"REPORT 1051

AN ANALYSIS OF BASE PRESSURE AT-SUPERSONIC VELOCITIES AND COMPARISON
WITH EXPERIMENT"

By Dran R. CEHAPMaX

SUMMARY o R

In the first part of the inrestigation an analyzis iz made of
base pressure in an inviseid ﬂuui both Jor two-dimensional and
arially symmetric flow. It is shown that for fwo-dimensional
flow, and also for the flow orer a body of revolution with a
cylindrical sting attached to the base, there are an infinite
number of possible solutions satisfying all 7iecessary boundary
conditions at any given free-stream Mlach number. For the

particular case of @ body haring mo sting attached only one’

solution is possible in an inviscid flow, but it corresponds fo
zero base drag. .Accordingly, it is concluded that a strictly
inviscid-fluid theory cannot be satisfactory for practical ap-
plications.

An epproxrimate semi-empirical analysis for base pzessure
in a viseuous fluid is dereloped in a second part of the investiga-
tion. The semi-empirical analysis is based partly on inviseid-
flow calculations. In this theory an attempt is made to allow
Jor the effects of dach number, Reynolds number, profile shape,
and type of boundary-layer flow. Some measurements of base
pressure in two-dimensional and arially symmetric flow are
presented for purposes of comparison. FErperimental results
also are presented concerning the support interference effect
of a cylindrical sting, and the interference e_ﬁ'ect of @ rfﬂected
bow ware on measurements of base pressure in a supersonic
wind tunnel.

INTRODUCTION

The present investigation is concerned with the pressure
acting on the base of an object moving at a supersomc
ve10c1ty This problem is of considerable practical impor-
tance since in certain cases the base drag can amount to as
much as two-thirds of the total drag of & body of revolution,
and over three~fourths of the fotal drag of an airfoil. In the
past, numerous megsurements of base pressure on bodies of
revolution have been made both in supersonic wind tunnels
and in free flight, but these experimental investigations have
had no adequate theory to guide them. As o result, the
present-day knowledge of base pressure is undesirably
limited and some inconsistencies appear in the etlstmg
experimenta] data.

Various hypotheses as to the fundamental mechanism

which determines the base pressure on bodies of révolution -

were advanced years ago by Lorenz, Gabesud, and: von
Kérmﬁ.n (See references 1, 2, and 3, respectively.) These

hypotheses, which neglect the influence of the boundary
layer, do not appear to be adequate for predicting the base
pressure or for correlating experiments.

A semi-empirical theory of base pressure for bodies of
revolution has been advanced by Cope in reference 4.
Cope’s analysis and the semi-empirical analysis of the
present report were developed independently and are similar
in one significant respect; both consider the infiuence of the
boundsry layer on base pressure. The basic concepts and
the details of the two analyses, though, are entirely difierent.
Cope's equations are developed only for axially symmetrie
flow, and do not provide for the effects of variations in
profile shape on base pressure.
pressure by equating the pressure in the wake, as calculated
from the boundary-layer flow, to the corresponding pressure

as calculated from the sxterior flow. In calculating the

pressure from the boundaryJayer fiow, however, several
approximations and assumptions are necessarily made which,
according to Cope, result in no more than & first appmma
tion.

The primary Purpose of the mveshgamon described in the

present report is o formulate a method which is of val:ue_

for quantitative calculations of base pressure both on air-
foils and bodies. The analysis is divided into two parts.
Part I consists of a detailed study of the base pressure in
two-dimensionsal and axially symmetric inviseid flow. The
purpose of part I is to develop an understanding of the prob-
lem in its simplest form, and to study the effects on base
pregsure of variations in profile shape. In part IT a semi-
empirical theory is formulated since the results of part I
indicate that an inviscid-flow theory cannot possibly be
satisfactory for engineering estimates of base pressure.
A comparison of the semi-empirical analysis with experi-
mental results is also presented in part IT of the report.
Much of the present material was developed as part of a

| thesis submitted to the Californie Institute of Technology

in 1948. Acknowledgment is made to H. W. Liepmann of
the California Institute of Technology for his helpful dis-
cussions regarding the theoretical considerations, and to
A. C. Charters of - the Ballistic Research Laboratories for

malking available numerous unpublished spark photogr&phs )

whlch were taken in the free flight experiments of reference 5.

1 Supersedes NAQA TN 2137, “An Analysis of Bace Pressure at Supersonie Velocities and Oompazisonwith Experiment,” by Dean R. Chspman, 1850. The present report includes
reference to some experiments not discussed thereln, and [umrpmtes 8 more d.etaﬂedanalyah of the effects of varfatfons in pzoﬂleshapeunbase;xmu:einmvisddﬂow
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NOTATION

constant

rod or support diameter

base thickness (base diameter for axially symmetric
flow, trailing-edge thickness for two-dimensional
flow)

L  length upstream of base (body length for axially sym-

metric flow, airfoil chord for two-dimensional flow)
A Mach number
pressure

A

gt

P—Po
%meﬁ

Py base pressure coefficient referred to conditions on a
'3
hypothetmal extended afterprofile < ] —P )

IU12

base pressure coefficient for maximum drag in inviscid
flow over a semi-infinite profile
Py* value of Py’ obtained by extrapolating to zero boundary-

(]

layer thickness the curve of P’ versus% :

q dynamlc pressure (2 pU"‘)

gas constant
Reynolds number based on the length L
radial distance from axis of symmetry to point in the
flow
temperature
thickness of wake near the trailing shock wave
velocity
angle of boattaxlmg at base
- ratio of specific heats (1.4 for au-)
boundary-layer thickness
- density

““tp:ﬁ

© mQ'Coq"‘-ka

SUPERSCRIPT

-

conditions on hypothetical extended afterprofile aver-
aged over a region occupying ‘the same position
relative to the base as the dead-air region

SUBSCRIPTS

o  conditions in the free stream
conditions at base
0 stagnation conditions

o

I. BASE PRESSURE IN AN INVISCID FLUID

Throyghout this part of the report the effects of viscosity
are completely ignored and the flow field determined for an
inviscid fluid wherein both the existence of a boundary layer
and the mixing of dead air with the air outside a free stream-
line are excluded from consideration. It is assumed through-
out that a dead-air region of constant pressure exists just
behind the base and is terminated by a.single trailing shock
wave. As will be seen later, the assumption of zero viscosity
oversimplifies the actual conditions; the results obtained with
this assumption agree qualitatively with a number of ex-
perimental results, but provide quantitative information
only on the effects of profile shape on base pressure.

pressure coefficient referred to free-stream conditions’

£
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TWO-DIMENSIONAL INVISCID FLOW OVER A SEMIINFINITE PROFILE
In order to achieve the greatest possible simplicity at the
outset, the case of a semi-infinite profile will be considered
first . By this is meant a profile of constant thickness which
extends . from the base to an infinite distance upstream
(fig. 1) The problem at hand is to determine the flow pat-
tern in the neighborhood of the base. Since the effects of
viscosity are at present ignored and only steady symmetrical
flows are considered, the problem is simply that of determin-
ing the flow over a two-dimensional, flat, horizontal surface

which has a step in it (fig. 2).

My —

me:

‘--Dead oir
—

L

FIoURE 1.—8emi-infinite progle.

E

railing shock
wave

D

(g

F16URE 2.—Example of inviscid flow over a two-dimensfonal proile.

It is easy to construct a possible flow pattern which satisfies
all necessary boundary conditions including the requirement
of constant pressure in the dead-zir region. TFor example,
suppose the free-stream Mach number is 1.50 and some
particular value of the base pressure coefficient, say
Py=—0.30 (psfp,=0.53), is arbitrarily chosen. Since tha
base pressure is prescribed, the initiel angle of turning
through the Prandtl-Meyer expansion (fig. 2} is uniquely
determined, and in this particular case is equal to 12.4°
at B. The pressure, and hence the velocity and Mach num-
ber, must be constant along the free streamline BC. For
the example under consideration, the Mach number along
the free streamline is calculated from the Prandtl-Meyer
equations to be 1.92. For a uniform two-dimensional flow
over a convex corner, the pressure depends only on the angle
of inclination of a streamline, hence it follows that BC is
a straight line. The triangle BCE therefore bounds a region
of uniform flow having the same pressure as the dead-air
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region. As the trailing shock wave (fig. 2) extends outward
from E to infinity, interference from the expansion waves
gradually decreases its strength until it eventually becomes a
Mach wave. That part of the shock wave from C to E must
deflect the flow through the same angle as the expansion
waves originally turned it (12.4° for the particular example
under consideration). This deflection certainly is .possible
since the Mach number in the triangle BCE is 1.92 which,
according to the well-known shock-wave equations, is capable
of undergoing any deflection smaller than 21.5°. As the
flow .proceeds downstream from the trailing shock wave
CEF, the pressure approaches the free-stream static pressure,

- thus satisfying the boundery condition at infinity.
It is evident that a possible flow pattern has been con-

strueted which satisfies all the prescribed requirements as
well as the necessary boundary conditions. This flow, how-
ever, certainly is not the only possible one for the particular
Mach number (1.50) under consideration, since any negative
value of P, algebreically greater than —0.30 also would
have permitted & flow pattern to be constructed and still
satisfy all boundary conditions. This is not necessarﬂy
true, though, if velues of P, algebraicelly less than —0.30
are chosen, as can be seen by picturing the conditions that
would result if the base pressure were gradually decreased.
The angle of turning through the Prandtl-Meyer expansion
would increase and point C in figure 2 simultaneously would
move toward the base. The base pressure can be decreased
in this manner only until a condition is reached in which
the shock wave at C turns the flow through the greatest
angle possible for the particular local Mach number existing
along the free streamline. The bese pressure cannot be
further reduced and still permit steady inviscid flow to
exist. The flow pattern corresponding to this condition of
2 maximum-deflection shock wave can be considered as a
“limiting” flow of all those possible. There are obviously
an infinite number of possible flows for & given free-stream
Mach Number, but only one limiting flow.

