
imental scatter. The upper traverse was the worst of the
lot,, even showing an apparent skewness which was not
borne out by the investigation as a whole. The lower trav-
wse is more nearly typical of the measured temperature dis-
tributions from which the standard deviations of the mean
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FImrRE 4.-Spread of heat from a line source. 5=43.4, M= 1 inoh.
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FIGURE5.-Spread of heat from a line source. 2=43.4, 5=25.6 feet

per second.

thermal wake were computed. By comparison ~rith the
reference curve, it is seen to be essentially Gaussian. This
was the case for temperature profiles at all stations. Siice
the virtmdly Gaussian character of such a wake has already
been established by several of the-earlier publications, there
seemed to be no point in reproducing here all of the large
number of traverses measured.

The mean-thermal-wake spread for the 10 difEerent con:
figurations studied is given in figures 4 to 7 as plots of cor-
rected standard deviation Y’ against distance from the heat
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source Ax. Each point in these figures corresponds to a
complete transverse temperature traver9e.

In order to have values of transverse turbulence level v’D
consistent with the thermal-wake behavior, these values
were determined from the initiaI angle of spread of the cor-
rected wake standard deviation (references 2 and 4) instead
of from direct hot-wire anemometer umisurwnents. The
results are plotted ~ figure 8. Since these represent an
insufficient number of points per .tid to permit the drawing
of reliable curves, some simplifying assumptions were made
based upon the results of several more-detailed turbulence-
decay illVW.@tiOIIS. (See referen~ 14 h 20. The perti-
nent results of references 14 to 16 are summarized in refer-
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FIQUEE8.—Decay of turbulence ae determined by thermal wako of a
line source.

ence 17.) In the light of thcde papem, it was assumed that
the decay curves had a common apparent origin and that
this was obtainable by drawing the bed straight line for cdl
the available points, ‘independent of the differing wind speeds
and mesh sizes. In computing any individual Lagnmghm
mrrelation function from the corresponding wake history,
the turbulence decay rate was assumed to be given by the
line drawn through this common origin and the specific tur-
bulence value giving the measured initial spread anglo for
this wake. This is, of course, a very rough proceclum, but
the experimental scatter in this whole method of determin-
ing Lagrangian correlation functions is so great that a mom
extensive study of decay (including the resolution of. incon-
sistencies between wake method and hot-wire method)
seemed unwarranted at this time.

TEMPERATURE FLUCTUATIONS

Distributions of temperature-fluctuation level o’@ in the
thermal wake have been measured by using the hot-wire
anemometer as a resistance thermometer, that is, at a
current low enough to render the sensitivity to velotilty
fluctuations negligible compared with the sensitivity to tem-
perature fluctuations (reference 21). A representative dis-

tribution of #fi in the z-direction is given in figure f). Typ-
ical transverse distributions are given in figures 10 (a) and
10 (b). It is clear that the temperature-fluctuation inten-
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(a) AZ=1O inches.
I?IQURE10.—Tempxature fluctuations behind a line heat source at

%=43, M= 1 inch, and ~=25.6 feet pr second.

sity changes very little with increasing values of &. A
rough explanation of the very high values of o’/e (com-
pmed with the concomitant turbulence level, for example)
in terms of the highly intmrnittent structure of the thermal
wake has been given in reference 10 and will be discussed
in more detail later in thie report. This intermittence is
shown very clearly in figure 11, a series of temperature
oscillograms recorded at two dii7erent positions across the
thermal wake for a tied value of & and at two difTerent

(b) &=70 inches.
I?mmm 10.—Concluded.

~ti

W& center G.40 in Ax.10 ‘n ~.25.6 ftkc M=l-m

A- A ku_J_l

Wokee@e ~ .40in Ax.10in U-25.6 ft/sec M=lh

Wakeomtef G .40 h Ax=70!rLU.25.6 ft/sec A4=l”h.

FIGURE1l.—oscillogram records and normalized probability density
of temperature fluctuations. Film speed, 1 foot ~r second.

V~U(%3 of & with y= f). The one-sided and pulse character
of the instantaneous temperature at a fixed point in space is
also demonstrated by its probability density.

THEORIHICAL CONSIDERA’ITONS

HOMOGENEOUS STE~Y TUEBULBNCE AT REST

For a nondecaying incompressible turbulence with no
mean motion, Taylor (reference 1) was followed in getting
an expression for, the mean time rate of diffusion in the y-
direction (say) from a fixed source as measured by the
second moment of the probability density of the di.ilusion,

that is, the mean-square particle displacement ~. .
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%.+
x

.
,

= 20(t)~0’ o(tJdt,

.
The bar denotes ensemble average.

Taking o(t) tilde the integral, interchanging the processes
of integration and averaging, and introducing the Lagrangian
(auto) correlation coefficient (following the fluid particle),
where 7=t —tl,

z@z@--7)
R,(T) = ~

v

there results

SS
~= 23 ‘ ‘R,(T)drdT (1)

00

This is Taylor’s form. Integration by parts yields a forrg
like that in the work of Kamp6 de Feriet (reference 5):

(2)

In this Lagrangkn analysis, o(t) is the velocity of a fluid
pdiC]e in the y-direction at time t; V(&T) is the velocity” of
the same particle at time t—r. Corresponding expressions
can be written for the rate of diffusion in any direction.

Diffusion from an infinite line source, the case to be
discussed here, is a hvo-dimensicmal problem in the mean,
and, in additiori to equation (2),

A tensorial generalization of these concepts has been given
~Batchelor (reference 3) dealing with the behavior of
A’~X,(t) where Xi and Xj are any’ two of the orthogonal
displacements of the particle at time t.

It should be noted that this analysiE gives no information
on the shape of the probability densi~ of Y(t) or of X(t).
In fact there still exists no theory for these. However,
experiments in flowing turbulence (the case to be considered
next) show Gaussian density, within the experimental
precision, for Y(t) at all values of t.

