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A SIMPLIFIED METHOD FOR APPROXIMATING THE TRANSIENT MOTION IN ANGLES OF
ATTACK AND SIDESLIP DURING A CONSTANT ROLLING MANEUVER!

By LeoNARD STERNFIELD

SUMMARY

The transient motion in angles of attack and sideslip during a
constant rolling maneuver has been analyzed. Simplified ezx-
pressions are presented for the determination of the pertinent
modes of motion as well as the modal coefficient corresponding
to each mode.

Calculations made with and without the derivatives Cv, (side
Jorce due to sideslip) and Cy, (lift-curve slope) indicate that
although these derivatives increase the total damping of the system
they do not markedly affect the transient motion.

INTRODUCTION

Recent flight tests of airplanes designed with their mass
concentrated primarily in the fuselage have indicated that
during a rolling maneuver the airplane experiences large
uncontrollable motions in angles of attack and sideslip.
A fundamental analysis of this pitch-yaw divergence prob-
lem, in which the rolling velocity of the airplane is assumed
constant, is presented in reference 1. This analysis, con-
cerned primarily with the stability of the system, makes
‘possible the calculation of the divergence boundaries and the
prediction of the range of rolling velocities for which the
airplane motions will diverge. Analog studies made at the
National Advisory Committes for Aeronautics for several
research airplanes have indicated that reference 1 is a helpful
guide in a roll-coupling investigation, but detailed-motion
studies based on five degrees of freedom and with pilot inputs
taken into account are essential to the analysis. Also,
calculated time histories of the airplane motion indicate that
large angles of attack and sideslip which are objectionable to
a pilot and which may induce severe loads on the airplane
may be encountered for constant rolling velocities outside
the critical range.

The purpose of this paper is to extend the analysis of
reference 1 by analyzing the transient motion in angles of
attack and sideslip. Simplified expressions are presented
which permit an accurate and rapid estimate of the maximum
angles of attack and sideslip for an airplane rolling at a
constant velocity which should apply to the case of an air-
plane entering a rolling maneuver up to the point of recovery
from the maneuver. The airplane is assumed to be initially
disturbed by an input in the side-force equation equal to the
product of the rolling velocity and frim angle of attack. A
comparison is made of the time histories obtained by using

the simplified and exact expressions (obtained from the four
degrees of freedom assuming constant rolling velocity) for
a cwrrently designed swept-wing fighter flying at a Mach
number of 0.7 at an altitude of 32,000 feet.

SYMBOLS
b wing span, ft
¢’ wing mean aerodynamic chord, ft
. .. Lift

Ce lift coefficient, =

on rolling-moment coefficient, Rollm,;gl;;oment

Cn pitching-moment coefficient, Pltchmqgsxél oment

C, ya,vvingfmoment coefficient, Yawm,z SI;: oment

Cy side-force coefficient, &d_‘;g?&

Ix moment of inertia of airplane about principal
X-axis, slug-ft?

Iy moment of inertia of airplane about principal
Y-axis, slug-ft?®

I moment of inertia of airplane about principal
Z-axis, slug-ft?

Mx rolling moment, ft-1b

m airplane mass, slugs

P period, sec

P rolling velocity, radians/sec

Po steady rolling velocity, radians/sec

q pitching velocity, radians/sec; dynamic pressure,

Ib/sq ft

r yawing velocity, radians/sec

S wing area, sq ft

t time, sec

Ty time to damp to one-half amplitude, sec

T time to double amplitude, sec

14 airplane velocity, ft/sec

a initial angle of attack of airplane principal axis,
radians

Aa incremental change in angle of attack, radians

a=aoy}Ac N

8 angle of sideslip, radians

A root of characteristic equation

atiw complex roots of characteristic equation

ALAs real roots of characteristic equation
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EQUATIONS OF MOTION

In this analysis, on the assumption of constant forward
velocity and constant rolling velocity, the following linearized
equations of motion of an airplane referred to the principal
axes were used:

Pitching:
o I '_'I M Ma
q—( zIr x) B I:'q+ Iy Aex (1&)
Yawing:
r—(Ix I poq—N r-l——ﬁ (1b)
Side force:
B+r—p, Aa— B+Poao (le)
Normal force:
&_q+p&3=—i’w“Aa (1d)
When the substitutions g=g™, r=red, =", and
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Aa=(Aa)e are used in the equations written in determinant
form, A must be a root of the stability equation

