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TRANSONIC FLOW PAST CONE

By GEOEQEE. SOLOMON

SUMMARY

Experimental rwu.li!sare presented for tranwnic flow pmt
cone-ylinda, axially qmmdric bodies. 17w drag wejititmt
and surface Mzch number are 8tadkd w thefree-streum Mach
number is varied and, whereuerpossible, the ezpminwntd re-
8uL?s are compared m“th theoretical predictimw. Iii!.erfeTo-
meti r&for several typicul flow coq$guraiions are shown
Wd an t%umpk Of shock--e+?8up8T807tk tO 8wb80nh compre8-
tin is &perimentaUy akmon8trated.

The theoretical problem of tran80nic flow pcwt $nite wn.tx
is d&wu88edbriefly and an appmxhnde soluiion of the axially
~mmeiYic transonic equa.twn3, oalid for a semi+injintie cone,
is preseti.

INTRODUCTION

Trrmsonic flow past certain two-dimensional bodies has
been the subject of several recent papers and the phenomena
am well understood. The theoretical results of Cole (ref. I),
Guderley and Yoshihaza (~ef. 2), Vincenti and Wagoner
(ref. 3), and others apply to two-dimensional symmetrical
double-wedge airfoils. The experimental results of Bryson
(ref. 4) and Griilith (ref. 5) substantiate the theoretical work
in a very satisfactory manner. More recently, Vinwnti
and Wagoner (ref. 6) and Guderley and Yoshihara (ref. 7)
ha,ve analyzed the transonic flow past two-dimensiond un-
symmetrical sections, that is, lifting double-wedge airfoils.
Current experiments on lifting double-wedge airfoils (ref. 8)
at the Guggenheim Aeronautical Laboratory of the California
Institute of Technology indicate that agreement between
theoretical and experimental results will again be obtained.

Two-dimensional and axially symmetric transonic flows
are of consider~ble theoretical and practical interest. since
these two specialized problems are limiting cases of the more
comphm problom of the flow about an arbitrary three-
dimensional body.

The study of axially symmetric hansonic flow is not so
complete aa that of two-dimensional flow. In recent years
several papers, notably those of Von K4rm&n (ref. 9) and
Osmztitsch and Berndt (ref. 10), have studied the similarity
rules of axially symmetric transonic flow. Also, Yoshihara
(ref. 11) has calculated the flow about a finite cone at a free-
stream Mach number of 1 by a relaxation technique and haa
obtained some experimental verification of the theoretical
result. The hodograph problem for general transonic flow
past finita cones is discussed in reference 8. Eowever, theo-
retical solutions or experimentalresultsfor the co replete tran-
sonic regime are not, at present, available. The present

paper pre9ents the results of an experimental invw~~ation
if ‘the “transonic flow past cone-cylinder bodies. A conical
tip followed by a cylindrical afterbody was chosen as the
experimental model for two primary reasons: (1) The
relatively simple geometry of a cone-cylinder body may
simplify the theoretical problem, and (2) viscous effects are
minimized; that is, the boundary layer on the cone surface
is in a region of decreasing or constant pressure so that the
presenoe of the boundary layer will not greatly alter the shape
of the body forward of the cone shoulder.

Theoretical results for the supemonic flow past a cone
were first presented in 1929 by Busemann (ref. 12). Buse-
mann’s solution postulataa a semi-intlnite cone and assumes
that the flow is conical; that is, along rays through the apex
of the semi-inhite cone, the flow parameters such as pres-
sure and velooi~ are constant. The solution is fo~d by n
geometrical construction in the hodograph plane and it is
readily apparent that a conical solution exists only so long
as a shock wave is attached to the cone apex and, therefore,
the free-stream Mach number is supersonic. It is interesting
to note that Busemann’s solution predicts smooth shock-free
compression from supersonic to subsonic flow for particular
combinations of cone angle and free-stream Mach number.
The conical solution also shows that for a given cone angle
and free-stream Mach number M. the surface Mach number
is always less than the Maoh number immediately behind.
the conical shock wave; as M. decreases, the surface Mach
number deoreases and eventually passea from supersonic to
subsonic Vtlhl@9. As was mentioned by Busemannj the
conical solution for a semi-infinite cone is completely valid
for a iinite cone so long as the flow is everywhere supersonic,
but when the surface Mach number is less than sonic the
perturbation due to the corner or shoulder of the finite cone
is propagated forward through the subsonic portion of the
fiald destroying the conicity of the flow. Thus, the Buse-
mann solution is completely valid for a iinite cone only so
long as M. is large enough so that the surface Mach number
is greater than sonic.

Taylor and Ma.ccoll (ref. 13) in 1933 presented the results
of a numerical integration of the axially symmetric equations
of motion for conical flow about semi-infinite cones and also
presented experimental veritlcation of their theoretical re-
sults. I?urther experimental veri.tkationby Maccoll (ref. 14)
was published in 1937. Both of the above papers noted that
deviations of the experiments from the theoretical predic-
tions, notably in the shape of the shock wave, are apparent
when the surface Mach number is subsonic.
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Aa was mentioned previously, Yoshihsra (ref. 11) has
computed, by rel=ation methods, the flow about a cone
cylinder at i14m= 1.00 and hsa experimentally verified the
calculation. However, theoretical solutions do not exist for
the complete transonic regime. Solutions have not been
developed for the flow past a finite cone when ~=- is sub-
sonic or when M= is between sonic and the value of M. at
which Busemann’s conical solution becomes valid. Drougge
(ref. 15) hss computed the flow field between a detached
shock wave and finite cone by relaxation methods; however,
the position and shape of the detached shock wave were
determined initially from schlieren photographs.

