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AN ANALYSIS OF BASE PRESSURE ATOSUPERSONIC VELOCITIES AN) COMPARISON
WITH EXPERIMENT 1

——

By Dm.Is R. &APmii

SUMMARY .

-In the jirst part of the inre@ati~n an analy& is made of
base pressure in an inriscidjluid, bothfor h.codimenm”onaland
am-allysywnn.ztricjlmr. It is ahoun thatfor -hcdimensional
flow, and also for the jow orer a body of resolution.m-i% a
cylindrical -Wingattached to the base, there are an. in$nite.
number of pom”ble solution~ sati@ing all iiecewary boundary
conditions at any giwn free-stream Mach number. For the
particular ca8e of a body baring no sting attached only one.”
%ohdion1%possible in an inrkt”d $0-?o, but it corresponds to
zero baae drag. Accordingly, it is concluded that a. strictly
inm”scid-=uidtheory cannot be wdisfactoq for practical ap-
plications.

.dn appro~imate semi-empirical ana[y~is for base $r.w?ure
in a vzk?uous$uid i8derelopedin.a secondpart of the inr@iga-
tion. The semi-empirical ana@-is is basedpartly on inriwM-
jlow calcubtions. In this theory an a$temptis made to allow
for the e$ects of Mach tu.unber,Reynolds number, pro$le shape,
and type of boundary?ayer jhne. Some measurementsof base
pressure in twdimensional and am-ally sy+metric jimo- are
presentid for purposes of comparison. llrperimental results
al-so are pre~ented concerning the support interference qfect
of a cylindm”calgting, and the interference e$ect of a rq?eeted
bow wace on measurements of base pressure in a sqwsonio
wind tunnel.

INTRODUCTION

The present in-restigation ia concerned with the pressure
acting on the base of an object moring at- a aupersotic
velocity. This problem is of considerable practical impor-
tance since in certain cases the base ckg cm amount to as
much as two-thirds of the totaI drag of a body of revolu~on,
and over three-fourths of the total drag of an airfoiL In the
past, numerous measurements of base pressure on bodies of
revolution have been made both in supersonic mind tunnels
and in free fright, but these experimental irrr”estigationahave
had no adequate theory to guide them. Aa Q nxxdt, the
present-da-j- knovrledge of by pressure is undesirably
limited and some inconsiatencws appear in the e.siating
e.xperimentaIdatti. . .

Various hypotheses as to the fundamental mechririism
which determines the base pressure on bodies of riwolu”tion
~&e advanced years ago by Lorenz, Gabeaud, and.--rog
K6rmtkL. (See references 1, 2, ~d 3, r@ectively.) These

hypotheses, which negkwt the influence of the boundary
layer, do not appear to be adequate for predict@ the base
pressure or for corrslatirg e.speriments.

A semi-empirical theory of base prese”we for bodies of _..
re-rolution has been advanced by Cope in reference 4.
Cope’s a-nil-yak tmd the semi-empirical analysis of the
present report were developed independently emdare similar
in one significant respect; both consider the influence of the
boundary Iayer on base pressure. The basic concepts itiid
the detaik of the tu-o analyses, though, are entirely difteient.
Cope’s equations are dweloped only for axially symmetric
flow, and do not, provide for the efiects of -mriatioDs in
profle shape on base pressure. He evaluates the base
pressure by equating the pressure in the vmke, as calculated
from the boundary-layer flow, to the cmrespondirg piemure
as calculated from the wterior flow. In calculating the
preemre from the bound&y-layer flow, however, swe-ral
approximations rmdassumptions me necessarily made rhich,
according to Cope, resuIt in no more than a first approxima-
tion.

The primary purpose of the investigation described in the
present report is to formtiate a method mhieh is of wdue
for quantitative calculations of base pressure both on air-
foils and bodies. The analpis is divided into tvio parts.
Part I consists of a detailed study of the base pressure in
two-dimensional and E&& symmetric inviacid flow. The
purpose of part I is to develop an understanding of the prob-
lem in its simplest form, and ta study the effects on base
pressure of -mriatiiom in profile shape. In part II a semi-
empirkal theory is formulated since the results of part I
indicate that an inviscid-flow theory cannot possibly be
satisfactory for enginee&m estimates of base pressure.
A comparison of the semi-empirictd analysis with esperi-
rrtentalresults is also presented in part-~ of the report. .

Much of the present material was de-ieloped as part-of a
theais submit-ted to the California Wtitute of Te@nology. __
in 194S. Acknowkdgrnent is made to H. W. Liepmann of
the CM.i.forniaInstitute of Tecbnolo&y for his helpful &-- -”
cuaaions regarding the theoretical considerations, and to
A. C. Charters of -&e Ballistic Researcih Laboratori~- for
making available &mer&a unpublished spark photofiplis -
which were taken in the free flight experiments of reference 5. “—

,LSupew.ies NACIATN m%’,“h AqeImikof Bass Rempre at SURWWIIIOVeboitfesmd Oompmfsonwith Experiment” by,Deen R. O’hPOW&K15CLT@ present rewrt inchies
mkence’to wmeemmrhentsnot disstherelq * IyorPomtes a moredetdledandgsb oftheeftectsofYerfdomi topioEIe@.tepeon base~ittfm&ldflow.
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NOTATION

constant
rod or support diameter
base thickness (base diameter for axially symmetric

flow, trsihng-edge thickness for two-dimensional
flow)

length upstream of base (body length for axially sym-
metric flow, airfoil chord for twodimenaional flow)

Mach number
pre5sure
prmsu~e coefficient ref&red to free-stream conclit.ions

()P–P.
1#Ym2

base pressure coefficient referred to conditions on a

()

hypothetical extended afterprofile ~
, 9P ‘u’a

base preeaure coefficient for maximum drag in inviscid
flow over a semi-infinite profile

value of Ph’ obtained by extrapolating to zero boundary-

ktyer thickness the curve of P*’ versus ~ --

dynamic pressure
()

;Pv

gas constant
Reynolds number based on the length L
radiaI distance from axis of symmetry to point in the

ilow
temperature
thicknem of wake near the trailing shock wave
velocity
angle of boattaiL&g at base
ratio of specific heats (1.4 for air)
boundary-layer thickness
density

SLIPEESCIUPT

conditions on hypothetical extended afterprofile aver-
aged over. a region occupying the same position
relative to the base as the dead-air region

SUBSCRIPTS

conditions in the free stream
conditions at base
stagnation conditions

I. BASE PRESSURE IN AN INWSCID FLUID

Throughout this part of the report the eflects of viscosity
are completely ignored and the flow field determined for an
inviscid fluid wherein both the existence of a boundary layer
and the mixing of dead air with the air outside a free stream-
line are excluded from consideration. It is resumed tluwugh-
out that a dead-air region of constant pressure exists just
behind the base and is terminated by’a. single trailing shock
wave. As wiUbe seen later, the assumption of zero viscosity
overeimpli& the actual conditions; the resultsobtained with
this assumption agree qualitatively with a number of ex-
perimental results, but provide quantitative information
only on the eilects of profile shape on base pressure.

TW’O-DIMZNEIONAL INVISCIDFLOW OVER A SEMI-INFINITEPROFILE

h ordiiii achieve the greatest possible simplicity at the
outset, the case of a semi-intlnite profile will be considered
first . ~“this is meant a profile of constanLthicknesswhich
extends. from the base to an infinite distance upstream
(fig. 1), The problem at hand is to determine the flow pat-
tern in the neighborhood of the base. Sigce the effects of
viscosity are at present ignored and ody steady symmetrical
flows are considered, the problem is simply that of dctern~in-
ing the flow over a two-dimensional, flat, horizontal surface
which has a step in it (fig. 2).
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FIGURE2.—Example of iwl$cid flow over a two-dlmersbnrd IHMIC.

It is easy to construct a possible flow puthm~which sutisfws
all necessary boundary conditions including the requirement
of constant pressure in the dead-air region. For example,
suppose the free-stream Mach number is 1.50 and some
particular value of th base pressure coefficient, say
Pb= –0.30 (pJpm=0.53), is arbitrarily choscu. Shwe tlu—..
base preesure is prescribti, the initial angle of turning
through the Prandtl-Meyer expansion. (fig. 2) is uniqucly
determined, and in this particular case is equal to 12.4°
at B. The pressure, and hence the volocit.y tind Mach ]~un~-
ber, must be constant along the free streamline BC. For
the example under consideration, the Mach number tdong
the free streamline is calculated from the Prancltl-Mqwr
equations to be 1.92. For a uniform two-dimensional flow
over a convex cnrner, the presure depends ody on the angh’
of inclination of a streamline, hence it follows that BC is
a straight line. The triangle BCE therefore hmmds.a region
of uniform flow having the same pressure as the dead-air
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regiom & the trailing shqck ware (fig. 2) extends outward
from E to infinity, interference horn the expansion waves
gradually decreases its strength until it eventually becomes a
Mach wave. That. part of the shock-wave from C to E must
deflect the flow &rough the sme angIe as the ~ansion
waves originalityturned it (I2 .4° for the particular emimple
under consideration). This deflection certtiy is ,possible
since the Mach number in the trismgle BCE is 1-9.2whkh,
according to the weU-lmown shock-wave equations, is capable
of undergoing any deflection smaller than 21.5°. As the
flow -proceeds downstream from the trailing shock wave
CEF, the pressure approaches the free-she= static pressure,
thus satisfying the boundaiy condition at i@nity.