AXHBN4-0OM+DA+E=0 (2)
where
A=1
B N, M, Y3 6 L,
I, Iy mV'mV

(L= IN\(L—I\ , M. Ny, M,N,
0= ( > F RN ¥ Ly oo b o b oy

Ypr,YgM Lo Ny L. M, L, Y5
mVI mVIp mVI mVI mVmV

_QM M, N, ,M,N, M,N, Y,
b= ( Sl ) F oy ol by i Sy Sy s T
M, N, L.

My Ny La Ny L. M. Yy L. ¥ NN,
L LoV T LoV i L av tmVmV LT

L, Yy M, , Y,, (Ix I,) (Iz ) .
mvmy Ir I, Po

IX—IY Iz—Ix
mV( >< Iy >Paa

and
(Lr Iy> (Iz M, IX
7 I * ) pe'—
Np(L—Ix ) 2+MN \ MNg M, N L.
L LY T L I, L mV

M, N, Y M; N, L. Yg_l_
Iy Iz mV Iy Iz me

L Yp (IX—Iy> <I3_Ix 2

mV mV\ I, Iy >P°
In reference 1, Cr, and Cy, were assumed to be equal to
zero; this assumption is representative of the condition in
which the center of gravity is moving in a straight line. In
this analysis the case where Op,=Cy,=0 (referred to as case

(a)) is considered, as well as the case where the values of
Ct,, and Cy, are finite (referred to as case (b)).

ANALYSIS AND DISCUSSION
DIVERGENCE BOUNDARIES

The conditions necessary for the system described by
equations (1) to be stable are that the coefficients of the
characteristic equation (eq. (2)) must be positive and that
Routh’s diseriminant, BCD—AD*— B*E, must be greater
than zero. From an examination of the characteristic equa-

" tion of this system, it can be shown that, for aircraft designed

with positive static stability and for conditions where each
of the damping derivatives Cy,, Cn, Ur,, and Oy, adds damp-
ing to the system, the oscillatory modes will be stable for all
values of the steady rolling velocity. Thus, the only type of
instability that could be encountered is an aperiodic mode
which occurs when the constant term of the characteristic
equation, the E coefficient, is negative. As shown in ref-
erence 1, divergence boundaries, obtained by setting £=0,
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can be plotted as o function of the squares of the natural 6
frequencies in pitch and yaw nondimensionalized to the I
square of the rolling velocity, ws® and wy? respectively. l
These divergence boundaries are shown in figure 1 for cases | Po
(2) and (b) for an airplane whose mass and aerodynamic 5 ° ::-g
characteristics are presented in table I. The nondimensional I 5 186
pitch and yaw frequencies of the airplane described in I a —Zg
table I fall along the straight line, with the slope equal l , 2 :%53

-G, ¢ . - _ 4 -30
to — T % %: shown in figure 1. Each point on this line 4 I

L] Y
corresponds to a particular value of p, and, as p, increases, wg? |Unstable i
the point moves along the line toward the origin. For case
(n), the airplane line intersects the divergence boundaries 3l I
at two points and thus defines the critical range of roll- I
ing velocities where a divergent mode exists, namely, —————Case (a)
1.86<|po|<2.33. For case (b) the airplane line lies in the I Cose (b)
2=l
TABLE I
MASS AND AERODYNAMIC CHARACTERISTICS OF /
AIRPLANE |
My AUBB e o el 745 /’———_‘—_"_—'_’___'—
Tx, slug-ft3 i 10, 976 -
Ty, Blug-Tt8 e 57, 100 Unstable
e 64, 975
Capperradian_ . ~0. 095 L | 1 1 |
C,,.q, perradian. o ceiaeo. —3.5 ° I 2 .2 3 4 5
Copper radian. oo —0.36 ¥
Cogyper radion_ .. 0. 057 FroUre 1—Boundaries in the «?, ws? plane which define jregions of
Cryrper radifh_ Lo oo ool —0.28 aperiodic divergence for example airplane.
Clay POL TAARN oo 3.85 | gtable region and the motion is therefore stable for “all
Crpyperradian. .. —0. 255 values of po.
1 f/8eC . o e 691 CHARACTERISTIC MODES
e LTI s | The oots of tho characteristio stability oquation. cor
b: b e e o e 36.6 | responding to the absolute values of p, shown in figure 1 are
O If8q Fbe oo 197 | presented in tables II (a) and II (b) for cases (a) and (b),
TABLE II

