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SUMMARY

This report deals with the pressure distribution over airfoils at high speeds, and describes an
extension of an investigation of the aerodynamic characteristics of certain airfoils which was
presented in N. A. C. A. Technical Report No. 207 (Reference 1). The work was carried out
&b the request and with the financial assistance of the National Advisory Committee for Aero-
naufies. A large compressor plant at Edgewood Arsenal was made available for the experiments
through the courtesy of the Chemical Warfare Serviee.

The results presented in Report No. 207 have been confirmed and extended to higher speeds
through a more extensive and systematic series of tests. Observations were also made of the
air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be
associated with a sudden breaking away of the flow from the upper surface.

The tests were made on models of 1-inch chord and comparison with the earlier measure-
ments on models of 3-inch chord shows that the sudden change in the lift coefficient is due to
compressibility and not to a change in the Reynolds Number. The Reynolds Number still has
a large effect, however, on the drag coefficient.

The pressure distribution observations furnish the propeller designer with data on the load
distribution at high speeds, and also give a better picture of the air-flow changes.

INTRODUCTION

In Technical Report 207 of the National Advisory Committee for Aeronautics an account is
given of the results of some measurements by G. F. Hull and the authors of the lift, drag, and
center of pressure of six airfoils at speeds ranging from 550 to 1,000 feet per second. The airfoils
were of the type used by the Army Air Service in the design of wooden propellers, and the
experiments showed that their aerodynamic characteristics at the speeds actually encountered in
propeller blades were quite different from those at ordinary wind tunnel speeds. -

The present report describes an extension of the investigation fo the measurement of the
distribution of pressure over the same six airfoil sections at high speeds. The object of this
additional work was twofold; first, to furnish the designer with data on the load distribution at
high speeds, and second, to throw some light on the changes in air flow, so that a better under-
standing might be gained of the effect of high speeds on the type of air fow.

The work described in Report No. 207 was carried out in an air stream 12 inches in diameter
at the Lynn plant of the General Electric Co., on airfoils of 3-inch chord. It was not possible
to continue the work at Liynn, because no compressor was available. Furthermore, the operating
conditions at Lynn were such that it was difficult to obtain a series of observations at the same
wind speed without a large expenditure of time. It was decided therefore to carry on the work
at the compressor plant at Edgewood Arsenal in an air stream 2 inches in diameter and on
models of 1-inch chord, the plant being made available through the courtesy of the Chemical
Warfare Service. Although this change in the size of the model and the air stream had the dis-
advantage of changing the experimental conditions so that the results were not exactly com-
parable, the modification of the program has amply justified itself by the marked improvement
in operating conditions and it has, in addition, given new information as to the relative impor-

tance of the viscosity and compressibility effects.
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APPARATUS

Air stream.—The air stream was furnished by the 155-millimeter compressor plant at
Edgewood Arsenal. This plant, which was used during the war in connection with the refriger-
ation of mustard gas during the process of filling gas shells, consists of four electricglly-driven
double-acting reciprocating compressors capable of delivering jointly about 1,800 cubic feet of
free air per minute at any pressure up to 125 pounds per square inch. In the present work they
were used to maintain an air stream at a speed up to 1,250 feet per second through a 2-inch
orifice. The air after leaving the compressors was water-cooled and then passed through a 4-
inch line in which a tank was included to damp out the pulses produced by the reciprocating
motion of the compressors. About 200 feet along the line from the compressors the air passed
into a vertical pipe 8 inches in diameter, with an orifice mounted at its upper end for forming the
high-speed air jet. “The air speeds at which observations were taken were 0.5, 0.65, 0.8, 0.95,
and 1.08 times the speed of sound at the temperature of the jet, corresponding to 563, 732, 902,
1,071, and 1,218 feet per second at 20° C. The pressure and therefore the jet speed was main-
tained constant by a manually operated blow-off valve placed in a line connected to the ballast
tank mentioned above. The values of the air speed were computed from the pressure observed
on a manometer connected to a small hole in the 8-inch pipe about 2 feet ahead of the orifice
mouth, the method of computation being described in the section on reduction of observations.

Orifices.—Two orifices were used. For speeds below the speed of sound a 2-inch cylindrical-
orifice, 1.05 inches in length, was found to give satisfactory flow conditions. For the highest
speed of 1.08 times the speed of sound it was necessary to use a slightly expanding orifice to
avoid large fluctuations in pressure in the stream. This orifice had a throat diameter of 1.9
inches, a length of 0.55 inches, and a taper of about 1 in 21. In each case g rounded approach
was used, the section being changed from the full 8-inch diameter of the pipe to the throat diam-
eter in a length of about 434 inches.