For this stationary random process, Taylor (reference” 1)
introduced the concept of the Lagrangkm “scale,”

L.=
J

‘R,(T)dT (4)
‘o

These have the dimensions of time and’ are characteristic
constants of the system.

In his later work on the (lh.derian) dynamics (reference 2),
Taylor had occasion to introduce another measure of the

correlation function, which he called the ‘fmicroscale. ”
Applying the same geometrical concept to the present
function, the Lagrangian microscale

(5)

is simply the r-intercept of the vertex~scdating parabola
of the even fuhction R,(T). The kinematic significance is
clearly shown by a series expansion of o(t+~) in R,(r):

v(t)v(t+T)12,(7-)= ~
v

But d= Constant, so that

R(T)= l–*($)*T’+. . . (6) ‘

From equations (6) and (5),, the Lagrangian microscale for
v(tj is — .

“A,2— z~’
dv 2

()

(7)

z
or

()
$ 3=2$ (711)

P

TDEBUL.ENCE IN A FLOWING MEDIUM

The dictates of both practical interest and oxTerimm tal
feasibility require analysis of the diffusion when there is a
mean velocity ~ relative to the source. Since the diffusion
phenomenon is linear, the probability dekity (merm-concen-
tration distribution of tagged particles in the wake) iv simply
proportional to the superimposed probability densities of a
continuous line of sources moving with the mean velocity ~
with their time (and space) origin at the actual fixed source,

This is illustrated in figure 12(a) for &<l. The circles

(cm-responding to isotropy) are the standard deviations of
the dispersions that would occur from moving sources. Tho
envelope of these circles gives a measure of the mean wake.
It is obvious that in general the functional form of the merm-
concentration distribution along a line AX= Constant will not
be the same as the functional form of the same’ quantit~ for
the individual source at time t, that is, at position x= Ut. ‘
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Ax

(o)

—

(a) U+<l. X’(i)=JY’ (:); Y’(t)=Y’ (:).

(b) ~#’<<1.

l?munE 12.—propagfttion of turbulenm_from source moving with mean
velocity U.

However, it is extremely likely that if g<l (fig. 12 (b))

the mean concentration along a line AX= Constant becomes
very nearly of the same functional form as that for the source

at z= ~t. For a zero-comelation Gauesian density, the
equivalence is easily demonstrable.3

The condition
dY’
~<<1 will always occur at large enough

values of AX when $<1. This follows from the asymptotic

2The mest IWICrdmethemattcdmtrfeibrM underwhlehtheenperpmltlonof a tfneof
Idcntknldcneltleswflfyldd a “cms+eel km” densttyof the mme formhavenot beensiudted
here. It b obvioustbntthemndltbn ofstatlstlmfIndqmndemmk mtlklent.The fati that
thedermity ofcnchof the ve.kdty mmrmnmtsfn lmtropteturbtdem k bean found to IM
Gaussianwttbin tbe experfmentnlpredsfon’=ems to show that the w@w.fenm under
dlwmlen Isnt kast a &!@ npproxfmntkm.

parabolic behavior, Y’ (.$~fi (reference 1), of the difFusive

process. It will occur for-all values of AXwhen *<1. There-

fore, in this case a simple approximate space-time trartsforma-
tion in.tb mean is permissible, and the t-variation in Taylor’s
theory of diffusion by continuous movements becomes a
variation of z/~. (It must be emphasized that the’ fore-
going discussion does not apply directly to the possibility of
applwying a space-time transformation to the indantaneow
turbulence variables. This latter question will be discussed
later.)

In the present measurements ~1,, and, therefore, the AX-

variation of difhion gives an approximate measure of the
Lagrangian correlation coticient (in time). Equation (2)
can be rewritten as:

DECAYING ISOTROPIC TURBfJLENCE

When the turbulence is decaying in time (similar to space
in ,the flowing turbulence) ~ is no longer constant, and the
analysis cannot be carried out as far as equation (1). The
same approach stops with

where the prime denotes root-mean-square value, and

(9)

_ u(t)v(t-T)
tR-T =7(od(t_T)

There is no a priori reason to believe that tR,-, is-a function
of ~ alone, as in the nondecaying turbulent flow.

At this point Taylor (reference 2) invokes the empirical
fact that over a wide range of mean velocities (all of which

give essentially the same distribution of u’W in x behind a
grid) the thermal wake behind a line heat source at fi-.-ed z
appem% to be unchanged in form, within the experimental
error. This is consistent with dependence of the diffusive
process upon a variable of type

/

w= J~ttl’(tl)dtlo

J
1’

‘F %o’(q)Ckcl (lo)

Th&efore, Taylor has postulated the ynique dependence of
,Rt< on the variable .q. With this postulate and the space-
time transformation valid for small turbulence level, he



S24 REPORT 114%NATIONAL ADVISORY COMMITI’EE FOR AERONAUTICS

arrives at

m “

(11)

(12)

where

= vfdt

Equations (11) and (12) look like the equation for non-
de@ng turbulence. They also give

J7=2 : (T–m)R(m)ch (13)

A physical significance of the length q is underscored by
the limiting form of equation (13) as 74 and R’,+1. Then,

Y’=11

so that q is rLmeasure of the lateral difFusion that would
occur if the lateral velocity fluctuation following a particle
u(t) remained perfectiy correlated but decreased in magni-
tude according to the decay rate of the turbulence level.

ID postulating li’,.,=l?,(~), Taylor was apparently com-
prtring only difTusive processes in turbulence fields with

identical $ (z). Of more general intere9t is the compm-ison

of diffusion in fields with differing turbulence-level distribu-
tions. Although such a generalized application of his postu-
late is doubtless not too well applicable, it is conceivable it
might have- approximate success in the tiore general com-
parison. For both convenience and lack of any obviously
superior alternative, his suggestion is therefore applied in
computing the results of the measurements reported here. A

With the ~postulate, the R, Lagrangian correlation fnnc-

tion can be obtained from measunments of ~ as a function
of Ax:

lT#F=—— —
2 ~ dx=

.