ROOTS OF THE CHARACTERISTIC EQUATION FOR VALUES OF p, SHOWN IN FIGURE 1
(a) Roots for case (2)

Do Exact Approximate

0 —0.21042 29¢ —0. 0526 1 1. 54z _
—-10 —0. 15642 90z ~0.10740. 922 —0. 15243. 068 —0.11110. 8745
—15 —0. 143 £3. 34¢ —0.12 4£0. 4644 —0. 144 43. 39¢ —0.11940. 457¢
—1.86 —0. 137 43. 66¢ —0.251 0 —0.1334:3. 67¢ —0.25 0
—2.0 —0.1354:3. 79¢ —0. 35651-0. 0996 —0.13643. 79 —0. 354-+-0. 0997
—2.33 —0. 13144 09 —0.2566 0 —0.13244. 10 —0.252 0
—2.5 —0. 12944 24¢ —0. 134£0. 267¢ —0. 13044 26; —0. 1334-0. 2941
-3.0 —0. 12444 70: —0. 13910. 7684 —0.125+4. 77 —0. 13840. 756

(b) Roots for case (b)

Do Exact Approximate

0 ~—0. 488+ 2. 30z —0.07294-1. 54¢ ,
—10 . —0.36232. 89i —0.199 +0. 942: —0.352+3. 10¢ —0. 20910. 876:
—15 —0.337+£3.33i —0.224 0. 483¢ —0. 3401 3. 427 —0.22140. 469;
—1. 86 —0. 32743, 66¢ —0. 322 —0. 1456 —0.33243. 714 —0. 311—0. 146
—2.0 —0.32443. 79¢ —0. 453 —0. 020 —0. 3294-3. 83 —0. 444—0. 020
—2.33 —0. 31814 08¢ —0.374 —0. 111 —0. 32244 13¢ —0. 363—0. 113
—2.5 —0.316 14 24¢ —0.245 +0.258:2 | —0. 32014 292 —0. 24140. 255¢
-3.0 —0.31144. 70¢ —0. 250 +0.760: —0:31214. 80; —0. 2483-0. 743¢
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respectively. A method of approximating the roots of the
characteristic equation is presented in the appendix. The
roots for p¢=0 which correspond to the condition where no
coupling exists between the lateral and longitudinal modes
are also given in the table.. If the roots are complex,

A=a+t1o, P=ng; and T”=—0fg3

N, Ty 20693 o 0.603
A A
The roots for po=0, for both cases (2) and (b), indicate that
the motion consists of two independent oscillatory modes, a
longitudinal and lateral oscillation with periods of 2.74

; whereas, for a real root

seconds and 4.08 seconds, respectively. The damping of the .

oscillation for case (b) is greater than that for case (a) because
the damping derivatives Cy, and Cp_ were assumed equal to
zero in case (). The values of T3 in seconds are given in
the following table:

Ty
Case
Longitudinal Lateral
oscillation oscillation—
(ug 33 13. 2
(b 14 9.5

For values of |po| other than zero, the lateral variables g8
and r are coupled with the longitudinal variables « and ‘g
and the system now has the characteristic modes shown in
table II for each of the variables 8, r, @, and ¢q. It should be
noted that as [p,| increases, the frequency of the high fre-
quency mode continues to increase and the damping de-
creases. However, the frequency of the other oscﬂlatlon
decreases until I_p.,l reaches approximately 1.86 when the
oscillation breaks down into two aperiodic modes. In case
(a) at this value of [p,|, a zero root is obtained and the un-
stable region begins. The system remains unstable, with
one aperiodic divergent mode, until |p,| becomes equal to
2.33. In case (b), the system is stable although two aperiodic
modes occur for 1.86<C|py|<2.33. For |py|>2.33, the oscilla-
tion reappears in cases (a) and (b) and the frequency and
damping increase as |po| increases.

