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A SJ.MPLIFJED METHOD FOR APPR05MATING THE TRANSIENT MOTION IN ANGLES OF
ATTACK AND SIDESLIP DURING A CONSTANT ROLLING MANEUVER 1

By LEONARDSTDWFIELD

SUMMARY

The transient motion in angkx of attuckand dealip during a
constant rolling muneumr ha been analyzed. Mnplijed ex-
prestiom are premnted for the determinu%n of the pertinent
mods of motion as well m the modul coemt correspmding
to each mode.

Calculations made m“thand without the derk-tive8 (?To(side
force due to 8i&.dip) and CL=(lzjl-eume 810pe) indicate that
althoughthtxedera”vatimsincrease the totaldump”ngof the q@.em
they do not markedly a$ect th tmnsimt motion.

INTRODUCTION

Recent flight tests of airplanes designed with their mass
concentrated primarily in the fuselage have indcated that
during a rolling maneuver the airplane experiences large
uncontrollable motions in angles of attack and sideslip.
A fundamental analysis of this pitch-yaw divergence prob-
lem, in which the rolling velocity of the airplane is aawmed
eonstrmt, is presented in reference 1. This analysis, con-
cerned primarily with the stability of the system, makes
,possible the calculation of the divergence boundaries and the
prediction of the range of rolling velocities for which the
nirpkme motioti will diverge. Analog studies made at the
National Advisory Committee for Aeronautic for several
research airplanes have indicated that reference 1 is a helpful
guide in a roll-coupling investigation, but detailed-motion
~tudies based on five degrees of freedom and with pilot inputs
taken into account are essential to the analysis. Also,
calculated time histories of the airplane motion indicate that
large angles of attack and sideslip which are objectionable to
a pilot and which may induce severe loads on the airplane
may be encountered for constant rolling velocities outside
the critical range.

The purpose of this paper is to extend the analysis of
reference 1 by analyzing the transient motion in angles of
attack cmd sideslip. Simplified expressions are presented
which permit an accurate and rapid Mimate of the maximum
angles of attack and sides.lip for an airplane rolling at a
constant velocity which should apply to the ease of an air-
plane entering a rolling maneuver up to the point of recovery
from the maneuver. The airplane is assumed to be initially
disturbed by an input in the side-force equation equal to the
product of the rolling velocity and trim angle of attack. A
comparison is made of the time histories obtained by using

the simplified and exact expressions (obtained from the four
degreea of freedom awun.ing constant rolling velocity) for
a currently designed swept-wing fighter flying at a Mach
number of 0.7 at an altitude of 32,000 feet.
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SYMBOLS

wing span, ft
wing mean aerodynamic chord, ft

lift ccefficient,~

Rolling moment
rolling-moment coefficient,

@b
Piiching moment

pitching-moment cceffi~ient,
qs

Yawing moment
yawing-moment coefficient,

qsb
Side force

side-f ores coefficient,
@

moment of inertia
X-asis, Slug-ft’

moment of inertia
Y-axis, slug-ft*

moment of inertia
z--axis, slug-ft~

of &plane about principal

of airplane about principal

of airplane about principal

rolling moment, ft.-lb
airplane mass, slugs
period, sec
rolling velocity, radian+mc
steady rolling velocity, radians/see
pitching velocity, radians/see; dynamic pressure,

lb/sq ft
yawing velocity, radians/see
wing area, sq ft
time, sec
time to damp to one-half amplitude, sec
time to double amplitude, sec
airplane velocity, f t/see
initial angle of attack of airplane principal axis,

radians
incremental change in angle of attack, radians

a=q+Aa .