Airfoils.—The airfoil sections were the same as those described in detail in Technical
Report No. 207 of the National Advisory Committee for Aeronautics but were of I-inch chord.
(C1. figs. 4-9.) The maximum thickness was 0.10, 0.12, 0.14, 0.16, 0.18, and 0.20 inch, respec-
tively, for the six airfoils. Because of the small thickness it was not practicable to have enough
stations on one airfoil to determine the pressure distribution satisfactorily, for the forces in-
volved were rather large and the insertion of connecting tubes necessitated the removal of a
comparatively large amount of metal. For this reason seven models were required for each
of the six sections. They were made by Mr. W. H. Nichols, of Waltham, Mass., and were of
brass, to facilitate the necessary machining operations.

Thirteen stations were chosen as a minimum number satisfactory for determining the
pressure distribution curves. Seven stations were placed on the upper surface and six on the
lower, spaced close together near the leading edge where large pressure changes were to be
anticipated. The locations of the stations with regard to the airfoil section are shown in Table
I which gives the distance of each station from the nose, measured parallel to the chord and
expressed as a fraction of the chord. The ordinates at these points are given for airfoil No. 1
of 0.10 camber ratio, and the values for the other airfoils are proportional to the camber ratio.
The lower surfaces of all the airfoils were plane.

TABLE I .,
UPPER SURFACE

Distance Ordinate
Station from or
nose airfoil 1
0. 025 0. 041
0. 050 @, 059
. 100 0. 079
0. 200 0. 095
0. 400 0.097
0. 600 0.087
0. 850 9.045

LOWER SURFACE

0. 050
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Two stations were located on each of six models of each airfoil section, while one model
carried only one station. The holes (about 0.025 inch in diameter) were offset one-eighth inch
from the center of the airfoil, one toward either end, and connection was made through small
tubing set into a groove milled in the opposite surface of the airfoil to short tubes of larger
diameter soldered to the ends of the airfoil. Afier the tubing had been placed, the groove was
filled with solder and carefully smoothed over. Figure 1 shows a number of the models with end
connections.

Airfoil mounting—A flange on the vertical 8-inch pipe carried two vertical rods, which
served as supports. (See fig. 3.) The mounting for the airfoils is shown in Figure 2. The
semicireular bracket B, forming the main part of the mounting, could be rotated at O about
one of the vertical rods, so that the airfoil could be swung into the stream or taken out at will.
The bracket carried two hollow members M rotating in plain bearings about a commen hori-
zontal axis and shaped so that the airfoil A could be clamped firmly to them at each end. The
rotating members carried pointers P traveling over angular scales fastened to the bracket. A

Fre. 1.—~Two groups of airfoils used in the tests. The holes for measuring the pressure may be seen on airfoil 2-5, 24

tangent screw S provided a close adjustment, and quick acting clamps C held the airfoil in posi-
tion at any angle to the air stream. Rubber tubing connections to a manometer were brought
in through the hollow rotating members to the short metal tubes on the ends of the airfoil.

Manometers.—The static pressure in the 8-inch pipe was measured by means of a dead-
weight piston gauge or by & mercury U-tube gauge. The two instruments were connected in
parallel, so that either could be used or the two compared at any time. The U-tube gauge
proved better for low pressures and speeds, while the dead-weight gauge was satisfactory at the
two higher speeds.

The pressure at the station on the airfoil was read on a mercury U-tube gauge of special
design. The instrument was provided with markers designed to avoid parallax and so arranged
that the markers could be set quickly and the actual scale readings taken subsequently while
a new pressure was building up. The U-tube was also equipped at the bend with a valve which
could be used to hold the mercury in position while adjustments were being made on the air-
foil. The valve could also be used to damp out fluctuations by partially closing it, but this
was found necessary in only a few instances.
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Both pressures were measured with reference to the actual barometric pressure since static
tube measurements showed that the static pressure of the stream was equal to the barometric
pressure, within the experimental error. The barometric pressure was measured by a standard
mercurial barometer. -

Thermometers were provided to measure the air temperature in the pipe and the air tem-
persture near the manometers and barometer.

A general view of the set-up is shown in Figure 3.

GENERAL PROCEDURE

The measurements were carried out in the following order. A model was clamped in the
support and set at an angle of zero degrees to the wind stream. One station was connecected
to the mercury U-tube, and the connection to the other station closed. The airfoil was then
swung into the air stream and the manometer allowed to come to a steady state. The valve
on the manometer was then closed and the observer at the manometer adjusted the markers
while the observer at the airfoil turned the airfoil to a new angle. After the markers were
set, the first observer opened the manometer valve and read the position of the markers and
recorded them while equilibrium in the new condition was being established. Measurements
were made for this one station at the lowest speed at 4° intervals from —20° to +24°. The
second station was then connected and the first closed off and measurements made over the same
range of angles. The airfoil was then removed and a replica with two other stations carried
through the same range, this process being continu&d until all 13 stations on one section had
been covered at one speed, & total of 156 observations.