From the contour lines of constant oscillation frequencies
presented in reference 1, it appears that, in general, the
frequency of one of the oscillatory modes will always decrease
and probably break down into two aperiodic modes as [po]
increases.

MOTIONS IN g(t) AND Aalt)

Time histories were calculated by the method of Laplace
transform (ref. 2) of the motions in 8 and A« for the several
values of p, shown in figure 1. The disturbance acting on
the airplane is represented by the term pyas in the side-foree
equation while the airplane is rolling in 2 negative direction.
ﬁ(t) Aa(?)

[241]
3 for cases (a) &nd (b), respectively.
2 and 3 shows that the inclusion of (7

The motions in == and = are presented in figures 2 and

A comparison of figures
and (,',-B modifies
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/, sec
(b) po=~—1.5.

F1cure 2.—Time histories of 8/ay and Aafay for case (a).

the motions slightly. Additional time histories were made
and are presented in figure 4 for the same airplane but
with the following assumed values of the derivalives:
=-—0.09, (7.5=0.114, and Cy;=Cr,=0. For py=—1.0,
the airplane would be located in figure 1 at the point
=1.32 and w0 l=4.77.
Although the modes of motion involved in the transient
behavior of the airplane will be stable for points along

* the airplane line located in the stable region, that is,

2.33<|po}<C1.86 in case (a) and for all values of |po| in case (b),
the magnitudes of Aa and B developed during the (ran-
sient motion may be large enough to cause severe loads on
the airplane. For example, in the particular flight condition
for which the motions were calculated, where ay=5°, the
airplane develops & sideslip angle of about —8° at py=—1.5
and Ae is about —20° at pe=—3.0. These values are
reached in about 3 seconds.

_ In all the motions the high-frequency mode is clearly evi-
dent, although the amplitude of this mode is relatively small.
Hence, the high-frequency mode modifies the shape of the
motion only slightly. Thus, for pp=—1.0, —1.5, —2.5,
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Fiaure 2.—Continued.
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Fraurs 2.—Continued.

and —3.0, the low-frequency mode is of primary impor-.
tance in the motions, whereas for p,=—1.86, —2.0, and
—2.33, the aperiodic modes are of primary importance.
In addition, the ‘analytical expressions for the motions
would also contain & constant term which represents the
stéady-state value of g and A« if the system is stable. A
good approximation to the time history could therefore be
expressed in general form for py=—1.0, —1.5, —2.5, and
—3.0 as

@ or AAQ:KQ—I—KIW si.n (wt-l—e) ’ (3)
o o

For case (b) when p,=—1.86, —2.0, and —2.33 and for
case (a) when p,=—2.0, the following equation is obtained:

50)

r 220 g oo Ko @
®%
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Figure 2.—Concluded.
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(¢) po==—1.86.

Figure 3.—Time histories of 8/a; and Ac/fay for case (b).
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0 — —— Approximate expression 0
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! sec Aa ! \\
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Figure 3.—Continued. 3 ! : —
and for case (a) when po=—1.86 and —2.33, - }\ 3 <
|
! I \
-4 T N
B op A _ g1 (1) (5) |
o ao
Since the high-frequency mode is omitted from expressions -85 © l 5 : 7} : 5 A
(3), (4), and (5), the values of %f) and Achft) will not satisfy 1, sec
. e . =—2.33.
the initial condition of being zero at ¢=0. © o Conti
By differentiating expressions (3), (4), and (5) and setting Fraure 3.—Continued.

them equal to zero, the maximum values of  and A« and the time at which they ocour could be easily determined. In these
calculations, 8 and Ac occurred at about % and ¥ of the period, respectively.

APPROXIMATION OF THE AMPLITUDE COEFFICIENTS AND PHASE ANGLE

The amplitude coefficients K, K, K;, Ka, K,, and K; and the phase angle ¢ in expressions (3), (4), and (5) can be calcu-
lated dlrectly by using the Heaviside expansion formula given on page 45 of reference 2. A detailed examination of the
exact expressions for the amplitude coefficients and phase angle indicated that many of the terms appearing in the expressions

had o negligible effect on the resultant magnitudes. Thus the following stmplified expressions were derived which result in
good agreement with the exact values.