(14)

~Aftm tbfswork was C=lmPhted,m. B8t$hku $ws?s@d an alternativeaplnurfmata
aPPrcdI: In O* to mmstnlcto atatbmarymndem fnnctkment of the normtatlenaryo(f)
onetit nermalfzmthedemvient variablewith M iwt-meanqnam mdue. (Thishasbeen
ontemntfcdlyacmmpllshd by UMof tbe cm-relatfammftb?knt) If thedecay@ qnantity
k assumed tn mafntafnmmplefe simfladw dnrfns decay, aft dmmdddo tfmes (e. G
Lagmn@n timesmfeand mfcmeale) rarylnthesma waywfth tandtinewfndewd-
at variableIsmnatructedby dkfdfng r by tbb hwtatfm Unfai-tmlately,thk VariaMan
lsnnknmzIapri@ .5oftwmddb3memsmrytonssunefurtherthatthe Lagm@ansmfedare
dhwtly pmwrtfonalti theEuferfanx akmutwhichtherek pmvfansemmfmemtafLnfar-
matlan. His workhasram beenpublbhed;seerefermmZZ

A scale and a microscale can also be defined for R,:

A,’= ——R.&’

(16)

(16)

With nondeca~ turbulence, no one-parameter true
(time) Lagrangian cqmlation function exists, and the
q-formulation is much more convenient. A further signif-
icance of this variable will appear in the comparison of
Eulerian and Lagmngian treatments of diifusion from a line
source in flowing turbulence.

ACCELERA~ONS IN DECAYING TIJRBULEN(3E

A series expansion of u(t+7) for decaying turbulence will
show something about the initial behavior of the true (time)
Lagrangian correlation function and will indicate an e.xpori-
mental method for examining a hypothesis of Taylor on the
interchangeability of instantaneous time and space deriva-
tives when the turbulence level is low (reference 23),

Write the Lagrangian correlation coefficient

(17)

Substitute

U(t—?-)=o(t) +%)!’+($M+““”
into numerator and denominator, and restrict the analysis
to small values of 7-:

RJt,T).~’+%)t’+[wMm!s
(3’T+W%2

(1s)

Divide numerm%r and denomina~r by ~, expand the square
root in the ninnerator, and keep terms in ~:

R.Jt,,)= 1
-[-(%x+m% ’19)

\

For negligible decay rate this reduces to equation (6).

Equation (19) shows that a Lagrangian microscale definocl
by

X%=WT-Y’”)l

‘-RW.O
is expressible as

&-$m-($Y:

(20)

(21)

I

.
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Introduction of Taylor’s q-postulate transforms equation
(19) to

~“)”’-m-(%I.J& ’22)

after the additional rtpproximation that o’(q)= o’ (0) when
q is very small.

This gives a new espreesion for Lagrangkm microscale &:

*=MEM9’I (23)

Equation (23) is in contradiction to. equation (17) of part
IV of reference 2. In that work Taylor has apparently
assumed that o’ is a nondecaying function of V. However it
certainly is clecnying, even in terms of this distorted coordi-
nate, and the rfo’/d@emn must be included.

Siico ~ and o’(z) can be determined experimentally from
tho mean thermal wake behind a line heat source, equation

()
(23) permits determination of $2 which is simply related

to tho mean-square “Stokes” acceleration
($)’=(o~’($l)’”

This quantity is of particular interest for the possibility-of
an instantaneous space-time transformation at low turbu-
lence levels. This was first proposed by Taylor (reference 23)
and has since been used very widely, especially to get approx-
imate values of partial derivatives with respect to z (the
merm-flow direction) by measurements of time partial
derivatives.

The total (or Stokes) derivative of z@, y, z, t) in a turbulent

flow with mean velocity ~ along the z-direction is

%=~+(n+ti) g+ ~ ~v ?30~+w ~

Taylor’s hypothesk.arnounts to the statement that

“ or

with

.

In detail, equation (25) is

1/2

<<1

(24)

(24a)

(25)

(25a)

In the absence of information on the algebraic sign of the
triple correlation term, it ~ sufficient to require the two
conditions.5

● (26)

But dv 2()~ can be determined from measurements of Y’(z);

av l-i*

()G
= 2P where A is the Eulerian microscale (reference 2);

and upper bounds, in terms of measurable functions, can be

av av
i?eton u@J —— with the use of Schwarz inequalities. Thus,

axt ax,
an experimental check of the requirements in equation (26)
is to be made in the section entitled “Computation of
Results.”

RELATION BETWEEN EULERIAN AND LAGRANGfAN MICROSCALES

Taylor (reference 2) inferred an approximate relation
between & and h by rieglecting the effect of viscosity on

[()1
~ v’

pressure-gradient fluctuations and estimating
~ as

be~g’pprofiately 3’[v2(3r-T~led~ a~~t~t
ratio &/A for all turbulence. The rough nature of this
analysis induced Heisenberg (reference 25) to conduct a
more detailed study of the static-pressure fluctuations and’
to reestimated the ~/h ratio. However, he folloived Taylor
in ignoring the dv’/d@erm in the relation between & and

.* -()~ (see equation (23)) and in neglecting viscous terms in

ap ‘()the relation between & and — .
ay

Although these omissions are probably not serious mcept
in the low Reynolds number range, it seems interesting, if

,.

only for the sake of completeness, to use a Heisenberg type

ap ‘

()
of approximation for —

ay
and to repeat his treatment with

the omissions rectied.

JLfnb disumsedthevalfdftyofTaYlors hy@hw19 nslnga sffgbtfydlffermtfommlatfon

fn referezm24. He wfnta out themtkot ff A= ~ a., then(fromthe%hvmrzinewmlity
1

~~ ~ (a7)
“~ ulmra0, fsa set ofnmnb-era
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From the complete ATavier-Stokes equations in the wave-
number space, Heiaenberg deduced an approximate expres-

“ sion for ~ in terms of mean quadruple products of the
“harmonics” of the velocity field. His principal simplifying
assumptions were:

(a) Diflttrent Fourier components of the velocity field are
uncorrelated

(b) The tprbuIent energy spectrum is given by the solution
to his equilibrium-energy-transfer equation, above a lower
cutiff wave number k.

