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A SIMPLIFIED METHOD FOR THE DETERMINATION AND ANALYSIS OF
THE NEUTRAL-LATERAL-OSCILLATORY-STABILITY BOUNDARY

By Leonarp SternrFiELp and Oroway B. Gares, Jr.

SUMMARY

A necessary condition for neutral oscillatory stability is that
Routh’s discriminant R, formed from the coefficients of the
stability equation, 18 equal fo zero. The expression for R 1is
D(BC—AD)—B*E where A, B, C, D, and E are the coeffictents
of the lateral-stability eguation. In a large number of the
cases considered in this study, it has been found that the term
B2E may be neglected. Routh’s discriminant is then factorable
into fwo simplified expressions, that is, BO—AD=R, and D;
and either Bi=0 or D=0, or both, may constitute a condition
of neutral stability. Test functions have been derirved which, if
satisfied, indicaie that the simplified expressions may be used to
approzimate R=0. If Ri=0 and D=0 satisfy the necessary
and sufficient conditions for a neutral-oscillatory-stability
boundary, D=0 represents the boundary for the oscillation
which has a period comparatively longer than the period of
oscillation for which R,=0 is the boundary.

In general, the results of the computations oblained from
Ri=0 and D=0 show rery good agreemeni with the results
calculated by the exact expression for R=0. The nature of the
modes of motion as a function of the directional-stability deriv-
ative and the effective-dihedral derivative s discussed in detail.

INTRODUCTION

The results of recent investigations (references 1 and 2
end unpublished results of Iateral-stability analyses for
several experimental high-speed airplanes) have indicated
that small variations in some of the airplane mass and
serodynamic parameters may cause a pronounced change in
the oscillatory stability of the girplane. It has been difficult
to explain the reasons for such pronounced changes because of
the complexity of the expression for neutral oscillatory stabil-
ity. This expression, based on the lateral-stebility equations
with three degrees of freedom, involves a large number of
combinations of the mass and serodynamic parameters. In
order to predict the stability of the lateral oscillation, there-
fore, it appears necessary to make a separate stability
analysis for each airplane.

The simplified expressions derived for the neutral-
oscillatory-stability boundaery in the present theoretical inves-
tigation simplify the calculationsrequired toobtain the bound-
ary in the analysis essential for each airplane. Because of the
comparative simplicity of these expressions, an insight into

the important combinations of mass and aerodynamic
parameters that affect the lateral oscillatory stability is also
provided. Through further investigation and anelysis of
the effects of these major parameters, the necessity of making
separate calculations for each airplane might possibly be
eliminated. Test functions are given which, if satisfied,
indicate that the simplified expressions may be used.

The nature of the modes of motion as a function of C,

and C’;ﬂ, the directional-stability derivative and effective-

dihedral derivative, respectively, is shown to depend upon
the location of the stability boundaries plotted as a function
of Cy, and (',

The results of the ealculations based on the simplified
expressions are presented for comparisen with the results
obtained by the complete expression for the neutral-
oscillatory-stability boundary.

SYMBOLS AND COEFFICIENTS

angle of bank, radians

angle of azimuth, radians

angle of sideslip, radians (s/V)

sideslip velocity along the Y-axis, feet per second
airspeed, feet per second

meass density of air, slugs per cubic foot

dynamic pressure, pounds per square foot (% pV’)

wing span, feet
wing area, square feet
weight of airplane, pounds
mass of airplane, slugs (H7/g)
acceleration due to gravity, feet per second per second
relative-density factor {(m/pSh)
inclination of principal longitudinal axis of airplane
with respeet to flight path, positive when prinecipel
axis is above flight path at the nose, degrees
(see fig. 1)
8 angle between reference axis and horizontal axis,
positive when reference axis is above horizontal
axis, degrees (see fig. 1)
€ angle between reference axis and principal axis,
positive when reference axis is above principal
axis, degrees {see fig. 1)

-:sl:tqsqr,)a-m 'o‘qr:'cn-q.-e.

443



KXZ

Cr,

T

&

D,

REPORT 943—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

angle of flight path to horizontal axis, positive in a
climb, degrees (see fig. 1) .

radius of gyration in roll about principal longitudinal
axis, feet

radius of gyration in yaw about principal vertical
axis, feet

pondimensional radius of gyration in roll about
principal longitudinal axis (kx/b)

nondimensional radius of gyration mn yaw about
principal vertical axis (kz,/b)

nondimensional radius of gyration in roll about

longitudinal stebility axis (VK ? cos*n+Kj siny)
nondimensional radius of gyration in yaw eabout

vertical stability axis (1,.’K,;02 cos? g+ Kz ? sin’ 1)
nondimensional product-of-inertia parameter
((Kzoz—Kxoz) sin. 7 cos 1)

trim lift coefficient W cos 'Y)

rolling-moment coeﬂicmnt Rollmféslrrgoment

yawing-moment coefficient Yawmgsrzl’mment

(Lat,eral force)
@S

lateral-force coefficient

effective-dihedral derivative, rate of change of rolling-
monzent coefficient Wlth angle of s1deshp, per
radian (QC,/0B)

directional-stability derivative, rate of change of
yawing-moment coefficient with angle of sideslip,
per radian (9C,/0B)

lateral-force derivative, rate of change of lateral-
force coefficient with angle of s1des]1p, per radlan