The experimental results reported in this paper cover
several interesting featurea of the transonic flow about finite
cones. The deviations of the surface Mach number from
the values predicted by conical theory are examined for
values of &fmsuch that the flow field is transonic in nature.
The behavior of the surface Msch number for subsonic values
of M=, and ss M. approaches sonic from subsonic values,
is examined in some detail so that an extrapolation to Mm=
1.00 may be made. The above surface Mach number data
lead naturally to the evaluation of the drag coefficient, and
experimental values of the drag coefficient in the transonic
regime are prmented.

The physical location of the sonic line in a meridional
plane of the flow about a finite cone is of considerable interest
for a theoretical study of the problam of axially symmetric
flow. With this fact in mind, an interferometric analysis
wss made at seversl typical values of M= so as ta determine
the local Mach number fields about finite cones. Several
emrnplcs of supersonic to subsonic shock-free compression
are experimentally demonstrated.

Experimental values of the shock-wave angle at the cone
tip, particularly at values of Mm w-herethe flow field between
the shock wave and the cone surface is transonic or subsonic
in nature, are presented, and a comparison with the values
from conical theory is shown.

The conic-d solution for flow about a semi-inihite cone
demonstrates that a conical solution does not exist if, for
a given cone angle, M. decresses below a certain minimum
Mm. This minimum M. is deiined to be the M. for which
shock-wave detachment occurs for a semi-iniinite cone.
Whether or not the shock-wavedetachment Mach number
for a finite cone can be determined horn conioal theory is of
considerable theoretical interest. Experimental values of
the detachment distance of a shock wave horn a tite cone
tip, the distance obviously being zero at attachment, have
been collected horn sevend sources and the results analyzed
in this report.

The transonic equations of motion and boundary condi-
tions as derived by Vofi K6rm&n (ref. 9) for &ally sym-
metric flow require several sssumptiom as to the relative
msgnitude of various terms in the exact equations of motion
and the related boundary conditions. To demonstrate that
the transonic equations retain the importsnt features of the
exact equations, an approximate solution of the problem of
conical flow about a %mi-infinite cone hss been deveIoped
employing the transonic equations and boundsry conditions.

A comparison of the exact Busemann solution and the ap-
proximate transonic solution is presented in the report.

The author of this report wishes to exprcas his apprecia-
tion for their helpful advice and criticism to Dra. H. W.
Liepmann, J. D. Cole, and A. Roshko of the California
Institute of Technology. The investigation was conduclxxl
under the sponsorship and with the financial assistance of
the Natiomd Advisory Committee for Aeronautics.
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2k+ 1
velocity of sound for M.=1 .00
width of increments of region of integration
cone drag coefficient; reference area is cone baso aren
drag coe%icient at M==l.oo

prwure coefficient, &
()

2?!.-1
.2 PcO

pressure coefficient at M.=1.00
chord of cone
cone base diameter .
integers
path length
cone-surface Mach number
free-stream Mach number
Mach n~ber. immediately downstream of a shock

wave
number of outermost inorement of region of integra-

tion .
index of refraction of air
stagnation pressure
surface static pressure
free-stream static pressure
velocities in axial and radial directions, respectively
radial distance from axis of symmetry to point on

light path
cone base radius
interferometric fringe shift
nondimensiomd transonic axial-velocity perturbation

in appendix C; & in appendix B

nondimensiomd transonic radial-velocity perturba-
tion in appendix C; # in appendix A

o on surface of body

axial distance downstream of cone tip
perpendicular distnnce from ti of -etry to

light path
shock-wave angle
shock-wave angle at oone tip
ratio of specific heata of air, 1.400
sxial distance from oone shoulder to shock wave

tangent of shockwave angle

cone semiangle
Gladstone-Dale constant
wavelength in vacuum of light employed
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t=ilff?
P
P(o
PR
Pm
U=x/r
4

Tho

density of air
density of undetermined medium
density of reference medium
free-stream density

perturbation potential

EXPERIMENTAL EQUIPMENT

Wnmmlmilw

tmnsonic wind tunnel at GALCIT is a continuous-
fiow wind tunnel. For supersonic testing, the tem%ection
Mach number may be continuously varied over a wide range
by altering the shape of one flexible wall. The tW%ection
Mach number is varied by changing the area of a sonic
throat downstream of the test section when subsonic tests
are being performed. The test+sectionwidth is 4 inches and
the height is 9 inches. The design of the flexible test-section
wall is discussed in reference 16.

INTERFBROMETEE

The interferometer used in the present investigation is of
the Mnch-Zehnder type. Both light paths of the inter-
ferometer are prosed through the wind-tunnel test section,
one beam passing through the flow region under analysis
and the other beam passing through the undisturbed flow
in the teat section upstream of the model’. The fringe
shifts due to densi~ variations in the boundary layer are
eliminated since both beams pass through the boundwy
layer on the test-section walls and are affected almost
equally. The growth of the boundary layer between the
two beams is not compensated by the above arrangement,
but the effect is of secondary importance. A detded
description of the GALCIT interferometer and a very com-
plete bibliography, on interferometer construction are given

in referenca 17.
MODEU3 *

The models were conical-tipped brass cylinders of 20”,
25°, and 30° semiangle. The base diameters were between
0,30 and 0,50 inch. Thus, the Reynolds numbers for the
tests, with the base diarnetarof the models as the reference
dimension, varied from 55,000 to 143,000. The tips of the
cones were made as sharp as possible and the maximum tip
diameter of the dullest of the models wae approximately %
percent of its base diameter. Mao, the models were black-
nickel plated to improve the photographic definition. The
angle of attack and angle of yaw were adjusted to zero by
equalizing the pressure on the cone surface at four rmmdar
point&

EXPERIMENTAL TECHNIQUE9
lNTERFRROMRTRY

An experimental investigation of flow phenomena is facil-
ilitated by the employment of an interferometer to deter-
mine the density fields in gaseous (or liquid) flows. The
interferometer technique posse-sacsthe obvious advantage
of eliminating the need for placing any type of probe into
a flow region where the presence of the probe may com-
pletely alter the undisturbed flow field. A disadvantage is
also present, however, since the values of density are not

41367%57—01

immediately available as the test is in progress. A more
serious disadvantage is the fact that the interferometer
integraks the density values on its light paths (see appendix
A) and, thus, the measurement of density is not localized
but is iniiuenced by inhomogeneities in the flow which may
be well r~oved from the points of interest.