The limiting value of the base pressure coefficient can be
calculated as a function of the freestream Mach number by
reversing the procedure described above for constructing
possible flow patterns. Thus, for a given value of the local
Mach number along the free streamline a limiting flow pat-
tern can be constructed by requiring that the angle of turn-
ing be equsal to the maximum-deflection angle possible for
a shock wave at that particular local Mach number. By
use of the Prandtl-Meyer relations the appropriate value of
the freestream Mach number is then directly calculated
from the angle of turning and the local Mach number along
the free streamline. - This process can be repeated for differ-
ent values of the local Mach number along the free stream-
line and & curve drawn of the limiting base pressure coefficient
as a function of Mach number. Such a curve is presented
in figure 8. The shaded area represents all the possible
values of the base pressure coefficient for two-dimensional
inviscid flow. The upper boundary of the shaded area
corresponds to the limiting flow condition for various free-
.stream Mach numbers.

There is no reason a priori to say that for a given Af,
the limiting flow pattern represents that particular one
which most nearly approximates the flow of a real fluid.
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FIGURE 8.—Base pressure for two-dimensional inviscid flow,

The curve representing these limiting flow patterns can be
considered simply as being the curve of maximum base drag
(and hence maximum entropy increase) possible in an in-
viscid flow. This is the only interpretation that will be
given to this curve for the time being. Since it is these
limiting solutions which will be singled out later for further
uvse, a special symbol Py, will be used to designate the base
pressure coefficient of such flows. It is evident from figure
3 that in the Mach number region shown the values of P,

for two-dimensional flow correspond to very bigh base drags,
being almost as high as if & vacuum existed at the base.
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At Mach numbers greater than or equal to 6.0, the values

of P,, exactly correspond fo & vacuum at the base

AXIALLY SYMMETRIC INVISCID FLOW OVER A SEMLINFINITE BODY

In principle the same method of procedure can be used
for inviscid axally symmetric flow as was used for inviscid
two-dimensional flow. The axislly symmetric flows, how-

ever, are somewhat more involved than the corresponding

two-dimensional flows. For example, in axially symmetric
flow- the expansion wavelets issuing from the corner of the
base are not straight lines as they are in Prandtl-Meyer

flow. Moreover, additional .complications arise since the =

flow conditions upstream of the trailing shock wave do not
depend solely on the inclination of the streamlines at &
given point, but depend on the whole history of the fiow
upstream of the Mach lines passing through that point.

As a consequence of these complications, the free streamline _ B

of constant pressure cannot be straight.
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In order to construct possible flow patterns as was done in -

the two-dimensional case, the method of characteristics for
axially symmetric flow must be used. The details of the
particular characteristics method employed are described in
reference 6. By employing "the characteristics method the
inviscid flow field corresponding to a given base pressure can
be constructed step by step for any given value of the Mach
number. The shape of the free streamline is, of course,
determined by the condition that the pressure and the
velocity must be constant along it. An example of such a
construction for a free-stream Mach number of 1.5 is given in
figure 4 (a). In this particular case, the base pressure

Dead-agir space

Uniform pressure p,

Axis of symmetry

. (2) M =1.5; Pym—0.25.

FrauRk 4—Typleal Mach nets for inviseld flow over the base of a semi-Infinite body of
revolation. -

coeflicient which has been chosen arbitrarily is —0.25. It is
to be noted that there is a striking difference between the
axially symmetric flow (fig. 4 (a)) and the two-dimensional
flow (fig. 2). The inviscid flow pattern for the axially
symmetric case cannot be constructed all the way to the
axis of symmetry and still satisfy the prescribed boundary
conditions. This is a consequence of the curvature of the
free streamline and the fact that the Mach number along
the free streamline in the case under consideration is 1.84,
which, at the most, is capable of deflecting a streamline only
19.9° by a single shock wave. As is illustrated in figure
4 (a), the angle of inclination of the free streamline for this
example is already 19.9° at o value of r/r,=0.552, where r is
the radial distance from the axis and r,=Fk/2 is the radius of
the base. Since the angle of inclination of the constant-
pressure free streamline would continue to increase¢ mono-
tonically as the axis is approached, the flow pattern of
figure 4 (a2} cannot be constructed farther than the point
shown (r/ry=0.552) and still permit the flow to be deflected
through a single shock wave-and become parallel to the axis
of symmetry. This phenomenon is not attributable to the
particular combination of Mach number and base pressure
selected for figure 4 (a). In figures 4 (b), 4 (c), and 4 (d),
other examples are presented which illustrate the flow for
different values of Mach number and for different base
pressures. In each case the free streamline has been ter-
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{d). Moo md.0: Py=—(1.0506.
FIGURE 4.—Concluded,

minated at the point where the local angle of inelination is
equal to the angle corresponding to the greatest possible
deflection by a single shock wave. It is evident that none
of these flow patterns could be construeted down to the axis
of symmetry. Altogether, approximately 30 flow patterns
were constructed by the characteristics method; in no ecase
could the flow be construeted all the way to the axis.

The flow patterns built up by the method of characteristics

.should not be regarded as unrealistic simply because the flow

cannot be constructed all the way to the axis. In a real
fluid the flow outside the boundary layer is similar because
the wale behind the body fills the region near the axis and
prevents the outer flow from reaching the axis., This fact
suggests that the ‘axially symmetric inviscid-flow patterns
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should be investigated further as they might bear some
relation to actual flows if the displacement effect of the wake
were considered.

The flow fields containing a free streamline not meeting
the axis of symmetry can be considered as those that would
exist in inviseid flow about & body of revolution which has an
infinitely long cylindrical rod (or “sting”) attached to the
base. As an example, the flow of figure 4 (a) would corre-
spond to a body having a rod of diameter d=0.552k attached
to the base.
shock wave turns the free streamline through the greatest
deflection possible for the given local Mach number along
the free streamline. The flow field is therefore the himiting
flow field of all those possible for the given free-stream Mach
number and the given ratio of d/fh.

Traifing shock

FIaURE 5.—Axially symmetric semi-infinite body with rod attached.

Just as in the case of the two-dimensional body, there are
also an infinite number of possible flow patterns for the body

of revolution with a rod attached. This is true because for-

a8 given configuration as many additional flow patterns as
desired can be constructed by simply selecting the base
pressure to be any pressure between the free-stream pressure
and the pressure corresponding to the limiting flow. The
limiting flow pattern is to be given the same physical sig-
nificance for axially symmetric flow as for two-dimensionsal
flow; that is, the corresponding base pressure coefficient
P), represents the maximum base drag possible for an inviseid
flow with a single trailing shock wave and a given ratio
of d/h.

By choosing different velues of the base pressure co-
efficient for & fixed Mach number, the inviscid solutions
determined by the method of characteristics enable & plot
of P,, against dfk to be made. This procedure has been
carried out for Mach numbers of 1.25, 1.5, 2.0, 2.5, 3.0,
and 4.0. The results are shown in figure 6. Each point on
the curves in this figure represents one flow pattern con-
strueted by the characteristics method. The wvalues for
"dfh=0 correspond to the semi-infinite body without a rod
attached. It is to be noted that for each curve in figure 6
the value of P,, extrapolates to zero as dfh approaches zero.
This means that the base pressure is equal to the free-
stream static pressure, the free streemline is undeflected,
and the base drag is zero. Hence, the limiting flow pattern

(See fig. 5.) With such a model the trailing -
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and the infinity of p0551b1e inviscid flows for 0<d/ﬁ,<1

degenerate into & single trivial solution corresponding- to -

zero base drag for d/h=0. This behaviour appesars anoma-
lous on first thought, perticularly when one remembers

that the coefficient P,; represents the maximum possible o

base drag that can exist for an inviscild flow of the type
being considered. An explanation can be-obta,med f_rom a
consideration of the equations of motion since they are the
basis for the method of characteristics. This explana.’uon,
however, is not essential for an understanding of the main
conclusions regarding base pressure, and hence is presented
as Appendix A.

In figure 6 the limiting values as dfh approaches 1.0
correspond to the previously treated case of two-dimensional
flow. It can be seen that this must be the case by visualizing

the limiting process as taking place with both ¢ and-h

approaching infinity, but with the difference (k~d) Keld
constant. The configuration approached in this marner
would be a two-dimensional step of height (h—d)/2; hence
the pressure coefficient approached would be the limiting

base pressure coefficient for two-dimensional inviscid flow.