The remaining five sections were tested at the same speed, making 936 observations, and
then the whole series was repeated for each of the remaining four speeds, giving 4,680 obser-
vations in all. Where necessary, additional observations were interpolated.

An assistant kept the pressure in the 8-inch pipe constant by hand regulation of the blow-
off valve and thus, as will be shown later, kept the value of the ratio of the air speed to the
speed of sound constant at the desired value.

REDUCTION OF OBSERVATIONS
Yotation.—
p=absolute pressure at a station on the airfoil.
p1=absolute static pressure.inside pipe (velocity pressure negligible).
.= absolute static pressure in jet (equal to barometric pressure).
7 — P, =1mpact pressure.

V =the speed of air in jet.

e=speed of sound at temperaturs of jet.

p=density of air in jet.

u=viscosity of air in jet.

q =% p V?=velocity pressure.

I =linear dimension determining the scale (chord of airfoil).
J =mechanical equivalent of heat.
C, =specific heat of air at constant pressure.
k =ratio of specific heats.
T =absolute temperature in pipe before expansion.
T, =absolute temperature in jet after expansion.
Pressure on airfoils—The results of the pressure measurements are expressed in terms of
the nondimensional or absolute coefficients of the type described in Report 207 of the National
Advisory Committee for Aeronautics. The principle of dimensional homogeneity indicates

that the pressure difference p—p, is equal to the velocity pressure, ¢= %p V? times a function

of the Reynolds Number Vlp/u and the compressibility variable V/e. In other words
P=Pe_P=Do_, VI V
A
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F1G. 2.—The apparatus for holding the airfoil

¥F16. 3.—QGeneral view of apparatus. Gauges for speed measurement and control valves at the left, airfoil mounting in the eenter, gauge for
pressure distribution at the right
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As will be shown in the next paragraph ¢ is equal to the measured pressure in the 8-inch
pipe times a factor which depends only on the speed ratio, l: - Both p and the pipe pressure

are measured on mercury manometers at nearly the same temperature for the three low speeds
so_that the ratio may be taken directly without further reduction. For the two high speeds

p_.

the reading of the dead-weight gauge is first reduced to cm. of Hg. Values of Pe are then

obtained by multiplying by the appropriate factor of Table IT.

Speed ratio—The speed ratio is computed from the pressure of the air in the pipe before
expansion on the assumption that the expansion through the orifice is isentropie, that air is an
ideal gas, and that the pressure in the jet just outside the orifice is equal to the barometrie
pressure. ‘The first assumption is substantiated by the experimental {act that for speeds below
the speed of sound an impact tube in the jet gives a pressure which balances the pressure on
an impact tube in the pipe within very close limits. Hence there is no appreciable dissipation
of energy by resistance or heat conduction, during the expansion through the nozzle and the
recompression ahead of the impaet tube in the jet. The third assumption is substantiated
by static tube measurements in the jet.

The formula for the speed computed on these assumptions is

k—1

V?=2J0pT1{1 —<%:)T}=2J O (Ts—T,) (1)

Now the velocity of sound ¢ is proportional to the square root of the absolute temperature;
hence if ¢, is the value under standard conditions, as for example at 0° C,

Since
-

T,=T, Zﬂ’>T
Yo

02=602Ti <£_a)k—;—1
273 \p;

V*_5487C, {<Q>EZ—1_ 1} )
C2 - Co2 pg . .

V/e therefore depends only on the absolute pressure ratio and not on the temperature 7',

The values of p;—p, corresponding to a definite value of V/c vary slowly with changes in
the barometric pressure, p,, but it was found quite feasible to make allowance for this variation
and carry out all measurements at the same value of V/e. The effect of change of the density
of mercury with temperature was well within the general precision of the work.

Dividing equation (1) by ¢

Attention has been called to the fact that the veloeity pressure —21—sz may be readily com-
puted from the observed pressure, p;—p,. In fact

_p, 288X 0.0012255

- T, 1013300

where p is the density in gm/cm?, p, the barometric pressure in dynes/em? and T, the absolute
temperature in °C. Hence

1 el 288 X 0. 0012255 ; {(p) }
7P ~To13300 Y0P
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Substituting for the quantity in the brackets its equivalent from equation (2)

3 PV?=3.5088 p, (0.19991 /)

Therefore -
. 2\ 7[2
DD, 72-';—‘—1 (1+0.19991% —1
T ° 7= 72 | ®)
SeVt 3.5083X0.199917;  3.5088%0.19991

C2

a result dependent only on V/e. Values for the speeds used are given in Table IT and by their

aid the results given in the paper for 2‘17"27 ? can be recomputed to give ratios to impact pressure
T4l

Pi— P, it Aesired.