0} :
Gtk () G
= (a2+wa)(0—2wa)\/ [—w (I"IZIX (I” ) +| e + < 2a+ ;*ﬁ LmV (Ir—IxXIz—Ix) ]
e—ton-11 Z‘I_{r%—“’% 2“+Z}Z'%> mV (IYIZIX> (Iz )po’

[ () ().
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w2 (1) +e
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Figure 3.—Continued.

* 2ON D)

e (o
w (C—20%)

—-a(e)-

The C, D, and E appearing in the preceding expressions
are the coefficients of the characteristic equatlon A com-
parison of the motions obtained by using the exact and
approximate coefficients is shown in figures 2 to 4 to be very
good.

EFFECT OF ASSUMING ps CONSTANT AT ¢=0

In general, the rolling velocity builds up exponentially in
response to an aileron input instead of being constant at
t=0 as assumed in this analysis. In order to determine the
effect of the assumption on the motions in 8 and Ae, an
analog study was conducted with the assumption that the
rolling velocity reaches its steady-state value exponentially.
The resultant motions in 8 and Aa were compared with the

0
\ gl
-
) Y L
> %47
0] — ——— Approximate expression
———— Exoct exptession
\
..| \
AN
- A\
& S <
3 \\‘ e —
B e
(g)
~4 i 2 s, 4 5 6 ’
, seC
(g) po=-—3.0.

Freure 3.—Concluded.
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N\

L/
g

o) ] 2 3 ) 5 3 7

/,sec
Fioure 4.—Time histories of 8/ay and Aafag for Ca,=—0.09,
C’,.ﬂ= 0.114, pp=—1.0, and Cyp=C’La=0.

motions in B’and Ax obtained on the assumption that p, is
constant at {=0. KEquations (1) were used in the analog
study and, in addition, a simplified roll equation
j)——ﬂ ¢, p=ﬂ——lE wasintroduced. Thisequationstates that
2VIy ™' Ix
p reaches its steady-state value, p,, according to the expression
p=po(e¥—1). In general, the resultant motions obtained
in the analog study were very similar to the motions shown
in figures 2 and 3. The only significant difference noted

was that different peak values of %and%were encountered.
Table IIT presents a comparison between the maximum
values of %: and% obtained from the analog study and

from figures 2 and 3 for po = —1.0, —1.5, and —3.0. Itis
seen from the values presented in table ITI that higher
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dition of constant p, at t=0 whereas the opposite is true for
Po= —3.0. Theseresults can be explained by the fact that,
during the first several seconds of the transient motion, the
average value of p, in the analog study is smaller than under
the assumption of constant p,. Hence in the analog study
for po = —1.0 and —1.5 the airplane may be considered to
be located farther away from the stability boundary, but
for p, = —3.0 the airplane is located closer to the stability

boundary.

CALCULATIONS OF MOTIONS FOR AN AIRPLANE PERFORMING A
360° ROLL

The analysis presented thus far is applicable to the con-
dition of the airplane performing a continuous rolling motion.
Of particular interest are the motions of the airplane when
the pilot performs a 360° roll. These motions can be
approximated by first determining the values of 8, r, «, and
g at the time the airplane has rolled through 360°, that is,
2%

at {=—-
- Do

is returned to p,=0 and the motion originally described
by four degrees of freedom is now separable into its lateral
and longitudinal values, the former represented by the
yawing and sideslipping equations and the latter repre-
sented by the pitching-moment and normal-force equations.

At this value of ¢, the constant rolling velocity

Thus, the values of 8, r, @, and ¢ ab t=g;: are the initial
0

conditions required to calculate the motions subsequent to

=‘i—w. The values of 8 and « can be determined from

0
equation (3), (4), or (5). From equations (l¢) and (1d),
the following equations are obtained:

r=22 4 pocotpo a—p ®

and

=L At pta @

2 .
A good approximation of r and ¢ at t=;)—: is obtained by
neglecting the terms 8 and & in equations (6) and (7). The

following table compares the values of » and ¢ at t=%: for

maximum values occur for p, = —1.0 and —1.5 for the con- | py=—1.5, —1.7, and —3.0 when 8 and & are included in
"TABLE III
COMPARISON OF MAXIMUM VALUES: oF aﬁo AND -i—:
(%) (%)
maz - % /mas
Do Cr, Crg 0
Po constant at =0 P=mpo (*—1) Po constant at t=0 p=p (*—1)