Two general types of flow are amenable to interferometric
amdysis, namely, two-dinmnsional and axially symmetrk
flow. This paper is concerned solely with tially symmetric
flow analysis. A discussion of the method employed to
reduce the finite-fringe interferograms, such as figure 1, to
density distributions may be found in appendix A. The
method is essentially that outlined in reference 18. An
excellant discussion of axially symmetric data reduction is
given in reference 19 where several references to earlier
papera in the field will be found.

FIGUEUIIl.—l?inits-fringe intarferogram for 30° semiangle cone oylinder.
Mm=l.280.

These earlier papers are mainly cone-ernedwith evaluating
the interferometer data-reduction techniques for axially
symmetric flow by investigating the flow about cone cylin-
ders at Mach numbers and cone angles where the Bummann
cm.ical solution was known h be valid. Reference 20 pre-
sents some experimental results in the same general flow
regimes a9 are invedigated in this report.

SONIC-IJNBLOCATIONBY WAVBREFLECTION

The location of the sonic line in a meridional plane of an
tially symmetric transonic flow can be determined experi-
mentally by at least three distinct methods. The first
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I?mum 3.-Sonic-line location for 25° semiangle cone cylinder.

method is by static-pressure measurements, the second is
by interferometric analysis, and the third is that of Mach
wave reflection from the sonic line. It should be noted

that at the point of reflection the Mach wave will be per-
pendicular to the streamline direction through the sonic line.

To locate the sonic line within the flow about a cone, a
small-diameter probe waa placed in the free-stream flow
outside the cone shock wave. The probe was in n position
such that the probe shock wave pierced the cone shock
wave and entered the flow field about the cone. The shock
waves formed by the probe closely approximate Mach wavea
at large distances from the probe and a typical wave reflec-
tion is shown in figure 2. The perturbations in the flow
about the cone caused by the waves do not appreciably
affect the position of the sonic line as shown by figure 3
where a comparison is made of the location of the sonic line
as found by- interferometric analysis and by the wuve-
reflection method. The probe method is much more con-
venient than the pressure-measurement or interferometrio
method since the phenomenon may be observed with o
schlieren system, so that the result is obtained visually.

PR=UBE MEASUREMENTS

The pressure measurements in this investigation were
made either on a micromanometer (accuracy of *0.0;
millimeter of mercury) or on a nomograph Mach meter
(ref. 21).

EXPERIMENTAL RESULTS AND DISCUSSION

GENERALPLOWCH.4RA(YJ?EIUSTICY3

An analysis of the flow of a compressible fluid about an
sxially symmetic iinite cone, that is, a cone cylinder, indi-
cates that five distinct regimes of flow are possible. Them
regimes are given below.

Regime I.—Regime I is subsonic flow at iniinity with a
region of locally supemo~c flow downstream of the ceno
shoulder. A schlieren photograph of this type of flow is
shown in figure 4. It should be noted that an extremely
weak shock wave originates at the cone shoulder and
terminate at the downstream Xnormal” shock wave. The
forked appearance of the base of the terminating “normal”
shodr wave is an illusion caused by the mid symmetry of
the flow. The light rays which pass near the surfaco of
the body in the region of the rearward branch of the “fork”
also pass through the outer portion of the shock and the
spurious rearward branch is caused by the lighhray deflec-
tions in the outs portion-of the shock wave. A moridiomd
section of the shock wave actually includes only the front
branch of the fork.

Iiegime II.-Regime II is supersonic flow at infinity
with a detached shock wave and subsonic flow between the
shock wave and the cone. Figure 1 is a finite-fringo intor-
ferogram of this type of flow.

Eegime ~.—Regime III is supersonic flow at iniinity
with an attached curved shock wave ahd subsonio flow
between the initial portion of the shock wave and tho cone.
A schlieren photograph of this flow is shown in figure 6 (a).
Taylor and Maccoll’s original papar on conical flow (ref. 13)
includes a schlieren photograph of an attached curved shock.

Regime 137.-Regime IV is supersonic flow at infinity with
an attached shock wave and mixed supersonic and subsonic
flow between the shock wave and the cone. A schlierm
photograph of this flow is shown in figure 6 (b).
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FIGURE4.-20° semkngle cone cylinder. . Ala= 0.942.

Regime V.—Regime V is supersonic flow at iniinity with
completely supersonic flow between the attached shock
wave and the cone surface. The Busemam solution applies
in this regime and has been veriiied espelimentally in refer-
ences 13, 14, 19, and 22.

LOCAL MACE NUMBER CONTOUES

TIM local Mach number contours in rLmeridional plane
for the flow about a 25° semiangle cone are shown in figure
6 for flow regimes II, III, and IV. The local iMach number
contours for a 30° semiangle cone in regime II are shown in
figure 7. Them data were obtained by interferometric
analysis as discussed in appendix A.