TABLE II
‘ Di=pe |
: v b
r © %p vz f
li 0.50 1081 t
i 0.65 1.107 H
0.80 Lo |

[095 |, L2t |
L 108 | L3%B |

The tables in the appendix to this report and the curves of Figures 4 to 9 give the values of
P—Po
1 o T for the 13 stations on each of the six airfoil sections at the five values of %7 .
2

INTEGRATION OF PRESSURES

For comparison with the earlier results it is necessary to compute values of the total forces
and moments, 1. e., the lift coefficients, drag coeflicients, and center of pressure coefficients as
defined in Report 207.!

It is inconvenient to determine the lift and drag coefficients directly and therefore the normal
force and tangential force coefficients, Oy and Cr are first computed, the normal force being
defined as the force normal to the chord of the airfoil (whereas the lift is normal to the wind
direction) and the tangential force as the force parallel to the chord (whereas the drag is parallel
to the wind direction). The lift and drag coefficients, (', and Cp, follow immediately from the
relations

Cr=Cy cos a—Cr sin «
Co=0ysin a+Crcos a
where « is the angle of attack.

Forces computed from the observed pressures can not take account of the effects of skin
friction, since only the pressure normal to the surface is measured by the method desecribed.
It is to be expected, therefore, that the forces computed from the pressures will differ somewhat
from the directly measured forces, especially in the case of the drag component.

The method of determining the normal and tangential force coefficients from the pressures
normal to the surface reduces to the determination of the area of two curves, one in which the
observed pressures are plotted as ordinates and distances of the station parallel to the chord

Lift
ép V2Ares
Drag

1 Cr=

Cp= 1
5P V2Area

Center of pressure coeffcient=distance center of pressura to leading edge measurad paraltel to chard divided by chord length.
Moment coefficient =(Cr, cos e+ Cp sin «) times center of pressure coefficient

e=angle of attack.
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as abscissae and the second in which the ordinates are the same but the abscissae are distances
perpendicular to the chord. The proof of this statement is obvious from Figure 10. The
curves are of course determined by the values of the ordinates at a few discrete values of the
abscissae. The usual method of finding the area is a graphical one of drawing in a faired curve
and measuring the area with a planimeter or by counting small squares on coordinate paper.
In the present case because of the large number of observations to be treated, a numerical
method was found more satisfactory since it was much quicker and gave results which were
more directly comparable.?

In the integration for the tangential force coefficient it was found desirable to interpolate
additional pressure values at the ends since no stations could be placed close to the leading
and trailing edge. Table III gives the factors for airfoil 1 of 0.10 camber ratio. The normal

force factors are the same for all airfoils but

7 ) ;
y as ﬂdy g the tangential force factors are proportional to

o i aN th?, thickngss of the airfgil, .those for airfoil 2

@ % ] being 1.2 times those for airfoil 1 and so on. Tt

'%{n } N w will be noted that the signs for the upper surface

% . in the case of the normal force factors and for

/{ T the rear of the upper surface in the case of the
x * * tangential force factors are negative, because a
v gg:ggggﬁg:gg; positive pressure acting on those parts of the

F16. 10.—Disgram showing method of computing normal and airfoil produces negative forces, the normal force
tangential forces from the observed pressures being called positive when directed from the

lower surface to the upper and the tangeniial force being called positive when directed from
leading to trailing edge. The lower surface does not contribute to the tangential force since
it is flat.

TABLE III

!
i Factors for | Factors for

normal tangential
Stati foree co- foree co-
ation efficient | efficient

for all for airfoil

airfoils | lonly
i

............ i 0.015¢

—0. 0476 . 0464

—.0118 P 0003
_—0706 . 0830 _

—. 1684 | _ 0036

- 2251 ¢ -

— 1500 | —.0180
| —.3264 | —.0580
I Interpolated station at trailing edge..i..._..__... i —.0135
: L0952 | 0

L0289 Q
1744 0
<2251 ; 0
- 1300 1]
.3264 0

The values of the lift and drag coefficients obtained are shown in Figures 11 and 12 and in
the tables in the appendix.

The moments about the leading edge and the positions of the center of pressure were com-
puted by an approximate method. The approximation consisted first in the neglect of the
moments of the components of the pressure parallel to the chord and second in the use of fac-
tors obtained by multiplying the normal force factor for a given station by the distance of the
station from the nose. The errors arising from this procedure will be discussed in the section
on ‘“Accuracy.”

The values of the approximate moment coefficients and center of pressure positions are
given in the appendix and in Figures 13 and 14.