(@Cv/op)
damping-in-yaw derivative, rate of change of yawing-
moment coefficient with yawing-angular-velocity

factor, per radian (DC’,./D —2’-—67

rate of change of yawing-moment coefficient with
rollmg-angular—velocity factor, per radian

<a0,./a 42

damping-in-roll derivative, rate of change of rolling-
moment coefficient with ro]]mg-angular-velomt.y

factor, per radian <30;/b )

rate of change of rolling-moment coefficient with
yawmg—angular—veloclty factor, per radian

(e0r 3p)
rate of change of lateral-force coefficient with ro]lmg-
angular—velomty factor, per radian (bO’y/b 2V)
rate of change of lateral-force caefficient with yawmg—
angular-velocity factor, per radian (b()y/b 1%

time, seconds
nondimensional time parameter based on span (Vi/b)

differential operator (as—,,)
Routh’s discriminant

N\
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FiguRE 1.—8ystem of axes and angular relatfonshlps in flight. Arrows Indicate positive
direction of angles. #7m=§—y—¢,

) complex root of stability equation
ANH-BRN+ O+ DA+ E=0 =ttiw)
b complex root of stability equation
ANCLE BV OV DN+ E=0 N =¢ iw’)
P period of oscillation, seconds

T\p  time for amplitude of oscillation to change by factor
of 2 (positive value indicates a decrease to half-
amplitude, negative value indicates an increase to
double amplitude)

A, B, C,D,E coefficients of lateral-stability equation

EQUATIONS OF MOTION

The nondimensional linearized equations of motion, re-
ferred to the stability axes, used to calculate the spiral-
stability and oscillatory-stability boundaries for any flight
condition are:

Rolling
2u0(BDi*6+ KeaDi¥) =Cipft-5 O, Dot G, Db
Yawing
2us (KD Y+ Kz D) = Cogft- C
Sideslipping
2rDyf+Dot)=Cl,8+ 5 Cy, D

Dib+3 Cu Dot

-+ Cug 5 Cr, Dot (C tan

When ¢ is substituted for ¢, ye™® for ¢, B for 8 in
the equations written in determinant form, X must be 2 root
of the stability equation

AN+ BN+ ONHDAN+E=0 (n
where

A=8} (K"K —Kxs)

B= —2[1-32 (2I{x2Kzz O”'ﬂ +Kx20gr+ [{ZEC[’ - 2I{XZ!C¥'5_

f{xzot,_ ’chnp)



SIMPLIFIED METHOD FOR DETERMINATION AND ANALYSIS OF NEUTRAL-OSCILLATORY-STABILITY BOUNDARY 445

C= s Ba’Co,Coprt 4K Cagt K Cy Cry - ColCyp—

EzCy Cry—4aExzCly—Co KxsCry—5 Cr,Cyt
Kno.,o,,,—K;o,-,c,,—K;oy,o,,,+sz0,,,0,,)
= _% C”rC'pCYB_"L“C‘nO'B_I_% CoCr Lot mC, Cipt

20001 K Cog— 2O Cry— 20K CoyCi tan v+
210K xzCy,Ci t80 v+ Oy CogCr,— 5 Cn,CipCr,—
2 CLCrCr, 3 Ca, CyCy,

E=1 Co(Cx,Cly—C1,Cop) +5 Cu tan v(CyCry—Ca Clp)

N

Multiplying equation (1) by p» end substituting 7\=;
(-]
results in the stability equation

ANALBNL OV DN HE=0 (2)
where
- _A
T
3=2
Hy™
ran
]
D=D
E=pE

The damping and period of the lateral oscillation in
seconds are given respectively by the equations

_ 060 b
12— E’ TT
_ 6.28 b

P=rv

where £ and " are the real and imaginary parts of the
complex root of stability equation (2).

ANALYSIS

The necessary and sufficient conditions for neutral oscilla-
tory stability, as shown in reference 3, are that the coeffi-
cients of the stability equation satisfy Routh's discriminant
set equal to zero

R=BCD—AD*—BE=0 (3)

and that B and D have the same sign. The expression for
R=0 can be derived by assuming that the stability equation
has two roots A=+1w, where w is the angular frequency of
the neutrally stable oscillation. This assumption is based
on the fact that for the condition of neutral oscillatory
stability the real part of the complex root must be zero.

If A=1w is substituted in the stability equation, the following
two equations are obtained:

Awt—Co' -+ E=0 4)
— B+ Du=0 (5)

Solving equation (5) for «? and then substituting the result
(w’=%) in equation (4) results in Routh’s discriminant
BCD—AD*—B*E=0

It is seen from equation (5) that m=—\/% is the angular fre-

quency of the neutrally stable oscillation only when B and
D are of the same sign since w must have a real value if the
root A= 41w is to represent an oscillation. If B and D are
of opposite sign and R=0 is satisfied, the two roots of the
stability equation given by A=-+iw are real, one positive
and one negative. It is important to note that the 4, C,
and E coefficients may be of opposite sign to the B and D
coefficients, and neutral oscillatory stability will still occur
8s long as Routh’s discriminant is equal to zero and the D
and B coefficients are of the same sign.

In general, the R=0 boundary in the Cl,, (s, plane has
two branches.

The two branches result from the fact that
E=0 is 2 quadratic equation in (', and thus has two (7},
roots for every value of (,. Usually, the two branches can
be approximated by simplified expressions for E=0. In
certain cases, however, which are discussed in the section
entitled “Test Functions,”” either one or none of the branches
may be approximated.