The local Mach number contours should be normal to the
cono surface since the cone surface is a flat boundary and
any pressure gradient at the surface must be parallel to the
flat surface. However, near the shoulder of the cone
cylinder the surface is curved by the eflect of the corner
expansion on the boundary layer, and thus the local Mach
number contours are not quite perpendicular to the cone
surface immediately ahead of the shoulder.

SONIGLINE LOCATION

The location of the sonic line can be determined by inter-
ferometric anal@, but a more useful method, in the present
investigation, was the wave-reflection method. The loca-
tion of the sonic line ti regimes II, HI, and IV is discumed
below.

Regime IL—Examples of the sonic-line location in regime
II are shown in figures 6 (a) and 6 (b). The sonic line
originates at the cone shoulder and terminates on the
detached shock wave. In figure 7 it may be seen that a
region of supersonic to subsonic compression exists on the
outer portion of the sonic line. The sonic line actually
originate slightly upstream of the cone shoulder. This
effect is due to the rounding of the cone shoulder by tha
surface bound~ layer.

Regime III.-Figure 6 (c) illustrates the case of the flow
with a nearly attached curved shock wave. Again, a small
region of supersonic to subsonic compression is present on
the outer portion of the sonic line. The free-stream Mach
number is slightiy less than the detachment M- predicted
by the exact conical theory. The question of e.sperimental
detachment Mach number is discussed subsequently.

Regime IV.-Several examples of the soti.dine location
in regime TV are shown in figuras 3, 6 (d), and 8. Figure 3
shows the location as determined by interferometric means
and as determined by wave reflection. The sonic line again
originates at the corner and now terminates at the cone tip
and not on the shock wave as in regimes II and HI. A
shock-free supersonic to subsonic compression occurs on the
forward portion of the sonic lina. The location of the sonic
line for a 20° samiangle cone is shown in figure 8. The
agreement between the theoretical and experimental location
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(a) M= =1.32s.
FICWBEI5.—25° semiangle aone oyhder.
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is satisfactory near the tip of the cone and for some distance
downstream of the tip?

The question of smooth shock-free supemonic to subsonic
compression hss been the subject of much discussion in
recent years. The above experimental results demonstrate
that such a flow is possible. However, the smooth im-

pression is not of primary importance, but rather the
conditions under which it occurs. These conditions me that
the sonic surface bounds a zone of subsonic flow completely
enolosed by a region of supersonic flow and a solid surface.
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(b) Mm=l.415.
FIcman 5. –Camludcd.

As an examplg of non+hock-free supersonic to subsonic
compression, consider the flow past a two-dimensional air-
foil at high &bsonic speeds. The local supemotic zone on
the airfoil is terminated by a shock wave and smooth com-
press~s.m’%@o~hsonic velocity do= not occur. In the two-
dimensional case, however, the supersonic zone is bounded
by a subsonic region and a solid surface. This is the op-
posite arrangement to that in the flow about a cone, in
regime IV, where shock-free supersonic to subsonic comp-
ression does occur.

The above considerations illustrate that the existence (or
stabili~) of chock-free compression through sonic veloci~
may not be a local phenomenon but may depend on the
arrangement of the complete flow field.

*The@stenmofthlsw ofllowlsimUmkl by the apshnental IWllk of ‘E@or
and KlaomIl (rots.U and 14)and wasako dLWnse3by ‘Hal (ref. 22).
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SHOCK-WAVEANGLE

The angle of the attached shock wave at the nose of the
cone ma determined for s 20° and a 25° semiangle cone in
flow regimes III, IV, and V. The values are shown in figure
9. Siiar experiments are reported in references 13 and 14.
Reference 22 presents data for one cone angle at one Mach
number in regime III and one hIach number in regime IV.
The agreement between the exact theory and the experi-
mental values at the cone tip is very good even in regimes
III and IV where the exact theory is not applicable for the
complete finite cone.

8’

7

P.n

6’

.——

Mm<

— Toylar-Moca
(ref. 13)

0 2CP Seniongl(
❑ 25° %miangl

1

L6

FImrltn 9.—Nose wave angle.

SURFACE MACH NUMEER DISTFUEUTTON

The distribution of the surface Mach number Al, on n 25°
semiangle cone for various values of M= is shown in figure
10 nnd that on a 20° semiangle cone, in figure 11. Several
characteristics of these distributions are of particular interest.

(1) Surface hlach number near the shoulder deviates horn
the Busemann conical values as soon as MS= 1.00 is attained.

“ Surface Mach number near the cone tip agrees quite well
with the conical values until the theoretical detachment Mm
occurs. At the corner ill, should, except for boundm-y-layer
effects, always be sonic if M, forward of the shoulder is
subsonic.

(2) As Mm approaches 1.00 from the subsonic or from the
supersonic regimes, M* at a particular chordwise station ap-
proaches a constant value. This behavior implies that

U,
dMm =0

Mco-1.03

COMMITTEE FOR AERONAUTICS

--–Toylor-Moccoll (rof.13)

Stotknl X/c I
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FIGURE 10.—Surface Mach number on 25” seminnglo cono oylindcr.
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FIGUTtEIl.-Surface Maoh number on 20° serniangle oono oyllnder,

The same behavior of M, on two-dimensional sections was
~oted in reference 24, and thus the concept of stdionary
dues of M, at Me A 1.00 is established for two-dimensional
md axially symmetric flow. Since these two casearepresent
imiting cwws of the flow about general three-dimensional
Iodies, the stationmy ill, concept can probably bo nppliccl
~uitegenerally if suitable care is taken in choosing the range
)f M. about Mm= 1.00 in which the so-called “M, frooze)’
s applicable.