? Many such numerical methods of infegration are described in textbooks on spplied mathematies. In the present case a curve of the third
degree was passed through four adjacent points, the ordinates being denoted by letters and the numerical values of the abscissae inserted. The
area between the two inner ordinates, the curve, and the axis of abscissae was found by integration. At the end intervals speeial treatment was
pecessary and in general the procedure followed was to pass a curve of the second degree through the three end points and to integrate from the
second point to the end of the airfoil.  When this procedure is carried out and the results for all intervals added, there results a series of factors by
which each ordinate is to be multiplied and the results of the multiplication summed for all stations to obtain the area.
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EFFECTS OF POSITION OF AIRFOIL IN AIR STREAM AND OF THE SIZE OF THE AIR STREAM

A number of auxiliary measurements were made in order to find the effects of variations in
the experimentsal conditions as regards the position of the model in the air stream and the size
of the air stream. The complete series of tests was carried out with the center of the airfoil
at a height of 4 inches above the plane of the orifice mouth in air streams of approximately 2
inches in diameter. The measurements on airfoil 3 were repeated for a number of stations at
speeds of 0.8 and 0.95 times the speed of sound at a distence of 2 inches above the plane of the
orifice mouth. Typical curves are shown in Figure 15. It will ke noted that in general the
agreement is very good, the greatest difference being near 0° for station 8§ at 0.8 speed where
the curves for the two heights are shifted with respeet to each other. The effect is less marked
for the same station at 0.95 speed. In fact the flow around airfoil 3 at 0.8 speed at negative
angles is rather unstable and in one instance (not shown) a somewhat larger difference was
found at large negative angles. In general we may say that a change in the height of the air-
foil above the orifice does not change the pressure distribution to any marked extent except in
those cases where the {low is unstable.

Table IV shows the good agreement between results obtained with the airfoil in its normal
position and those obtained with the airfoil reversed and turned through an equal angle in the
opposite direction. The differences are so small that they can not be readily shown on the scale
used in Figure 15.

TABLE 1V

AIRFOQIL 3.—¥/c=045. RATIO OF PRESSURES TO VELOCITY PRESSURE, ¥, ¥?

! E Station 2 Station 6
Angle T .
Normal | Reversed | Normal | Reversed
0895  ooed| ~043' -4z
e LR06 | - —.481.  —.479
664 | . 676 —. 514 | —. 817
.514 | .522 —525  —.5%
.353 .362 —.510 —. 520
. 179 .188 —. 516 —. 520
—059  —.03¢ —.488 | —.500
—. 363 t —. 339 —. 469 | —. 475
—-.721 i —. 638 —.440 —. 449
—L 107 —1.088 —.379 | —. 380
| ~L502, —L508 2l s
—. 673 i —. 681 —.464 F —-. 452

A few measurements were made with a smaller orifice, 1.2 inches in diameter. As would
be expected, a large effect was found because of the decrease in aspect ratio. The most striking
feature of the results in the case of the smaller air stream was the marked drop in the values
of the pressure decrease on the top surface. The pressures on the lower surface were not affected
as much but the relations could not be expressed in any simple way.

ACCURACY

Pressure distribution.—The precision of the pressure measurements was satisfactory as
illustrated by the results in Table IV, the differences occurring between the normal and reversed
positions being typical of differences between repeat measurements. The operating conditions
were very steady and required only occasional slight adjustments of the pressure. On the
average the curves could certainly be repeated to within 1 per cent of the pipe pressure or one-
twentieth of a degree where the change with angle was very great.

The application of the results to other conditions requires a consideration of other factors,
the most important of which is the effect of aspect ratio. This effect is & very large one, and
experimental data are still lacking to make quantitative estimates. The information available,
so far as the total forces are concerned, will be summarized in the section on “Discussion and
Comparison with Earlier Work.” No method is as yet known for computing the effect of
aspect ratio on pressure distribution, even at ordinary wind-tunnel speeds and for larger aspect
ratios.
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Integration of pressures.—A discussion of the precision and accuracy of the lift and drag
coefficients derived from pressure measurements introduces several new considerations. It
has been pointed out that the values would not be expected to agree with the forces obtained
by direct measurement because of the absence of the skin friction in the pressure integration.
This effect would be most pronounced in the drag coefficients which would accordingly be some-
what too low. In addition to this, it must be remembered that the pressure distribution was
taken at the mid-section so that the results of the integration do not apply to an airfoil spanning
the stream but to a single section only. These two factors should be studied by making force
measurements on the same airfoils, and it is hoped that this can be done at a later date.