On the other hand, if.dfk is equal to unity (instead of ap-
proaching it from values always less than unity), then the

corresponding configuration would be & semi-infinite body .

of revolution with a cylindrical rod of the same diameter
attached to the base. Although no dead-air region exists
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in this latter case since the flow is everywhere uniform, the
base pressure in the physical sense would be the static
pressure at the junction of body and rod, and hence P,,
would be zero. '

The occurrence of more than one possible solution in
two-dimensional flow and also in axially symmetric flow
with a rod attached does not represent a new occurrénce in
inviscid flow theory. A similar situation occurs, for ex-
ample, in airfoil theory for an inviscid, incompressible
fluid. As is well known, a satisfactory solution in this case

_has been found in the use of the so-celled Kutta condition,
which can be readily justified on the basis of qualitative
consideration of viscous effects near the trailing edge.
Apart from ‘the effects of viscosity several other consider-
ations, such as stability of the flow, also have been of
importance in other unrelated problems when selecting a
suitable inviscid flow solution from a possible choice of
more than one. As an example of this, the inviscid channel
flow studied in reference 7 may be cited. For the present
problem, however, the preceding analysis of axially sym-
metric inviscid flows points toward viscous effects (rather
than stability of inviscid flow) as being the essential mechan-
ism determining the base pressure. Before considering
viscous effects, however, the effect on base pressure of vari-
ations in profile shape will be analyzed in detail since experi-
ments have indicated widely different results for various
profiles. The method presented later for correlating base
pressure date requires that the measurements first be cor-
rected for the effect of profile shape. In the section which
follows equations are developed for such a correction.

TWO-DIMENSIONAL AND AXIALLY SYMMETRIC INVISCID FLOW OYER
FINITE PROFILES

In this section consideration is given to the flow over a
finite two-dimensional profile concurrently with that of a
finite body of revolution. For either type of flow, the
presence of the profile causes the Mach number and pressure
in the flow field ahead of the base (M, p) to be nonuniform
and different from free-stream conditions (M, ). This
is illustrated in figure 7 (a) for & profile without boattailing.
As a result of the disturbance caused by the profile, the base
pressure depends on profile shape even in an inviscid flow.
In this section, a method is developed for calculating cor-
rected free-stream conditions (M’, ') to which the base
pressure can be referred and be nearly independent of profile
shape. This method does not depend on the magnitude of
the base pressure or on the dimension d (fig. 7 (a)), and hence
is useful in comparing experimental measurements made on
various airfoils and bodies of revolution.

To fix ideas, the Mach lines shown as dotted lines in figure
7 (a) will be thought of as representing weak pressure
waves; those with positive tangents (e. g., DD) being mem-
bers of the so-called first family, and those with negative
tangents (e. g., DA} being members of the so-called second
family. Weak pressure waves issuing from the body can
affect the base pressure in several ways. For example,
waves of the first family starting between D and E not only
affect conditions at A, but also affect conditions between A

11t may be noted that M’ and p’ are anslogous in some
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(a) Finité profile, N

(b) Finite profile with extended afterprofile,
FIoURE 7.—fketch of inviseld flow.over finite profile without beattafling.

and G. Such waves reflect from the bow shock wave be-
tween D and E and then become members of the second
family of waves between DA and EG which directly interact
with the dead-air region. Waves of the second family

" beyond EG would not affect the base pressure in an inviseid

flow. The net effect of profile shape on the base pressure of
a finite body, therefore, will be determined both by condi-
tions at A and by the variation of conditions between A and
G. If a hypothetical afterprofile were extended from the
base, as illustrated in figure 7 (b), then such conditions
would cause the average pressure (p’) and Mach number
(M) along AH of the extended afterprofile to differ from the.
corresponding free-stream conditions, These differences
would represent the disturbance field induced near the base
by the profile shape, and the base pressure referred to M’ and
p’ (e. g.. & curve of Py or py/p’ versus M) could be regarded
as corrected for the effects of profile shape in inviscid flow.?
By applying the compatibility equations of the method of
characteristics for either two-dimensional or axially sym-
metric flow to the triangle AGH in figure 7 (b), it can be
deduced that the magnitude of the velocity averaged at
points A and H is approximately equal to the magnitude of
the velocity at point G. Thus, A’ and p’ can be evaluated
either from conditions along a hypothetical extended after-
profile, or else from conditions at an appropriate point (G) in
the flow over the given profile.

A second case to be considered is that of a profile having a

cts to the corrected free-stream Mach number and pressure used In sabsonic wind-tunnel operation: the fornter represont the

average Mach number and pressure induced in the vielnity of the base by the presence of the profile; whereas the latter represent the average Mach namber and pressure (nduced In the vieinit
of the fest model by the presence of the tunnel walls, Both corrections are accurate only when the induced disturbance field is small andg:ppmumntely uniform over the reglon In question. v
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negative boattail angle (8), as illustrated in figure 8 (a).
This flow can be converted to an equivalent flow over a
profile without boattailing having the same bese pressure
8s the flow of figure 8 (a) and certain nonuniform conditions
shead of the base. This equivalent flow, illustrated in figure
8 (b), is identical to the type already considered and is such
that the flow within C’'O’G’ coincides with the flow within
COG in figure 8 (a). Point G, therefore, is defined by the
intersection of the MMach line passing through C, and the
particular Mach line passing through O on which the ve-
locity vector at O is parallel to the freestream direction.
Hence, for this second case also, 3’ and p’ can be deter-
mined approximately either from conditions on & hypo-
thetical extended afterprofile, or else from conditions in the
original flow at point G. '

(b) Equivalent fow for 8<0.
(d) Equivelent flow for 5>0.
Ficure 8.—Sketch of inviseld flow In vielnity of bage for profiles with boattafHing.

(© B>0.

A third and last case to be considered is that of & profile
having a positive boattail angle, as fllustrated in figure 8 (c).

This flow also ean be converted to an equivalent flow over a

profile without boattailing having the same base pressure
as the original flow (fig. 8 (¢)), and certain nonuniform con-
ditions ahead of the base. As sketched in figure 8 (d),
the equivalent flow ahead of the base is such that the con-
ditions downstream of O’J‘ are identicsl to conditions down-
stream of OJ in figure 8 (¢).2 Thus for §2>0, 3/ and p’ can
be determined approximately from conditions at G’ in the
equivalent flow, or else from conditions along a hypothetical
profile extended downstream from O’, but 3£’ and p’ do not
necessarily exist at any easily determined point i the
original flow.

For any profile the relationship between the base pressure
coefficient Py = (p;,—p’}/¢’ which corresponds to the Mach
number Af’,and the base pressure coefficient P,= (ps—P.)/¢w
which corresponds to the Mach number Af_ and to the given
profile, is given by the equation

P,'=iq% (Py—P") @

where

Pr=(p'—p.)qa @)
$Such an equivalent flow can readil

Insure snpersoe&c velocltles along O'G” Iy:'; e equivalent fow.

bticonstmctedtrthe Mach number on the surface
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and, if the profile disturbance field is smell,

q
/)

In this last equation (derived in appendix C), Ap./p, is the
fractional Ioss in total pressure on passing through the bow
wave.
the analogous relation between the ratio p,/p” and py/p.
obviously is

Po_ 1 Do

? @'[p.) P
For a given profile, these equations enable a curve of P,” (or
pufp’) versus M’ to be plotted if a curve of P, (or p)/p.)
versus A, iz known. :

)

' LY ; 2 ry—1 5 Ap,
—-1—|.—(—2——1)P—T———sz (1+—2 M;) 2 ®.

If the ratio »,/p,, is used instead of the coefficient P,,

——

In order to further clarify the concept of the disturbance

field induced by profile shape, and also to illustrate the

magnitude of the variations in base pressure that might be

expected between different profiles, some representative
calculations of A" and *p” have been prepared in tables I, II,
and ITI. For simplicity in these calculations, A’ and p’
have been evaluated along the hypothetical extended after-
profile at a distance & behind the base position, rather than
to use in each case & more involved average over the appro-
priate extent of dead air. Table I applies to two-dimen-
sional flow over the particular profile shown. The cémpu-
tations for 1f/_=1 are based on the pressure distributions
calculated by Guderley and Yoshihara in reference 8; the
computations for other Mach numbers in this table are based
on shock-expansion theory. It is evident that the disturb-
ance field near the base is significant at low supersonic
Mach numbers where the bow wave is detached, and also at
hypersonic Mach numbers where the how wave is very strong.
At moderate supersonic Mach numbers, however, the profile
disturbance field in two-dimensionsl flow is negligible, and
conditions on a thin airfoil depend solely on the local surface
inclination. It follows that the base pressure under such
circumstences is nearly independent of profile shape and
boattail angle. (If the angle of attack is small the base
pressure is also nearly independent of angle of attack under
these conditions.} '

Table II, which is based on the method of characteris-
ties, applies to the cone-cylinder body of revolution shown,
and illustrates that the correction for the profile disturbance
field is not large if the afterbody comprises a cylinder several
diameters long. For example, at a Mach number of 1.5
for which the value of p,/p., is about 0.7, the value p’/p.=
0.98 corresponds to a correction of about 6.7 percent to the
base drag (since the base drag is proportional to (1—ps/p.))-

Table ITL applies to 2 cone (8=—10°), and illustrates
that the correction for such profiles can be sizable. At a
Alach number of 1.5, for example, the induced pressure field
in this case amounts to over one-fourth of the base drag.
For larger apex angles, the corresponding correction for
cones can be considerably larger. It is to be noted that
the induced pressure field usually represents a much more
important correction to base drag than the induced Mach
number field.