It is evident that a possible flow pattern has been con-
structed wtich satisfies ill the prescribed requirements as
viell as the necessary boundary conditions. This flow, how-
ever, certainly is not the ordy possible one for the particxdar
Mach number (1.50) under consideration, since any “negati~e
due of Pa algebraically greater than —0.30 also would
ha-ve permitted a flow pattern to be constructed. and stiJl
satisfy all boundary conditions. This is not necessarily
true, though, if values of Ph tdgebraically 1sss than —0.30
are chos~ as can be seen by picturing the conditions that
would result if the base pressure were gradually decreased.
The angle of turning through the Prandtl-Meyer expmsion
-ivouldincrease and point C in figure 2 Sirnuhaneously would
more tmmrd the base. The base pressure can be decreased
in this manner only until a condition is reached m which
the shock wave at C turns the flow through the greatest
angIe poesible for the particular locaI Mach numbex existing
along the free streamline. The base pressure cannot be
further reduced and still permit steady inviscid flow to
exist. The flow pattern C.orr=ponding to this condition of
a rnaximumdeffection shock -wave can be considered as a
“limiting” flow of aII those possibIe. There” are obviously
an Mte number of possible flows for a given free-streua
Mach Number, but only one limiting flow.

The limiting value of the base pressure coefficient can be
oalctiated as a function of the fie~tream Mach number by
reversing the procedure described abo re for consh-ucting
possible flow patterns. Thu9, for a given value of the locfd
Mach number sJong t-hefree streamline a Iimiting flow pat-
tern can be constructed by requiring that the angle of turn-
ing be equal to the maxirmundeflection @e possibIe for
a shock -wave at that particular locaI Mach number. By
use of the Prandtl-hfeyer relations the appropriate value of
the fcee+trem Mach number is then directly calculated
from the angle of turning and the local Mach number along
the free streamline. - This process can be repeated for difFer-
ent values of the local Mpch number along the free strewn-
Iine and a curve drawn of the limiting base pressure coefEcient.
as a function of Mach number. SUciha curve is presented
in figure 3. The shaded area represents all the po=ible
wdues of the base preesure coefficient for two-dimensional
inviacid flow. The upper bounc$wy of the shaded area
corresponds to the limiting flow condition for various free-
stream Mach numbers.

There is no reason a priori to say that for a given M.
the limiting flow pattern represents that particular one
which most nearly approximates the flow of a real fluid.

VELOCITIES AND C!OMPARIS03’WITH EXPERIMENl 1189 --

Mach number

FIGIJEiE8.—- presmue fm ~ h-d *w.

The curve representing these limiting flow pat-term can be
considered simply as being the curve of maximum base drag
(and hence maximum entropy increase) possible in an in-
viscid flow. This is the only interpretation that will be
given to this curve for the time being. Since it is these
hmit:~ solutions vrhich will be singled out later for further
use, a special symbol Pbi TKUJbe used to designate the base
preesura coefllcient of such flows. It is evident from figure
3 that in the Mach number region shown the values of P~i
for two-dimensional flow correspond to very high-base draga,
being almost as high M if q vacuum existed at the base._
At Mach numbers greater than or equal to 6.0, the values
of p~~exactly correspond to a vacuum at the base.

Ala.uLY sYMB5rrRIG ISVISCIO FLOW OVER A SEhfLI?JE7NlTE BODY

.-

—.

In principle the same method of procedure can be used
for inviscid -ally symmetic flow M was used for invimid
two-dimensional flow. The &aUy syrumetic flows, hovr-
ever, are somewhat more involved than the corresponding
two-dimenaionaI flows. For emmple, in axially symmetric
flow the expansion ravelets issuing tim the corner of the
btise me not str@ht lines as they are in Prandtl-Meyer
flow. Moreover, additional complications arise since the
flow conditions upstretim of the trailing shock viave do not
depend solely on the inclination of the streardi.nes at a
given point, but depend on the whole history of the flow
upstream of the Mach En+ pa&ii through that point.
& a consequence of these complications, the free streandine ““
of constant pressure cannot be straight. ,

T... . .

—
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In order to construct possible flow patterns as was done. in
the two-dimensional case, the method of characteristics for
axially symmetric flow must be used. The details of the
particular characteristics method employed are described in
reference 6. By employing ‘the characteristics method the
inviscid flow field corresponding to a given base pressure can
be constructed step by step for any given value of the Mach
number. The shape of the free streamline is, of course,
determined by the condition that the pressure and the
reIocity must be constant along it, An example of such a
construction for a free-stream Mach number of 1.5 is given in
figure 4 (a). In this particular case, the base pressure

.

(a) Ma =1,8;PP-O.2E.
IWKIRE4,—TJ’PIG31Mach nets forindsddflow over the k.e of s semi-[nflnke body or

revolution.

coefficient which has been chosen arbitrarily is —0.25. It is
to be noted that there is a striking difference between the
axially .yymraet,ricflow (fig. 4 (a)) and the twodimensional
flow (fig. 2), The invimid flow pattern for the axially
symmetric case cannot be constructed all the way to the
as-isof symmetry and still satisfy the prescribed boundary
conditions. This is a consequence of the curvature of the
free streamline and the fact that the hiac.h number along
the free streamline in the case under cotiideration is 1.84,
which, at the most, is capablo of deflecting a streamline only
19.9° by a single shock wave. As, is illustrated in figure
4 (a), the angle of inclination of the free stre.axhlinefor this
example is already 19,9° at a vnlue of r/rb=0.552, where r is
the radial distance from the a.xiaand rCI=h/2k the radius of
the base. Since the angle of inclination of the constant-
pressure free streamlinewould continue to increase mono-
tonically as the axis is approached, the flow pattern of
figure 4 (a) cannot be constructed farther than the point
shown (r/r~= 0.552) and stiI1permit the flow to be deflected
through n single shock wave-and become paralkd to the asis
of symmetry, This phenomenon is not attributable tQ the
particular combination of Mach number and base pressure
selectid for figure 4 (a). In figures 4 (b), 4 (c), and 4 (d),
other examples m-e presented which illustrate the flow for
different values of Mach number md for diflerent base
pressures. In each case the free streaqdine has been ter-

\

1 ‘“
is M=3.70-4 ~

37. !5”

0.,279 r,
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V\ (b) m} Jl(a =2.X1’,--0215.

,.
(C).Ifm-2.5:PI--O.1L

(d).Jfm -4.0:P,=-O.CEC6.

F[GLTE 4.—ConchIIh4L

minaie”drIt the point where the local angle of inrlinfi[ion is
equal to the angle corresponding to the greatest possibh
deflection by n single shock W-QVC.It. is cvidcnL (1MLnotw
of these ffo;r patterns could be constructul flown 10 the axis
of symmetry. .MtogeLhcr, approximo tcly 30 flow patterns
were constructed by the chriractcristics method; in no rasc
could the flow be constructed all the way to the axis.

The flow pattems built up by the method of chwcteris[iw
should not he regarded as unrmlistic simply bccausc the flow
cannot be constructed rdl the way to the axis, In a rcnl
fluid the flow outside the boundary layer is similar becauso
the vmke behincl the body fills the region nmr the axis and
prevents the outer flow from re~chilig the axis, This fact
suggests that the ‘rmially soyrnmetricintiscid-flo~v pat.terns
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shotid be irmestigated further as they might bear some
relation to actual flows if the displacement effect of the vrake
-wereconsidered.

The flow fieIds containing a free streandine not- meeting
the axis of symmetry can be considered as those that would
exist in inviscid flow about a body of revolution which has an
infinitely long cyhlrical rod (or “sting”) ~ttached to the
base. As an example, the flow of figure 4 (a) wotdd corre-
spond to a body baring a rod of diameter d= Q.552hattached
to the base. (See fig. 5.) With’ such a model the trding
shock wa-re turns the free streamline through the greatest-

‘ deflection possible for the gh-en Iocal Mach number aIong
the free streamline. The flow field is therefore the Iirnithg
flow field of W those possible for the g-ken free-stream Mach
number and the given ratio of d/h.

/

Fmmm &–4xioUy symoetrfo semf-fndnlte body with rod rittaehed.

Just ai in the case of the two-dimensional body, there we
a-kc an intinite number of possible flow patterns for the body
of resolution with a rod attached. This is tzue because for -
a given configuration M many additional flow patterns as
desired can be constructed by simply select@ the base
pressure to be any pressure between the fieb+tream pressure
and the pressure corresponding to the limiting flow. The
limiting flow pattern is to be given the same physicaI sig-
ticance for asifly symmetric flow as for tvm-dimensional
flow; that is, the corresponding base pressme coefficient
Pbtrepresents the maximum base drag possible for an inwiscid
flow with a single l&ling shock -wave and a given &tio
of d/ii.

By choosing different -dues of the base prcwure co-
efficient for a fixed Mach number, the inviscid solutions
determined by the method of characteristics enable a. plot
of Pbi against d/fi to be made. This procedure has been
carried out for Mach numbers of 1.25, 1.5, 2.0, 2.5, 3.0,
and 4.0. The results are shown in figure 6. Each point on
the curres in tfi” figure represents one flor pattern con-
structed by the characteristics method. The dues for
d/h=O correspond to the semi-infinite body without a rod
attached. It is ta be noted that for each crwre in figure 6
the due of Phi extrapolatea to zero as d/h approaches zero.
This means that the base pressure is equal to the free-
stream static pressure, the free strewrdine is unreflected,
and the base drag is zero. Hence, the limitirg flow pattern

~i
.— -
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—
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FIGURE&-Pmeter propxtionol to ti~#&IoI&%kS dr6gpo.!AMe in en W#mld.axially
~triu flow.

.--:

and the infinity of @ssible imriscid flows for O<d/h<l
degenerate into a single trivial solution cofiesponding to - _ _
zero base drag for cZ/h=O. This beha.tiour ap~emi anoma:
lous on fit thought-, particularly -when one remembers .
that thq coefficient Pb; represents the m&mum pos~ile-
base drag that can ex& for a-n irmiacid ffow of +e ~~e
being considered. b explanation can be .obtair+ed”from a
consideration of the equations of motion since the~”are the
basis for the method of characteristics. .This’ explanation,
howe~-er, is not essential for an understanding of the m&n .
conclusions regarding base pressure, and hence is presented
as Appendk A.