There still remains a final consideration, namely, as to the accuracy with which the resultant
action of the pressure distribution has been computed from the pressures at 13 stations. It is,

L]
o N Vie =08 /'_O Vic =0.95
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Fig. 15— Comparison of measurements on airfoil 3 at 2 inches (solid curve) and 4 inches (dotted curve)} above the plane of the
orifice mouth. Numbers on curves denote stations

of course, impossible, strictly speaking, to estimate this accuracy without measuring the pressure
at a very large number of stations, since we have no a priori knowledge of the form of the pressure-
distribution curves. We can therefore only express an opinion as to the probable accuracy.
To obtain a reasonable basis for this opinion we have followed the older method of drawing in
curves connecting the points in a reasonable way for a number of cases, and have compared the
values of the coefficients obtained by the use of a planimeter with those obtained by the numer-
ical method. Table V shows typical results. The average difference without regard to sign
is 0.01, which may be taken as a measure of the precision of the normal force coefficients.
The tangential force coefficients are subject to a somewhat greater error because of the
absence of stations near the leading and trailing edges. It is estimated that the values given
are within 0.03 of the values that would have been obtained if it had been possible to use a
larger nmumber of stations. The comparative values are probably correct within 0.01 to 0.02
as judged by the smoothness of the results. From this it follows that the drag coefficients are

correct within about the same limits.
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The moment coefficients were computed by an approximate method described in the
section on integration of pressures. 'The exact method was used for a few cases and found to
give moment coefficient values differing by 0.007 from the approximate values, and center of
pressure positions (in the flatter portions of the curve) differing by 0.02. It was not believed
profitable to carry through the exact computations in all cases because the time required would
have been very great and the chief interest is in relative rather than absolute values.

TABLE V .
COMPARISON OF NORMAL FORCE COEFFICIENTS BY GRAPHICAL AND NUMERICAL METHODS

' Airfoil 6, Vie=0.5 Airfoill 6, Vje=1.08
Angle ; 1 B
; Graphicel | Numerical | g phical method | Numerical method
G060 | 0064 —0.218 —0.210
.145 .153 —. 177 —. 168
S22 ‘238 — 129 —132
l215 “239 —1%6 o
‘280 o L o —o78
“367 37 | —.180to — 181 | —.133to —i7l
482 47 —.050 —025
. 611 .595 . 116 .125
“ess -850 o3 lo
2503 81 1358 : 1360
[199 T5 Jax (a5
. 538 . 552 . 516 .528

OBSERVATIONS OF FLOW NEAR THE AIRFOILS -

A description was given in Report No. 207 of the National Advisory Committee for Aero-
nsutics of the behavoir of an oil film on the surface of an airfoil at high speeds. Some addi-
tional observations were made at Edgewood and Figures 16 and 17 illustrate the type of pattern

Fig. 16.—0il low i)attem on the upper surface of airfoil 1 at 0° angle of attack, ¥/¢=1.88. The flow of the air stream is toward the top of the
page. Note the separation from the surface shown by the ridge of stationary oil at shout 0.43 the chord length from the leading edge. The
diameter of the orifice is twice the chord length of the airfoil

formed. The technique of observing flow near a surface by oil films has been developed at
MeCook Field and elsewhere. The photograph in Figure 16 shows a film of oil and lampblack
on the upper surface of airfoil 1 at 0° to the wind at a speed of 1.08 times the speed of sound.
Figure 17 shows airfoil 6 under the same conditions. The flow over the greater part of the
upper surface is in a direction opposite to the general direction of the stream and the air moves
off in the familiar tip eddies whose traces are shown at the boundary of the air stream. It
appears that the region of low pressure is broken down by a flow about the trailing edge from
the lower surface and that there is a separation of the main stream from the upper surface.
Time was not available to study this phenomenon in detail at Edgewood, but further
observations of a similar qualitative nature were made in a 1.2-inch jet at the Bureau of Stand-
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ards at a speed of 0.65 times the speed of sound. It appears that flow around the trailing edge
does not occur in all cases, but that there may be a region of reverse flow and eddy formation
over a limited area on the upper surface. In the case of the thin airfoils the disturbance begins
-as the angle to the wind is increased, in the region just behind the maximum ordinate, whereas
with the thickest airfoil of 0.20 camber ratio it begins at the trailing edge. With the airfoil of
0.18 camber ratio the disturbance begins nearly simultaneously at both places. '

Flow of oil mixtures of this type depends on gravity, viscosity, surface tension, adhesion,
and other factors and the question was raised as to whether the oil flow corresponded to the air
flow or merely to differences in pressure. An attempt was made to answer this by feeding threads
through the tubing inserted in the airfoil so as to project from the airfoil through the pressure
hole. (The threads were readily drawn through by a suction pump.) The threads indicated
the same direction of flow as the oil on the surface. As a further check, a small exploring tube
with projecting thread was constructed to explore the regions at greater distances from the
airfoil. It was found that the presence of the exploring tube changed the oil flow to some extent.
Nevertheless it appeared that the layer of reverse flow is extremely thin at its initial appearance
but becomes thicker as the angle is increased until it is 2 millimeter or more in thickness.