(3) As M. progresses from a subsonic valuo through
K.= 1.00 and on to a value in regime V, the M, at a par-
ticular chordwise station probably varies quite smoothly
vith no abrupt variations, even at attachment of tho shock
vave, except for a region quite near the tip whom lorgo
mriations may occur when the shock wave ottaches.

DRAG COEFFICIENTS

The drag coefficients for the 20° and 26° semianglo cones
me shown in iigure 12. The values at Mm= 1.00 were do-
,mmined by extrapolating the M, data in figures 10 and 11
0 Ma.=1.00.

Using the concept of stationary values of Ms d Mm= 1,00,
he drag-curve slope at Mm= 1.00 becomes (see ref. 4 nnd
LppendixB)

dC. 4
dM.

2 CD*
Mmnl.co

‘m ‘)’+1
(1)
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FIGURE 12.—Drag coefficients for cone cylinders.

whore CD* is the drag coefficient at M.= 1.00. The fit
term 4/(7+ 1) of the drag-curve slope is derived from the
fir&-order term of the pressure codicient while the term
[2/(7+ l)]C~* represents the contribution of the second-order
terms. The magnitude of the second-order term [2/(y+
1)]~~* is shown by the difference in slope of the pairs of
lines drawn through OD*in figure 12.

The experimental results also indicate that

(PM,
dM.g ‘0

Mm -l.IXI

This then implies (see appendix B) that

#o. __12Y+4 ; 10Y+6 CD*
dMm2Mm-ml

– (-Y+ 1)2 (7+1)2

and an estimation can then be made of the range about
M-=1.00 where equation (1) is valid.

SHOCK-WAVE DETACHMENT

Conical-flow theory indicnte.sthat for a given cone angle
of o semi-iniinite cone a certain minimum Mm is reached
below which a conical solution is no Iongw possible. This
value of Mm is defined to be the shock-wave detachment M..
However, a finite cone introduces n characteristic length into
tlm problem so that curved attached shock waves, which
would provide tho necessary pressure gradient to turn the
flow near the cone tip, may exist at values of ilfm lees than
the conical detachment M..

Present experimental results indicate only that shock-wave
dotachnmnt for n given cone angle does not occur at an
M. greater than that predicted by conical theory. A col-
lection of data horn references 22, 25, 26, and 15 is shown in
figure 13. The ratio 6/d, where 6 is the center-line distance
from the shock wave to the plane of the cone shoulder and
d is the body diameter at the shoulder, that is, the sonic
point, is seen to approach asymptotically the value of ~/d
at attachment. The asymptotic behavior of 6/d complicates
tho fairing of the proper curve of 6/d versus Mm particularly
in view of the paucity of experimentalpoints in the immediate
vicinity of shock-wave attachment.

In reference 27 data are presented for the shock-wave
detachment distance of several cone angles at M. =2.45.
A discrepancy was found between the experimental and
theoretical values of the cone angle at which shock-wave

1.2r

1.0 -

8/d
.8 - !+ 8,deg

0 25
0 35
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o 37+
A 45

‘El 8 v 90
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\\&

.4 L I I I I I I
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M,Z-l

J?mum 13. -Shook-wave detachment distance for llnite cones. Data
are primarily from references 15, 22, 25, and 26.

detachment occurs for a fixed value of JM., detachment ap-
pearing to occur at a cone angle slightly greater than that,
predicted by the conical theory. This behavior would cor-
respond to shock-wave detachment for a fixed cone angle
occurring at a value of M. less than the theoretical conical
value of Mm. Again, however, the discrepancy may be
caused by the manner in which the experimental curve was
faired.

Thus, the experimental results appear to indicate only that
shock-wave detachment for a finite cone occurs at a value of
M. either less than or equal to the value of 4M. predicted by
conical theory but not at a larger M.. The fact that shock-
wave detachment does not appeax to occur at a value of M.
greater than that predicted by the conical theory indicate-s
that the presence of a boundary layer on the cone tip does
not affect the conici@ of the flow near the cone tip to the
extent of precipitating detachment of the shock wave.

Figore 13 also indicates that when the shock-wave detach-
ment dimkmceis large, the position of the shock wave is
dependent only on the diameter of the cone at the shoulder
or sonic point and is independent of the cone angle. When
the shock wave is quite near the cone tip, however, the de-
tachment distance is also dependent on the cone angle. This
manner of behavior of the shock-wave separation distance
was discussed by Busemann (ref. 28) and was shown experi-
mentally for two-dimensional wedge sections by GrifEth
(ref. 29).

TRANSONIC SIMILARITY

The transonic-similarity rules for the drag coefficient and
pressure coefficient, as derived in reference 10, cannot be
checked by the experimental results of this report. The
derivation assumesthat the cone-surface boundary condition
is the approximate tangency condition which is valid for
relatively small anglw. A 20° semiangle cone is the mini-
mum-angle cone for which detached shock-wave flow can be
obtained in the transonic wind tunnel, and thus the experi-
mental models were 20°, 25°, and 30° semiangle cones. The
experimental cone angles are much larger than the cone angles
for which the approximate tangency cmdition is reasonable,
and, therefore, the transonic-similari~ rules of reference 10
are not applicable.
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THEORETICAL CONSIDERATIONS

At the present time, theoretical solutions have not been
found to dwcribe the flow about a finite cone for the com-
plete Mach number range. Theoretical solutions are
available for only two Mach number regimes, namely:

(1) Exact conical theory may be applied if the surface
Mach number is greater than sonic

(2) At iMm=l.00, Yoshihsra (ref. 11) has calculated
the flow about small-angle cones by a relxmtion
technique

No solution has been determined if A& is less than sonic.
However, Van Dyke’s second-order supersonic theory and
technique (ref. 30) possibly can be applied to the subsonic
case since, if the appropriate changes of sign are made in
the particular solution found by Van Dyke for the super-
sonic case, the particular solution becomes valid for the
subsonic case.