In @e 6 the limiting w+tues as d/h approaches 1.0
correspond to the pre~ioualy treated case of f+o~e~ional - :_
flow. It can be seen that this must be the case b-j-ritualizing
the. limit@g process as taliing place with bo+ d aid-h
approach~ Mnity, but with the difference (h-d) held -” ““
constant. The configuration approached in this mminer ‘“J-
wmdd be a two-dimensiomd step of height (h-d) /2; h_en~~
the pressure coefficient. approached would be the limit~hg
base pressure coefficient for two-dimensional intieid flow-.
On the other hand, if. cZ/his equaI to unit~ (instead of ap-

-. —

preaching it from WIJuesalways leas than unity)-, then the
correspond@ configuration would be a semi-infinite body
of revolution with a cylindrical rod of the same diameter
attached to the base. Although no dead-air region exists
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in this latter caee since the flow is everywhere uniform, the
base pressure in the phuyaica.lsense would be the static
pressure at the junction of body and rod, and hence Pot
would be zero.

The occurrence of more than one possible solution in
twodimensicmal flow and &o in axially symmetric flow
with a rod attached does not represent a new ocmrrence in
inviscid flow theory. A similar situation occurs, for ex-
ample, in airfoil theory for an inviscid, incompressible
fluid. AE is well known, a satisfactory solution in this case
has been found in the use of the so-called Kutta condition,
which can be readily justified on the basis of qualitative
consideration of viscous effects near the trailing edge.
Apart from ‘the effects of viscosity several other consider-
ations, such as stability of the flow, also have been of
importance in other unrelated problems when selecting a
suitable inviacid flow adution from a possible choice of
more than one. As au example of this, the inviscid channel
flow studied in ‘reference 7 may be cited. For the present
problem, however, the preceding analysis of axially sym-
metric inviacid flows points toward Y&ous eflects (Mher
than stability of inviscid flow) as being the essentialmechan-
ism determining the base pressure. Before considering
viscous effects, however, the effect on base pressure of vari-
ations in profile shape will be analyzed in detail since experi-
ments have indicated widely diflerent remdts for various
profiles. The method presented kiter for correlating base
pressuie data requires that the memmremente first be cor-
rected for the effect of profile shape, In the section which
follows equations are developed for such a correction.

TWO-DIMENSIONALAND AXIALLYSYMMETRIC INVISOIDFL43WOVEE
FINITEPROFIL=

In this section consideration is given tQ the flow over a
finite twodimensional proiile concurrently with that of a
finite body of revolution. For either type of flow, the
presence of the profile caus~ the Mach number and pressure
in the flow field ahead of the base (M, ~) to be nonuniform
and diilerent from free-stream conditions (M., p.). This
is ikatrated in figure 7 (a) for a profile without boattailing.
As a result of the disturbance caused by the profile, the base
pressure depenck on profile shape even in an inviscid flow.
In this section, a method is developed for calculating cor-
rected free-stream conditions (M’, pi) to which the base
pressure can be referred and be nearly independent of profile
shape. This method does not depend on the magnitude of
the base pressureor on the dimension d (fig. 7 (a)), and hence
is useful in comparing experimental measurements made on
various airfoils and bodies of revolut.ion.

To fix ideas, the Mach lines shown as dotted lines in figure
7 (a) will be thought of as representing ~eak preesure
waves; those with positive tangents (e. g., DD) being mem-
bers of the so-c&ed first family, and those with negative
tangente (e. g., DA) being members of the so-called second
family. Weak pressure waves issuing from the body can
affect the base pressure in several ways. For example,
waves of the first family starting between D and E not ordy
ailect conditions at A, but also affect conditions between A

.
E,

(8)

./

/
/’

G// Hypdbefiwl

M&p. M,p /{, ex i%tx7ed
\ uffetp-ofik -~,

(b)
(a)Fhrlte pmlfe. \

(b) Finite Ntlle with extendd aftwfn_.Mle.
Fmrzur 7.-Sketah oftnvhcld Eow.ove.rfinite pronfe wfthout WWefflng.

and G. Such waves reflect. from the bow shock wave be-
tween D and ~ and then become members of the seeond
family of waves between DA and ~G which directly interticL
with the dead-air region. Waves of the second family
beyond ~G would not affect the base pressure in an inviscid
flow. The net effect of profde shape on the base pressmmof
a finite .brsdy, therefore, will be determined both lJY condi-
tions at A and by the variation of conditions between A and
G. If a hypothetical afterprofile were extended from tho
base, as illustrated in figure 7 (b), then such conditions
would cause the average preesure (p’) and Mach number
(M’) aIong A H of the extended afterprofile to differ from tht~
corresponding free+tieram ccsnditions, Thcso cliffercnces
would represent the disturbnncg field induced near the base
by the profile shape, and the base pressurereferred to M’ and
p’ (e. g.g a curve of Pb’ or pa/p’ versusM’) could be regarded
as corrected for the effecte of profile shape in inviscid flow,*
By app@g the compatibility equations of the method of
characteri@ics for either twodimensional or axially sym-
metric flow h the triangle AG H in figure 7 (b), it can bc
deduced that the magnitude of the velocity averaged at
points A and H is approximately equal to the magnitwh of. _
the velocity at point G. Thus, M’ and p’ can be ewduatc~
either frpm conditions along a hypothet.ical eixtended after-
profile, or eke from conditions at an appropriate point (G) in
the flow over the given profile.

A second case to be considered k that of a profile having n

-.

#It may benotedthat Wand p’ereonelo us in some
7

ra&8 to themrrwted k e-etrsamMach nnmber and preseure ueed In sukemfc wind-tnnneloperation: the fcfnrerre e6ent We
average Maoh nurnbw andpressurelndrmd h he vfehdty of t e bass by the prseawe of the proffle; wherees the latter represent the awrege Mach number and ~e lnduecd in t o ylefnjty!?
ofthe test modelby the preeeneeof the tirnnd walls. Both wrrectione are aecmnte only whenthe fnduud dletnrb+umffeldInsmalland approzhnatdy rmfform over tbe reiifon III questlom
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negative boa-ttail angle (f?), as illustrated in figure 8 (a).
This flow can be converted to an equhdent. ffom over a
proiile without boattailing having the same base pressure
as the flow of figure 8 (a) and certain nonuniform conditions
ahead of the base. This equiwdent flow, illustrated in figure
8 (b), is identical to the type already considered and is such
that the flow within C’O’G’ coincides with the flovi=within
COG in figure 8 (a). Point- G, therefore, is dehed by the
intersection of the Mach line passing through Cl and the
particuhw Mach line pas&u through O on which the ve-
locity vector at. O ia paralkl to the free-strem directiom
Hence, for this second case also, M’ and y’ can .be deter-
mined approximately either from conditions on a hypo-
thetical extended afterprofile, or else from conditions in the
original flow at point G.

(c) (d]
(a) pa. (b) Equivakt fiOWform.
(0) 19>o. (d) EwhdentfiW form.

FIGUIUZS.-sketch of b.wkcklti In rfctoftyofke fbrrmflles viStltb@falHng.

A third and Iast case to be considered is that of a pro~e
having a positive boathd angle, as’illustrated in figure 8 (c).
This flow also can be converted to an sqtivalent flow over a
profle without boattailing having the same base presSure
as the original flow (fig. 8 (c)), and certain nonuniform con-
ditions ahead of the base. As sketched in figure 8 (d),
the equivalent- flow ahead of the base is such that the con-
ditions downstream of O’J’ are ident.icd to conditions domn-
strearn of OJ in figure 8 (c)? Thus for 19>0, M’ and p’ can
be determined approximately from conditions at G’ in the
equivalent.flow, or else from conditions along a h.ypothetimd
prcflle ~tended downsheam from O’, but M’ and p’ do not
necessarily eat at any easily deteniined point m the
Original%01’r:

For any profle the relationship between the base pressure
coefficient Pa?= (ph-p’][q’ which corresponds to the Mach
number ilf’, and the base pressure cceflicieni~~= (ph-y=)/g=
which corresponds to the Mach numbs M. and to the given
profle, is given by the equation

P<=? (P,–P’) (1)

where

rind, if the profle disturbance field is smaU, ..—

In this last equation (deriYed in appendix C], Ape/pais the
fractional 10SSin total pressure on passing through tie bow _
wave. If the ratio p*/p= is used instead of the coefficient P*, _
the analogous relation between tie ratio PZI/p’ and Pb/Pm
obvioudy is

(4)

For a giren profle, these equations enable a curve OfPb’ (Or ._

%@) ~ersus-~f to be plottedif fi c~e of Pb (or pbfp=) .,
versus .Jf= is known.

IU order to further clirify the concept of the &tmbance .‘-
field induced by profle ahape, ~d SLSOto illustrate the
magnitude of the variations in base pressure that @ht. be
expected between different prollles, some representative .
calctiations of .W’ and .P’ have been prepared in tables I, H,
and III. For simplicity in these calculations, M’ and p’
h~re been evaluated along the hypothetimI extended after- _.
profde at a distance h behind the base position, rather than
to use in each case a more invohred ave~e over the appro-
priate extent of dead air.- Table I appIies to two-dimens-
ional flovr or~r the particdar profile shown. The compu-
tations for M== 1 are based on the pressure distributions ..
cshdate~ by Guderley and ~oshihaxa in’ reference 8; the
computations for other Mach numbers in this table are based
on shock-expansion theory. It is evident that the disturb-
wce field near the base is significant at- low supersonic
Mach nunibers where the bow wave is detached, and also at -
hypersonic Mach numbers where the bow wa;e is very strong-
At moderate supersonic Mach numbers, however, the profile
disturbance field in two-dimensional flow is negligible, and
conditions on a thin airfoil depe@ solely on the local surface
inclination. It follows that the base pressure under such
circumstances is nearly independent of profile shape and
boatta.d angle. (If the angle of at.ta& is smaII the base
pressure is also nearly independent of angIe of attack under
these conditions.)