Just ehead of the base Mthéodginalﬂowissuﬂicientlyhrge,or it g is sufiefently smasll, to
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II. A SEMI-EMPIRICAL METHOD FOR CORRELATING BASE

PRESSURE MEASUREMENTS AND COMPARISON WITH

EXPERIMENTAL RESULTS
QUALITATIVE EFFECTS OF VISCOSITY ON THE BASE-PRESSURE FLOW

A sketch showing the qualitative flow characteristics for
the viscous-fluid flow in the region of the basc is given in
figure 9. The flow along the first expansion wavelet starts
with the nonuniform distribution of Mach number M, pres-
sure p, and with a boundary-layer thickness 8. Because
the base pressure is lower than the pressure p, a small fan
of expansion wavelets originates at point A. The existence

Expansion
—Mp -
g Traifing shock
A Wave -~

FiaGRE ¥.—Bketeh of the viscous-fluid flow in the neighborhood of the base,

of dead air in a small volume immediately behind the base
is a result of the separation at point B. As a consequence
of the formation of a dead-air region it might be expected
that the pressure along the streamline BC is approximately
constant. The qualitative form of the boundary-layer pro-
files at stations between points B and C must take on the
same nature as those existing at the boundary of a super-
sonic jet issuing into ambient air. Because of the viscosity
of the fluid, the dead air is induced into a circulatory motion
in the directions indicated by the small arrows in figure 9.
The viscous mixing process causes the boundary layer to
thicken as it approaches point C. In axially symmetric
flow there is an additional reason for further spreading of
the streamlines in the boundary layer as the trailing shock
wave is approached. Since the mean radius of a stream-
tube 'in the boundary layer continually decreases as the
trailing shock wave is approached, additional spreading is
brought about in order to keep the annular cross-sectional
area of the streamtubes approximately constant.

With this qualitative picture of the flow processes in mind,
a brief description can be given as to how the base pressure
arrives at its steady-state equilibrium value. To fix condi-
tions in mind, suppose a jet of air is pumped from the body
into the dead-air region and then is suddenly stopped. At
the instant the jet is turned off, point C is far downstream
of its equilibrium positior. Due to the scavenging effect
of the outside flow on the mass of dead air, some of this
dead air is removed, thus-causing the angle of turning at
the corner to be increased and the pressure of the dead-air
region to be decreased. The larger .angle of turning in-
creases the velocity outside the boundary layer, which in
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turn increases the scavenging action, thereby again lower-
ing the pressure and starting the cycle over again. Thus,
point C moves rapidly to a position as close to the basc as
possible. There is, however, at least one important facfor
which prevents point C from going as far toward the base
as that point which would roughly represent the limiting
solution_for inviscid flow. As C moves foward the base,
the pressure ratio of the trailing shock wave increases,
making it more difficult for the scavenged air and the low-
velocity air in the boundary layer to overcome the pressure
rise of the shock wave and flow downstream. The opposi-
tion of this effect to the ones mentioned previously would
serve to establish equilibrium. It appears, therefore, that a
satisfactory theory of base pressure would have to consider
the mixing process in conjunction with the inviseid-fluid
characteristics of the outer flow.

BASIS FOR CORRELATION OF EXPERIMENTAL DATA

It is assumed that the flow expands over the corner of the
base as illustrated in figure 9. The base thickness & would
be the trailing-edge thickness in the case of two-dimensional
flow, and would be the base diameter in the case of axially
symmefric flow. An attempt to correlate the various
measurements of base pressure is made on the basis of the
relationship

pi=f (20,3 8) )

which assumes that the base pressure coefficient corrected
for the profile disturbance field is affected by viscous cffects
only through the ratio of boundary-layer thickness to base
thickness. Actually, even for a fixed value of 8/h the base
pressure would be affected by anything that affects the
distribution of fluid properties within the boundary layer
or within the mixing layer downstream of the base. Tt
will be seen subsequently, though, that in many cases the
above relationship yields acceptable results. '

If the boundary-layer flow is laminar, then frem dimen-
sional anelysis and the classical considerations of the terms
involved in the boundary-layer equations, it follows that

s \/E —f(A ., profile shape)

Rewriting this equation,

Lk
‘/m'
EN
where C'is a function of the Mach number and profile shape,
but independent of viscosity. For a given L/h, variations
in profile shape affect the boundary-layer thickness prin-
cipally through the action of the pressure gradients set up
by the particular profile contour. As a first approximation
the effects of variations in pressure distribution on the thick-
ness of the boundary layer just shead of the base will be
neglected since these effects in most cases should be small

compared to the effects of Reynolds number and Lk ratio.
Vithin the limits of this simplification, the above equation is

L

) ] ¢
T f(Ad ,,, profile slmpe)-:-;ﬁ.x
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applicable to any profile shape or length. Hence in correlat-
ing the data for laminar-boundary-layer flow, the parameter
L/(R+/Be) is used in the absence of direct measurements of
5/h.

In the case of turbulent flow a SLmﬂ&r parameter can be
obtained. By approximating the turbulent boundary-
layer profile with a 1/7-power law, the ratio &k for low-
speed flow turns out to be inversely proportional to the
1/5 power of the Reynolds number. (For example, see

reference. 9.) TUsing this result, the appropriate parameter -

in correlating base-pressure data for turbulent boundary-
layer flow would be L/[A(Re)"].

-EXPERIMENTAL DATA FOR TWO-DIMENSIONAL FLOW

At present the available experimental results on base
pressure in two-dimensional flow are rather limited, but they
are sufficient to provide a qualitative check on one particular
result of the inviscid-flow calculations; this result concerns
the essential difference, as indicated by the inviscid-flow
calculations, between the base pressure in two-dimensional
flow and in axially symmetric flow. The absolute magnitude
of the base pressure coefficient for two-dimensional inviseid
flow at a given Mach number is represented by the limit of
the values for axially symmetric flow as d/h approaches
unity in figure 6. For low and moderate supersonic Meach

numbers this limiting value is several times the value for 2 -

body of revolution, which, as will be seen later, is represented
in figure 6 by a dfk ratio somewhere between 0.5 and 0.8.
For high supersonic Mach numbers the difference between
the two types of flow, according to figure 8, is small. These
considerations which indicate that, except at high supersonic
Mach numbers, a pronounced difference should exist between
the base pressure in two-dimensional and axially symmetric

flow, are in agreement with existing data. In reference 10,

the wind-tunnel measurements for two-dimensional flow over
2 wedge airfoil at a Mach.number of 1.4 and a Reynolds
number of 0.6 million indicate a value of —0.41 for the base
pressure coefficient. Measurements presented later for axi-
ally symmetric flow at the same Mach number and Reynolds
number, however, indicate wvalues sround —0.20. This
large difference is in accord qualitatively with the considera-
tions based on-the curves of figure 6.

- In order to make & preliminary evaluation of the Reynolds
nurnber effect on base pressure in two-dimensional flow,
some measurements have been made on a constant-chord
wing of finite span having a. thick trailing edge.* Because
the ambient air near the wing tips can flow laterally around
the tip and into the low-pressure region behind the base, the
data cannot be considered as strictly representing two-
dimensional flow. Nevertheless, the ratio of span to base.
thickness (40) was sufficiently large on the wing employed
so that tip effects should not affect conclusions concerning
the qualitetive influence of Reynolds number on base pres-
sure in two-dimensional flow. The results of base-pressure
measurements taken at a Mach number of 2.0 are shown in
figure 10 (2). It is epparent that the base drag increeses

considerably as the Reynolds number increases. Since the " |

surfaces of the wings were smooth, and the highest Reynolds
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number attained was 1.8 million, the data are representative
of the case of laminar flow in the boundary layer. A plot

of these data against the parameter L{/(RRe) is shown in

fiigure 10 (b). It is to be noted that in this form a straight
line can be faired through the data in the region covered by
the tests. For larger values of L{(k+Re) the line would be
expected to curve and approach the line representing zero
base drag.
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(8) Base pressure as a function of Reynolds number,
(b) Base pressure as a functfon of I/h /Re.