Now, the condition BR=0 is & necessary but insufficient
condition for neutral oscillatory stability. The simplified
expressions, therefore, which approximate R=0 do not
necessarily represent boundaries of mneutral oscillatory
stability. Other conditions, elaborated on in the section
“Validity of D=0 and R;=0 as Neutral-Oscillatory-Stability
Boundaries,” must be satisfied before either expression
represents a valid boundary.

There are, therefore, two kinds of tests that must be made:
First, tests to determine whether =0 may be approximated
by simplified expressions; and, second, tests to defermine
which of these expressions represents a boundary of neutral
oscillatory stability. The significance of the lateral-stability
boundaries is indicated by & discussion of the modes of motion

in the C*.ﬂ,(’,ﬂ plane.

DERIVATION OF SIMPLIFIED EXPRESSIONS

Two of the most important stability derivatives affecting
lateral oscillatory stability are the directional-stability
derivative C‘,.‘J and the effective-dihedral derivative C,ﬂ.
The boundary for neutral oscillatory stability is usually
plotted as a function of these two derivatives with C’.ﬁ as
the ordinate and 'y, as the abscissa. The method used to
obtain the neutral oscillatory stability boundary is first to
substitute the values of the mass and serodynamic param-
eters of a specific airplane in the coefficients of the stability
equation while maintaining C,, and C’,ﬂ as variables and

then to calculate the C;B roots of equation (3) for several
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values of C,;,. For a given value of (,,, the expression for

R=0 is a quadratic equation in (), that is of the form
a10159+610';3+01=0

For a very large number of cases, it has been found that the
last term of Routh’s discriminant B?E, which contributes
only to b, and ¢,, produces a negligible change in the expres-
sion

0101‘,"]' blolﬁ+ c,=0

If, therefore, the term B2E is neglected, equation (3} for
Routh’s discriminant reduces to

R=D(BC—AD)=0 (6a)

Thus BO—AD=0 and D=0 are the approximate factors of
the quadratic equation

aIC;ﬂ’+610;ﬂ+c;=0

The expression BC—AD is henceforth called R;.

In order to simplify the expressions for R, and D, the
expecled range of values of mass and aerodynamic param-
eters for high-speed aircraft were substituted in the coeffi-
cients of the stability equation to determine which terms
could be omitted without appreciably affecting the values of
By and D. The following simplified coefficients were obtained:

A=8u (KK —Kx2%
B=— 2#1:2 (szo n,."[‘ 2K—x2 z’oyﬂ‘l' inKzz)

C=p, (4#0szang_4FaszC' la'l'% Oﬂrcfp‘['
€, E7Cry—1 C, 0,)

D=Fa( On,— 20):Kz’) Otﬁ—ua (01,—209sz) Onp
E—5 Cu(Cx,Ciy—C1,Coy) ]

The expressions for B; and D thus become
Rl = (Alez—"AzAs) CIB I_sz (244401,'{" Ct,sz) "'lzx’l (Al_

O KNy~ [ e (4-0, K~ 0,00, [=0 (o1

and
D=A20]ﬁ— (Otp—'

2OLKXZ) O,.ﬁ=0 (6¢)
A 1= Kxgonr'l‘ 2szKz20Yﬂ + CIPKzz
Ay=C,,— 20K

Aa =I{x2 z2 _szs

where

(6d)

The simplified expressions B;=0 and D=0, as presented,
are applicable only to conditions of level flight or to condi-
tions of small angles of glide or climb. Simplified expressions
for conditions of large angles of glide or climb can be derived
by a procedure similar to the one presented.
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TEST FUNCTIONS

The approximate discriminants B;=0 and D=0 are based
on the assumption that B2E can be neglected when Routh’s
discriminant is set equal to zero. Thus, the simplified
expressions for the neutral-oscillatory-stability boundary,
R, and D, should not be used if including the terms B'E
causes an appreciable change in the roots of 2=0. In
appendix A test functions are derived which indicate the
incremental change in the roots of ;=0 and D=0 due to
the terms B?E. If certain conditions placed upon these test
functions are satisfied, then I; and D can be used to calculate
the R=0 boundary.

If, at a given value of C,, the root of R,=0 is denoted

by Ciy=r, the approximate deviation of this root from a
root of R=0 is given by

ele—r)

Ar=rd@—n+a -

If Ar is small, then R,=0 is a close approximation Lo one
branch of R=0. A suitable criterion for this approximation is

jarls g
or

|Ar| =0.01
whichever is the larger.

Similarly if a root of D=0 is denoted by Cj,=d, the
approximate deviation of this root from a root of R=0 is
given by o

_ efe—
Ad Tl 1(r—d) -|-e1 (8)
If Ad is small, then D=0 is a close approximation to one
branch of R=0. A suitable criterion for this approximation is

d
aais ]
or
|dA]£0.01

whichever is the larger.
The expressions for ry, dy, e, 7, d, and e for use in cquations
(7) and (8) are

r1=8u, (Athz—AsAs)
dl =l»¢bA2
€ =2P’bA120LCn,

r=(Clg) p,m0
d= (O'a) D=0
= (O‘A)B’E-o

where A4;, Az, and A; are defined in equations (6d).