Table II, which is based on the method of chmactais-
tics, applies to the cone-cylinder body of revolution show-n,
and iUuatratesthat the correction for the profle disturbance
field is not large if the afterbody comprises a cylinder several
diameters long. For emunple, at a Mach number of 1.5
for which the value of p,jp. is about 0.7, the value p’/p= =
0.98 corresponds to a correction of about- 6.7 percent to the
base drag (since the base drag is proportional tg (1–p,/p.)). “

Table III appIies to a cone (I9= – 100), and illustrates
that the correction for such profiles c= be sizable: At a
Mach number of 1.5, for example, the induced pressure field
in this case amounts to over one-fourth of the base drag.
For, larger apex angks, the corresponding correction for .1
cones can be considerably kwger. It is to be noted that
the induced pressure Md usually represents a much more
imp&ttint correction to base drag than the induced Mach..—---

P’=(p’-p.)/qm (2) ] nu&ber field.
:Sncban nidentfl omcanreadil beconstmcted Kthe Mach nnnIber ontbemrface jostabead of thelxssfn~o rigfnaIE owfssufScfentIy lsrge, or ffBIssnMcfently amfdI, to

fnsure snp.A% relodtfes slang O’G’ L tie ecmfvakd ti.
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IL A SEMI-EMPIRICAL METHOD FOR CORRELATING BASE
PRESSURE MEASUREMENTS AND COMPARISON WITH
EXPERIMENTAL RESULTS

QUALITATIVEEFFECTSOF VISCOSITY ON THE BASEPBESSURE FLOW

~ sketch showing the qualitative flow clumactcristiesfor
the viscous-fluid flow in the region of the base is given in
figure 9. The flow rdong thti first expansion wavelet starts
with the nonuniform distribution of hiach number M, pres-
sure p, ancl with a boundary-layer thickness & Bemuse
the l.&e pressure is lower than the pressure
of wqmnsion wavelcts originates at point A.

// / Expanskm

p, a small fan
The existence

FIGUREW.—Sketchof the vfe@ms-fluldflow in the nelghborhd 04the k.

of deacl air in a small volume immediately behind the base
is a result of the sepmation at point B. As i consequence
of the formation of a dead-air region it might be expected
that the pressnre along the streamline BC is approximately
constant. The qualitative form of the boundary-layer pro-
files at stations between points B and C must take on the
same nature as those existing at the. boundary of a super-
sonic jet issuing into ambient air. Because of the viscosity
of the fluid, the dead air is induced into a circulatmy motion
in the directions indicated by the small arrows in figure 9.
The viscous mixing process. causes the boundary byer to
thicken m it appm~ches point C. In axially symmetric
flow there is an additional reason for further spreading of
the streamlines in the boundary layer M the trailing shook
wave is approached. Since the mean radius of a. stream-
Lube in the boundary layer continually decreases “as the
trailing shock wfive is approached, additional spreading is
brought about in order to keep the annular cross-sectional
area of the strearntubes approximately constant.

With this qualitative picture of the flow processes in mind,
a brief description can be given as to how the base pressure
arrives at its steady-state equilibrium vaIue. To fix condi-
tions in mind, suppose a jet of air is pumped from the.body
into the dead-air region and then is suddenly stopped. At
the instant the jet is turned off, point C is far downstream
of its equilibrium positiorr. Due to- the scavenging effect
of the outsicle flow on the mass of dead air, some of this
detid air is removeal, thusTcausing the angle of turning at
the corner to be increased and the presemreof the dead-air
region to be decreased. The huger. angle of turning in-
creases the velocity outside the boundary layer, which in

turn increases the scavenging action, tlmcby ~wain loww-
ing the pressure and starting the cycle over again. Thus;
point C moves rapidly to a posit ioll as close to the bmc m
possible. There is, however, at least one important factor
which prevents point C from going m ftir Lownrrlthr Ixwc.—
as that point which would roughly represent WI limiting
solutionJor inviscid ffow. As C moves toward the bm~,
the pressure ratio of the trailing shock w~~VP incrmscs,
making it. more dificult for the scavenged air and tIN!low-
~elocity’ air in the boundary lnyer to o~;mcome the pres.sure
rise of the shock wave and flow downstream. The opposi-
tion of this effect to the ones mentioned previously would
serve to cstablish equilibrium. It appwra, thrrrfore, that H
satisfactory theory of base pressure would hove to considur
the mi+ing prom.ss in conjunction with tho imicwid-fluid
characteristics of the outer flow.

BASISFOQ CORRELATIONOF EXPERIMENTALDATA

It is assumed that the flow expnds over the corner of lhr
base ns illustrated in figure 9. The bnsc thickness h would
be the trailing-edge thickness in the case of two-dirncmsional
flow, and would bc thr base diameter in the case of axially
symmeh% ffow. An attempt to correlato the various
measurements of base pressure is mnde on t~~cbasis of the
rehttio&hip

(5)

-which assumes that the. base pressure coefficient cxmrectvd
for the profile disturbance field is affected by viscous effects
only through the ratio of boundary-layer thickness to bmc
thickness. Actuallyj even for a fixed value of 5/11the lmsc
preesure would be affected by anything that affects thv
distributiol~ of fluid properties within tht’ boundary layer
or within the mixing layer downstream of the bnsc. 1[
w-ill I.wseen subsequently, though, that in many cases thu
above relationship yieldk acceptable results.

lf the boundary-layer flow is lnminar, then from dimen-
sional analysis and the classical conaidcrn(ions of the terms
involved in the boundary-Iaycr cquat ions, it foIlows tlmt

Rewriting this equation,

where C’is a function of the llach uumber nnd profile Sllapv,
but independent of viscosity. For a given L/h,vfirialions
in profile shape affect the boundnry-layer thickness prit]-
cipally through the action of the pressure gradirnts set u]]
by the particular profile contour. As a first tipproximalim
the effects of variations in pressure distribution on lhc thick-

ness of the boundary layer juet head of the base wiH bc
negIecteil since these eflects in most cases should be small
compared to the effects of Reynolds number nnd Z/h ratio.
Within the limits of this simplification, the nhovc cqunlion is



..

AN A?i?iXL=ISOF BASE PRESSURE AT SUPERSONIC VELOCITIES A.KO COMPARISON WITH ESPERI?JEWI’ 1195

applicable to any profde shape or ler@h. Hence in correlat-
ing the data for huninar-boundaq--layer flow, the parameter

Z/(h I’m is usecl in the absence of dir@ measurements of
6/h.

In the case of turbulent flow a si.ndar parameter can be
obt@ecI. By appro-simat:@ the turbulent boundmy-
layer profile with a l/7-power lavr, the ratio 6/h for low-
speed flow turns out. to be inversely proportional to the
1/5 power of the J3e-ynolclsnumber. (For example, see
reference 9.) t-sing this result, the appropriate parameter
in correlating base-pressure data for turbulent boundary-
layer flow wouId be L/[h(Re)’lq.

.ZXPElU31E2NTMDATA FOR TWO-DIMEXSIOXAL PLO W

At present the a.wdab~e experimented results on base
pressure in two-dimensional flow are rather limited, but they
are sufficient to provide a qualitative check on one particukr
result of the inviscid-flow calculations; this remdt.concerns
the essential dMerence, as indicated by the inviscid-flow
calculations, between the base pressure in two-dimensional
flow and in rLiiallyqm.metric flow. The absolute magititude
of “thebwe pressure coefficient for two-dimensiomd invimid
flow at n given Mach number is represented b-y the limit. of
the wdues for ‘axially symmetric flow as clfh approaches
unity in figure 6. For 1O-Wand moderate supersonic Mach
numbers this limiting value is severaI times the value for a
body of re~olutio~, -which,as will be seen later, is represented
in figure 6 by a d/hratio somewhere between 0.5 and 0.8.
For high supersonic Mach numbers the dMerence between
the two types of flow, according to figure 6, is small. These
considerations which indicate”that, except at high supersonic
Mach numbers, a pronounced difference should esist between
the base pressure in tvm-dimeneiomd and @ally symmetric
flow, are in agreement with existing data. In reference 10,
the wind-tunnel measurements for two-dimensional flow over
u wedge airfoil at a Mach. number of 1.4 “and a- Reynolda
number of 0.6 million indicate a value of —0.41 for the base
pressure coefficient. Measurements presented Iater for axi-
tdly symmetric flow at the same Mach number and Reynolds
number, however, indicate values mound —0.20. This
huge dMerence is in accord qualitatively with the considera-
tions baaed on the curv~ of figure 6.

In order to make a preliminary e-duation of the Reynolds
number effect on base pressure in two-dimensiomd flow,
some meaamments have been made on a constant.-chord
wing of finite span having a. thick trailing edge.A Because
the ambient ah near the wing tips can flow lateralIy around,
the tip and into the low-pressure region behind the base, the
data cannot. be considered as strictly representing t--wo-
dimensional flow. Xe-mrtheless, the ratio of sprm to basa
thickness (40) was sufficiently kmge on the wing employed
so that tip effects should not afkct conclusions concerning
the qualitative influence of Reynolds number on base pres-
sure in tvrodimensionaI flow. The results of base-pressure
measurements taken at a Mach number of 2.0 are show-nin
figure 10 (a). It is app~ent &at, the base drag increases
considerably as the Reynolds number increases. Since the
surfaces of the -wings-meresmooth, and the highest Reynolds

number attained was 1.8 million, the dntti m-erepresentati-i-e
of the case of la.minar flow in the boundary layer. A pIot
of these data against the parameter -L/(hl”~e) is shown in ......
fiigu.re10 (b). It is to be noted that in this form n straight
Iine can be fiiired through the data in the region cwrered by
the tests. For larger vahms of. L/(hl~ the line would be
expected to curve and approach the line representing zero
base drag.
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FIOUP.E10.—Measured & ~ ona5nh5pm* .Wm-Z.O, mtiOofwfng spanto
k thfckuess .40.