A solution remains to be found for the regime between
lM. =1.00 and the value of AL where M, becomes equal to
1.00. The problem would be greatly simplified if the
transonic equations could be employed. To test the feasi-
bility of the appro.simations inherent in the transonic equa-
tions, an approximate solution has been found for conicaI
flow about a semi-infiniti cone using the transonic equations.
The detds of the solution are presented in appendix C.

The solution is compared with the exact conical theory in
figures 14 and 15. Figure 14 show the comparison between
the shock-wave anglea predicted by the exact theory and by
the transonic approximation. The surface Mach number
comparison is shown in figure 15. From figure 15 it can be
seen that the tmnsonic approximation is quite satisfactory
and is probably better than slendw-body cone theory, since
slender-body cone theory does not consider the presence of
the conical shock wave. Also, @ures 14 and 15 show the
agreement of the cone angle at shock-wave detachment as
found from the transonic solution and from the exact theory.

The above comparison of the exact cotical solution and
the approximate solution indicates that the transonic equa-
tions contain all the terms of importance in the exact
equations for conical flow about cones, so that the transonic
equations may be employed with confidence in the range of
ill= from M~=l.00 to an iMmfor which M,=l.00.

SUMMARY OF RESULTS .
.—

The following results were obtained from an investigation
of h-ansonic flow past cone cylindem:

1. The variation of drag coeiiicient CD with free-stream
Mach number 34’. was determined experimentally. The
slope of CD versus M. at Mm= 1.00 agrees with the theo-
retical prediction. The deviation of CLversus M. from the
conhd flow value of CL)when M,< 1.00 is demonstrated.

2. The experimental remdts for the shock-wave angle,
sonic-line location, and surface Mach number in the region
near the cone tip indicaiw that the flow is conical near the
tip of a finite cone even when the surface Mach number is
less than sonic. The surface Mach numbers for the rest of
the cone deviate horn the exact conical values when M,<l.00.
Also, a case of shock-free supersonic to subsonic compression
is demonstrated experimentally.
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FIGURE 14.-Shock-~ave angle for semi-infinite cones.
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FIGURE 15.—!Pmnsonio oonioal solution; surface Maoh number wmus
oone semiangle. um=0.26; MO-1.12. (M. is cle5ed m M.=
d=.)

3. An approximate solution for transonic conical flow hm
been developed and the agreement with tile exact coniml
theory indicates that the axially symmetric tmnsonic equa-
tions retain the important features of the exact equations.

4. Prmnt experimental vahms of the detachment distanco
of a shock wave from a finite cone tip do not demonstrate
agreement with the detachment Mach number predicted by
conicaI theory for a semi-infinite cono and the question of
shock-wave detachment from a finite cone remains undocidocl.
CALIFORNIA INSTITUTE OP TFICHNOLOGY,

PASADENA, CALIF., A@ 16, 1963.



APPENDIX A

REDUCTION OF INTERFEROMEI’ER DATA

An interferometer determines the advancement or retarda-
tion of a light wave in a medium with respect to a coherent
light wave in a reference medium. Since the wave velocities
nro a function of the indices of refraction of the respective
mediums and consequently of the densities of the mediums,
it may be shown that

(Al)

where
P(J)
‘R

1

K

A.

s

density of undetermined medium
density of reference medium
path length
Gladstone-Dale constant
wavelength in vacuum of light employed
fringe shift; in case of tite-fringe interferograms

tk is ratio of displacement of a-fringe to inimrval
between undisturbed fringes

In equation (Al) it has been assumed that the light beams
trrwerse identical geometrical paths, so that refraction, if
present, is neglected. Also, the relationship between the
index of refraction n and density is assumed to be

7L=~~Kp (M)

If n=l+a where a<l, equation (A2) is obtained by
linearizing the Imrentz law-.

For the axially symmetric case, the fringe sl& for a light
path perpendicular to the axis of symmetry becomes

where r is the radial distance from the axis of qmmehy to
a point on the light path and y is the perpendicular distance
from the axis of symmetq- to the light path.

In the present investigation, the density field was bounded
by a shock wave at a distance y, from the axis and the refer-
ence density was the ties-stream density p.; thus,

2K % [p(r —pm]rd&
s(?/)=~Ju +’ (A3)

WOY1 (ref. 31) introduced the assumption that ~(y) is a
linear function of ys in a small interwd of y. The validity
of this assumption for the present investigation is indicated
by the parabolic nature of the typical fringe-shift curves
shown in figure 16. II the substitutions

V=@

U=yl

u*=y*2

‘“OmTr
2.5 u

20
w
.-’.=
-k q=o.616--- -
aw
fE
L 1.5

1.0

Mm=1.401

.5
G

o .2 .4 .6 .e
r/r~

Fmmm 16.—Interferogram fringe shifts for 25° semiangle
cone oylinder.

are made, equation (A3) becomes

This is analogous to the solution of Abel’s
solution of equation (A4) for p is

‘. (dS/(-lu)du
‘(w)—p.=—>

J“w=

)

(A4)

problem. The

where w=P. A complete proof of the solution may be
found in reference 19.

If the region of integration in equation (A6) is divided into
equal increments in r of width 6,

ri=ib
418U7>Ki7-62 973
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where i is an integer. A numerical evaluation
(A6) is then

.~~m ~ (s2-~w~&
~=1+—

where
r8=iW3

and

~_T;;F’

of equation

(AO)

The above solution of the problem is essentkdly that of
reference 18 and a table of A~~for 50 intervals will be found
in reference 18.