—-10 0 —0. 64 —0. 48 0.5 0.4
—10 Finite —. 6 —. 48 .4 .3
—1L5 0 —1. 64 —1. 27 L0 .9
—1.5 Finite —1.48 —1L12 . 68 .6
-3.0 0 —L175 —191 —3.92 —4.15
—-3.0 Finite —1.90 —-21 —3.25 ‘ 3.3 -
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equations (6) and (7) and then deleted from equations (6)
and (7):

~

£ and & included 8 and & deleted
Do
r q r q
—15 —0. 20 0.20 —0.19 0.19
-7 —. 12 .33 —.14 .32
—3.0 .25 .30 .29 .40

EFFECT. OF GRAVITY TERMS ON THE 8 AND Aax MOTIONS

The effect of the gravity components which would appear
in the side force (eq. (1c)) and normal force (eq. (1d)) equa-
tions have been neglected in this analysis. In order to de-
termine the effect of the gravity terms on the g and A«
motions, an analog study was conducted using equations
(1c) and (1d) with the gravity terms included and then
deleted from the equations. The airplane was assumed to
be performing a 360° roll for rolling velocities of po=—1.5,
—1.7, and —3.0. A comparison of the maximum values of

&B—o and %Z—‘ obtained with and without the gravity terms is

presented in table IV. The two values given for % that

is, Aoy and %1:3; correspond to the maximum values of %

ag
obtained during the initial part of the transient motion

(po=constant) and during the recovery part of the motion

(po==0), respectively. The comparison shows that with the .

gravity terms included the maximum values of g are about
2° greater and the maximum values of Ax increase by about
1° for an initial o of 5°.

TABLE IV

COMPARISON OF MAXIMUM VALUES OF o% AND i—:—'
Gravity terms included Gravity terms deleted
T E.. .G ().

X0/ maz A /naal\ A /max| \®/ mas &9 / moz]\ X0 / mazx,

—L5b —1.8] —0.50 0. 90 —1.4 | —0.30 0. 90
—17 —2 —. 60| 1.3 —-2.1| —., 401 12
— —3.0]| —24 15 —-2.7|—22 1.6

CONCLUDING REMARKS

From the analysis presented in this paper it appears that
the transient motion in angles of attack and sideslip during a
constant rolling maneuver consists chiefly of either an oscilla~
tory mode or two aperiodic modes. Approximate expressions
are derived for the determination of these modes as well as
the modal coefficient corresponding to each mode. Inclusion
of the derivatives Cy, (side force due to sideslip) and (i,
(lift-curve slope) increases the total damping of the system
but does not markedly affect the transient motions.

The sole input considered in this paper is the term pa,
(the product of rolling velocity and trim angle of attack) in
the side-force equation.

t

LaNerey AERONAUTICAL L.ABORATORY,
Narrovan Apvisory CoMMITTEE FOR ABRONAUTICS,
Lanarey Fierp, Va., May 22, 1956.



APPENDIX
METHOD OF APPROXIMATING THE ROOTS OF THE CHARACTERISTIC EQUATION

The fourth-degree characteristic equation . C=b,
AN BN 4O\ DA E=0 D=asb,
may be factored as follows: E=b,b;
(NHa+b;) (WHagh+b) =0 The solution of these equations yields
where :
A=1 a _BC-D
' [
B=a;4a;
b1=0
C=b+b;+a;a2
D
D=azb;+a;b; B=F
E=0b, - E
An examination of the quadratic equations from which the T C
exact roots presented in tables II (a) and II (b) were obtained | . . .
indicated that b,>>b, and that a, and a; are of the same order The roots of N+4ar+b=0 apprgxmmte the high-fre-
of magnitude and much smaller than ,. Thus, one may | 4UeRCY mode whereas the roots of A*+as\+b,=0 approxi-
write mate the remaining two roots of primary importance in the
A=1 motion calculations presented herein. A comparison between
the exact roots and the approximate roots presented in tables
B=a,+}a, 1T (2) and II (b) indicates that the agreement is excellent.
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