~ZEli%IEIYTAL DATA FOE AXIAILY SY3131~C FLOW “,

Fortunat@, there are sticient experimental data av@-_
able for axially symmetric flovr to make a. fairly derisive
correlation of Pb’ with the parameters ~/(hl’~ and
L/[h(Re)uq, where h is now the base diameter. Most of _
these data have been obtained frcim wind-tunnel measure-
ments on bodies of revolution mounted from the re~ by a
cylindrical support. Accordiiq#y, a hmovdedge of the pos-
sible support and waU interference effects is necessary for
a satisfactory interpretation of the wind-tunnel measure-
ments. Some experimental data on support interference
and reflected bow-ware interference are presented in ap-
pendix B. It d stice for the p&nt purposes to state
that the wind-tunnel measurements were taken with a
support sting of sufficient unobstructed length ~ that no _
interference effect of support- Iength is present in the data.
Likewise, no appreciable int.erkmnce res.uh~~ from the

.—
I These data were taken h tbe .AmesI-by S-fc@tsupermdc whd tonnel h-o. 1employing a wing ofO-Inchspon wfth a Ixwe—pre%sueorffiee Iomted I b.tch outbonrd of the pkme of6ymmeky.
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reflected bow wave is present in the data. As regards the
effects of support diameter, iL is known from a relatively
complete set of interference measurements made by Perkfi
(reference 11), part of which is presented htt.er,that the data
taken at M= 1.5 arc essentially free of support interference.
At the higher Mach numbers, however, a complete set of
suppm+cliameter interference!measurements was not made.
Consequently, some effect may be prewnt in the data taken
at M=2.O and M= 2.9. For consisteritq-,these data which
may be affected to a small extent by support-diameter
interference have been taken with a fixed value of 0.4 for
the ratio of support diameter to base diameter. By com-
paring the base pressure measured on various bodies tested
with the same relative support diameter, the effects of bocly
shape can be deduced if it. is assumed that changes in nose
shape do not produce significant changes in the support
interference. .Thia is believed to be a valid assumption for
the body and support dimensions used.

In reducing the experimental data for correlation, the
measurements are first corrected for the disturbance field
induced by profile shape. All bodies of revolution used in
the present experiments consisted of eifher a cone-oylinder
(10° sem.iangle of cone) or an ogive-cylinder (lO-caliber
ogiwd radius) combination. In order to determine the body-
shape correction (P’) the pressure distribution over such
combinations has been calculated using the method of charac-
teristics. Two typical pressure distributions for a Mach

20”

.\
L -l O-caliber radius

Diafame from noee, cohera

FIGUREil.–Typical preamre df8tribut!on as determined by the mctbti of clmmcterktlq
M= -2.0.

number of 2.0 are shown in fi ure 11. For the rgaso~
explained earlier, the correction # ‘ is determined by stdccting
the value of the pressure coefficient existing cm an oxtmsion
of the cyhndrical afterbody at a location fipproximahdy
one diameter downstream of the base position. ‘Me values
of P’ determined in this manner enable the corrcspondillg
values of Pb’ W be determined from equations (1) aild G]).

The quantity Pb’ shotdd not depend on the hcdy sha,pf!for
a given M’. For all but a few exceptiontil shapes, such as
a simple cone without. an afterbody, tf~eMach numbur M‘
in the present te9ts is sufficiently close to thc free-stream
Mach number to enable a direct comparison to he mmlr
between various body shapes after correcting for the pres-
sure disturbance fiekl only. For them exceptional cases,
which represent small vahm of the length-diameter ratio,

apb V-M—) is Mh?ed to h?an additional correction —aitf“
right side of equation (1), so that the comparison of vmiom
bodies is made on the basis of a constant M’ equal to M-.
Since even in an extreme caso this lattm correction is smtill

aPb
cotnpared toP’, the derivative— can be rou@Iy cd hatd

ahi
without” affecting the final results appreciably. Nor tlw
data to be presented subsequently, this correction was mmlu
only for those bodies with a lengthdiameter ratio of 4 or
kas, since it amounted to onIy 6 percent- of the mmsured
data in the most sxtreme case (~/h= 0.9) and was negligildc:
for the bodies with ~/h greater than 4.

In atf&iipting to correlate the availttble experiments it
will be mnvenient to consider first the case of ltimintirflow
in the boundary layer, and then the case of turbulent flow.
The experiments representing the case of laminar boundnry-
layer flow were conducted on bodies of ravolu[ion with
polished surfaces, and those reprwienting turbulent flow
were ccmduct.edon the same models with artificial roughness
added in the form of a narrow transition strip. (See rcfw-
ence 12.) Although for simplicity the data tire refmrcd
to simply as representing either Iamirmror turbulent flow,
in a few cases the actual boundary Iaycr may be in the
transition state. It is to be noted that with smooth modcb.
transition (insofar as it affects base pressure) prchably
begina at Reynolds numbers of the order of 4 nlillion.
Likewise, with roughness added in order to obtain tmhulcnt
flow, the artificial roughness may noL bring about conlpINv
transiticmahead of the base at Reynolds numbers less thun
about 2 million.

Laminar boundary-layer flow approaching base. --lVind-
hmnel measurements of the base pressmrefor varions bodicxs
of revolution at a Mach number .of 1.53 arc shown in figure
12 .(a). ~“These data, ”taken from reference 12, include h
effect cd.\rariations in Reynolds number and body shape.
The large effect of both Reynolds number nnd body SIMP(’
is evident. Since the boundary-layer flow is lnmimtr for
these data, the extent to which correlation is achim-cd is .
most easily determined by plotting P: as a funcl ion of
.i5/(h~. Fig&e “12 (b) shows the dtita of fig~lre 12 (a)
plotted in this form, from which it is evident thal the experi-
mental data corre~atereasonably ~vellto a single curve. The
scatter of the various measurements about the mcal~ lino
is attributed partly to the fact that the thickness IIml
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(a) 3kmured alit%Mm -1.!s3.
(b) Correlatfrm of merimred dllta, X-IJB.

FIGCFLE12,-Meumred and mrrelated h presmre data; Mm -1.~ Iamkulr bmmdluy-
L3yersow.

velocik~ profile of the boundary layer approaching the base,
rmd hence the base pressure, are no! strictly a function
of the Reynolds number and length-diameter ratio alone.

The results of some measumnenta of the base pressure
‘for vmiom bodies with laminar boundary-layer flow at a
Mach number of 2.0 are shown in Qure 13 (a). The data
through which curves are drawn were talien m the Ames
1- by 3-foot supersonic wind tunnel No. 1 under conditions
similar to the tests at a Mach number of 1.53 reported in
reference 1?. The remaining data points were obtained
from the experiments of Kurzweg (reference 13) by plotting
his dtita.for insulated smooth bodies as a function of Mach
number, and reding the dues of base pmsure for M. = 2.0
h-em the faired curves. The same qualitative effects of
body shape and Reynolda number as were observed at. a
Mach number of 1.53 tie evident from these data obtained
at the higher Mach number. Figure 13 (b) shows the data
of figure 13 (a) plotted in the form suitable for correlation
according to the theoretimd considerations. Considering
the wide -mxiety of body shapes tested, it can be seen that-
theae data also corre~atereasonably id to a single straight
line. If the tests were &tended to hwger -dues of Z/h,
this line presumably mould curve and approach the abscis&ae
axis.

Turbulent boundary-layer flow approaching base.—The
results of wind-tunnel measurements of base pressure on
bodies of revolution at a lfach number of 1.5 with turbuknt

.
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. (a) Measured dat~ ,M= -2.0- - .+
(b) Ccmefatfon of memnred da~ .II=2.O.

FItmiE lS.-M~ and mrrelated fmse pre%sure ~ 3f= -2.0, Iamhmr bomcky-
f8yer flow.

boun@ry-layer flovi approaching the base are shown in
figure 14 (a). Also shown .in this figure are the res.dts
of free-flight measuremen~ reported by Charters and
!lhmetaky”.inreference 5- It ia etident from this figure that _
the effect of Re-ynokls number on base pressure is small;
whereas figure 12 (a) iihowa @it it is large in the case of
huninar boundq-layer flow.

The measured data of figure 14 (a) ar~ahom in figure 14 (b)
plotted in the form suitable for purposes of correlating experi-
mental data. Since the body-shape correction (P’) is ___
independent of viscous effects, the same corrections hare
been used for the case of turbulent flow as were used for
laminar flow. It may be seen from figure 14 (b) that the . _
data correlate fairly well to a straight E.ne.

Some experimental data for turbulent boundary-layer ““-
flow at a Mach number of 2.0 are shown in figure 15 (a)
and the pIot of Pb’ against -L/[h(Re)~~qis shown in figure
15 (b). The curres in these figurM show the same charac- ~
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Reynolds numbe~ ke

.Op J I
./6 .24 .32 .40 .48

L/[h(Re)’A]
(a]Mawlreddnta,Mm -1.5.

(bl Correlation of m-cd data, .V.=1.6.
FICWRE14.—Mewured and correlatd base pressrrrs deta; M. -1.5, turbulent boumie.ry-

tnynr now.

teristic of relatively constant base pressure as. TVrISnoted
above for turbu]ent boundary-layer flow at a Mach mlmber
of 1.5. Again, there is a reasonably good correlation of
these data, as is evident from figure 15 (b).
COMPARISON OF EXPERIMENTALE~ULTS WITH THE IN VISCID-FLOW

CALCULATIONS

Since the intercept’ (P**) of a curve of P*’ versus 6/his in-
dependent of the Reynolds number, some correlation (pos-
sibly only qualita.t.ive)might be expected between the ex-
perimental values of P** and the inviecid-flow cahwlations,
provided allowance is made for the displacement effe~t of
the wake near the traiIingshock wave.. _&.lcmg as the wake
thickness is well defined (reasonably steady wake) a simplo
and plausible method of estimating PO*would be to craluat.e
the base pressure coefficient for maximum drag in an inviscid
f-low wherein an equivalent solid object, such M illustrated
in figure 5, replacecl the wake. Such an object would have
no effect in in.viscid two-dimensional flow but would have a
pronounced effect in axially symmetric flow. If in axially
symmetric flow a rod of diameter d is considered to rep~ace
the wake of diameter t, the resulting maximum drag in
inviscid flow would be the same as .~alculated. in part I
where the corresponding base pressure coefficient wae de-
signated by P,,. (See fig. 6.) Thus an estimate for the
variation of PO* with Mach number in axially symmetric
flow would be

.
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?IOURE M,-M&suIed and wrrdated bairnImesure &it%.Wm-!Z% turbulent twuii&rk.
luycr Ilow.