P angle of sideslip, radians
A root of characteristic equation
akti complex roots of characteristic equation
X1,X9 real roots of characteristic equation
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EQUATIONS OF MOTION

In his analysis, on the assumption of constant forward
velocity and constant rolling velocity, the following linearized
equations of motion of an airplane refereed to the principal
rmes were used:
Pitching:

(la)

Yawing:

Normal force:

When the substitutions q=qfl, r=rd, f?=13@, and

Aa= (Aa)&’ are used in the equations written in determinant
form, h must be a root of the stability equation

AA’+BA3+ GtV+Dh+E= O (2)
where

A=l

B= N, Mq Y* &——————
I. I. mV+mV

c=-(%%%%’’-%+%!+%+~++’+

Ye N, ~ Yfl MO L. N, .& ~q_ L. %——— ._ —
mVIz mVI= mV IZ mV IY “~Vm V

‘=-(?+%) fi’-?%+%?-%?%+

M. N, L. ~Nfl L. ~Ma Yd L. YD ~,+——— .— .— ——
I. I, mV I. mV I= mV+mV mV I,

i%H+WFWz%’2-

%(%9(%%’

and

‘=-(%wZ9”4-+w)’”2-

NB IZ–l=
()

Ma N@ Mq iVfl L.~q ‘Bi I= Iz I= I. m~7— ~=+ I= I=z Ii-
—— ——— — —-

M. N, Y~ ~ N, L. Y~—— —— .— —
I= I. mV I, I. mV mV+

i%WiWH’”2

In reference 1, (7.. and C.B were assumed to be equal to
zero; this assumption is representative of the condition in
which the centw of gravity is moving in a straight line. In
this nndysig the case where CLe= G&b= O (refomed to as case

(a)) is considered, as well as the case where the values of
CL=and CrB are tiite (referred to as case (b)).

ANALYSIS AND DISCUSSION

DIVERGENCEBOUNDARIE9

The conditions necessary for the system deacribecl by
equations (1) to be stable are that the coefficients of the
characteristic equation (eq. (2)) must be positive t-red that
Routh’s discriminant, BGD-AD-FE, must be greater
than zero. From an examination of the characteristic equw-
tion of this system, it can be shown that, for aircraft designed
with positive static stability and for conditions where e~ch
of the damping derivatives C%) C~q, O.=, and Uy6 adds damp-
ing to the system, the oscillatory modes will be stable for all
valuea of the steady rolling velocity. Thus, the only type of
instability that could be encountered is an aperiodic mode
which- occurs when the constant term of the characteristic
equation, the E coefficient, is negative. As shown in ref-
erence ‘1, divergence boundaries, obtained by setting 2=0,
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can bo plotted as a function of the squares of the natural
frequencies in pitch and yaw nondimensionalized to the
square of the rolling velocity, Ue2 and @, respectively.
These divergence boundaries are shown in figure 1 for casea
(n) and (b) for an airplane whose mass and aerodynamic
characteristics are presented in table I. The nondimensional
pit ch and yaw frequencies of the airplane described in
table I fall along the straight line, with the slope equal

– ‘ha&~, Shorn infigure1.
‘o (?.P I= b Each point on this line

corresponds to a particular value of p. and, as p. increases,
the point moves along the line toward the origin. For case
(s-L),the airplane line intersects the divergence boundaries
at two points and thus ddines the critical range of roll-
ing velocities where a divergent mode exists, namely,
1.86 <lpO]<2.33. For case (b) the airplane line lies in the

TABLE I

MASS AND AERODYNAMIC CHARACTERISTICS OF
AIRPLANE

1)1,sluw ----------------------------------------------- 745
Ix, s1ug-ft9---. ---. -.--- .--_ --. ----- _-.. ---: ----------- 10,976
ly, SlUg-f&-------------------------------------------- 57,100
Iz, slug-ft~-------------------------------------------- 64975
C.r, perratim ---------------------------------------- –0.095
Cm~,pcrm~an ---------------------------------------- –3. 5

Cma,per rndan ---------------------------------------- –0.36
C.@, pcrrntian ---------------------------------------- 0.057

Crd, per rntin ---------------------------------------- – O.28
C~~,per rndnn ---------------------------------------- 3.85