Following these, but usiqg Chandrasekhar’s (reference 26)
solution to the Heisenberg equation instead of the inter-
polation formula used by Heisenberg, there results

bp ‘ 25.2 , (v~3

()~ ‘-i-pv’T
(27)

where K is a dimensionless empirical constant.
The numerical constant in equation (27) would perhaps

have been given more accmxitely by the use of a “self-
preserving” spectrum (calculated by Chandrasekhar from
Heisenberg’s equation) instead of the stationary spectrum
with low cut-off wave number. Time was not taken to make
the requisite additional calculations because: (a) The value

of ap ‘

()
~ depends principally upon the high-wave-number

.
region of the velocity spectrum rather than the low-wave-
number region, where the difference would be greatest, and
(b) the experimental results and (especially) the value of
~ both have a considerable range of uncertainty.

The mean square of- the y-colnponent of the ATavier-Stokes
equation will lead to a relation between > and h:

(28)

where the correlation between pr-ure gradient and velocity
Laplacian function is zero beeause of isotropy.

Equations (23) and (27) give the fit two terms in terms
of the microscales, and the mean-squme Laplacian function
is espresible in terms of the fourth derivative of the Von
K6rm&n-Howarth f(r) correlation coefficient at T=O (refer-
ence 27):

(V%)’=y(tfyp(o) (29)

Consequently, equation (28) becomw

The second term in this equation can be replaced by the
.

turbulence-decay equation

—=–lO. (o?’d(’v’y
dt -F (30)

whence ~
do’ V1
Z=–5V2

so that

therefore,
-k’ 12.6 1
Q=

— __~+y fir(o) & .
K R~ Rx

(31)

f
where Rh=~.

Batchelor and Townsend (reference 19) have deduced an
expression for fi’(0) which is valid in the region of decay
where both l/(v’)2 and A! increase linearly with t (correspond-
ing to large values of RA): .

w’(o)=*+; M (32)

-Rmm’theskemesfator‘“hwhere S=

experimental resul~ showed S=0.39 approximately constant
for isotropic turbulence. Then the estimate for X/Xq
becomes

(33)

The value of K was iirstestimated by Heimnberg (referenco
25), from measurements of turbulence decay, as 0.85.
This method may be regarded as emphasizing the (relatively
low wave number) energy-bearing range of the spectm~m.
Lee (reference 28) worked out an estimate based upon
skewness factor (~=0.13), which gives heavy weight to tho
high-wave-number range. Proudman (referenco 29) hns
reedimated K by comparison with measured curves of tho
double and tiple velocity correldions. Tho valuo ~=0.46
leads to reasonably good agreement for the moderately
high-wave-number region, over a wide rrmge of values of RA.

It may be remarked that the supposed constancy of K is

merely a postulate of the Heisenberg dimensional formulation
of the spectral transfer function. In fact it is by no moans
obvious that- this turbulent part of the trrmsfer is quantita-
tively independent of the amount of spectrally local dis-
sipation to heat. In any case, Proudmrm’s estinmto of
K=().’5 has been used here. Therefore,

(),A 2 12.6 29
< R]‘—+K (34)

.
In the limit of Ri ~ O,equation (34) does not apply since

equation (32) does not apply. However, the approp’iiate
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limiting relation can be obtained directly. In this limiting
condition the pressure term in equation (28) k negligible
compared with the viscous term (the former goes with
I/Rx and the Iatt er with l/RA2), and the Eulerian velocity
correlation coefficient is (reference 27) ~(r)= e-r*@. This
gives fl’(0) =3/h4 and

(35)

EULEIUAN ANALYSIS OF HEAT DIFFuSION FROM A LINESOURCE

The two-dimensional turbulent-heat-transfer equation is”

where 5 is mean temperature, 0 is temperature fluctuation
about the mean, k is thermal conductivity, and CPis speciiic
beat at constant pressure.

For the thermal wake behind a line source in isotro~ic
turbulence with
restriction to low
of approximation

and

constant mean velocity ~=0. With
turbulence level, a “boundary-layer” type
can be applied to the mesh wake, so’ that

b% b%
G*<<@

so that equation (36) takes the approximate form

(37)

It must be emphasized that for this particular initial con-
dition on the temperature (effectively a “point source”),
the restriction to small turbulence level v’/~<<l does not

imply that t9’/~ is small. In fact, for this problem &’/~ is
often greater than unity, especially at the “edge” of the mean
wake, as has been discussed in reference 10 and will be
brought out again later in the present report.

When the molecular transport can be neglected relative to
turbulent transport

an equation given
treatment follows:

With a constant

U:=–&m)

in reference 10; a slightly

(38)

more general

rate of heat generation (similar to steadv
state in the average), the aptilication of” “a Von K&rm&
integral-relation treahnent to equation (38) yields an integral
condition:

J
.

2pcpi17 * Gdy=constant=H (39)

where H is the average time rate at which heat crosses all

plan’es perpendicular to ~ per unit length of heat source

SOURCE IN ISOTROPIC TURBtiENCE 827

@@rection). Of course, ~ has been neglected relative to
WI m equation (39).

Equation (38) has two unknowns, and the first objective
~ to express ~ as a function of the (more easily measurable)
(l(z,y). After integration with respect to y,

z= —u
s

~’ g dy+F(z)
.

But, by symmetry, ~=0 for y=O. 13.ence F(z) =0 and

J%=-~ ~q~ dy (40)

This relation is s~cient for the computation of W(z,y)
from the measured O(z,y) but the empirical fact of simple
geometrical similarity in F(z,y) suggests exploitation of the,
consequent simplification.