.-

dtPb*= Pbt for ~Z - (6)

md in two-dimeneionrdflow it would bc -.
. . Pb*=Pbt (7) .

Since a fluctuating”wake presum~bly cmmoL bc replaced by
1 rocl without essentially rdtcring the flow cont~lliom umr
tie base, the above estimates camot be expcctcd_ unchx
mch conditions t.oyield anythiug.more tlmn the right order
If magnitude.

Some information on the thickness and stetidincssof the
wake has been obtained from an exarninati.onof numerous
]park pho_tograplk ta~en of project iIes in frw flight.5 Typ-
~calspark photographs ar~ shown in figure 16, and th{’ rc-
mlts of measuring the wake thickness on a hwgc nmnbw of
]imilar photographs are shown in figure 17. Figure 16 (a)-
represents the case of larninar flow in tlw boundary layer nt
L free-stream hlach number of 1.73. Umlcr these colNii-
I,ionsthe wake thickness appears to bc reasonably well clr-
ined, although the trailing shock wave is uot WC1ltlefintd
mar the wake. F~urea 16 (b) and 16 (c) iuhate thmlfor .
hwbulent boundary-layer flow on bodies of revolutio~l thv
hailing shock wave and the wake are not. very steady at
Mach numbers below about 2. TINIS it is not surprising

J These.shadowgrepheweremadeavaflablethroogh tho courtesy of the BEMstlc Reme.reb Lgbo@ories, Abfudeen, Md.
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(d) .M.-233, turbulent.

(e)M= -3X4,turbulent.
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FIGCBE 16.—ConcIuded.

that, as will be seen la.ter,equation (6) is in poor agreement
with measurements for turbulent boundiry-layer flow at
Mach numbers below about 2. At higher Mach numbers
the traiting shock -ware and the -wakebecome more clearly
defied (figs. 16 (d) and 16 (e)), but the accuracy of equa-
tion (6) in this region cannot as yet be tested because of
insufllcient experimental data.

A comparison between inticid-flow calculations and ex-
perimental Ya.luesof Pb* is more direct for airfoiLsthan for _
bodies of revolution since the wake thickness presumably
need not be accounted for in two-dimensiomd flow. The
due of Pb* as determined from the tite-span wing data -.
in figure 10 (b) is —0.30. This is fairly close to the Iimit-

@m pre~~e coefficient (P~J for t~o~e~iona~ flo~, which _
is –0.33 for a Mach number of 2.0. (See fig. 3.) Definite
conclusions as to the significance of this agreement, how- .
ever, will have to await the rewdts of measurements on air-
foils at other Mach numbers, and on airfoils tith turbulent
flow in the boundary layer.
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For laminar flow on bodies of revolution at Mach numbers
of 1.5 and 2.0, the wake thickness (t/h.) from figure 17 is

0.55 and 0.49, respectively. From ligure 6, the correspond-
ing values of Pb{ are —0.25 and —0.29, respective]~”. On
the other hand, the Vahms.of Pb* determined from the
intercepts of the extrapolated lines in figures 12 (b) and 13 (b)
are —0.24 ancl – 0.20, respectively. Hencej although the
inviscid-flow calculations may provide a reasonable appro.si-
mation for tmodimenaional flow near M=2.0, and for
wxially symmetric flow near M= 1,5, there is a serious clis-
crepaucy with the. experimental results for a.utIlly synl-
metric flow at M= 2.0. This large discrepancy indicates
that the simpk relation given by equation (6) which at-
tempts to connect PD* with the inviscid. calcuJationais not
always a satisfactory approximation. The goocl agreement
obtained in two of the three cases may ho eutirely fortuitous.
Additional experiments are needed to clarify this point.
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k“IGLVCS17. Wske thickn~ us a fnnotfon of Msch number (deternrlned from shsdowgrsphs
of the Balllstic Research Le.bwatorl~ Aberdeen, Md.).

‘1’he fact t~a t the inviscid-flow calculations agree quali-
tatively, though not qurm”titatively, with experinwntd
results can be seen by a comparison with measurements of
the base pressure at various Mach numbers but with an
essentially constant Reyuolds number. Figure 18 shows
some experimental free-flight data of Chartem (reference 5)
tagether with the corresponding wind-tunnel datu of Kurz-
weg (reference 13), and the present investigation.fi These
esperimental data are for turbulent. flow in the bounda~
hq.-er. In this figure the ordinate of the curre labeled
:’curve based on equation (6)” is proport iomd to the value
of the limiting pr~ure me~cient $’bi detelhed at each
J1acll number in the manner indicated by equation (6). It
is rtpparcnt that the curve based on the calculations of Pbf
for inviacid flow gives the right order_of maggitude for the
base pressure coefficient, but does not give good quantitative
agreement. As an incidental point, it may be noted that
the various wind-tunnel and free-flight measurements shown
in this figure agree quite well at all Mach numbers.

VARfATIONOF BASEPRESSUREWITH BEYNOLDSNUMBER FOR NATUR.4L
TRANSITION

Since the base pressure is Meren t for laminar Rml turbu-
lent boundmy.-la-yer flow approaching the base, it is of
interest to examine the results of measurements in the
intermediate range of ReynoMe number where the transition
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Ftacrm lS.-VarI8tlon of hw prewre mHTletmt with Moth uurnltirbr turbulent boumky
layer arrw.
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“ poin~’;-”moves fmrn a position dowustream of tlw buw to ;i
position upstream of the lmse. Fig~]rr ]9 ~O\Y$the r~slllts
of some”base-pressure measurements at a Jlurh number of
2.o on a bocly of revolution in the Reynolds numkr rang;’
from O.~million to 10 million. At RcynoMs numbers bdo}v
about 2 million, where the boundary-ktycr fiow is htmifulr,
the base.pressure coefficient clcpends to a great extent on tlw
Reynolds number, as was noted earlier. In the IZcynolds
number range from 4 to 6 miIIion, where the tIwnsition poin1.
moves ahead of the base, the base pressure nga.inis sensitivc
to changes in the Reynolds number (and prosurnably also
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FmurrE 19.-Vsrfe.t1on ofb~ prresumeoefttctcntwith Reynrdd6 number for rrntuml
tremftlorq .Um-2.0.

For example,the three esperhrrental points In figure 18refnwentfng the whrd-turrml&& at~In the prwnt experiments meamrernents wwadonslly were made in more thrm one fsc5fty.
>fnchnmnbemnear 1.Srerme.wntmeasurements wfth three dt!7erent nozrfei?.
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to other factorswffectingtransitionsuoh as surface rongh-
nees, free-stream turbtdence, and rate of heat transfer).
At. the higher Reynolds numbers where a turbulent boundq
l~yer exists for some dktrmce ahead of the base, the base
pressure is not sensitire to changes in t-heReaynoldsnumber.

From the -iiewpoint of reIiabIy extrapolating smalkcale
measurements, it is encouraging that the base pressmr-e.:coefli-
ciegt for turbulent boundary-layer flow is not senwtwe to
chmges in the Reynolds number. At & Mach number of
z .Othis ~e~ititi~ is etident. from a comparison of the data
for the model -with-anL/h of 5 in figures 15 (a) snd 19. At
w Re.tiolds number of 2X 10s, -where turbulent flom is at-
tnined on the modeIs by using tieial roughness, the base
pressurecoefficient does not difhr by more than 3 or 4 percent
fryn the value at a Re-ynolds numberof 1X107, where tur-
bulent flow is attained tithout such an artifice. At a Mach
number of 1.5 the measurements indicate this same charact-
eristic, as can be seen from the data giv@n in figure 20.
These data. at the somewhat lower Mach number do not
show any appreciable dependence on Reynolds nmaber
within the range hm 2X108 to 1.6X107. It & interesting
that the free-flight data of Hdl and Alpher (reference 14)
&o show no significant effect of Reynolds number within

~OC,ITIES AND COMPABLSOA+ W(TE E.SPEEIMEWT 1201

the range from 2X107 to1XIOS. These latterdata,howe~er, _
give a -widely different due for the base pressure. It ~ _
evident from @me 20 that the base pres.wrea measured in
reference 14 tier from the values of references 5 and 13
and the present mind-tund tests because of some factor
other than dMerences in Reynolds number. The possible
effects of support interference in the present wind-tunnel ~.
tests -wouldnot appear to contribute any appreciable amount
to this discrepancy for two reasons. Fiit, good agreement is ..._
obtained at all Mach numbers between the present wind-
tunnel tests and the free&ight firii of Charters; and ._
second, the measurement-sof support interference as described
in appendis B indicate that for the support dimensions used
(d/ii=O.25 and d/h=O.40 in ~. 20) these effects are an order
of magnitude smaller than the observed discrepancies.
Since t.hemodels of reference 14 were equipped -withtail fins
of”s~ient size so that their presence at moderate Supersonic
Mach numbers might be expected to lower considerably the
pressure in the ticinit y of the dead air (algebraically lower
the effective P’), it -would appear that the obserred dis-
erep=cy is attributable to the effect of taiI h on base “---
pressure-~
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r Subsequent es@ments mndncted at tbe Ames Idmratcuy by J. E. Spahr snd R R. Dickey have shown tbet tbk fs the eesa.
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CONCLUDINGREMARKS