Fia¢.17.—O0il flow patiern on the upper surface of airfoil 6 at 0° angle of attack, ¥/c=1.08. The flow of the air stream Is toward the top of the
page. Note the separation from the surface shown by the ridge of stationary oil at about 0.29 the chord length from the leading edge. The
diameter of the orifice is twice the chord length of the airfoil

A change in flow thus begins in a fairly sudden manner in the boundary layer on the upper
surface immediately behind the maximum ordinate for thin airfoils at the lower speeds, and at
the trailing edge for thick airfoils at the lower speeds. At the lower speeds the change takes
place at comparatively large angles and is analagous to the well known burble point. At the
higher speeds the change takes place at small angles and is accompanied by & rapid decrease in
lift coeflicient and increase in drag coefficient.

At V/e=1.08 standing compressional waves (bow waves) were observed at a distance of
about 0.5 inch in front of the leading edges of the airfoils.

DISCUSSION AND COMPARISON WITH EARLIER WORK

A careful inspection of the pressure distribution curves, Figures 4 to 9, shows the existence
of regions characteristic of flow of the type described in which there is a separation from the
surface. For example in Figure 6 for airfoil 3 the distribution over the upper surface for a speed
of 0.5¢ at 24°, shows a sharply defined peak followed by a region of nearly constant decrease in
pressure such as is found in the case of a cylinder or sphere where the flow breaks away from the
surface. A similar distribution may be observed at 0.65¢ at 20° and 24°, 0.8¢ at 16°, 20°, and
24°, 0.95¢ at 4°, 8°, 12°, 16°, 20°, and 24°, and 1.08¢ at all positive angles. In fact it is possible
to trace a rough locus of speeds and angles at which the change takes place. The steps in speed
and in angles are unfortunately so far apart that the exact position can not be plotted, but it
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may be seen that for thick airfoils at a given speed the break occurs at lower angles and at a
given angle at lower speeds than for the thin airfoils. The location of the change in flow is
facilitated by the fact that for the burbling type of flow the pressure at the trailing edge is lower
than the static pressure whereas for the smooth high lift type it is higher than the static pressure.

It must be remembered that no trace of the break can be detected in the pressure dis-
tribution until the flow is changed at one of the stations at which observations were made,
so that the break in the pressure distribution as given appears less sharp than it really is. It
seems evident, from the visual observation of the oil flow, that the change in flow takes place
suddenly, but that it is confined to a small area at first and spreads rapidly as the speed or
angle is increased. The evidence of beginning in a small region near the maximum ordinate
in the case of the thin airfoils is not entirely clear from the pressure distribution curves alone,
although indications may be observed, especially in the case of airfoil 4. In the case of airfoil
1 between 16° and 20° the oil flow experiments show that the reverse flow begins and spreads
beyond the last station for pressure measurements, so that only in exceptional cases can the
origin be traced on pressure distributions taken at intervals of 4°. The spreading is even more
rapid for airfoil 6.

These rapid changes of flow are reflected in the lift coefficient curves (fig. 11} with a still
greater reduction in the sharpness of the break. The sudden burble points are very noticeable
in most cases for speeds of 0.5¢ and 0.65¢. For the thin airfoils there is a rapid change in the
lift coefficient with speed befween 0.8¢ and 0.95¢ for all the lower angles. Similar changes
occur between 0.65¢ and 0.8¢ for the thick sairfoils.

These curves give in a more systematic manner than was possible in Report No. 207 the
variation of lift coefficient with speed at all angles from —20° to +24°. The same shift of
the angle of no lift first to high negative angles and then to 0° or a small positive angle is shown
in more detail. The increase in. lift coefficient at large negative angles, followed by a rapid
decrease as the speed is increased, is traced to negative lift coefficients. The changes between
0.5 and 1.08 times the speed of sound increase with increasing thickness, and there is every
reason to believe that the same decrease may be expected for airfoils of smaller camber than
0.10 at higher speeds. The minima in all curves at high speeds and in the curves for the thicker
airfoils at low speeds are associated with the large suction on the lower surface near the leading
edge which develops near 0°. It is probable that this effect would not be present with a more
rounded leading edge or on a doubly cambered section.

A comparison of the lift coefficient curves with those given in Report 207 will show that the
Edgewood values are lower, as would be expected from the lower aspect ratios. The results
can not be directly compared, since the Edgewood values apply only to the mid-section, and
the form of the lift distribution eurve along the span is not known for these speeds.