The value of Cy, to be used in these test funetions should be
selected from the probable range of C,, of the airplane for
which the lateral-stability analysis is to b(, made. Thus, the
approximation of B;=0and D=0t0 R=0is determinedin that

region of the Cy;,Cy; plane pertinent to a particular analysis,
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VALIDITY OF D=0 AND Ri=0 AS NEUTRAL-OSCILLATORY-STABILITY
BOUNDARIES

As mentioned previously, for R=0 to be a boundary for
neutral oscillatory stability, the coefficients B and D must
be of the same sign. The three predominant terms of B con-
tain the factors —C5, —Cy, and —C,,, respectively. For
positive damping in roll, (i, is negative; and for positive
weathercock stability (C.ﬂ positive), Cr, and (, are negative.
Thus, B is positive in the usual case where there is weather-
cock stability and damping in roll. Therefore, I} must gen-
erally be positive in order that E=0 be a neutral-stability
boundary. If the exact boundary B=0 has been calculated,
it is merely necessary to plot D=0 and R=0 and note whether
B=0 is located on the side of D=0 where D is positive. A
primary purpose of the present report, however, is to obviate
caleulation of the exact boundary by the use of simplified
boundaries together with test functions. A method to
determine the sign of D from the results of the simplified
expressions is therefore presented in the following paragraph.

For a given value of C,, (selected from the probable range
of C, of the airplane for which the lateral-stability analysis
is to be made) let d be a value of (', for which D=0 and ¢’
be a slightly different value for which

R=R,D—-B*E=0
The substitution of C';ﬂ=d’ gives

e BAE)

The sign of D at the #=0 boundary (Cj,,=d’) is therefore
determined by the signs of E and R, at d’. But since d
differs little from d’, the signs of E(d) and R,(d) will be the
same as the signs of E(d’) and R,(d’), respectively. Hence
the sign of D at R=0 is the same as the sign of EfR, at D=0
(fig. 2); that is,

If the signs of E and R, are the same, D is positive and repre-
sents a neutral-oscillatory-stability boundary; if E and R,
are of opposite sign, D) is negative and then represents a
boundary for which the roots of the stability equation are
equal and opposite in sign.

20
T T
e R= E-0 R=0/D=0
g
1 P/
2
- N ] /
< Y
.08 —r
[
04 ’// foose
o'd2dsad /A/
Int¥imm)

-18 =2 -08 ~0¢4 O .04 .08 .[12 .1§ 20
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FisURE 2—Validity of D=0 as s neutral-oscillatory-stabflity boundary.

The preceding analysis is applieable for the large majority
of cases where £ (d’) and E;(d") are of the same sign as E(d)
and R,(d), respectively. For these cases, the D curve is
widely separated from the E and R, curves. If the D curve
is close to either the E or R, curve, the signs of £ and R;
should be determined at Cy=d’. However, a very good

approximation to the value of 4’ can be obtained by adding
to d the value of Ad calculated in the previous section entitled
“Test Functions.” Hence, the sign of D is determined from
the signs of £ and R, at Cy,=d+Ad.

If the value of C;ﬂ at which B;=0 is substituted in D end

the resultant sign is positive, RB,=0 is & neutral-oscillatory-
stability boundary.

It is interesting to note that for some aireraft, the D=0
curve, which approximates one branch of the Z=0 curve, is
a neutral-oscillatory-stability boundary over one section of
the curve and 2 boundary for equal and opposite real roots
over the remaining section. This division of the D=0 curve
into two distinct parts is caused by a change in sign of the D
coefficient at some point on the curve. If, as has been found
in a large number of eases, R, is positive for all values of C‘a
and (' on the D=0 curve, the sign of the D coeflicient de-
pends only on the sign of E at these points. As shown in
figure 3, therefore, the point of intersection of the curves D=0
and E=0 is the point of separation of the D=0 curve into
two characteristically different sections. For points on the
hatched side of E=0, the E coefficient i3 negative and, there-
fore, the dashed part of D=0 is a boundary of equal and
opposite real roots. Conversely, on the unhatched side of
E=0, the E coefficient is positive and the solid part of D=0
approximates & boundary of neutral oscillatory stability.

For small positive or negative values of C,, and negative
damping in roll, it is possible for B to be negative. A similar
enalysis is applicable to this case where now D must be nega-
tive to satisfy the necessary condition that B=0 is a boundary
of neutral oscillatory stability.

In general, when the simplified expressions are used to
obtain a neutral-oscillatory-stability boundary, the procedure
to be used is as follows:

(1) For a given value of C.ﬂ, selected from the probable
range of C.ﬁ of the airplane for which the lateralstability
analysis is to be made, calculate r and d, the O;B roots of

R,=0 and D=0, respectively.

.20 Stoble
Ty s
=0 q D=0
g2 iy =
2 A
S N <
-08 N N
N 3T F=0
04 \ — T
N e i
016 —12 —08 0% O 04 08 12 .16 20

. g
FIGurE 3.—Effect of the position of the E=0 boundary on the validity of D=0as sn approxi~
mate neutral-oscillatory-stability baundary.
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(2) Determine the value of Ar and Ad by substituting the
results into the test functions. o ’

(8) If the criterions for Ar and Ad as set forth in appendix
A are satisfied, consider R;=0 and D=0 close approximations
to the =0 boundary.

(4) In order to determine the validity of Bi1=0 as &
boundary of neutral oscillatory stability, substitute the

given value of C,,; and C;5=r into the D coefficient. (If the

resulting sign is positive, ;=0 approximates a branch of the
neutral-oscillatory-stability boundary.}

(5) In order to determine the validity of D=0 as a
boundary of neutral oscillatory stability, substitute the given

value of C,, and Cy=d into g— -{If the resulting sign
1

is positive, D=0 approximates a branch of the neutral-
oscillatory-stability boundary; if the resulting sign is nega-
tive, D=0 approximates g boundary of equal and opposite
real roots.)