The simplest approach to rtnanalysis of base pressure for
supersonic flow is that of considering the flow of an inviscicl
fluid. Although such an approach has produced many
useful theories -whenapplied to other aerodynamic problems,
it produces results of very limited value when applied to the
present problem, The inviscid-fluid theory indicates that
the only possible base pressure for a body of revolution
without a rod attached to the base is the free-stream static
pressure. kloreover, this simple theory also indicates that for
two-dimensional flows, as well. as axially symmetric flows
with a rod attached to the base, there are an infinite number
of possible solutions for a given body shape and klach
number. -

The first of the above-mentioned sh~rtcomings of inficid
theory can be remedied .by allowing qualitatively for ~he
existence of a wake, since by so doing the high-velocity
strermdines are displaced from the axis of symmetry and a
base drag other than zero can be ob~ained. The sec~d
shortcoming, of having an infinite number of possible
solutions from which to choose, is not easily remedied. In
particular, the comparison between the inviscid-flow cal-
culations and experiment has show that if the limiting flow
pattern (maximum drag possible) at each Wch number &
singled out from the infinity of possible inviscid-flow solu-
tions, then the characteristics of base pressure observed
thus far can be expIained, but only qualitatively. Thus, the
experimented finding that an increase in support diameter
behind a body of revolution can considerably decrease the
base pressureis explained by an interpretation of the behavior
in an inviscid-fluid flow. Also, the experimental rasult of a
much lower base pressure in two-dimensional flow (at low
and moderate supersonic l,lach numbers) than in asiall~
symmetric flow is satisfactorily explained by the irtviscid-flovv

.calculations. As regards quantitative results, Lhough, tlIc
calculations based on the mtiximum drng powihle in inviscid
flow do not agree with the observed effects for turhulcnt
boundary-layer flow, and agree only in ccr[tiin cases with Lhe
observed effects for laminar boundrtry-layer flow.

In au attempL t.o formulate u more nccurate qua~lti(utirc
analysis a semi-empiricnl analysis has been dovclopwl, Thu
available experimental data correlate reasonably well whew
the base pressurecoeffi.cicnt.,corrected for tho &YOLSof profile
shape, is plotted as a function of a parmnetcr which is
approximately proportional to the ratio of boumlarv-ll~ym
thickn&i to base thickness. As a resu]L of this co.rrchttion
several ‘general conclusions cm be drawn. One such cwnrlu.
sion is that. the variation of l-me pressure with Rcyncdds
number is small at high Reynolds numbers whurc thr lwutld-
ar~ layer approaching the base is turbulent, IN]L is lmg~ at
low Rejnolds numbers where the boundary layer is laminar,
Another conclusion. is that the effect o[L~mc pressl!rc~f
the disturbance field induced by profile shupe call bt! ade-
quately ~~plained on the basis of. ihviscid calculatious.

In order to develop n thorough understanding of t.l~c
behavior of base pressure in “supersonicfiow,”further experi-
mental- au-d”theoretical inves&ations are required. A(
present, experimental results are especially necdc(l as rrgartls
the ‘base pressure in two-dimensional flow, even at low
superscmic31ach numbers. Experiments conducted n[. high
supersonic hfach numbers are also needed, both for two-
dimensional flow and for axially syrnmctric flow.

AXES AEEONAUTXCALLABORATORY,
N~TIO~ALADVISORYCOMMITTEEFORAERO~AUTICS, . _

.NI.OFFEW l’IELD, C.ILIF., .Jl~v 1 I, 195Q



APPENDIX A

AXIALLY SYMMETRIC FLOWS CONVERGING

The rather anomaIous result obtained -whenapplying the
method of characteristics to base-pr~ure flows can b~
clarified by examining the equations of motion on -whichthe
method of chrwacteristi~ is baaed. The differential equation
for the docity potential@ of an inviacid axially symmetic
compressl%leflow is (see reference 6, for example)

where a is the local -relocit~ of sound, x is the coordinate
measured parallel to the direction of the undisturbed sbeam,
and r is the rwlkd coordinate. If a tmmsformat.ionis made to
a new system (&q) of curvilinear coordinates, -where ~ and q
are distances measured along the two 31aeh lines issuingfrom
a point, then the equation of motion for the velocity potential
becomw”simply (the details of the algebra involved in making
this transformation may be found in reference 6),

(A2)

where a is the local lIach angle. It is to be noted that the
new -mria.bkahave the simple physical significance that lin~
of constant $ and q are the Jfach lines of the flow. The
derivative of the velocity potential in an; given direction is
the projection of the velocity vector along that direction,
and the order of diflemntiation in equation (A2) can be
interchanged. With

(A3)

and

where w is the velocity vector indinded at- an angle @with
respect to the axis, it follows horn equation (&?) that along
ihch lines

(A4)

Thus, cl~ is the increment in the projection of the veltiity
vector aIong the ~ direction when passing a distmce dq in
the physical phme along the q directio~ and dq is. the in-
crement in the projection of the velocity vector in the ~
direction when passing a distance d&along the f direction.
Equations (A4) are the fundamental equations used in the
step-by-step construction of a supersonic flow by Sauer’s or
Frankl’s method of characteristics.

The rehsons for the singularbehavior as the flow a.pproa+w
the axis of symmetry can now be explained with the help of_
equations (A4). Suppose a series of steps -were laid off
in the physical phme in the manner indicated by the sketch

TOWARD THE AXIS

shown in figure 21 (a). The smalI increments (d~ aud dq)
along the Ylach lines are Iaid off such that they are always s
dl compared to the distance from the axis r and also such
that-for alI steps df/r and dq/r are always very nearly equal
to a.constant, say ~. It is to be noted that if such a flow
converging ta the axis is possible, then there would be an -
infinite number of such steps aIong the streamline AB in . _
figure 21 (a).

. .
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(b) IncrementsIn hodographpIane mrrqadng toagoresl (a).
FIGCWI Z1.-Ohameterfdas mnstruefion for fiws comerging to the arIs_

Kow consider the @vements in the hodograph. plane -
corresponding to those laid off in the physicaI plane (fig.
21 (a) ). Figure 21 (b) ilhstrates the way, according to
equations (A3) and (A4), in which the increments must be ..=.
laid off in the velocity plane. Points having the same mm- ._
ber in figures 21 (a) and 21 (b) represent the same point in
the flow. Iiet the smallest average Jlach Wgle t+longthe
steps in the physicaI plane be ctm,and the smallest -rertical- .<
docity component be v=, then for W steps along AB

.—
Idp[>lom?? Sin2~=[=cm.atmt

and
[dgl>[u~?? Sill’ am! =constant
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This means that every increment in the hodograph plane is
greater than a constant value. Thii. value cannot be zero
unless points 1 and 3 pre identical, which would represent
the exceptional case of a “reversed” conical flow. On
passing from point A to point B there are, however, an
infinite number of such increments. They must be kid out
along the arc of. a circle in the hodograph plane since .A!3
is a streamline of constanLprwsure. Hem, before reaching
point B the inclination angle of the velocity vector must be
greater tlmn 46° (approximate. ma..-knum deflection angle
through a single shock wave for -y=l.4). Because this
situation obviously prevents a shock wave from being fitted
into the flow, there resultsa contradictionto t~eMumption

that the over-all flow is possible. It appears, therefore,
that these flows are not always powible. “

The preceding discussion, though not a mathematically
rigorous exposition, poihts out the reason why the inclination
angle Oof a free streamline &n increase at an excessive rate.
as the axis is approached. The source of the trouble is
inherently associated with the last term in the equation of
motion (Al), since it has r in the denominator and a non--
vanishing factor in the numerator. The appearance of r
in the denominator of this equation steti entirely from the

continuity equation. This leads to a qunlitativc cxplanmlion
of the observed behavior near the I& of tbe inviscid flows.
Cmeider the changes that must ocmw on going from point
1 to point 3 in the physical plane (fig. 21 (a) ). If the flow
were two-dimensiond, then the free strwunlim’ would lx
straight and 81would equal 138,thereby preserving the croM-
sectional area between two adjacent stremnlhws on passing
from 1 to 3. The term involving l/r does not. occur for
plane flow anclno difEcultiesarise. In the nxinllys~mmctric
case, the fundamental condition is again that the rro~-
sectimd area of an annular streamtde must be prescrrcd,
since wl is equal to ws. This means thtitfor purely gconwt t’ir
reasons the streamlines bounding tha mmulnr streamtubr
must spread apart as the.axisisapproached. lU order.hI

have the pressureat point 3 equal to thtit nt point 1, tlW
free streamline curves towmd the axis, pwmitting thu
bounding streambnes to spread, thereby allowing the
continuity equation to be satisfied. Because of the I/rky

in the continuity equation, the curvature rapidly incrcascs
as the axis is approached. Hence, before the axis is rcmclwd,
the inclination of the free streamline exceeds the largmi
value which any oblique shock wave can po*W’ o~rerconle.

APPENDIX B

WIND-TUNNEL SUPPORT INTERFERENCE AND REFLECTED BOW-WAVE INTERFERENCE

When a body of revolution is tested in a wind tunnel it is
usually supported from the rear by a..cylindricd rod. As a
result the measured values of base pressure may be consider-
ably affected, for one thing, by the presence of the suppcut.
Support interference on base pressure is a complicated func~
tion of the diameter of support rod, the unobstructed length
of support rod, the Nfach number, and the Reynolds number.
If, as is the case for the experimentsreferred to herein, the
support length is much greater than the base diameter, then
the only appreciable interference mus~ arise fmni the-‘diam-
eter effect” of the rod. From t,hem-etical.considerations
certain inferences can be drawn regarding the resulting sup-
port-diameter interference on base pressure.

For a fixed Xlach and Reynolds number, an increase in the
support diameter brings about two different effects. First,
the wake thickness is increased, thereby making it possible
for lower base pressures to e-tit. (See fig. 6.) A second effect
resulting from an increase. in support diameter is that the
appropriate dimensionless boundary-layer thickness ~/(fi-d)
is increased, thereby tending to increase the base pressure.
The two effects, therefore, oppose each other. For values of
ci?/hnear unity the second effect must predominate; whereas
for srnrdlvalues of d/hthe firsteffect would (on the basis of
fig. 6) be expected to predominate, especially at low super-
sonic llach numbers.

