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APPLICATION OF RADIAL-EQUILIBRIUM CONDITION TO AXIAL-FLOW COMPRESSOR AND -
TURBINE DESIGN

By Cruxe-Hva WU and Lixcorxy WOLFENSTEIN

SUDMDMARY

Basic general equations governing the three-dimensional com-
pressible flow of gas through a compressor or turbine are giren
in terms of total enthalpy, entropy, and velocity components of
the gas. Two methods of solution are obtained for the simplified,
steady axially symmetric flow; one involres the use of @ number
of successire planes normal to the axis of the machine and short
distances apart, and the other inrvolves only three stations for
a stage in which an appropriate radial-flow path is used.
Methods of calculation for the limiting cases of zero and infinite
blade aspect ratios and an approximate method of ealculation
Jor finite blade aspect ratio are also given. In these methods,
the blade loading and the shape of the annular passage wall may
be arbitrarily specified.

The aralysis shows that the radial motion of gas consists of
a gradual, generally monotone component due to the taper in the
passage wall, and an oscillatory component due to the radial
rariation of the specific mass flow at different stations along
the axis of the mackine specified in the design. The streamline
18 curved by this radial flow and a corresponding radial pressure
gradient is required to maintain this curvature. The magnitude
of this gradient is increased with high dfach number of gas
flow and high aspeet ratio of blade row. The conventional
method of caleulation, in which the effect of radial motion on
the radial distribution of gas stafe is neglected, is found to be
applicable only for the limiting case of zero aspect ratio.

An analysis of the equations governing the flow shows that a
designer is free to preseribe a reasonable radial variation of one
of the rvelocity components or other thermodynamic properties

of the gas at any station within the blade region. The various -

ways of using this degree of freedom and the different types of
design obtained are discussed. Numerical computations are
then made for fwo types of compressor and one type of turbine.
The results indicate that, even in the case of nontapered passage
walls, appreciable radial motion occurs and the corresponding
effects are of significant magnitude and should be considered
wn design. .
INTRODUCTION

The design of & compressor or & turbine (either of which
is referred to hereinafter as ‘““a turbomachine”) may be
divided into two phases. The first phase concerns the type
of design to be used, or the determination of the most desir-
able possible variations of velocity and thermodynamic prop-
crties of the gas in planes normal to the axis of the machine

between successive blade rows. The second phase concerns
the design of blades that will give the desired variations of
veloeity and other properties of gas in these planes. In the
first phase, the condition of radial equilibirum (that is, the
radial component of the equation of motion) must be used.
The flow of gas in & turbomachine is eurvilinear; it is curved
not only by the whirling motion of gas, but also by the
radial motion of the gas (reference 1). The equation of
motion then specifies the radial pressure gradient required
to provide the centripetal force to maintain the curved flow.
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{a) Stream surface over four stages of multistage turbomachine,
(b) Intersection of stream surface with plane normal to axis.
() Intersection of stream surface with axfal plane.

FIGURE 1.—Stream surface over four similar stages of multistage turbomachine and inter-
section of stream surface with planes normal to and containing axis of machine.

In figure 1(a), & curved stream surface over four similar
stages of a multistage turbomachine is shown and figures 1(b)
and 1(c) show the intersections of this stream surface with
planes normal to and containing the axis of the machine,
respectively. The radial pressure gradient due to the
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whirling motion of gas is always positive; whereas that due .

to the radial motion of gas may be either positive or negative,
depending on whether the curvature caused by the motion
is inward or outward from the axis of the machine at the
point of consideration. Even when the radial mofion
involved is small, if the gas velocity is high and the blade

aspect ratio is large, the radial pressure gradient due to. .
the radial motion is of significant magnitude compared with
that due to the whirling motion of gas and should be 1ncluded _

in the design calculation.

In the calculation of the state of gas in the normal planes
far upstream and downstream of a single row of blades,
where the radial motion is small, the pressure gradient is
essentially due to the whirling motion elone. Experimental
measurement checked well with the calculation when only
the whirling motion was considered (references 1 to _3).

For the general case of the gas in the normal planes between

closely spaced successive blade rows, however, no satisfactory
theory exists to calculate. the magnitude of the. radial dis-
placement of the streamlines and its effect on the. radial
distribution of the state of the gas. A preliminary theoretical
investigation of this problem conducted at the NACA

Lewis laboratory was completed in Apnl 1048 and is

presented herein.

dimensional flow of gas in° turbomachmes are expressed
in terms of total enthalpy, entropy, and velocity components
of the gas.
of steady axially symmetric flow corresponding to the limiting
case of an -infinite number of blades. Two numencal
methods of solution are presented; one uses 8. “humber. “of
successive _stations' through the turbomachine, the other
uses only three stations for a stage in which an appropriate
radial-flow path is employed. : -

Methods of solution for the limiting cases of very small
and very large blade aspect ratio are then discussed. An
approximate solution of the radial displacement across a
blade row having a finite aspect ratio is given for the general
case in which the whnhng veloc1ty of gas is prescribed in

design.