Assume

G(z, y)=50(z)f($) (41)

where $=y/Y’(z). This transforms equation (39) to

60(z),Y’(z)=~ (42)

H
where P=

J
=Constant. I.t transforms equa-

2pcp ,- f(t) d[

tion (40) to

‘i=(-~rf(’)’’)y’(’) s+(~r~:{’~)’~(’) %
(43)

With equation (42), ~o(z) can be eliminated from equation
(43), and after integration of the dimensionless integrals this
leads, to the final form for the turbulenGheatAransfer
correlation,

-x(x, y)=m~f (g) & $$’ (44)

where

E’&

The same sort of analysis can be made on equation (37)
which includes the molecular conduction, but the rather large
experimental scatter in the present rnermmrnent.s seems to
make such a refinement inappropriate.

b “exchange” coefficient or “-ion” coefficient for
turbulent heat transfer kT is simply expressible in terms of

&(z, y). A conventional procedure for semiempirical analyses
is to write for the turbulent transport an e.xprwsion just like
that for the molecular transport:

ai5
-pcP~=kT—

ay
(45)

which serves as the definition of k=.

. .
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For the simple case of equation (44), it turns out that
(60)

rl dY’– Q# . Y’(z) ~kT=pcJJ (46)
Substituted into equation (44) these give

(51)This has the particularly interesting property that in a
nondecaying turbulence at very large values of z, where the
mean thermal wake spreads parabolically (reference 1), kr
becomes independent of expli~it dependence on z.

A more startling simplification follows for a particular
‘ mean temperature distribution across the wake: All depend-
ence of kT on y disappears if

while-equation (46) becomes

‘(’-WkT=@,v’Y df,d~ (62)

J
1’

where q==
Uo

v’dx and ~=
*“:(1+*+)” ‘fact)

for small values of 77,v ‘-~ z.
that is, if

f (,cJ=e-*~ (47)
.

But this is the Gaussian function, which is found empirically
to fit all the measumnent.s within the experimental scatter.
Hence one arrives at the empirical result that in both non-
decaying and decaying turbulence k= is independent of y
in the thermal wake behind a. line source of heat. From

For low-level nondecaying turbulence, q=% z, and equa-

tion (51) becomes

(63)

df
‘quation ‘47)’ Tf=–fff (~ ‘d

while equation (52) becomes

f (E)
(

~_~7 x=
‘T=pcpm’y df/d.f )

.—
477’ h,~

(64)
dY’

kT=PCp~Y’(X) ~ (48)

It can be seen that in the nondecaying case at very large
values of z, kT is constantand independent of both y and z.

As q+O both equations (61) and (63) reduce to

Vy
m=mf(f) -J -# (66)RELATION BETWEEN SOME LAGRANCWAN AND EIJLERIAN

PARAMETERS IN TRANSPORT

There has apparently been little effort to relate the
Eulerian and Lagrangian formulations of turbulent diilnsion
up to the present time. Exceedingly simple boundary con-
ditions permit some connection to be made in restricted
ranges of the present problem.

For nondecafig or (with much less accuracy) decaying
turbulence, eqwtion (13) applies

while’ equations (52) and (54) reduce to

f (0kT=pCpV’ —
dfldt y

(66)

(67)

At the other mtreme, when q is very large,

Jr=’ )vm)%)(m)h
or, equation (12),

where JW1= J mq12q(v)d~ =Constant and ~
o

(68)

(69)

For small values of q, ~= 1–$ whence
?

md
yL,k,=wpv’ & [2(qLq–~l)lw (60)

(49)
As indicated previously, the q-variation can be expreswd
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in tmms of z or t.
If q is allowed to become large enough to make @u>>ikf,

The above formulas take on particularly

(61)

(62)

simple forms if
the empirical result of a Gaussian is utilized:

. j(f)=e+’ -

Then the general expressions for ~ and k, (equations (44)
and (46)) become

H* dY’ -:(5)’KJ(z,v)=m ~Ye (6”3)

and
dY’ —

W, y)= pCpY’(Z)z U (64)

the latter having been deduced in the previous, section. The
particular forms for small values of q would follow from sub-
stitution of equations (49) and (60) into these two.

However, the most interesting form occurs for very huge
valuea of q. There Y’(z) is given by equation (57) and

k=(z, y)= pcpo’L,=Constant (66)

For still larger values of q, such that ~,<<q~,

and
kT(z,y)= pcPo’Z, =Constant

The constancy of kT for large values of q (large values oft
or z) is to be expected; a treatment of molecular diffusion by
this method must certainly yield a consknt coefficient for
times much larger than the mean free time (of flight) of the
molecules-that is, for all “macroscopic times.” Put an-
other way, the simple parabolic behavior of Y’ for large
values of q is a sure indication that ~ obeys the simple
classical diffusion equation with comtant coefficient, when
vimved extremely “coarsely.”

Perhaps the chief interest of equation (66) is its identifica-
tion of Lq as a signifkant Lagrangian length for d.iflusion at
rLlarge distance from the source. It enters the expression

for turbulen~lon coefficient in much the same way as
mean free path entem the expressions for the molecular-
&fFusion coeficienta. Furthermore, its role appears to be
much like that attributed to Prandtl’s “mixing length,”
which was brought into the turbulent-transport problem in
a more or less intuitive fa9hion.

Of course, the possible crude nature of Taylor’s original
~-postulate may render the significance of Lqmore qualitative
than quantitative in the case of decaying turbulence.

i COMPUTATION OF RESULTS

Although Taylor’s assumption of the unique dependence
of ~R~-,upon ~ is not likely to be accurate for collapsing
together cases with widely diflering turbulence decay rates,
it do6s provide a relatively simple relation between Y’ (cc)
and l?~(~). Therefore all of the mean-thermal-wake data
were reduced on the ~basis.

In principletbe complete R.(q) curve can be obtained from

~(z) by double differentiation (equation (12)):

(68)

or

However, simple double differentiation of the squares of
a curve as uncertain as Y;(z) seems ahnost hopelessly in-
determinate-although Taylor (reference 2) and Collis
(reference 7) have apparently followed this procedure. A
somewhat more circumspect technique has been tried here:
The values of& and Lqwere determined&t, through certain
limit relations (to be described). Then the R, curve was
detemnined by double differentiation, subject to the redric-
tions of agreement with the previously determined scales.
Thanks to rather poor determinancy of values of A, and L,
this method is not so much of an improvanent as it n&ht
first appear.