" FroURE 10.—Mleasured base pressure on s finite-span wing; Af -2.0 ratio of wing span to

base thickuess =i0.
EXPERIMENTAL DATA FOR AXTALLY SYMMETRIC FLOW

Fortunately, there are sufficient experimental data avail-

able for axially symmetric flow to make a fairly extensive
correlation of P,/ with the parsmeters L[(ARe) and
L{[h(Re)"®], where k is now the base diameter. Most of
these date have been obtained from wind-tunnel measure-
ments on bodies of revolution mounted from the rear by a
cylindrical support. Accordingly, & knowledge of the pos-
sible support and wall interference effects is necessary for

a satisfactory interpretation of the wind-tunnel messure- .

ments. Some experimental dats on support interference
and reflected bow-wave interference are presented in ap-
pendix B. It will suffice for the present purposes to state
that the wind-tunnel measurements were taken with a
support sting of sufficient unobstructed length so that no
interference effect of support length is present in the data.
Likewise, no appreciable interference resuiting from the

4 These data were taken fn the Ames I- by $-foot superosnic wind tunnel No. 1 employinga w[nxor 0-inch span with a base-pressure orifice Iocated I inch outboard of the plane of symmeiry.
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reflected bow wave is present in the data. As regards the
effects of support diameter, it is known from a relatively
complete set of interference measurements made by Perkins
(reference 11), part of which is presented later, that the data
taken at AMf=1.5 arc essentially free of support interference.
At the higher Mach numbers, however, a complete set of
support-diameter interference measurements was not made.
Consequently, some effect may be present in the data taken
at M=2.0 and M=2.9. For consistericy, these data which
may be affected to a small extent by support-diameter
interference have been taken with a fixed value of 0.4 for
the ratio of support diameter to hase diameter. By com-
paring the base pressure measured on various bodies tested
with the same relative support diameter, the effects of body
shape can be deduced if it is assumed that changes in nose
shape do not produce significant changes in the support
interference. This is believed to be a valid assumption for
the body and support dimensions used.

In reducing the experimental data for correlation, the
measurements are first corrected for the disturbance field
induced by profile shape. All bodies of revolution used in
the present experiments consisted of eifher a cone-cylinder
(10° semiangle of cone) or an ogive-cylinder (10-caliber
ogival radius) combination. In order to determine the bedy-
shape correction (P’) the pressure distribution over such

combinations has been calculated using the method of charac- -

teristics. Two typical pressure distributions for a Mach
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number of 2.0 are shown in fi ure 11. For the reasons
explained earlier, the correction P’ is determined by selecting

the value of the pressure coefficient existing on an extension
of the cylindrical afterbody at a location approximately
one diameter downstream of the base position. The values
of P’ determined in this manner enable the corresponding
values of P,’ to be determined from equations (1) and (3).

The quantity P, should not depend on the bady shape for
a given M’. For all but a few exceptional shapes, such as
a simple cone without an afterbody, the Mach number A’
in the present tests is sufficiently close to the free-stream
Mach number to enable a direet comparison to be made
between various body shapes after correcting for the pres-
sure disturbance field only. For these exceptional cases,
which represent small values of the length~liameter ratio,

an additional correction 271} (M'—M.) is added to the

right side of equation (1), so that the comparison of various
bodies is made on the basis of a constant Af" equal to .
Since even in an extreme case this lattor comectlon 1s sma}l

compared to P’, the derivative 211:1 can be roughly eshmated

without affecting the final results appreciably. For the
data to be presented subsequently, this correction was made
only for those bodies with a length-diameter ratio of 4 or
less, since it amounted to only 6 percent of the measured
data in the most extreme case (L/h=0.9) and was negligible
for the badies with L/ greater than 4.

In afterapting to correlate the available experiments it
will be convenient to consider first the case of laminar flow
in the boundary layer, and then the case of turbulent flow.
The experiments representing the case of laminar boundary-
layer flow were conducted on bodies of revolution with
polished surfaces, and those representing turbulent flow
were canducted on the same models with artificial roughness
added in the form of a narrow transition strip. (See refer-
ence 12.) Although for simplicity the data are referred
to simply as representing either laminar or turbulent flow,
in a few cases the actual boundary layer may be in the
transition state. It is to be noted that with smooth models

“transition (insofar as it affects base pressure) probably

begins at Reynolds numbers of the order of 4 million.
Likewise, with roughness added in order to obtain turbulent
flow, the artificial roughness may not bring about complete
transition ahead of the base at Reynolds numbers less than
about 2 million.

Laminar boundary-layer flow approaching base.—-Wind-
tunnel measurements of the base pressure for various bodics
of revolution at a Mach number of 1.53 are shown in figure
" These data, taken from reference 12, include the
effect oi _variations in Reynolds number and bady shape.
The large effect of both Reynolds number and body shape
is evident. Since the boundary-layer flow is laminar for
these data, the extent to which correlation is achieved is
most essily determined by plotting I as a function of
L/(hy/Re). TFigure 12 (b) shows the data of figure 12 (2)
plotted in this form, from which it is evident that the experi-
mental data correlate reasonably well to a single curve. The
scatter of the various measurements about the mean line
is attributed partly to the fact that the thickness and
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velocity profile of the boundery layer approaching the base,
and hence the base pressure, are not strictly a function
of the Reynolds number and length-diameter ratio alone.

The results of some measurements of the base pressure
for various bodies with laminar boundsry-layer flow at a
Mach number of 2.0 are shown in figure 13 (a). The data
through which curves are drawn were taken in the Ames
1- by 3-foot supersonic wind tunnel No. 1 under conditions
similar to the tests at a Mach number of 1.53 reported in
reference 12. The remaining data points were obtained

from the experiments of Kurzweg (reference 13) by plotting -

his deta for insulated smooth bodies as & function of Mach
number, and reading the values of base pressure for 3f_=2.0
from the faired curves. The same qualitative effects of
body shape and Reynolds number as were observed at a
Mach number of 1.53 are evident from these date obtained
at the higher Mach number. Figure 13 (b) shows the data
of figure 13 (a) plotted in the form suitable for correlation
according to the theoretical considerations. Comnsidering
the wide variety of body shapes tested, it can be seen that
these data also correlate reasonably well to a single straight
line. If the tests were extended to larger values of L/,
this line presumably would curve and approach the abscissae
axis.

Turbulent boundery-layer flow approaching base.—The
results of wind-tunnel measurements of base pressure on
bodies of revolution at a Mach number of 1.5 with turbulent
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boundary-layer flow approaching the base are shown in
figure 14 (a). Also shown .in this figure are the results
of free-flight measurements reported by Charters and
Turetsky in reference 5. It is evident from this figure that
the effect of Reynolds number on base pressure is small;
whereas figure 12 (a) shows that it is large in the case of
laminar boundary-layer flow.

The measured data of figure 14 (a) are shown in figure 14 (b)
plotted in the form suitable for purposes of correlating experi-
mental data. Since the body-shape correction (P’) is
independent of viscous effects, the same corrections have
been used for the case of turbulent flow as were used for
laminar flow. It may be seen from figure 14 (b) that the

data correlate fairly-well to & straight line.
Some experimental data for turbulent boundary-layer

flow at a Mach number of 2.0 are shown in figure 15 (a)
and the plot of P, against L/[A(Re)*®] is shown in figure
15 (b).

The curves in these figures show the same charac- .
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teristic of relatively constant base pressure as. was nofed
above for turbulent boundary-layer flow at a Mach number
of 1.5. Again, there is a reasonably good correlation of
these data, as is evident from figure 15 (b).

COMPARISON OF EXPERIMENTAL RESULTS WITH THE INVISCID-FLOW
CALCULATIONS

Since the intercept. (P*} of a curve of P, versus 8/h is in~
dependent of the Reynolds number, some correlation (pos-
sibly only qualitative) might be expected between the ex-~
perimental values of P,* and the inviscid-flow calculations,
provided allowance is made for the displacement effect of
the wake near the trailing shock wave.. _As long as the wake
thickness is well defined (reasonably steady wake) a simple
and plausible method of estimating Py* would be to evaluate
the base pressure coefficient for maximum drag in an inviscid
flow wherein an equivalent solid object, such as illustrated
in figure 5, replaced the wake. Such an object would have
no effect in inviscid two-dimensional flow but would have a
pronounced effect in axially symmetric flow.
symmetric flow a rod of diameter d is considered to replace
the wake of diameter ¢, the resulting maximum drag in
inviscid flow would be the same as_calculated in part I
. where the corresponding base. pressure coefficient was de-
signated by P,. (See fig. 6.) Thus an estimate for the
variation of Pp* with Mach number in axially symmetric
flow would be

If in axially .
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.Pp* *’Paf for }(%4:‘% (6)
and in two-dimensional flow it would be
" P#wP,, @

Since a fluctuating wake presumably cannot be replaced by
a rod without essentially altering the flow conditions near
the base, the above estimates cannot be expected under
such conditions to yield anything more than the right order
of magnitude.

Some information on the thickness and steadiness of the
wake has been obtained from an examination of numerous
spark photographs taken of projectiles in free flight.> Typ-
ical spark photographs are shown in figure 18, and the re-
sults of measuring the wake thickness on a large number of
similar photographs are shown in figure 17. Figure 16 (a)
represents the case of laminar flow in the boundary layer at
a freestream Mach number of 1.73. Under these condi-
tions the wake thickness appears to be reasonably well de-
fined, although the trailing shock wave is not well defined
near the wake. Figures 16 (b) and 16 (c) indicate that for .
turbulent boundary-layer flow on bodies of revolution the
trailing shock wave and the wake are not very sleady at
Mach numbers below about 2. Thus it is not surprising

¥ These shadowgraphs were mede available through the courtesy of the Ballistie Research Laboratories, Abardeen, Ma.
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(d) M =2.33, turbulent. R

(e) AL, =3.64, turbulent.
Fracre 16.—Concluded.

that, as will be seen later, equation (6) is in poor agreement
with measurements for turbulent boundary-layer flow at
Mach numbers below about 2. At higher Mach numbers
the trailing shock wave and the wake become more clearly
defined (figs. 16 (d) and 16 (e)), but the accuracy of equa-
tion (6) in this region cannot as yet be tested because of
insufficient experimental data.