C~P,pcrradan ----------------------------------------- –0.255
l’, ft/sec---------------------------------------------- 691
s,sqft---: ------------------------------------------- 377
;, ft--..-.---.-----------. ---------------------------- 11.3
b, ft----------------------------------------------- --- 36.6
q,lll/wft ----------------------- ---------------------- 197

hstable

P.
0 -1.0
v -1.5
n -1.86
A -20
0 -233
b -25
A -3.0

———Cose (a)
Case (b)

Unstable

o I 2 3 4 5

W*2

I?mwm l.—Boundariea in the d, &plane vrhioh definejmgions of
apenodiu divergence forewirnple airplane.

stable region and the motion is therefore stable for’all
Valuw Ofpo.

CHARACTEIU9TICMODES

The roots of the characteristic stability equation cor-
reapondingto the absolute vahwsofpo shown infigure 1 are
presented intablwlI (a) and II (b) forcnses (a) and (b),

TABLE II

ROOTS OF THE CHARACTERISTIC EQUATION FOR VALUES OF p, SHOWN IN FIGURE 1

(a) Roots forcsse (a)

Po I
Esact

o
–LO
–1.6
–L86
–2.0
–2 33
—2 5
–3. o

–O. 210+2 29i –O. 0526+ 1. 64i
–O. 156+2 90i -O. 107*O. 922i
–O. 143*3. 34i –0.12 +0.464i
–O. 137+3. 66i –0.261 o
–O. 135+3. 79i –O. 355+0. 0996
–o. 131Z4 Ofli –0.256” 0””
–O. 129+4 24i –O. 134+0. 267i
–O. 124+4 70i –o. 139+0. 768i

Approsiroate

–o. 162+3. of% –O. 111+11 874i
–O. 144*3. 3f/i –O. 119+0. 457i
–O. 133+3. 67i –0.2s o
–O. 136+3. 79 •~ 36;+: 0997
–O. 132+-4 loi
–o. 130+4 26i – Ci133 + O.294i
–0. 125 +_ 77i –O. 138+ O.756i

(b) Roots for case (b)

pa Esaot I Approsirnate

–! o
–1,5
~;:6

–2 33
–25
–3. o

–O. 488*2 30i
–O. 362+289i
–O. 337* 3.”33i
–O. 327+ 3. 66i
–O. 324* 3. 79i
–O. 318+4. 08i
–O. 316+4 24i
–o. 311*4. 7oi

–O. 0729 +1. 54i
–O. 199 *O. 942i
– O.224 + O.483i
–O. 322 –O. 145
–o. 453 –o. 020
–o. 374 –o. 111
–O. 245 +0. 258i
–O. 250 +0. 760i

–O. 352+3. loi
—O.340* 3. 42i
–O. 332+ 3. 71i
–O. 329 +3. 83i
–O. 322+4 13i
–O. 320+4 29i
–0;312+4. 80i

–O. 209’+0. 876i
–O. 221 + (k 469i
–O. 311–0. 146
–o. 444-0.020
–o. 363-0.113
–o. 241+0. Wii
– O.248 + O.743i
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respectively. A method of approximating the roots of the
characteristic equation is presented in the appendix. The
roots for po= O which correspond to the condition where no
coupling exists between the lateral and longitudinal modes
me also given in the table.. If the roots are compl~,

–0.693X=a+iti, P=% and TB=T ; whereas, for a real root

–0.693
x,, T35=r

0.693
or TZ=—

Xl
The roots for pO=O, for both cases (a) and (b], indicate that

the motion consists of two independent oscillatory modes, a
longitudinal and lateral oscillation with periods of 2.74
seconds and 4.08 seconds, respectively. The damping of the
oscillation for case (b) is greater than that for case (a) because
the damping derivatives CY8and CL=mere assumed equal to

zero in case (a). The values of Tti in seconds are given in
the following table:

+

T%

Case
Longitudinal Lateral

oscillation oscillatiou–

)
3.3 13.2

8 L4 9.5

For values of ~01 other than zero, the lateral variables P
and r me coupled With the longitudinal variables a and q
and the system now haa the characteristic modes shown in
table II for each of the variables fl, r, a, and q. It should be
not ed that as lpO] increaaes, the frequency of the high fre-
quency mode continu= to incrense and the damping de-
crenses. However, the frequency of the other oscillation
decrem~ until ~0[ reaches approximately 1.86 when the
oscillation breaks down into two aperiodic modes. In case
(a) at this value of IpOl,a zero root is obtained and the un-
stable region begins. The system remains unstable, with
one aperiodic divergent mode, until ~01 becomes equal to
2.33. In case (b), the system is stable although two aperiodic
modes occur for 1.86< Ipol<2.33. For ~0]>2.33, the oscilla-
tion reappenrs in cases (a) and (b) and the frequency and
damping increase as ~01 increases.

From the cent our line of constant oscillation frequencies
presented in reference 1, it appears that, in generaI, the
frequency of one of the oscillato~ modes will always decrease
and probably break down into two aperiodic modes as lpOl
increases.

MOTIONS IN ~(t) AND Au@)

Time histories were calculated by the method of Laplace
transform (ref. 2) of the motions in P and & for the several
values of PO shown in figure 1. The disturbance acting on
the airplane is represented by the term pom in the side-force
equation while the airplane is rolling in a negative direction.

~(t) and Wt)The motions in — are presented in figures 2 and
% ao

3 for cases (a) and (b), respectively. A comparison of figures
2 and 3 showw that the inclusion of CLtiand (?r~ modifies

I

——— Approximate expression

-1 I I Exact expression
I I I I

f, sec

(d po= – 1.0.

1
——— Approxlnde expression

Exact expression

o

~
%3
-1

-2

I

Aa o /
%

(b)
-10 I 2 3 4 5 6 7

/, sec

b) Po= –1.5.

FIGURE 2.—Time histories of L?/LWand ALZ/q for oaso (tL),

the motions slightly. Additional time histories were mde
and are presented in figure 4 for the same mirplano but
with the following assumed values of the derivatives:
~~== —0.09, (7,8=0.114, and C,.fl= CLa=O. For pO= — 1.0,
the airplane would be located in figure 1 at the point
We%=1.32 and W+2=4.77.

Although the modes of motion involved in the transient
behavior of the airplane will be stable for points along
Lhe airplane line located in the stable region, thnt is,
2.33< ~01<1.86 in case (a) and for all vrduea of ~ol in case (b),
the magnitudes of Aa and P developed during the trsm-
gient motion may be large enough to cause severe loads on
;he airplane. For example, in the particular flight condition
;or Which the motions were calculated, where ao= 6°, the
~irplane develops a sideslip angle of about —8° at po= — 1.5
md Aa is about —20° at po= —3.0. Them, values are
w.ached in about 3 seconds.

In all the motions the high-frequency mode is clearly evi-
ient, although the amplitude of this mode is relatively small.
3ence, the high-frequency mode modifies the shape of the
notion only slightly. Thus, for po= — 1.0, — 1.5, —2.6,
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FIGURD2.—Continued.
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(e) Fo= –2.33.

Fmmm 2.—Contiiued.

and — 3.0, the low-frequency mode is of primary imp or-
tance in the motions, whereas for pO= — 1.86, —2.0, and
— 2.33, the aperiodic modes are of primary importance.
In addition, the analytical expressions for the motions
would also contain a constant term w-hich represents the
stdndy-state value of 13and Aa if the system is stable. A
good approximation to the time history could therefore be
expressed in general form for pO=—l.O, —1.5, —2.5, and
–3.0 asl

(3)

For case (b) when p,= – 1.86, –2.0, and –2.33 and for
case (a) when po= — 2.o, the following equation is obtained

B&) or As(t)
—=G+K@’+&ew

c% @
(4)
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Aa
=7

-4
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\
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-7 (f)
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f, Sec

(f) p,= –2.5.