LAGRANGIAN MICROSCALE A,

If equation (13) is restricted” to very small values of q the
parabolic approximation for R, can be introduced:

‘=2J3-’’3)d’ld’l (69)

therefore

whence

‘~=-&$)mL
(70)

. The computational p;ocedure was to plot ~/# against q’
and to estimate the slope of the faired curve at ~= O where
the curve must pass through unity. The abscissa intercept
of ‘the O-tangent is 6&2. The actual pointsz, faired curves,
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FMURE 13.—Determination of h and b; $=43-% .JI=l inch, and

~=Wi feet per second.

and ta~aents for all cases are presented
Clearly the precision is poor.

LAGRAiiGIAN SCALE L,

Consider equation (12) in the limit as
at ely gives

()
L,=; ~ ~,

in frames 13 to 22.

T+w. Itimmedi-

(71)

and the graphical procedure based on this is also presented in
figures 13 to 22. Some of the asymptotic slopes drawn are
not the best representation of the experimental points. This
is due to the ausilhry (assumed) restriction that I?g cannot
increase with increasing values of g as long as Rq has not
previously dropped below zero. The graphical precisioq
att airmble is perhaps a little het ter here than that for A,*,but

o
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(a) ~=0.34.
(b) ~=o.33. .

FIWJRE 14.—Detennination of ~ and L,; ~‘0=43.4, M= 1 blah, and

~= ’26.6 feet per second.

the square root necessary to get A,means that A,is determined
about as well as is Lq.

LAGRANGIAN COBRELATIONFUNCTIONR,(n)

. With k, and ~ determined, the initial (small kc) and fhml
(large AZ) behavior of the curve Y’ (M) k,prescribed. These
parts of the curve were drawn on a graph with tho mTmi-
mental points. Then the fairing in of n reasonable cen-
tral portiori to this mean Y’(Az) curve was a relalivoly
simple matter. The R, curve was then obtained by double
differentiation.

The curves drawn for Y’ (Ax) in figures 23 to 32 wore de-
termined in the fashion described above, w were the curves
for R, in the same figures.

EULERIAN MICROSCALE X

In vieiv of the apprcmhhate nature of the determination of
& no new direct measurements were made of the Euleriop,
microscale L Instead, ~ was computed with tho energy

.
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equation for isotropic turbulence, from the measurements of
turbulence decay:

7~i=—loyz
dD’Jclt

or, with the space-time transformation,

(72)

(73)

EULERIAN SCALE L

Earlier investigations have shown that the Eulerian scale
in a grid-produced turbulence is closely a linear function of
the mesh size of the grid producing the turbulence (for a
given value of z and grid geometry) and is not significantly
dependent upon the mean velocity (or grid Reynolds num-
ber, provided it is sufficient to cause turbulence), Therefore
the values of L have been deduced from earlier measurements
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FIGURE16.—Deterroination of > and ~; ~=43.4, .M=~ inch, and

I ~=25.6 feet per second.

at the California Institute of Tec~ology (reference 18) on
grids of essentially the same geometry.

Table I summarizes the results for Lagrangian and Eulerian
scales and microscales. The results have been grouped to
show the effect of systematic variation of one parameter at a
time. Some of the results are presented in &ures 33, 34,
and 35. \

INSTANTANEOUS SPACWTIME TEAM3FORb1ATIO&”

The permissibility of an instantaneous space-time trans.,
formation in flowing turbulence,

au 1 bo—~. =—
ax u at

(74}

can be estimated in accordance with. equations (26). For
equation (74) to be valid, the sticient requirements are those
given in equations (26) that:
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With the aid of equation (23), the turbulence decay equa-

au ~

()
tion, and the Taylor relation ~ =2 ?P the first of thwe
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mditions can be written in the form

(76)

From the Schwarz inequality, essentially the necessity that
Lemagnitude of any correlation coeiliciont be less than or
Iual to unity,

‘f%%’”’”’’(a’(a’ (76)

hem the prime in this expression denotes root-rnoan-squaro .

,
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value. For isotropic turbulence, equation

written

(76) can be

(77)

Thus, the second condition in equation (26) will be satis-
fied if

2.7$<<1 (78)

Both T and o’~ for the flows studied are presented in
table I. It is clear that for these flows instantaneous z and t
partial derivatives may be taken proportional with re&onable
confidence.
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Z–CORRELATION

The Eulerian measure of transveme turbulent heat trans-
port is computed from the mean temperature distribution.

The dimensionless form, ~~.~, is given for two typicnl cross
sections in figures 36 and 37.

The measurements of o’ru and of &’@O permit calcula-

K
tion of the correlation coefficient R~,=w and this is also

given in figures 36 and 37.
For the convenient and reasonably accurate assumption,

of Gaussian mean temperature distribution, the correspond-
ing turbulent-heat-transfer coefficient k~ follows horn equa-
tion (64). It was found to’be independent of y, and typical
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curves of kr]k are given in figure 38. The da’& for k= at
three diilerent speeds behind the l-inch grid are roughly
collapsed together through division of kr by PCPV’G, as
suggest ed by equation (66a), an asymptotic result for
nondecaying turbulence (fig. 39). .

DISCUSSION

LAGRAiiGIAN VARIABLES

Even a c~ory examination of the technique used in this
investi&ion for the determination of Lagrangian correla-
tion shows that, as physical measurements go, tljs method
is a “bad” one, largely beca~e of the inherent double
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FIGURE22.—Determination of ~ and L,; ~= 172.3, ilf=~ inoh, and

~=25.6 feet per second.

differentiation between measured variable’ nnd desired
information.

Figures 13 to 22 suggest an uncertainty in values of ~
and ~ as large as +20 percent, in spite of moderately good
prectilon in the measurement of individual tempercttum
distributions such as the lower curve in figure 3.