A comparison between inviscid-flow caleulations and ex-
perimental values of P,* is more direct for airfoils than for
bodies of revolution since the wake thickness presumably
need not be accounted for in two-dimensional flow. The
value of Py* as determined from the finite-span wing dats
in figure 10 (b) is —0.30. This is fairly close to the limit-
ing pressure coefficient (P,,) for two-dimensjonal flow, which
is —0.33 for a Mach number of 2.0. (See fig. 3.) Definite
e - _ .. | conclusions as to the significance of this agreement, how-

() M., =188, turbulent. ever, will have to await the results of measurements on air-
Y10z 16 —Shadowgraphs of profectlles fn e, (G o Balistic n Labos. | [0US 8t other Mach numbers, and on airfoils with turbulent
torfes, Aberdeen, Md.). . flow in the boundary layer.
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For laminar flow on bodies of revolution at Mach numbers
of 1.5 and 2.0, the wake thickness (¢/h) from figure 17 is
0.55 and 0.49, respectively. From figure 6, the correspond-
ing values of P,, are —0.25 and —0.29, respectively. On
the other hand, the values of P,* determined from the
intercepts of the extrapolated lines in figures 12 (b) and 13 (b)
are —0.24 and —0.20, respectively. Hence, although the
inviscid-flow calculations may provide a reasonable approxi-
mation for two-dimensional flow near Af=2.0, and for
axially symmetric flow near Af=1.5, there is a serious dis-
crepancy with the. experimental results for axially sym-
metric flow at Af=2.0. This large discrepancy indicates
that the simple relation given by equation (8) which at-
tempts to connect P,* with the inviscid calculations is not
always a satisfactory epproximation. The good agreement
obtained in two of the three cases may he entirely fortuitous.
Additional experiments are needed to clarify this point.
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Fiouns 17, Wake thickness us a funotion of Mach number (determined from shadowpraphs
of the Balllstic Research Leboratorles, Aberdeen, Md.).

The fact that the inviscid-flow calculations agree quali-
tatively, though not quantitatively, with experimental
results can be seen by a comparison with measurements of
the base pressure at various Mach numbers but with an
essentially constant Reynolds number. Figure 18 shows

some experimental free-flight data of Charters (reference 5)

together with the corresponding wind-tunnel data of Kurz-
weg (reference 13), and the present investigation.® These
experimental data are for turbulent flow in the boundary
layer. In this figure the ordinate of the curve labeled
“curve based on equation (6)" is proportional to the value
of the limiting pressure coefficient P,, determined at each
Mach number in the manner indicated by equation (6). It
is apparent that the curve based on the calculations of P,,
for inviscid flow gives the right order of magnitude for the
base pressure coefficient, but does not give good quantltauve
agreement. As an incidental point, it may be noted that
the various wind-tunnel and free-flight measurements shown
in this figure agree quite well at all Mach numbers.
VARIATION OF BASE PRESSURE WITH REYNOLDS NUMBER FOR NATURAL
TRANSITION

Since the base pressure is different for laminar and turbu--
lent boundary-layer flow approaching the base, it is of
interest to examine the results of measurements in the
intermediate range of Reynolds number where the transition

pressure coefficiant, P,
A .
~
Q
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FiaURe 18.—Varlation of base pressure coeffictent with Moach numbwr for turbulent boundury
- layer flow.

“point”"moves from a position downstream of the base to a
position upstream of the base. Figure 19 shows the results
of some base-pressure measurements at a Mach number of

2.0 on a body of revolution in the Reynolds number range
from 0.4 million to 10 million. At Reynolds numbers below
about 2 million, where the boundary-layer flow is laminar,
the base pressure coefficient depends to a great extent on the
Reynolds number, as was noted earlier. In the Reynolds
number range from 4 to 6 million, where the transition point
moves ahead of the base, the base pressure again is sensitive
to changes in the Reynolds number (and presumably also

=20
o O
yd
-/5 . A =
tominar Transition Turbulent
region

T Jumes

005
8 o Wind Tunnel No.!
a Wind Tunrnel No. 2
o z - 4 6 8 10x10%

Reynolds number, Re

FIGURE 19.—Variation of base pressure coefficient with Reynolds number for natural
transition; Af o =2.0,

¢ In the present experiments ments sionally were made in more than one tacmty For example, the three experimental polnts in figure 18 representing the wind-tunncl duta at

Mach numbers near 1.5 represent measuremants with three different nozzles.
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to other factors affecting transition such as surface rough-
ness, free-stream turbulence, end rate of heat transfer).
At the higher Reynolds numbers where a turbulent boundary
layer exists for some distance shead of the base, the base
pressure is not sensitive to changes in the Reynolds number.

From the viewpoint of reliably extrapolating small-scale
measurements, it is encouraging that the base pressure coeffi-
cient for turbulent boundary-layer flow is not sensitive to
changes in the Reynolds number. At & Mach number of
2.0 this insensitivity is evident from a comparison of the data
for the model with an L/hk of 5 in figures 15 (a) and 19. At
a Reynolds number of 2X10% where turbulent flow is at-
tained on the models by using artificial roughness, the base
pressure coefficient does not differ by more then 8 or 4 percent
from the value at a Reynolds numberof 1X107, where tur-
bulent flow is attained without such an artifice. At & Mach
number of 1.5 the measurements indicate this same charac-
teristic, as can be seen from the data givén in figure 20.
These data at the somewhat lower Mach number do not
show any appreciable dependence on Reynolds number
within the range from 210° to 1.6>€10°. It is interesting
that the free-flight data of Hill and Alpher (reference 14)
also show no significant effect of Reynolds number within
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the range from 2X 107 to 1)X10%. These latter data, however,

give a widely different value for the base pressure. It is
evident from figure 20 that the base pressures measured in
reference 14 differ from the values of references 5 and 13
and the present wind-tunnel tests because of some factor
other than differences in Reynolds number. The possible
effects of support interference in the present wind-tunnel
tests would not appear to contribute any appreciable amount

to this discrepancy for two reasons. First, good agreement is _.

obtained at all Mach numbers between the present wind-

tunnel tests and the free-flight firings of Charters; and

second, the measurements of support interference as deseribed
in appendix B indicate that for the support dimensions used
(d/h=0.25 and d/h=0.40 in fig. 20) these effects are an order
of magnitude smaller than -the observed discrepancies.
Since the models of reference 14 were equipped with tail fns
of sufficient size so that their presence at moderate supersonic
Mach numbers might be expected to lower considerably the
pressure in the vicinity of the dead air (algebraically lower

the effective P’), it would appear that the observed dis- -

crepancy is attributable to the effect of tail fins on base
pressure.’

=28
Average curve of reference /4 :
for bodies with fins
=24
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Q Lfh=5 6 Reference 2 153 Q40 Salt band attached
>. Reference 5fFree flight) 150 @ Machined surface on projectiles
e T | & Present fests /53 040 .005in wire aftached
B Present fests /53 Q040 Polished surtace on madel
) ¢ Present fests 153 Q25 Polished surface on model
—=—=— ReTerence l4{Free flight} 150 O Fins attached fo missile
=04
9Gs 2 4 6 g g’ 2 4 & 8 g® B

Reynalds number, Re
FIGURE 20.—Varistion of bage pressure coeflicient with Reynolds number for turbulent boundary-layer flow; Afo, =1.5.

¥ Subsequent experiments conducted at the Ames Laboratory by J. R. Spahr and R. R. Dickey have shown that this fs the case.
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CONCLUDING REMARKS

The simplest approach to an analysis of base pressure for
supersonic flow is that of considering the flow of an inviscid
fluid. Although such an approach has produced many
useful theories when applied to other aerodynamic problems,
it produces results of very limited value when applied to the
present problem. The inviscid-fluid theory indicates that

the only possible base pressure for a body of revolution .

without a rod attached to the base is the free-stream static
pressure. Moreover, this simple theory also indicates that for
two-dimensional flows, as well .as axially symmetric flows
with a rod attached to the base, there sre an infinite number
of possible solutions for a given body shape and Mach
number.

The first of the above-mentioned shortcomings of mwsc:d
theory can be remedied by allowing qualitatively for the
existence of a wake, since by so doing the high-veloéity
streamlines are displaced from the axis of symmetry and a

base drag other than zero can be obtained. The secand .
shortcoming, of having an infinite number of possible .
solutions from which to choose, is not easily remedied. In .
particular, the comparison between the inviscid-flow cal- :

culations and experiment has shown that if the limiting flow
pattern (maximum drag possible) at each Mach number is
singled out from the infinity of possible inviscid-flow solu-
tions, then the characteristics of base pressure observed
thus far can be explained, but only qualitatively. Thus, the
experimental finding that an increase in support diameter
behind a body of revolution can considerably decrease the
base pressure is explained by an interpretation of the behavior
in an inviscid-fluid flow. Also, the experimental result of a
much lower base pressure in two-dimensional flow {(at low
and moderate supersonic Mach numbers) than in axially
symmetric flow is satisfactorily explained by the inviscid-flow
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.calculations.