NATURE OF MODES OF MOTION IN THE G, G, PLANE

In this section, the changes in the roots of the lateral-
stability equation, which occur upon crossing the various
stability boundaries, are discussed according to the principles
of the theory of equations as given in references 3 and 4.
The solution of the lateral-stability equation gives four roots
which may be four real roots, two pairs of conjugate complex
roots, or two real roots and one conjugate complex pair. A
pair of complex roots indicates an oscillatory mode and a
real root indicates an aperiodic mode. If the airplane is
disturbed from its trimmed condition by an arbitrary dis-
turbance, the subsequent motion is compounded of these
modes in different proportions. The method of caleulating
the different proportions of the modes is presented, for ex-
ample, in references 5 and 6. Such calculations of the motion

for numerous points throughout the C’,,ﬁ,,(l’;‘3 plane would be

very laborious. It is more practical, therefore, to investigate
merely the types of modes that may be expected throughout

the Cp,,Ciy plane as indicated by the stability boundaries.
The calculation of the motion could then be limited to several
points of interest.

Consider a case where the neutral-oscillatory-stability
boundery R;=0 and the spiral-stability boundary E=0
are located in the first quadrant of figure 4 (a). The area
between the two boundaries is a region of complete stability.
The roots of the stability equation for combinations of
Cny and Oy in this region, such as point A in figure 4 (a),
are two negative real roots and one conjugate complex pair
with the real part negative. One of the real roots which is
numerically small corresponds to the spirally stable motion
of the airplane. The other real root corresponds to the
heavy damping of the pure rolling motion. The complex
roots with the real part negative show that the so-called
Dutch roll oscillation is stable. Passing through the E=0
boundary from point A t{o point B causes the spiral mode
to become unstable, and crossing through the R;=0 boundary
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from point A to point C causes the oscillatory made to
become unstable. The second branch of the R==0 boundary
plotted in the second quadrant as D=0 is nol & neutral-
oscillatory-stability boundary but rather a boundary for
equal and opposite roots as determined by the analysis
presented in the section entitled “Validity of D=0 and
Ri=0 as Neutral-Oscillatory-Stability Boundaries.” The
roots of the stability equation for combinations of C,, and
C,, on this boundary are two equal and opposite real roots
and a pair of complex roots with the real part negative.
The positive real root is the spirally unstable mode, and the
negative real root is the damping-in-roll mode. The
oscillation continues o remain stable even though the P
coefficient is negative,

For the case where one oscillatory-stability boundary
D=0"appears im the first quadrant and another oscillatory
stability boundary R,=01is in the second quadrant (fig. 4 (b)),
the period of the neutrally stable oseillation is much
grealer on D=0 than on R,=0. This fact can be shown to
be true by investigating the angular frequency of the
neutrally stable oscillation for points located on the Ry=0
and D=0 boundaries. As shown previously, the angular
frequency o is equal to +/D/B; and, therefore, since the
boundary D=0 approximates one branch of R=0, the
angular frequeney for points on that branch is very small.
For combinations of C,, and %, on R;=0, the angular
frequency is much greater. In general, D=0is a neutral-
oscillatory-stability boundary for a long-period oseillation.

. D=0 F=0 R=0
42 .
\ JJ /
gag B Al | Ac i
® od N LY A R
\ | 714 ]
o
_ R0 E-0 Do 7]
A2 —
_ 7 ]
08 EiN bl [/a | Bdc ]
& N yd
04 N )
A I
0
e £=0 Rl;=0 &=0 ]
, ? a A D=0
t?.oa 'A %%
P L~
.04} B ]
J1AA
0

~16 -12 -~08 -.04 C'0 .04 .08 .j12 .46 .20
_— R

FIGURE 4.—Naturo of roois of stability equation In C’,‘.Cg‘ plane,
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The roots at point A of figure 4 (b) have the same character
as the roots at point A of figure 4 (a), that is, two negative
real roots and one pair of conjugate complex roots. At
point B the roots of the lateral-stability equation are two
pairs of conjugate complex roots. It is interesting to note
that the boundary for two equal roots occurs between point A
and point B and can be considered the boundary beyond
which two pairs of complex roots exist. Reference 4 shows
that for a quartic equation

AMEBNLON+DAHE=0

the boundary for equal roots is obtained by setting the
discriminant

—4P3—27(Q*
equal to zero, where
P=BD —4:1}_7,’—%
and
o=—pE+ 50 8ACE 4 2C°

Between this boundary and D=0, the period of the stable
oscillation which corresponds to the newly formed pair of
complex roots is longer than the period of the oscillation
which corresponds to the other pair of complex roots. As
C;B is inereased to point C' on the unstable side of D=0,
the newly formed long-period oscillation is the one that
becomes unstable, whereas the short-period oscillation
remains stable. At point D the roots consist of a spirally
unstable mode, a stable mode due to the derivative C;, and
a stable oscillation which becomes unstable in passing through
R;=0 to point E.