From the densi@ ratio determined by equation (A6) the
local Mach number may be computed. Au approximate
correction to the local stagnation pressurep.’ downstream of
the shock wave was made by awuming that on the cone
surface po’ was determined by the nose shock-wave angle
and at a given chordwise station PO’varied linearly with the
value of the shockwave at the given station. If the approx-
imate strwmd.ims are calculated, as in reference 20, a more
refined cmrection is obtained. From the experimental
values of the local Mach number a topographic map was
plotted, and from this map the desired Mach number
contours are found.

cONIcALFmLns

If it is desired to determine whether or not a given axially
symmetric field is conical, a simple teat can be made. Re-
turning to equation (A3) it is assumed that

P=P (d

where q=r/z aud z is the axial distance from the conical
origin. Then equation (A3) becomes

~(’lJ)_2K ‘*[P (T)–PJ v&
J

—_—
x b q, (7–T?YB

where n, is the tangent of the shock-wave angle and ql=y/z.
Thus, if the field is truly conical

~ti)-f 1
z ()x

and 8 plot of 6’(y)/x versus y/x for various vahma of x ~fl
yield a group of coincident curves. Examples of this tech-
nique are shown in references 19 and 20. It is interesting to
note that in reference 20 figure 6 (b) indicatea conical flow
near a cone tip for flow regime IV, that is, a 35° semianglo
cone at M. =1.87, using the above tachnique.

SUBSIDIARY CONSIDIISATIONS

Model size.—From equation (A3) it is evident that the
fringe shift at a particular chordwise and radial station is a
linear function of the model size for fixed values of density.
Thus the model should be as large as is compatible with the
test-section dimensions with regard to blocking and so forth.

~te fringe spaoing.-The fringe spacing in the undis-
turbed field must be such that a sufficient number of data
points may be determined between the shock wave and the
cone surface at a particular chordwise station. However,
for a given fringe shift S the displacement of the fringe is
proportional to the undisturbed fringe spacing, and the
accuracy of the hinge data will be improved by increasing
the undisturbed spacing. A compromise must be effected
between the desire for many fringe shift points at a given
chordwise station and the accuraoy of the individual points.
In the present investigation, this compromise precluded a
study by iuterferometry of the flow properties in the immedi-
ate vicinity of the cone tip when the shockwave was attached.

Accuracy.-The accuracy of the interferometric method is
ailecte.dby refraction, inhomogeneitiea in the reference flow,
the numerical approximation, and so forth. An eatimato of
the accuracy can be obtained by noting the comparison of
interferometer data and shock-reflection data in figure 3
and the values of locxd Mach number behind the shock wave
indicated in figures 6 and 7.

Comprehensive disctions of the accuracy of the method
may be found in references 18 and 19.

APPENDIX B

VARIATION OF PEESSURE AND DRAG COEFFICIENTS NRAR Ma =1.00

The pressure coefficient

where p, is the surface static pressure and p. is the free-
stieam static pressure may, in transonic flow, be written as

CP=+i(=)-”-’l“1)
where M, is the surface Mach number. In equation @l) it

has been assumed that
Apo
~l=o(w-ly

that is, the s~ation pressure low across any shock wwvm
may be neglected.

Defining ~ and Ea-s

equation @1) becomes

c,= jti, 0=; (%)-1)-‘2)
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Eor a fkxl body geometry, M, is a function of Mm only;
tlmrcforo,

t=.f(r)

Thus, the first and second total derivatives of 0, with respect
to ~ am

(B3)

In gmeml, df/d~ and @~/d{2 are not known; however, an
mgunmnt presented by Llepmann and Brysen (ref. 24)
shorn that, for ~= 1.00, d~/d~=O. The same argument,
nanmly, that M, has a stationary value at Mm= 1.00,
cannot be used to evaluate #~/d~2. However, an inspection
of tho experimental data (see figs. 10 and 11) indicates that
the curve of M, versus Mm has’ an inflection point at Mm=
1.00 and, thus, #~/d~2=0 at ~=1.00.

Using equations (B3) and (B4) and the above argument,
the derivatives of CPbecome

whero ( ) * indicates evaluation at ~= 1.00, that is, at Mm=
1.00. The derivatives of C, with respect to Mm are then

The partial derivatives jtr and fr may be calculated from
equation (B2) and thus

do, % ~

()~= __J?_ CP*
7+1 7+1 035)

@cp *

()ClM.’
X2&! 1~+6 CP*

=–(Y+ ly+(.y+ 1)’ (B6)

The fore drag coe5cient of a finite cone is given by

J
CD= ‘C,(a) da

o

where a= (r/r#, r is the local cone radius, and rb is the cone
base radius. Using equations @5) and (B6), the derivatives
of CDare

A comparison of equation (B7) and experimental data is
shown in figure 12. Equations (B5) and (B7) were given
previously by Bryson (ref. 4).

It should be noted that the fit term 4/(7+1) of equation
(B5) maybe derived from the linearized transonic 09 (ref. 1)
which is

(B9)

The second term – [2/(7+ l)]CP* of equation (B5) is then of
the nature of a secondarder correction term. However, if
(dWJdM_2) * is computid from equation (B9), the result
does not agree with the first term of equation (B6) and is,
in fact, of opposite sign.