As regards quantitative results, though, the
calculations based on the maximum drag possible in inviseid
flow do not agree with the observed effects for turbulent
boundary-layer flow, and agree only in certain cases with the
ohserved effects for laminar boundary-layer flow.

In an attempt to formulate a more accurale quantitative
analysis a semi-empirical analysis has been developed. The

-available experimental data correlate reasonably well when

the base pressure coefficient. corrected for the effeets of profile
shape, is plotted as a funetion of a parameter which is
approximately proportional to the ratio of boundary-layer
thickness to base thickness. As a resull of this correlution

" several general conclusions can be drawn. One such conelu-

sion is that the variation of base pressure with Reynolds
number is small at high Reynolds numbers where the bound-
ary layer approaching the base is turbulent, but is lurge at
low Reynolds numbers where the boundary layer is laminar.
Another .conclusion is that the effect. on_buse pressure of
the disturbance field induced by profile shupe can be ade-
quately explained on the basis of ihviscid calculations.
In order to develop a thorough understanding of the
behavior of base pressure in supersonic flow, further experi-
mental and theoretical investigations are required. Af
present, experimental results are especially necded as regards
the ‘base pressure in two-dimensional flow, even at low
supersonic Mach numbers. Experiments conduected at high
supersonic Mach numbers are also needed, both for two-
dimensional flow and for axially symmetric flow.

AMES AERONAUTICAL LLABORATORY,
Narrowan ApvisoRy COMMITTEE FOR AERONAUTICS,
MorrerT F1ELD, CALIF., May 11, 1960.



APPENDIX A
AXTALLY SYMMETRIC FLOWS CONVERGING TOWARD THE AXIS

The rather anomalous result obtained when applying the
method of characteristics to base-pressure flows can be
clarified by examining the equations of motion on which the
method of characteristics is based. The differential equation
for the velocity potential ¢ of an inviscid axially symmetric
compressible flow is (see reference 6, for example)

=

where a is the local velocity' of sound, = is the coordinate
megsured parallel to the direction of the undisturbed stream,
and r is the radial coordinate. If a transformation is made to
a new system (&,9) of curvilinear coordinates, where £ and g
are distances measured along the two Mach lines issuing from
a point, then the equation of motion for the velocity potential
becomes simply (the details of the algebra involved in making
this transformation may be found in reference 6),

D% _sin’ a0
080w 1 -or

where « is the local Mach angle. It is to be noted that the
new variables have the simple physical significance that lines
of constant £ and % are the Mach lines of the fiow. The
derivative of the velocity potential in any given direction is
the projection of the velocity vector along that direction,
and the order of differentiation in equation (A2) can be
interchanged.. With

d¢ d¢
ot 7 o7

(A2)

q (A3)
and

%—v—-’w sin 6

where w is the velocit—y vector inelinded at an angle # with
respect to the axis, it follows from equation (A2) that along
Mach lines

2 ody dg= 2 odt

2
dp="= (44
Thus, dp is the increment in the projection of the velocity
vector along the £ direction when passing a distance dy in
the physical plane along the 7 direction, and dg is the in-
crement in the projection of the velocity vector in the »
direction when passing a distance d£ along the £ direction.
Equations (A4) are the fundamental equations used in the
step-by-step construction of & supersonic flow by Sauer's or
Frankl’s method of characteristics.

The reasons for the singular behavior as the flow approaches
the axis of symmetry can now be explained with the help of =
equations (A4). Suppose a series of steps were laid off
in the physical plane in the manner indicated by the sketch

shown in figure 21 (a). The small increments (dt and dy)
along the Mach lines are laid off such that they are always
small compared to the distance from the axis r and also such
that for all steps d&/r and dnfr are always very nearly equal
to a comstant, say (7. It is to be noted that if such a flow
converging to the axis is possible, then there would be an
infinite number of such steps along the streamline AB in

figure 21 (a.) _

w ~Canstant--§

w=Sonic
velocity

(b}
(a) Assumed flow in the physteal plane,

(b) Increments in hodograph plane corresponding to figure 21 (a).
FiotRE 21.—Characteristics construetion for flows converging to the axis.

Now consider the increments in the hodogreph plane
corresponding to those laid off in the physicel plane (fig.
21 (a)). Figure 21 (b) illustrates the way, according to
equations (A3) and (A4), in which the increments must be
laid off in the velocity plane. Points having the same num-
ber in figures 21 (a} and 21 (b) represent the same point in
the flow. Let the smallest average Mach angle along the
steps in the physical plane be a,, and the smallest vertical-
velocity component be ,, then for all steps along AB

idp|>]vnC sin? o] =constant
and :
[dg]|> [Um'_U sin? @, |=constant
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This means that every increment in the hodograph plane is
greater than a constant value. This value cannot be zero
unless points 1 and 3 are identical, which would represent
the exceptional case of a ‘‘reversed” conical flow. On
passing from point A to point B there are, however, an
infinite number of such increments. They must be leid out
along the arc of a circle in the hodograph plane since AB
is & streamline of constant pressure. Hence, before reaching
point B the inclination angle of the velocity vector must be
greater than 46° (approximate maximum deflection angle
through a single shock wave for y=1.4). Because this
situation obviously prevents a shock wave from being fitted
into the flow, there results a contradiction to the assumption
that the over-all flow is possible. It. 2ppears, therefore,
that these flows are not always possible.

The preceding discussion, though not a mathematically
rigorous exposition, points out the reason why the inclingtion

angle @ of a free streamline can increase at an excessive rate..

as the axis is approached. The source of the trouble is
inherently associated with the last term in the equation of

motion (Al), since it has » in the denominator and a non-

vanishing factor in the numerator. The appearance of r
in the denominator of this equation stems entirely from the
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continuity equation. This leads to a qualitative explanation
of the observed behavior near the axis of the inviseid flows.
Cansider the changes that must occur on going from point
1 to point 3 in the physical plane (fig. 21 (a) J. If the flow
were two-dimensional, then the free streamline would be
straight and 6; would equal 8;, thereby pr esorvmg the cross-
sectional area between two adjacent streamlines on passing
from 1 to 3. The term involving 1/r does not occur for
plane flow and no difficulties arise. In the axially symmetric

‘case, the fundamental condition is again that the cross-

sectional area of an annular streamtube must be preserved,
since w; is equal to ws. This means that for purely geometric
reasons the streamlines bounding the annular streamtube
must spread apart as the axis is approached. In order to
have. the pressure at point 3 equal to that af point 1, the
free streamline curves toward the axis, permitting the
bounding streamlines to spread, thereby allowing the
continuity equation to be satisfied. Because of the 1/r term
in the continuity equation, the curvature rapidly increascs
as the axis is approached. Hence, before the axis is reached,
the inclination of the free streamline exceeds the largest
value which any oblique shock wave can possibly overcome.

APPENDIX B
WIND-TUNNEL SUPPORT INTERFERENCE AND REFLECTED BOW-WAVE INTERFERENCE

When a body of revolution is tested in & wind tunnel it is
usually supported from the rear by & _cylindrical rod. As 2
result the measured values of base pressure may be consider-
ably affected, for one thing, by the presence of the support.
Support interference on base pressure is a complicated func-
tion of the diameter of support rod, the unobstructed length
of support rod, the Mach number, and the Reynolds number.
If, as is the case for the experiments referred to herein, the
support length is much greater than the base diameter, then
the only appreciable interference must arise from the “dia-
meter effect’” of the rod. From theoretical considerations
certain inferences can be drawn regarding the resulting sup-
port-diameter interference on base pressure.

For a fixed Mach and Reynolds number, an increase in the
support diameter brings about two different effects. First,
the wake thickness is increased, thereby making it possible
for lower base pressures to exist. (Seefig.6.) A second effect

resulting from an increase_in support diameter is that the

appropriate dimensionless boundary-layer thickness &/(A-d)
is increased, thereby tending to increase the base pressure.
The two effects, therefore, oppose each other. For values of
d/h near unity the second effect must predominate; whereas
for small values of dfh the first effect would (on the basis of
fig. 6) be expected to predominate, especmlly at low super-
sonic Mach numbers.

Before comparing these theoretical considerations w1th
experimental measurements of the effect of variations in d/h
it will be advantageous to first consider the effects of having
only a finite length of unobstructed support rod. To examine
this effect, base-pressure measurements have been taken
with a constant value of dfh, but with various lengths of

unobstructed support. In these experiments the model was
located at a-fixed position in the test section so as to eliminate
possible effects of axial pressure gradients along the test
section.  The results from 3f=2.0 and 2.9 are illustrated by
the curves in figure 22, which show, for d/h=0.3, no change

Q:—'24 T
4 M.=2.0, faminar--
S b
S | Mur2o, turbulent 4~ B
E-r6 — o
L] ~
[+ / i a” "
. Q / &
v /  Pd————t—a0
[ Vd ™"
2-08 Pl A .
s ” “J-M 2.9, turbulent
Y
O
& , L )

/ ' 3 4 .
Ratio of support length to base diemeter
FiauRe 22.—Effect of support length on buse pressure; d'k=0.3.

in base pressure if the support length is greater than about
3 base diameters. . Since support lengths of over 4 body
diameters have been used in all subsequent tests, it is con-
cluded that any interference in the wind-tunnel measurements
of base pressure at Af=2.0 and 2.9 is nof attributable to
effects of support length.