Figure 4 (c) represents the case where both E,=0 and
D=0 appear in the first quadrant but only R, is a neutral-
oscillatory-stability boundary. The curve D=0 is the
boundary for two equal and opposite real roots. Point A
once agein has two real negative roots and & pair of complex
roots with the real part negative. At point B, on the
unstable side of R,=0, the real part of the complex roots is
positive and indicates an unstable oscillation, whereas the
two real roots are still negative. The boundary for (=0 is
between R;=0 and D=0. Some investigators of lateral
stability have thought that a radical change occurs in the
roots upon crossing through this boundary. The calcule-
tions indicate, however, that the roots do not vary appre-
ciably upon pessing through (=0. At D=0, however,
there must exist two equal and opposite real roots; this
condition is possible only if the complex roots divide into
real roots since the other two real roots are negative in sign.
The caleulation of roots at point C indicate that the complex
roots had divided into two real positive roots, one of which
wes exactly equal in magnitude to one of the negative roots.
Again, the boundary for two equal roots, located between
(=0 and point C, would determine the combinations of
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C',.ﬂ and (7, where the complex roots divide into two real
roots.

There have been several cases for which a neutral-oscilla-
tory-stability boundery did not exist in the C,,,C, plane.
An analysis of these cases indicated that the boundary for
equal roots was in the oscillatorily stable region and had
divided the stable oscillation inta.twe subsiding modes..
The neutral-oscillatory-stability boundary, therefore, would
not have any significance.

BESULTS AND DISCUSSION

The simplified expressions were used to calculate B;=0 and
D=0, and the results are compared with the results of the
calculation of R=0 based on the complete expression. Not
only do B;=0 and D=0 show good agreement with E=0
(figs. 5 to 13) but the comparative simplicity of the R; and
D expressions allows identification of the major parameters
that affect the stability boundaries.

EFFECT OF Ca,—2CLEs* ON THE BRANCH OF R=0
APPROXIMATED BY D=0
Reference 2 shows that a stabilizing shift in the R=0
boundary is obtained when (), is increased in & positive
direction up to & certain value, but further inereases in the
positive direction cause a destabilizing shift in R=0. The
effect of varying C,, on the =0 curve is presented in

figure 5 for a model tested in the Langley free-flight tunnel.
The figure illustrates very good agreement between R=0
and the simplified expressions R;=0 and D=0. The
expression for D=0 is

Cp Uy = 2CcKen) Oy
=T, 20K

which indicates that for positive €y, when the numerator is

negative in sign the D=0 boundary is in the second quad-
rant for negative values of C.,—QC’;,K *—/; and in the first
quadrant for positive values of .4;. For the cases of negative
A; presented in figure 5, the D=0 boundary would appear
in the second quadrant. It can be shown, however, by the
method desecribed in the section “Validity of D=0 and B;=0
as Neutral-Oscillatory-Stability Boundaries” that D=0 in
the second quadrant is not a neutral-oscillatory-stability
boundery and hence is not plotted in figure 5. However, as
C,, isincreased in a positive direction, where now A, is posi-
tive, an increase in the positive value of .4, causes the D=0
boundary to shift upward in the first quadrant in a destab-
ilizing direction.

From the results shown in figure 5, it is seen that for the
cases of Cx_ equal to 0.30 and 0.40 only the solid-line part of
the R=0 curve in the first quadrant (the branch which may
be approximated by D=0} is a neutral-oscillatory-stability
boundary. The short-dash-line part of R=0 is a boundary
of equal and opposite real roots. The reason for this division
of the B=0 curve into two parts is discussed in the section
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FIGuRE 5.—XEflect of Cy » and A3 on the neutral-oscillatory-stability boundary.

entitled ‘“Validity of D=0 and R,=0 as Neutral-Oscillatory-
Stability Boundaries’ and is illustrated in figure 3.

EFFECT OF C\,—2CLE:z* ON THE BRANCH OF R=0
APPROXIMATED BY R,=0

The important effect of ', on B;=0 occurs only in the
coefficient of the Oy, term, 4,Kxz—As4s, in which O, affects
only the factor A;. The sign of A, is always positive and the
sign of A, is negative for positive Cy,. By definition, Ky, is
positive if the principal axis is above the flight path at the
nose of the airplane as is the case for the curves presented in
figure 5. ' In general, for positive Cy,, the expression of B,=0
which does not include any €', terms is positive and, except
for one term, is independent of C,,. If, therefore, the
coefficient of Cy, is positive, B,=0 is in the first quadrant;
whereas if the cocfficient of (', is negative, B,=0 is in the
second quadrant. As C,  increases in a positive direction
and A; becomes more positive, the coeflicient of 0;, becames
more negative and R;=0 in the second quadrant shifts
upward in a destabilizing direction. If A, is negative but
the absolute value of A, increases, as in going from C,,=0.15
to Cn,=—0.10 in figure 5, the coefficient of (', becomes
more positive and R, in the first quadrant also shifts upward
in a destabilizing direction. _Thus the results indicate that
increasing the absolute value of A; has a destabilizing effect
on the neutral-oseillatory-stability boundary.

According to a previous discussion herein, variations in
C., that maintain A, constant cause no shift in the D=0
boundary. When, therefore, R=0 is approximated by
D=0, such changes in C,, and K; should have a negligible

effect on the R=0 boundary. In order to test this point,

calculations were made for a free-flight airplane model for
Cu, varying from 0.30 to 0.63 while simultancously varying
K7 In order to maintain the same positive value of ..
The results showed the expected insensitivity of the R=0
bhoundary to these changes.

It should be remembered that D=0 in the first quadrant
is the neutral-oscillatory-stability boundary for the long-
period oscillation; and if instability were to occur, the pilot
might not find this type of instability difficul{ to control.