I

/ 7 ~

/

o
& / ‘
ao

/

-1

L ~
/‘‘\ 7

-2

0 ——— @roxirnate ewess”w
Exoct expression

{ \

-1

\ .

-2
Aa
=

-3 \
/

/

(9)
\.

40 I 2 3 4 5 6 7
t, Sec

@ p,= –3.0.

FIcIusin 2.—Concluded.
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(b)
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(b) po= – 1.5.
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I
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. —-—L __—l— L_

——— Approxkmte expression
_ Exmf exwess”@__—

“o
.— ~ —

-, [d

0 I
.-

2 3 ‘4 5 6 7
f, sec

(o) po= – 1.86.

l?ImJIZE3.—Time I&tories of p/ao and Aa/~ for rinse(b),
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——— Approximate e+pmssbn
Exact expremcm

\

-1 \
\. \ ,

-2
\ ,

\
\ \

\
~-3 \

\ \

a. \ . \

-4
\. \

\

b \.

-5
\ \ \

—.—
\ \

\

-6

0

Aa +
G

(d)
-20

2 3 4 5 6 7
f, set

(d) po= –2.0.
FIGURE3.—Continued.

nncl for cam (a) when po= — 1.86 and —2.33,

(5)

Since the high-frequency mode is omitted from expressions

B(Oand 44!) will not sati9fy(3), (4), and (6), the vtdues of —
w w

the initial condition of being zero at t=O.
By differentiating expressions (3), (4), and (5) and setting

thorn equal to zero, the mkmum values of f? and Aa and the

o

-1
\

,

\ 1
-2

If

\ \

-3 (

A ~i
\

ao 1
1$
!,

4
I

II \
-5 ~, ‘

I

-6

0-
——— Apprax-mte expression

- I Exact expreskon

-1

\

-2

&
ao I I

I
-3

~’
I
I

I
4 I

1

-5 ‘e)o I 2 3 4 5 6 7
t, sac

(e) ~= –2.33.

l?mum 3.—Contiiued.

le at–%%.ichthey occur could be easily determined. In these
calculations, @ nnd Aa occurred at about ~ and ~ of the period, respectively.

APPROXIMATION OF THE AMPLITuDE COEFFICIENTS AND PHASE ANGLE

The amplitude coefficients &, Kl, Ka, K8, & and K6 and the phase angle e in expressions (3), (4), and (5) can be calcu-
Intcd directly by using the Heatilde expansion formula given on page 45 of reference 2. A detailed examination of the
exact expressions for the amplitude coefficients and phase angle indicated that many of the terms appearing in the espreasions
had a negligible effect on the resultant magnitudes. Thus the following simplified expressions mere derived which result in
good agreement with the exact values.

tqt)
In the expressions for ~,

{ [
KO~. ‘“~’ ~-& KU %+fi~

E Ir I= mV I= 1=
(&#z)(&#)]}
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fiE(*H+~2(-)(%3(’+%31
K%,K*, and K6– 2~+D

{
K,>D ~ ‘!&&v [!!# ~+fiz (Iy=)(%)l}

As(t) -
In the expressions for ~

&=-~[(l~)(~)@-~(~)+$%]

K1~~

,
1-2 I I I I 1

i
1 I I

\
-3

1 ,

4 I I I I 1 1 I

o ——— i&2fgx&c&y@m
\

<, \
-1

\ \

w

-2
\

R
&
‘%

I

‘y

-3 I I I

\ i\
I

-4
! , -v

\

I(f)l I I
-5A I I I I I 1 1 8 ,

I 2 3.4 5 6 7
f, Sec

(f) ~= –2.5.

Fmmm 3.—Continued.