‘The results of base-pressure measurements for various
support diameters with laminar boundary-layer flow are
shown in figure 23 (a). The data for a Mach number of 1.5
(reported by Perkins in reference 11) show the expected
increase, and then eventual decrease in base drag as the
support diameter is progressively increased.. At a Mach
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number of 2.9 the data show a monotonic decrease in base
drag as the support diameter is increased. Schlieren photo-
graphs show that the.wake thickness ¢k varies from approxi-
mately 0.5 to 1.0 as dfh varies from 0 to 1.0. Consequently,
it turns out that the behavior of the three curves in figure
23 (a) is qualitatively the same as would be indicated if
equation (6) were used to estimate Py*. (Itis to be remem-
bered that £/ is the “effective” dfh of fig. 6.)
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F1:URE 23.—Eflect of support dtameter on base pressure.

The corresponding results for turbulent boundary-layer
flow are shown in figure 23 (b). At Mach numbers of 1.5
and 2.0 these data show the same trends as for laminsr
boundary-layer flow, but at a Mach number of 2.9 the trend
is not the same. At Mach numbers near 3, and possibly
higher, it appears that the relative importance of the two
above-mentioned effects of increasing dfh depends on the
condition of the boundary-layer flow.
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It may be noted from figure 23 (a) that there is one point

. corresponding to dfh=0 on: the curve representing laminar

flow at & Mach number of 1.5. This point, which was
determined: from the measurements using & side support,
gives the same value for the base pressure as exists for a
support with a d/h ratio of about 0.3. At all the other Mach
numbers, where special interference measurements were not
made, the base pressure was measured with a constant value
of 0.4 for the ratio d/h. From the curves in figure 23 (a) it
may be inferred thet, at least for Reynolds numbers of the
order of 4 million, these base-pressure data for laminar flow
are not significantly affected by support interference.

Unfortunately, an investigation of support interference for
turbulent boundary-layer flow has not been made using a side
Definite quantitative statements about the pos-
gible effects of support interference in the turbulent-flow date
(figs. 14, 15, 18,19, and 20) cennot be made at present.
Evidence that the combined effects of support and wall
interference are not large, however, is given by the good
agreement obtained at all Mach numbers between the
free-flight firings of reference 5 and the various wind-tunnel
measurements (figs. 14, 15, 18, and 20).

A possible source of wall interference arises from the
reflection of & bow wave from the side walls, and the eventual
intersection and interaction with the wake-at some down-
stream position. This inferaction for 1/=2.0 and 11=2.9

occurs at a position varying from 7 to 22 base diameters

downstream of the base. Since the large disturbance caused
by the balance housing has no measurable effect at distance
of 3 base diameters from the base (see fig. 22), there is no
reason to expect that the base-pressure measurements at
11=2.0 and M =2.9 might be affected by reflections of bow
waves from the tunnel side walls. At a Mach number of 1.5,
however, the downstream position of interaction is closer; it
varies from approximately 2.7 base diameters for the model
with an L/h of 7, to 5.4 base diameters for the model with an
Lfh ratio of 4.3. In view of the possible interference from
reflected bow waves at low supersonic Mach numbers, a
special investigation was made in 1946 prior to the tests of
reference 12 to determine the magnitude of this effect. The

results, taken at a Mach number of 1.53,% are presented here
as they aid in evaluating the accuracy of the wind-tunnel

measurements of base pressure, and they show that the
conclusion of Faro (reference 15) regarding the magnitude of
the bow-wave interference effect in the present experiments
is incorrect. .

Figure 24 illustrates the test setup employed in evaluating
the effect of & reflected bow wave on base pressure. Because
of symmetry the two outer dummy models caused two shock
waves, similar to reflected bow waves, to interact with the
wake behind the base of the center model (on which the base
pressure was measured). By varying the distance between
the dummy models of the test setup, the position of inter-
action was readily changed. The strength of the bow wave
on the models employed (6-caliber ogival radius) in this
special investigation varied from approximately two to eight
times the strength of the bow wave on the various models for
which base-pressure data are presented.

t This Mach nnmber differs somewhat from that of more recent tests (at M=1.50) since the earlfer tests were conducted In 1046 st a time when the I- by 3-foot supersonie wind tumnel was
temporarily equipped with a set of fived nozzle blocks instead of the flexfble plates now employed.
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Shock waves simulating

Effective width of

reflected bow wave-- -<:

wind tunnel

Dummy model---~__

FIGURE 24.~—8ketch of test setup used for determining the effect of & reflected how wave on base pressure.

Schlieren photographs of the flow for two different posi-
tions of interaction, and two different Reynolds numbers,
are given in figure 25. The distance z, from the base to the
position of interaction, is equal to 2.5k in both figures
256 (b) and 25 (¢). This particular position simulates the
closest position to the base of the inferaction of reflected
waves in the present tests. The .corresponding base-
pressure measurements * without and with the interference
wave present are illustrated in figure 26 by the circle and
triangle symbols, respectively. The data show no appreci-
able effect on base pressure of the shock wave which simu-~
lates a reflected bow wave. If a reflected bow wave comes

too close to the base, however, then large interference
effects are possible, as illustrated by the square symbols in
figure 26, and the corresponding schlieren photographs in
figure 25 (d). Except for purposes of-illustrating this effect,
base-pressure measurements were, of course, not {taken
under these latter conditions of imporfant interference
from reflected waves. Since the simulated reflection waves
of the models used in this special investigation were several *
times stronger than the bow wa" es on the madels for which
the base pressure was measured, it is clear that the wind-
tunnel measurements presented are not aprreciably affected
by interference of a reflected bow wave.

¥ These data fall dightly below other data presented herein becanse of the very small amount of boattailing on the models used fn this special investigation.
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(0) Re=2.7X108; z=2.54. -

(d) Re=2.7X106; z=0.03.

Fi1GURE 25.—Schlieren photographs for varfous positions of intersection of the shock waves simulating reflected how wuvél; Mo, =1.53.
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APPENDIX C
DERIVATION OF APPROXIMATE EQUATION FOR ¢'/¢e.

The ratio ¢’/q,, can be written as

g _o'U” "7, Pa( AU

L=t ol 8 2 7 C1
Qn pwUu2 pﬂ Pa Pu + ( )
In this and subsequent equations, powers higher than the

AU_U-U,

first of quantities such as U—=U— are assumed to be

small in comparison to unity, and are therefore neglected.
In equation (C1), p, and P, represent the stagnation densi-
ties corresponding to conditions in the free stream and to
conditions just ahead of the base, respectively. Designating
AM=M'—M_, and again considering only first-order
terms, it follows that

Y—1 2 ) =
Orn |7 M 7 (1-82)-
Bo Po P 1+'Y';1 Afnz Po
1-————13:‘11‘1 —%”—"- - C2)
2 (- '
1+——2 M,

where Ap, is the loss in total pressure on passing through
the nose shock wave, and may often be neglected.  From
the energy equation

AU_UN—U2_¢,(To—T)_ (1__ )
v, 202 USF “—'U"

or, using ¢,=vRf(y—1) and M=U/vR1

'rl,
AL 1 1475 M.°

A1) Al Rl s gl

1+ ‘I”
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AM

(C3)
M <1+ A, )
hence t-hé combination of equations (C1), (C2), and C3)
gives
Ap,
—1 ( M ) 8. (c4
a1, +v 13[217., )

The pressure coefficient P’ is related to A3 and Ap, by '

P'» P'—=Po __2 gz_ql’g_l)____.
T pa M YMF\Do Po P
-, 14+ M., P '1—-9-?’-‘)—1 _
'Y-Z‘-{wg 1+'Y 1f72 N Pe
2AM 2 Ap, ©5)

M (14752 M) TM .

Substitution of equation (C5) into equation (C6) yields the
relation

g Lﬁ;) ;__a_( ¥—1, )Aﬂg
L 1+( 1) P (1455 ) 5 o)

| presented earlier 2s equation (3).
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TABLE L —VALUES OF M’ AND p’ FOR A TWO-DIMENSIONAL
ATRFOIL

Me AL p’[Pﬂ
1 L.25 0.73
LS5 L3 Lo
2 2.00 1.00
3 2.69 L
8 7.85 114
«@ 82 @

TABLE II.—VALUES OF 1I'
AND p* FOR A COXNE-

CYLINDER BODY OF
REVOLUTION _
, TABLE IIL—VALUES OF '
19 . AXD p’ FOR A CONE
— - 10°
t_J z_|
2 2
Me AL PP M M PP
LS L51 0.98 1L& L3 0.88
2 2.02 97 2 2.09 .87
3 3.03 .96 3 3.13 .82
T 7.02 .86 T 716 .76