EFFECT OF Ci, Cry AND Kx ON THE BRANCH OF R=0
APPROXIMATED BY Du(

The D expression indicates that the D=0 boundary is
independent of the derivatives C,, and Cyg and the mass
parameter Ky. Figures 6 and 7 show a comparison of the
results obtained by the completo calculations with [)=0
for the cases in which C;, and C’yﬁ, respectively, were arbi-
trarily doubled in value. As noted in the figures, Cy, and
Cy, have a negligible efiect on the boundary. The cffect of
Kx on the branch of R=0 which may be approximated by
D=0 is shown in figure 8. Complete caleulations were
made to obtain the R=0 curves for the previously discussed
free-flight airplane model. The value of A; used in these
calculations was 0.17. For purposes of comparison, Ky was
arbitrarily increased by a factor of 2.5. Again the resulls
show practically no effect of Kz on this branch of R-0, as
is indicated by the simplified expression D=0. For the
case discussed in figures 6 to 8, the branch of R=0 approxi-
mated by R;=0 is in the second quadrant and has little
practical importance. Hence, the effect of these parameters
on R; was not determined for this particular case.
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EFFECT OF PRODUCT OF INERTIA ON THE BRANCHES OF R=0
APPROXIMATED BY Ri=0 AND E=t

The product of inertia has been shown to have a very
pronounced effect on the lateral stability of present-day
airplanes designed for high-speed high-altitude flight (refer-
ences 1 and 7). The importance of the produet of inertia is
ustrated in figure 9 (2), which presents the Z=0 boundaries
of the hypotheticeal airplane discussed in reference 1 for two
angles of inclination of the principal axis relative to the
flight path, n=0° and 3=2°. (zlculations were also made
for these cases using R,=0; and the results presented in
figure 9 (a) show the same marked stabilizing shift in the
boundary, caused by the 2° inclination of the principsal axis
sbove the flight path, as obtained by the complete calcula-
tions. The value of 4, for the B,=0 calculations was —0.18.
The value of C,, was then increased so that A was equal
to 0.13 (fig. 9 (b)). In this case, D=0 appears in the first
quadrant and R;=0 is in the second quadrant. Although
both D=0 and R;=0 are valid boundaries, the results are
discussed only for the effect of product of inertia on D=0
since only the 0,6,013 combinations in the first quadrant
are usually of practical significance. Cealculations for »=0°
and 3=2° were made using D=0 and R=0. Although the
product-of-inertia factor Kxz does appear in the I} expression
(in the term —2C:Kxz), an examination of D indicates that
this term could have only a negligible effect on D=0 when
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C,, is much greater than 2(;Kyz, as is usually the case.
Figure 9 (b) shows that the results predicted from D=0
agree very well with the results obtained from the complete
caleulations.

EFFECT OF RADIT OF GYRATION ON THE BRANCH OF R=0
APPROXIMATED BY Ry=0

Figures 10 to 12 are presented for the purpase of showing
the close agreement betwoen results obtained by using R,;=0
and results obtained from reference 1. The three figures
illustrate the effect of the radii of gyration in roll and yaw
kz, and kz, respectively, on the neutral-oscillatory-stability
boundary. Figure 12 emphasizes the fact that the simplified
expression is sufficiently accurate to predict the effect of
kx, on the oscillatory-stability boundary throughout the

entire range of variation of kx,.

EFFECT OF WING LOADING AND ALTITUDE ON THE BRANCHES OF R=0
APPROXIMATED BY Ri=~0 AND D=0

The effects of wing loading and altitude on the neutral-
oscillatory-stability boundaries were determined simul-
taneously by considering veriations in the relative density
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factor x;, because g, varies directly with both wing loading

and altitude. An examination of the expressions ;=0

and D=0 indicated that increasing p; causes a slight destab-
ilizing shift in R;=0 but does not affeet D=0 since u, does
not appear in the expression for D=0. The trend shown by

these results agrees with the results found in reference 1

concerning the effect of u, on the neutral-oscillatory-stability

boundary.

COMPARISON BETWEEN NEUTRAL-OSCILLATORY-STABILITY BOUNDARIES
OBTAINED BY EXACT AND SIMPLIFIED EXPRESSIONS FOR A HIGH-SPEED
EXPERIMENTAL AIRPLANE

Some of the neutral-oscillatory-stability boundaries ob-
tained from recent caleulations for several experimental
high-speed airplanes have appeared much different from the
conventional stability boundaries. Because of the com-
plexity of the complete expression for #=0, it is difficult to
determine the reasons for such unusual looking curves and
the significance of the boundaries. From the simplified
expressions, however, a complete analysis of the boundarics
can be easily obtained. The R=0 boundaries of an experi-
mental airplane are shown in figure 13 (). In addition to
the R=0 boundaries, the D=0 boundarics are also plofted
in the figure. As mentioned at the outset of this report,

R=0 iz a neutral-oscillatory-stability boundary only if

D is positive. The R=0 boundaries on the hatehed side of

D=0 are not therefore ncutral-oscillatory-stability bound-

aries. The boundaries for the same experimental airplane

calculated from the simplified expressions are plotted in
figure 13 (b). The R;=0 and D=0 boundaries which are
not neutral-oscillatory-stability boundaries, as determined
by the analysis presented in the section entitled “Validity of