The rapid change in the lift coefficient in the Edgewood experiments occurred at a value
of Vjc about 10 per cent greater than at Liynn. The chord length used at Edgewood was one-
third that used in the Lynn measurements. Therefore the Reynolds Number at which the
rapid change in the lift coefficient took place at Edgewood was only about one-third that at
Lynn. The change in the lift coefficient appears therefore to be much more definitely associated
with V/e than with p¥l/e. In other words, the compressibility effect is predominant.

There are two possible explanations for the somewhat larger value of Vje at which the
rapid change in the lift coefficient occurred in the Edgewood experiments. First, the Reynolds
Number may still have some effect. Second, a possible aspect ratio effect. For example,
photographs taken in the 1.2-inch jet indicate that the change in flow takes place at a greater
angle of attack than in the 2-inch jet for airfoil 6 and at approximately the same angle for
airfoil 1. Moreover at ordinary wind tunnel speeds the burble point occurs at a greater angle
of attack for the smaller aspect ratio. Hence it is possible that the exact angles and speeds at
which a change in flow takes place vary with the aspect ratio.

When we come to drag coefficients there is a somewhat different state of affairs. e should
expect the drag coefficient computed from the pressure integration to be lower than the true
drag coefficient because of skin friction. We micht also expect the coefficient for a section near
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the center to be somewhat lower than the average for the whole section. Hence it is probable
that the total drag coefficient for the whole section is greater by some unknown amount than
that computed from the pressure distribution. However, the values computed from the pres-
sure integration at Edgewood are very much higher than those obtained at Liynn at angles
near 0°. We should expect the drag coeflicient for the whole section to be somewhat higher
than the Lynn values owing to the smaller aspect ratio, but the difference is too great to be
attributed entirely to an aspect ratio effect. It seems highly probable that there is a compara- -
tively large effect of Reynolds Number on drag coefficient even at these high speeds. We hope
to obtain more definite information on this point in later tests.

The drag coefficient curves given in Report 207, Figures 16 to 21, show a rapid rise in
coefficient for angles near 0°, as, for example, Figures 21 for airfoil 6. The maximum speeds
reached in most cases were between 0.8 and 0.95 the speed of sound. The Edgewood tests
(fig. 12) show that this rapid increase is followed by a region of nearly constant coeflicient, and
in fact there is some indication of this in a few observations in Report 207. In other words, the
drag curves are probably somewhat similar to the well-known Gavre curve for projectiles.

The center of pressure curves (fig. 14) give a more detailed picture of the backward motion
at the usual working angles. These require little discussion, since they merely reflect the more
even distribution of load at the higher speeds. The behavior at negative angles corresponds
to the zero lift positions, of which there are three in some cases.

The moment curves (fig. 13) show that the effect of the reduction in force coeflicients is
greater than the backward motion of the center of pressure, so that the moment coeflicient is
in general reduced by increase in speed at a constant angle.

There remains for discussion but one observed fact which is not represented in the coeffi-
cient curves. The actual value of the maximum decrease in pressure on the upper surface
seems limited, the average observed maximum value for all speeds greater than 0.5 the speed
of sound and for all airfoils being approximately 32 cm. of Hg. The largest single value of
p,—p observed was 37 cm. He. or p/p,=0.51. This ratio is not far from the critical ratio for
air, namely 0.53, and this observation suggests that in an air stream in which the flow obeys
the law of Bernouilli the pressure can not decrease indefinitely but reaches a limit as soon as
the ratio of the pressure to the static pressure at a large distance in front of the body causing
the pressure change reaches the critical value of 0.53. Lower pressures may be produced in
“dead air”’ spaces where the flow leaves the surface of the body as on the lower surface of the
airfoils near the leading edge. In this case the pressure decreased to about one-fourth of the

atmospheric pressure.
CONCLUSIONS

The changes in the aerodynamic characteristics of airfoils at high speeds have been studied
in detail by means of pressure distribution measurements and a more extensive and more sys-
tematic series of observations has been described. The conclusions of Report No. 207 have
been verified and extended to higher speeds. Observations have been made of the air flow near
the surface and correlated with the force measurements. Large changes have been shown to be
associated with the sudden breaking away of the flow from the upper surface.

It has been shown that the variation in lift coefficients is due very largely to a compressi-
bility effect, although the additional effect of viscosity can apparently still be traced in the drag

coeflicients.
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OBSERVED VALUES OF p;g'pg’ ATRFOIL 5
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OBSERVED VALUES OF p—;—&, AIRFOIL 6
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DRAG COEFFICIENTS, Cp
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PRESSURE DISTRIBUTION OVER AIRFOILS AT HIGH SPEEDS

MOMENT COEFFICIENTS
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CENTER OF PRESSURE COEFFICIENTS
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