As mentioned earlier, the values of v’~ computed from
initial wake spread ‘me consistently higher than those
rneaa~ed with the hot-wire anemometer (reference 18).
The sam”e relative result was encountered during a brief
investigation following that reported in reference 18. Up
to the present time there haa been no satisfactory e@ma-
tion of the discrepancy. A tentative hypothesis which would
at least account for its direction maybe based upon a human
wealmess in the visual averaging of the reading of a fluctua-
tion pointer; there seems to be a tendency to chooso an
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“average” more or less halfway between the extremes of the
needle travel. Thus a pointer motion with very skew prob-
abilityy density (greater than 0) would tend to be” averaged”
at too high a value. The thermocouple voltage in one of
them thermal wake traverses has just this character (fig. 11).
Hence a visual averaging might yield too high a wake. width.
If this effect is nonnegligible, it is advi~able to employ some
electrical means of averaging for skew signals, for example,
the fluxmeter and bucking circuit described in reference 10.

In view of the considerable uncertainty in ~ as well as
that in h and v’ the poor degree of agreement between
experiment and theory shown in figure 33 is underataddable.
Since the two undetermined constants in the theoretical
result have been evaluated from sets of experiments com-
pletely independent of the present ones, this agreement can
be viewed as an atimative result.

Since some sort of Lagrangian scale should be a significant
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FIGURE24.-Spread of heat from a line murce and correlation fuuotion

~ for iM=l inch, fi=25.6 feet per second, and %=43.4.

length in turbulent heat and mass transport, as demonetrat ed
in the analytical section of this report, an effort has been
made to iind some systematic variation in the values of ~.
Figure 34 might be construed to indicate a monotonic
decrease of LJL with increasing values of R~. It is inter-
esting to note that a decrease was also observed for the
ratio of mixing length to tube radius by NTikwdse (reference
30) in fully developed turbulent tube flows. In order to
determine whether these two rates of decrease with increasing
Reynolds numbers are of the same order of magnitude, an
estimate has been made of the magnitudes of RL correspond-
ing to Nikuradse’s results given in figures 2S and 29 of
reference 30. Both scale-todiameter ratio and average
turbulent levels for various Reynolds numbers were esti-
mated with the help of Laufer’s data on turbulent channel
flow (reference 31) at variouR Reynolds. numbem. The
absolute level (i. e., the ordinate scale) of the resulting &JL
against RL
looking fit

curve was adjusted to give the most reasonable-
with the LJL data. This is the dashed line in

.,
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figure 34 and it shows at least a quali~tivq resemblance.
It is likely, however, that L.@ is not a Uniqm. function of
R~.

Of coume not all of the scatter”in figures 34 and 35 (iivolv-
ing .%) can be attributed to simple lack of experimental
precmon. Some is evidence of the fact that the Taylor
postulate of Lagrangian correlation fimction being uniquely
a function of q is certainly not very closely true. Further-,
more, table I does show rather systematic variations of L,
in some of the three-point groups. Lfost noticeably, there
is n regular decrense in ~ with increasing zO/lLf (or perhaps

with decreasing vt~ for each of the three grids.

TEMPERATURE-FLUCl’UATION FIELD

Fairly close behind a line heat source in turbulent flow,
the random pulsie nature of the teznperature fluctuations at a
fixed point has been established by the oscillogram in refer-
ence 10. This is cotied by the tit two osdlograms in
figure 11, with their h~hly skew probability densities at
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FIGURE 26.-Spread of heat from a line source and mrrelation funotkm

~ for M=+ inch, ~=25.6 feet per sewnd, and ~=14W.

kc/iM= 10. ,One of the objectives of tho present investi-
gation was to find out whether this distinctly pulsed char-
acter persisted far downstream or whether molecular heat
conduction becomes increasingly effective in smearing out
the pulses, until they are no longer distinguishable as such.
The third oscillogrmn and probability density in figure 11
(&/JM=70) does show a decided trend away from tho pulso-
type signal. The molecular broadening of the laminar wdm
(corr~ponding to the pulses) decreases the relative spacing
of the pulses in o(t) at any point in the “turbulent walco”
region. This is a reduction in relative length of the flwt
(0=0) base lines between pulses, giving greder statistical
symmetry in ~(t) about its mean, that is, reducing the skew-
ness of P(@).

A simple analysi$ will show the esistence of an asymptotic
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behavior of moleculm<onduction effects in a nondecaying
turbulence. For a nondecaying flow turbulence and very

large values of t( SC@) the mean-square wake spread due
to turbulent motion is

(79)

On the other hand, an approach to molecuh d.iflusion
through Taylor’s concept of “continuous movaments” gives,
for any macroscopic distance downstream, the mean-square
thernml wake width,

(80)

where A is the mean free path and c is the ,root-mean-square
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molecular velocity.
From equations (79) and (80)

Y.’ ()_= ~~112
Y’ L, v’ (81)

For a typicalcase,take L= 1 centimeter, o’= 10 centi-
meters per second, A= 6X 10-8 centimeter, and c=5 X 104

Y.’
centimeters per second. Then ~ =0.17. For people accus-

tomed to thinking of molecular transport as negligibly small
in turbulent flow (e. g., in shear flow), t&s ratio will appear
quite large. The values of krlk plotted in iigure 38 also
show that at these low turbulence levels the molecular
thernd conductivity is not necessarily negligible compared
with the turbulent transport.
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The temperature-fluctuation-level distributions 0’h across
the wake (figs. 10 (a) and 10 (b)) show the same character
m that measured at much higher turbulence level in a jet
(reference 10), with somewhat lower minimum values, which
are attributable to the lower turbulence level. A rough
evaluation of the behavior of the statistical variables in this
turbulent thermal wake is obtainable by recalling that it
consists of a randomly “waving” laminar thermal wake. If
O(L) is crudely represented by a randomly spaced sequence
of identical rectangular pulses with height 0., width j, and
average spacing s, it is easily seen that .