APPENDIX c

TRANSONIC APPROXIMATION FOR CONICAL FLOW

In discussing axially symmetric transonic flow, the follow- the continuity equation is approximated by
ing approximations to the aact equptions and boundruy
conditions are employed. 1

U%—v,—; V=o (cl)
If q. is the velocity in the axial or x-direction and q, is the

velocity in the radiid or r-direction it is

q==a*+&

q,=+

where a* is the velocity of sound at
perturbation potential, and +,, @,<<a*.

~=7+ 1
—b~*

assumed that I and the condition of irrotationality becomes

ikf_=l.00, + is the
Then, deiining

%—VS=O

The exact tangency condition on
replaced by

VO=(7+1) tan e

where 00is o on the surface of the bodv

(C2)

the body surface is

(C3)

and o is the inclination
angle of the body surface. The abo~e relationa are derived
in greater detail in reference 9.

To test the feasibility of the appro.ximations inherent in
equations (Cl), (C2), and (C3) an approximate solution for
the flow about a semi-inihite cone will be developed. This
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approximation will then be compared with the Busemann
solution of the exact equations.

CONICALsol.moN

Assuming that u and o are functions of u where

x
0=;

equations (Cl) and (C2) become

U%-l-o-v=-v= o

O&+v==o -

A solution of the form

U=j(v)

will be sought. From equation (C4)

but from equntion

Therefore,

dv du
—=–”izda

du 1—= -—
doff

The relationship in equation (C5) is exact (see ref. 32).

Differentiating equation (C6) with respect to u yields

(CIa)

(C2a)

(C4)

and, therefore,
du I
G=–* %

d@

(C5)

(C6)

(C7)

Substituting equations (C5), (C6), and (C7) into equation
(Cln), the result is

d% du du 3
()v @+z* xv

(C8)

The following conditions are imposed on equation (C8).
(a) At the shockwave: If u. and v, are the values of u and v

at the shock wave, then, from the transonic-shock polar
relation,

r
U. +-us

V*=(U.—U8) — 2 (C9)

where
u.=Mm2—l

.

The shock-wave angle B is given by

cot ++
.—’%

hence, from equation (C5),

du U.—U*.=- —
dv , V,

(010)

(b) On the cone surface: The tangency condition must be
satidied; hence,

v.= (7+1) tan O (011)

-wherev. is v on the cone surface and Ois the cone semiangle,
From equation (C5)

An exact solution of

du
z .=–tin0 (C12)

eauation (C8) has not been found,
However, if the righbha~d side of equation (C8) is assumed
to be small, an iteration solution maybe found.

FIRST APPROXIMATION

As a first approximation to the solution, set the right-hnncl
side of equation (C8) equal to zero; that is,

d du _.()%‘(iv (U13)

The solution of equation (C13) is

u=A loge Bv (014)

Applying conditions (C9) and (C1O) to this solution, equation
(C14) becomes

U=u.—(u. —u,) loge; (015)

SECOND APPROXIMATION

As a second approximation to the solution of equation
(C8), the right-hand side of equation (C8) is assumed to be
given with sticient accuracy by equation (C16). Hence,

d du() u, (Ua—u,y , (%;%)’ ]Oge;
ZF)Vz=– f? (016)

The solution of equation (C16) is

Jum-u,)’
4$ [ 1

—U,+(u.—u,)+(um—u,) loge; +ulogoDu

(U17)

Applying conditions (C9) and (C1O) to this solution, equation
(C17) becomes

U=(u.–u*)’
4?? [ 1

—U,+(ua —u,)+(u.—u,)log.: —

(U.+5U,)(TL-U,)~ogev %(%-%8) (018)2(um+u,) 0s 2(U.+U,)

The values of u, and v, appenring in equation (018) are
not independent of the cone semiangle0. Applying condition
(C12) to equation (C18) and solving for v,, the result is

[(7’+1) h w (u.+W,)_
Ioge v,=Ioge (7+1) tan 0+ (u +U,) ~um_u,y

(z%-i)-2(zii”(019)
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The tmnsonic-shock polar relation also must be satisiied;
hence,

r
Um+u,V,=(um—u,) —

2 (C20)

BecmIse of the nature of equation (C19), explicit solutions of
equations (C19) and (C20) for u, and o, in terms of u. and t?
have not been found. However, a solution may be found
graphically.

The values of u, and o, thus determined for a given value
of o and u. maybe introduced into equation (C18). If the
value of u on the surface UOis desired, then substitution of

0=%=(7+1) tan e

in equation (C18) yields u..
It should be noted that, for a given value of Oand u., two

sets of vahms for u, and V, are found. These correspond to
the “stron#’ and “weak” shock waves.

COMPARISON OF SECOND APPROXIMATION AND BUSEMANN CONICAL
SOLUTION

Wave angle.-The wave angle P is determined by the
values of USand o, since

(y) t p=QL
U.—U*

The degree of agreement is apparent in figure:14.

Surfaoe Maoh number,—lk terms of UOand-oO,the surface
~Machnumber is

()M:=& A 1
~ ‘Y-1A——

?’+1

where

,8

.6

v

.4

.2

0

(C21)

I

-.4 -.2 0 .2 .4
u

FmuRE 17.—Tranaordo apple ourve at u.= 0.25 from
second approximation.

The usual transonic approximation reduces equation (C21) to

M:=l+u. (C22)

Equation (C21) is shown in @e 15. The agreement with
the exact theory is quite satisfactmy.

Apple mrve.-Two sets of values of u, and o, w-illsatisfy
equations (C19) and (C20). The two solutions correspond
to the “strong” and “weak” shock-wave solutions predicted
by Busemmm. If the values of UOand UOfor all possible
cone angles and for both types of solution are plotted in the
hodograph, the resuhtantcurve is Busemann’s “apple” curve.
The apple curve found in the second approximation is shown
in figure 17.
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