()C,=–c, ; – ‘-4!!+3
w ((7-W)

The C, D, and E appearing in the preceding expressions
are the coefhcients of the characteristic equ~tion. A com-
parison of the motions obtained by using the exact and
approximate coefficients is shown in figures 2 to 4 to be very
good.

EFFECTOFASSUMING~ CONSTANT AT i+

In general, the rolling velocity builds up exponentially in
response to an aileron input instead of being constant at
t=O as assumed in this analysis. In order to determine the
effect of the assumption on the motions in F? and Aa, on
analog study was conducted with the assumption that the
rolling velocity reaches its steady-state value exponentially.
The resultant motions b 1.3and Aa were compared with tho

o

“.
~ w

-1 \

B
=6 \ /.~

~. / ~ 4
/

-2

0 ——— Approximate eXpmSSfIM
Excd exptsdal

-1

-2 \
Aa
T

\ ~

\\

-3 k < .> / “
H +

(9)

40 I
.

2 3 4 5 6 7
t, Sec

(g) ~= –3.0.

I?IQUEB 3.—Concluded.
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f, Sec

FmunE 4.—Time histories of p/m and As/m for C.== –0.09,

~P= 0.114, ~= —1.0, and CFp=CLa=O.

motions in ~ “and Aa obtained on the assumption that pO is
constant at t=O. Equations (1) were used in the analog
study and, in addition, a simplified roll equation

._@ CIPp=~WM introduced.
~ 2v& - This equation states that

p reaches its steady-state value, pO,according to the expression

p=PO(eh’ — 1). In general, the resultant motions obtained
in the analog study were very similar to the motions shown
in figures 2 and 3. The only significant difference not ed

Pwas that ditlerent peak values of ~ and — were encountered.
%%

Table Ill presents a comparison between the mtium

vrdues of La and -$ obtained from the analog study and
%1

from figures 2 and 3 for p. = –1.0, –1.5, and –3.0. It is
seen from the values presented in table III that higher
maximum values occur for p. = — 1.0 and — 1.5 for the con-

dition of cotitant POat i!=O whereas the opposite is true for
PO= –3.0. These nxmlts can be explained by the fact that,
during the tit several seconds of the transient motion, the
average value of p. in the analog study is smaller than under
the assumption of constant po. Hence in the analog study
forpo = –1.0 and — 1.5 the airplane may be considered to
be located farther away from the stability boundary, but
for PO= –3.o the airplane is located closer to the stibility
boundary.

CALCULATIONSOF MOTIONS FOR AN AIRPLANE PERFORMING A

W& ROLL

The analysis presented thus far is applicable to the con-
dition of the airplane performing a continuous rolling motion.
Of particular interest are the motions of the airplane when
the pilot performs a 360° roll. These motions can be
approximated by tit det erminin g the values of & r, a, and
q at the time the airplane has rolled through 360°, that is,

at t= 2; At this value of t,the constant rolling velocity

is returned to po=O and the motion originally described
by four degrees of freedom is now separable into its lateral
and longitudinal values, the former represented by the
yawing and sidedipping equations and the latter repre-
sented by the pitching-moment and normal-force equations.

Thus, the values of /3, r, a, and g at t=% are the initial

conditions required to calculate the motions subsequent to

t=~. .The values of 6 and a cm be determined from

equation (3), (4), or (5). From equations (lc) and (id),
the following equations are obtained:

Y~
— P+PO+-PO As–b‘=m V (6)

and

g=$vAa+l@+& (7)

A good approximation of r and q at t=: is obtained by

neglecting the terms B and & in equations (6) and (7). The

following table compares the v&es of r and q at t=% for

PO= —1.5, —1.7, and —3.0 when 6 and a are included in

TABLE III

COMPARISON OF MAXIMUM VALUES: OF : AND :

I I I I

Fi&e

Fir%e

Fi&.o

~ constantat t=O
m ‘m-’at’=o

p=~ (at–l)