-tY -g=+ (82)

(83)

This permits #/~ to vary between O and m as s/j txavels the
permissible range from 1 to ~. Site points nearer the edge
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l?mmm.~o.+pread of heat from a line source and oorre]ntion function

R, for M=$ inch, ~=25.6-feet pm second, and ~= S6.1.

}f the turbulent thermal wake have higher values of s/j, the
~ehavior of equation (S3) is consistent with the experimental
Distribution. If the analysis were repeated wi’th triangular
p.dses, for example, the quantitative elitimate would doubt-

less be more realiiskic. The higher values of (&’@)mj. en-

xmntered at higher values of v’/~ are an indication that
Eora given tvidth of laminar the~al wake, the higher value

of v’~ leads to a higher minimum value of 8/j.

The closely Gaussian shape of ~/~o against ~ has already
been poiqted out. If

(84)

.
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and

Both of them e.spressions have behavior consistent with the
experiments.

The form of @nemiordess transveme turbulant-heat-
trrmsfer rate ~/~aU cm be deduced for small v&w of AX
(such that R,= 1) with this pulse representation of ~(t). 12n
this picture, % is the correlation between a continuous ran-
dom variable o and a random pulse signal 0 which “fired’
every time the continuous variable passes through a specdic
value

ll_p
‘l=Az

Therefore
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(S6)

where s and ~ are functions of y. ~ith Gaussian ~(y),

(87)

The direct comparison between this crude picture and the
experimental results will be coniined to the correlation co-
efhient Roe= ~1$’v’. This is of particular interest in view
of the surprisingly high qeriment.rd valua With equa-
tion (85) and the fact that o’~u= Y’/Ax, there rwults

This contains the undetermined constant 8&, which can
be obtained from any one of several experimental results.
Figure 36 includes one plot of equation (88) with %~~ de-
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termined from equation (84) and the experimental value of
(0’/6) .in and one plot with ~~~ determined by mattig
equation (88) with the experimental result at y/Y’= 1.4.

It is also surprising to find that the experimental (Bds)ti

at large values of & is even larger than that at small values
of AX. This m~ be due to a considerable experimental
error; the resist ante-thermometer voltage signal is much
lower here. Unfortunately no relation corresponding to
equation (88) has been deduced for large values of AZ,
where Rqis essentially zero.

The criteria. for Taylor’s hypothesis of the interchange-

ability of instantaneous space ~ $ and time ~ derivatives

(assumed by him to depend only upon turbulence level)
have been expressed in equations (75) ahd (78) as functions
of turbulence level RX and x/& If XA is replaced by its
theoretical expression (equation (34)) in terms of R,,
equation (75) becomes
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.
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$(%+%!)’’2<’ (89)

For estimates of most flows the first term in the parentheses
can be neglected; values of Rk less than 5 or 10 are rare.

Since equation (34) has now been roughly verified by
experiment, equations (89) and (78) may serve as ap~roxi-
mate criteria for the validity of Taylor% hypothesis.

In the limit of RA+O when equation (35) replacea equation
(34), there follows a simpler criterion to replace equation (75):

(90)

SUMMARY OF RESULTS

The following results were obtained from the investiga~
tion of the difEusion of heat from a line source in isotropic
turbulence.
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1. The thermal wake behind a heated wire set perpendic-
ular to a flowing isotropic turbulence (at sufficiently low
wire Reynolds number) consists of a randomly “waving”
thin, laminar, thermal wake whose variations in lateral posi-
tion give what may be called the turbulent thermal wake.
At a iixed point not too far behind the wire the instantane-
ous temperature d.i&ence @(t) is a random pulse function,
and the nature of the turbulent heat transfer can be deduced
on this basis. Farther downstream the distinct pulse nature
tends to disappear.

5 (Y)2. The mean tranaveme temperature distribution ~
0

appears to be Gaussian within the experimental precision
for all distances behind the tie.

3. h EnIerian analysis of this t&buIenkheat-bxmsfer
problem permits computation of the .turbulenkheat-transfer
coefEcient k~ which is essentially constant with respect to
the distance in the direction of the measnr@ d-iihuion y for
these boundary conditions. It is found that at low turbu-
lence levels (approximately equal to 1 to 2 percent) the
molecular heat transport is not vanishingly small compared
with the turbulent heat transport.

4. Although Tayloi’s postulate that Lagmngian correla-
tions @ decaying tnrbnlenm can be made similar by intro-

S
t

duction of an independent variable q= o’ (t)dt (where t is
o

time and v’ is the roo~mean-square instantaneous veloc-
ity fluctuation in the y-direction) seems to be an oversim-
plification, it has been applied here for convenience in the
reduction of data. A simple comparison of Eulerian and

LF%YW@a andys~ for diffusion in nondecaying turbukmce
shows that for large valuea of the distance from the heat
source & the Lagrangian scale L? enters the expression for
kT, the tnrbnlen&heaiAransfer coticient, much like the
empirical mixing length in the old turbulent transport the-
ories. Therefore some properly modiiied generalization of
Taylor’s q-postulate should prove useful.

5. A correction and generalization of Heisenberg’s theo-
retical expression for the ratio of Eubrian to Lagra@m
microscale ~ as a function only of the turbulence Rey-
nolds number based on microscale Rx haa been made and
seems to agree roughly with experiment. It must be noted
that sinca ~ depends only upon a transformation .dq=v’dt,
and not upon the integral postulate stated above, its valid-
ity is not impaired by any failure of the integral postulate

6. Taylor’s hypothesis for the interchangeability of space
and time derivatives at low turbulence levels has been ex-
pressed in terms of criteria which depend upon turbnhmce
level, Reynolds number, and x/& Applied to the flows
studied here it shows that in these cases such a transforma-
tion is permissible. By substitution of the theoretical ex-

pr-ion for ~ (Rx), Q sligh~y sfipler and mughm ~~on

is derived, de~ending only upon turbulence level and Rx.

THE JoHNs HOPKINSUNIVERSITY,
BALT~ORIL lID., June 6, 1961.
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