Before comparing these theoretical considerations with
experimental measurements of the effect of variations in ,d/h
it will be advantageous to first consider the effects of having
only a finite lengt.hof unobstructed support rod. To examine
‘this effect, base-pressure measurements have been taken
with a. constant value of d/h, but with various lengthe of

unobstructed support. In these experiments the model W-M
located at a’fixed position in the test section so as to eliminti(u
possible. effects of asial pressure gradients idong the tes(
secticm- The results from .11=2.0 and 2.9 arc illustratwl by
the curves in figure 22, which ShOWj for d/1~-= ~.;~, 110 ~la%t’
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in b.sse pressureifthe support lengthisgrentw tbnn alwu ~

s base .dianwters. Site. support lewtl~ Of ~~cr 4 b~~~y
diamete~ have been used in all subsequent tests, it. is con-
cluded that any interference in the wind-tunnvl measurenwnts
of base pressure at 2M=2.O and 2.9 is not 11t[rihutablc to
E&cts Qf support length.

The results of base-pressure nwasurcments for wrious
support diameters with laminar bound ary-hycr flow tire
shown in figure 23 (a). ‘he data for a Xhlrll number of 1.5
(reported by Perkins in reference 11) show the cxpw[ud

increase,and then eventmd decrease in lMSCdrag as the
support diameter is progressively incremcd.,. At a llacil
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number of 2.9 the data show a monotonic decrease in base
drag as the support diameter is &reased. Schlieren photo.
graphs show that the-wake thickness t/h varies from approxi-
mately 0.5 to 1.0 as d/hvaries from O to 1.0. Consequently,
it turns out that the behavior of the three curves in figure
23 (a) is qualitatively the same as would be indicated if
equation (6) were used to estimate Pa*. (It. is to be rernenl-

bered that t/fi is the ‘Deflective” d/h of @. 6.)

“’rrrrrl

. (4 LomJnOr.
FtGc’aE ~.—Efkct of enDport &meter cmbase pressure.

The correspondingresultsfor turbuIentboundary-layer

flow are shown in figure23 (b). At llach numbei-a of 1.5

and 2.0 these data show the same h-ends as for laminar

boundary-layerflow,but at a Alach number of2.9the trend

isnot the same. At Ilach numbers near 3, and possibly

higher,it,appears that the rela~ve importance of the two
above-mentioned effectsof increasingd/h depends on the
condition of the boundmy-layer flow.
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It maybe noted from figure 23 (a) that there is one pbint _
corresponding to d/h.= O o–nthe curve representing la&ar
flow at a Mach number of 1.5. This point, which -was
determined, horn the measurements using a side support,
gives the same due for the base pressure as exists for a
support with a d/hratio of about 0.3. At d the other XIach
numbers, where speciaI interference measurements were not
made, the base pressure was measured with a constant value
of 0.4 for the ratio d/h. From the curves in &ure 23 (a) it
may be inferred that,, at least for Reynolds numbers of the
order of 4 million, -these base-pressure data for huninar flow
are not sign.iflcantly aflected by support interference.

Utiortunately, an investigation of support interference for
turbulent boundary-la-yer flow has not been made using a side
support. Definite quantitative statements about the pos-
sible tiects of support-interference in the turbulent-flow data
(@. 14, 15, 18, “19, and 20) cannot be made at present.
Evidence that the combined effects of support and w-all
interference are not large, however, is given by the good
agreement obtained at all Mach numbers between the
free-~ht firings of refemmce 5 and the various wind-tunnel
memurements (@s. 14, 15, 18, and 20).

.A possible source of -wrdIinterference &s from the
reflection of a bow wave from the side walls, and the eventual
intersection and interaction with the wake. at some down-
stream position. This interaction for _ik?=2.Oand ilI=2.9
occurs at a position wryi.ng from 7 to 22 base diametem
downstream of the base. Since the @e disturbance caused
by the balazwe housing has no measurable effect at distance
of 3 base diameters horn the base (see fig. 22), there is no
reason to espect that the base-pressure measurements at
31=2.0 and .lf=2.9 might be tiected by reflections of bow
waves from the tunnel side wab. At a lfach number of 1.5,
hovre~er, the downstream position of interaction is closer; it
varies horn approsimately 2.7 base diameters for the model
with an Z/h of 7, to 5.4 base diameters for the model with an
L/h ratio of 4.3. In tiew of the possible interference ffom
reflected bow -waves at low supersonic Mach numbers, a
special investigation was made in 1946 prior to the tests of
reference 12 to determine the magnitude of @ effect. The
results, taken at a Mach number of 1.53,* are presented here
as they aid in evaluating the accuracy of the wind-tunnel
measurements of base pressure, and they show that the
conclusion of Faro (reference 15) regaling the magnitude of
the bow-wave interference tiect- in the present experiments
is incorrect.

Figure 24 illustrates the test setup ernployed in evaluat~ktg
the effect of a reflected bow wave on base pressure., Because
of symmetry the two outer dummy models caused two shock
waves, si.mikr to reflected bow waves, to interact with the
wake behind the base of the center model (on which the base
pressure was measured). By varying the distance between
the dummy models of the test setup, the position of inter-
action was readily changed. The strength of the bow ware
on the mQdeIs employed (6-ca.Iiber ogival radius) in this
special inwst.Qation -m.riedfrom approximately two to eight
times the strength of the be-ivwave on the IA50us models for
which base-pressure data me presented.

—

.

—.

t Tbh Mach nnmber dldem-whet fromtket of moremeentteds (at M=l.w) ebce the earffmtests wwemmkted In W at a tfma whenthe 1-by M30tsnpereonfcwhd tonnel was
tempmarilyequippedw_ftha set offixednozzlebkke Indeed ofthe fkfble pkw IIOWeMpIOmd-
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CMmmy model ------ ~
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/’ --- Bose pressure orifice
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Shock wvvee simuk7fing ,“

reflec+eo’ &ow wove--<’
Ef feo five width

‘.
wind furmet

\ \ ...,. .\
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‘. -—-—. —-—-—-—-—-
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—
‘.

‘,

Dummy model-------...
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I

FIGURE!M-Sketeh of tsst eetnp used for determining the effeet ofs reflwted bow wave on k ~.

Schlierenphotograph of the flow for two diflerentposi- too close to the base, however, then Imge irdcrfcrcncc

tionsof interaction,and two diilerentReynolds numbers, etlect.sare powible,as illustratedby the square symbols in

me given infigure25. The distancez,from the base to the figure26, and the correspmding sch.licrenpholograpl)sin

positionof interaction,is equal to 2.5h in both figures figure25 (d). Except forpurposesof illustmtingthiseffect,
26 (b) and 25 (c). This particularpositionsimulatesthe base-pressuremeasurements were, of course, not htkcn

olosestpositionto the base of the interaction.ofreflected under time latterconditionsof impor[tintin[mference

waves in the present tests. The ..correspondingbase- from reflectedwaves. Since thr simulatcdrcf!cctionwaves

pressuremeasurements 8 without and with the interkrence of the rnodek used in._tiisspecirdinvestigat.ionwere scwxal’

wave presentare illustratedin figure26 by the circleand timesstrongerthan the bow wa- PSon tlw nlr~ildsfor wlfich “‘-

triangle symbols, respectively, .The data show no appreci- the base pressure was mewu-ed, it is clmr that the wind-
able effect on base pressure of the shock wave which simu- tunnel mesmwementspresented me not ap~vxwiablynfl’evtcd
lates a reflected bow wave. If a reflected bow wave comes by interference of a reflected bow wave.

—.. —.
*TimedatafrillsJlghtly below other &ta presented herein bemuse of the very emsff amount Ofbo@tsfllug on the models us?d In ti.@ speck] kwestfgatlen.
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(t) Flow without dummy mtiels. (h)RC-O.9X1W,Z-!ML

(o) Ee=2.Yxlc% 2-2S. (d) Re-2.7X10e;z4.QL

Fn3um?. 25.-Whlken ph0t0graph9 for vai-fous paffiome of Intemeotfon of the shock ware9 *tIng *ted bow W5V* lf. -1.6S.

/ 172

Tmiling shock
mave \

.1

.

.io dummy mod&
(?7g 25a)

““IT
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-+7 - O.s”h

Dummy models
.2D+kches apart .
[figS 25 h 25 C)

J
Dummy models - 44

f6-inckes apon’ ‘
(fig 25 d)

.~
o I

Reyna ick numb=, ~e

FIGUEE2&-EfFect ofredeeted bow waw9 on tie ~ MC “~.



APPENDIX C

DERIVATION OF APPROXIMATE EQUATION FOR q’/qa

The ratioq)/qmcan be writtenas . A

In this and subsequent equations, powers higher than the
AU U’– U.

fiistof quantitiessuch as ~= u are assumed to be

small in comparison to unit~~,and ate thereforeneglected.

In equation (Cl),p, and ?. represent the stagnation clensi-
tiw corresponding to conditions in the free stream and to
conditions just ahead of the base, respectively. Designating
AM=..U’ –M. and again ecmeidering only ikt-order

terms,itfollowsthat

where Ape is the loss in total pressure on passing through
the nose shock wave, and may often be neglected. From
the energy equation

or,usingCP=TR/(7—1) and AI= U/l~

1.

Ahf

(.
M= 1++ M=’

)

(C3]

. .

hence the combirmtion of equations (Cl), “(C2), and (C’3)
gives --

&=’+(*-’’-), , ;a:~,-% “(c”
C4

The pressure coefficient P’ is related to ~ill md Ap. by

(C5)

Substitution of equation (C5) into equation (C6) yields the
relation

presented edier as equ~tion (3)..
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