–LO –o. 04
–LO

0.4

–L5 ––i &
.3

–1.5 –L4S
.9 \

–3. o –L75 –i :5

I –3. o –L 90 –~3-

–0. 48 0.5
–. 48

–1.27 i;
–L 12
–L 91 –3: E
–2 1 –3. 2.5
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equations (6) and (7) and then deleted from equations (6)
and (7):

~ and& included ~ and& deleted
Po

r !2 r !z

–1.5 –o. m 0.20 –o. 19 0.19
–L 7 –. 12 .33 –. 14 .32
–3. o .26 .30 .29 .40

EFFBf3’, OF GRAVITY TESMS ON THE B AND Au MOTIONS

The eflect of the gravity components which would appear
in the side force (eq. (lc)) and normal force (eq. (Id)) equa-
tions have been neglected in this analysis. In order to de
termine the eifect of the gravity terms on the f? and ~
motions, an analog study was conducted using equations
(lc) and (l@ with the gravity terms included and then
deleted from the equations. The airplane was assumed to
be performing a 360° roll for rolling velocities of pO= – 1.5,
— 1.’7, and —3.o. A comparison of the mtium valuea of
& and ~ obtained with and without the gravity terms is
m

presented in table IV. The two values given for ~ that

~ Aal— and ~~ correspond to the maximum values of $
‘w

obt nined during the initial part of the transient motion
(fb=comtant) and during the recovery part of the motion
(Po=O), respectively. The comparison showw that with the.
gravity terms included the mtium values of ~ are about
2° greater and the maximum values of Aa increase by about
1° for an initial * of 5°.

TABLE IV

COMPARISON OF MAXIMUM VALUES OF ~ AND ‘;

I I t I

I I Gravity terms included I Gmvity tem deleted I

FIT‘0 (9- (+%(3. (:)..=(2)..=($3.s
–Lb –1.8 –o. 50 0.90 –1.4 –0, 30 : ;0
–L7- –2 5 –. 60 L3 –2 1 –. 40
–3. o –3. o –2 4 1.5 –2 7 –22 1:6

CONCLUDING REMARKS

From the amdysis presented in this paper it appeam that
the transient motion in angles of ~ttack and sidedip d@ng m
constant rolling maneuver~onsists chiefly of either an oscilla-
tory mode or two aperiodic modes. Approximate expressions
are derived for the determination of these modes as well as
the modal coefficient corresponding to each mode. Inclusion
of the derivative CYfi (side force due to sidealip) and Czti
(lift-curve slope) increasea the total damping of the system
but does not markedly aifect the transient motions.

The sole input considered in this paper is the term pm
(the product of rolling velocity and trim angle of attack) in
the side-force equation.

LANGLDY AERONAUTICAL LABORATORY,

NATIONAL ADVISORY C.Iomamm FOR hIRONAUTIOS,

LANGLEY l?HILD, VA., i“kfU~ %8, 1956.



APPENDIX

ME1’HOD OF APPROXIMATE.NGTHE ROOTS OF THE CHARA~ERISTIC

The fourthdegree characteristic equation

Ah&+BM+Ch’+D~+E=O

may be factored aa follows:

m’+al~+b,) (A2+aJ+Z%) =0
where

A=l

B=al+G

C=bl+bj+alG

D=aJ1+%bi

E=blbj

An examination of the quadratic equations from which the
exact roots presented in tablea ~ (a) and II (b) were obtained
indicated that bl>>baand that al and @ are of the same order
of magnitude and much smaller than bl. Thus, one may
writ e

A=l

B=G+%

EQUATION

C=b,

D=aJ,

E=b,b,

The solution of these equations yields

al_BC–D_—
c

bl=C

DQ=—
c

The roots of ~’+a,X+b,=O approximate the high-fre-
quency mode whereas the roots of ~z+aJ+bs=O approxi-
mate the remaining two roots of primary importance in the
motion calculations presented herein. A comparison between
the exact roots and the approximate roots presented in tables
11 (a) and II (b) indicates that the agreement is excellent.
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