D=0 and R,=0 as Neutral-Oscillatory-Stabhility Bound-

aries,” are shown as dash-line curves in the figure. In

D=0, the coefficient of (', becomes zero at (’,,:0.'050

and, therefore, the D=0 boundary approaches positive

infinity in the second quadrant at C’,‘=0.056. As 0,,,

increases  above 0.056, D=0 returns from negative infinity

and appears in the first quadrant. Similarly, B,=0 ap-
proaches negative infinity when C,, is approximately equal
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to 0.25 since the coefficient of C’,’ in B=0, 4, Kzz—A.4,,
is zero at this value of C,;- Above C,.ﬂ of 025, B,=0

returns from positive infinity and appears in the second
quadrant. It is necessary to note that in figure 13 (a) the
neutral-oscillatory-stability boundary is one continuous
curve; whereas in figure 13 (b} this boundary is composed of
two sections, one section of RB;=0 and the other section of
D=0. The latter fact provides the important information
that the period of the oscillation which becomes unstable
upon passing through the D=0 boundary is comparatively
longer than the period of the oscillation which becomes
unstable upon passing through the R;=0 boundary.

CONCLUSIONS

The following econclusions were reached from a theoretical
Investigation of & simplified method for obtaining and
analyzing the neutral-lateral-oscillatory-stability boundary:

1. A necessary condition for the lateral-neutral-oscillatory-
stability boundary is that R=D(BC—AD}— B*E=0, where
A, B, C, D, and E are the coefficients of the lateral-stability
equation. The expression for R=0 is approximated by the
expressions D=0 and RB,=BC0—AD=0. Criterions are de-
rived which, if satisfied, indicate that the approximate
expressions satisfy the necessary and sufficient conditions
for a neutral-oscillatory-stability boundary.

2. If D=0 and B,=0 epproximate BR=0, the curve D=0
represents the neutral-oscillatory-stability boundary for the
oscillation which has a period comparatively longer than the
period of the oscillation for which R;=0 is the boundary.

3. In general, the results of the computations obtained
from B;=0 and D=0 show very good sgreement with the
results calculated by the exact expression for 2=0. Specifi-
cally, the results of the investigation indicated:

(8) An increase in the absolute value of the parameter A,,
which is equal to C’,p—2C’LKz’ (where C, is the yawing-
moment coefficient due to rolling-angular-velocity factor,
(% is the trim lift coefficient, and Ky is the radius of gyration
in yaw), causes a destabilizing shift in the branches of
R=0 approximated by D=0 and B,;=0.

(b) The branch of BR=0 approximated by D=0 mainly
depends upon the parameter 4, and the damping-in-roll
derivative C’;p_ The product-of-inertia term Ky also appears
in D, but it has a negligible effect on the branch of R=0
approximated by D=0.

(c} An increase in the relative-density factor u, causes a
destabilizing shift on the branch of R=0 approximated by
R;=0 but does not affect the branch of R=0 approximated
by D=0.

4. The neutral-oscillatory-stability boundaries computed
from the simplified expressions show excellent agreement
with the corresponding bounderies presented in NACA
TN 1282. '

LanNerEY AERONAUTICAL LABORATORY,
NarioNaL Apvisory COMMITTEE FOR AERONAUTICS,
LangLey Fiewp, VA., August 4, 1948.



APPENDIX A
DERIVATION OF TEST FUNCTIONS ar AND ad

For a given value.of C,,, selected from the probable range
of Cy, of the airplane for Whlch the Iateral-stability analysis
is to be made, let

Bi=nCiytn aéOR% =" (Ofp)R,-u="_,-Tr2="
/]
D=dCytdy L=,  (Cp)p=—T=d
s 2C,, T
BE=eCyte %5;81 (Olﬁ)mE-o=%?=e

As shown in figure 14 the exact roots of R=R,D—B*E=0
occur at the intersection of the straight line B!E with the
parsbola B,D. 1In the vicinity of the point Cp=r, at which
R,=0, the curve R,D is approximated well lﬁ)y a straight
line tangent to the curve at Cj,=r, that is,

RD~(3G7)  (Cy=n)=(—radikrd) Cy=r)

If there is a root of R=R,D—B*E=0 near RB;=0 (that is,
if B®E intersects R,D near the point » in fig. 14), then

R=(—ryi+rdy) (Ciy—1) —&;Cy— =0
Thus, the approximate deviation of a root of R=0 from R;=0
is given by

Th6e T3y

ri{rdy—rodi—e,)

ele—r)

=?‘131(E_7‘)+€1
If this deviation, Ar, is small, then B,=0is a close approxi-

mation to one branch of B=0. A suitable criterion for this
approximation is
r
= 15’

!Arl <0.01

Ar= (O’;ﬂ—r)=

(A1)

Ar

or

whichever is the larger.
In the case of D=0, a similar &n&lysus results in the test

function
Ad——_b1le=d)

—rlal (T'—a) +é (42)

If Ad is small, D=0 may then be considered a close approxi-
mation to the other branch of RB=0. A suitable criterion for
this approximation is
d
a3
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Fi6URR 14.—Qraphical representation of the routs of the B=0 boundary.

or

|Ad| <0.01

whichever is the larger.

The expressions for r;, d;, and ¢, for usec in equations (A1)
and (A2) are

71=8uy (A1 Kxz— A2A5)
d1=l-tbAs

€= 2#»1'11201,0,,
where .

A1=Kx20:, + 2KZ’KZ!OY,+ Ol,Kz'

Ag=0,"—20[Kz’

As = Kx2K22 '—‘15,-'::::2
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