The basic equations obtained are also used to 1nvest1gate _
the maximum compatible number of radial variations .of
the velocity components and other thermodynamic prop--

erties of gas that a designer is free to specify. It is found
that the designer can specify only one such variation at each

station along the axis of the machine within the blade .

region. Various ways of specifying this variation and
the different types of design obtained are discussed.

The methods developed are applied to two types of
compressor and one type of turbine, in order to. investigate.
the magnitude of the rs,dml motion and 1ts effect on des1gn
calculations.
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They are developed primarily for the case -

- ——_ " FORMULATION OF EQUATION | ?
R " GENERAL BASIC EQUATIONS

The tlu'ee dimensional compressible flow of gas through
a turbomachine is governed by the following set. of geneml
basic equations (references 4 to 6): -

From the prmcxple of conservation of maditer, the equation
of continuity is - . .

vem=

(Synibc;i:_s;: used in. tlfi_é report are defined in appendis’ A.)
The principle of .conservation of momentum is expressed
by the \Tawer-StoLes equation as

'pf;;f—w+w2%“WvTHﬂwmvn+

V8 X (V>< ~) ~3 (V v )(Vu) (2)

where F is the ettmnal force eteIted on umt mass of gas.
The prmc_lple of Qonsmvatmn_ of energy may be written as

7+ o) Q+~ o

where 1.is related to T by S ’ T
' ' Du_ DT o
—en @

when conduction only is considered, @ is given by | |
] Q=p"7-(:VT) . ®

a.nd fI> is the dissipation function given by
o= p{zv ATV EXTy—2TV) T -5 7T} ©

For the T range of gas temperature and pressure usuelly en-
céuntered in turbomachines, p, p, and T are accurately
related by the following equation of state:

-  p=ReT _ Lo

Theoretlcally. the preceding scven t.quatxons, tOthhOJ.
with the given body force, known variations of ¢,, x, and £

_with temperature, and suitable boundary and initial condi-

tions, completely determine the flow of gas through the
turbomachine. Tt is found convenient in the present in-
vestigation, however, to base the calculation on Lotal__
enthalpy and entropy, which are defined by

H=hiz ? L@

where . . o
h=u+ppt o 9)

omd | | e

Tds=du+p d(p™)
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By use of equations (8) to (10), the following forms of con-
tinuity, motion, and energy equatmns are obtained (ap-

pendix B}:
' (R) 0 (18)

VT +3 V(v-V):|+

-, 1 D
Vit Siples T

VH=F+TVs+VX(VXT )—-—i—-r

Lot it mxexP) -3 e DEn) e

Dt %’-R% @3b)
Equation (1a) gives the continuity relation in terms of
velocity, temperature, and entropy of gas. KEquation (2a)
relates the gradient of total enthalpy with body force,
viscous forces, velocity, and other properties of the gas.
This vector equation gives three scalar equations in three
dimensions. Equation (3a) gives the rate of change of total
enthalpy of gas along a streamline in terms of rate of heat
additions, rate of work done by body and viscous forces,
and so forth. Equation (3b) gives the rate of change

of entropy along & streamline in terms of rate of heat con-’

duetion and of dissipation of energy due to viscosity.
STEADY AXIALLY SYMMETRIC FLOW

The solution of the preceding general equations with a
given set of suitable boundary and initial conditions is
extremely difficult. Useful results may be obtained by con-
sidering, as first done by Lorenz in hydraulic-machine theory
(references 7 and 8), the limiting case of an infinite number of
infinitesimally thin blades. In this simplification, the force
exerted on the gas by a blade element at any radius is con-
sidered to be uniformly distributed over the stream sheet be-
tween two neighboring blades at that radius, and is considered
the body force F in the previous equations. Forincompressible
and frictionless flow, the value thus obtained gives an average
value in the eircumferential direction, provided the departure
from the average value is small (reference 1). Because the
number of blades is usually large, this simplification is con-
sidered to be reasonable and is also used in the present in-
vestigation. For steady inlet and exit conditions, all
partial derivatives with respect to angular coordinate 6
and time ¢ are then equal to zero and the state of gas is a func-
tion of r and z only. :

The ideal case of a nonviscous gas will be considered first.
In this case, there exist two more relations defining the
problem. One is the fact that blade force is normal to the

surface of the blade and, consequently, to the relative
velocity of gas or the relative stream surface; that is,

F-(T-D)=0 )

or, referring to absolute cylindrical coordinates r, 8, z and
the relative angular coordinsate x,

Fdr+rFdx+F, dz=0 (11a)

The other is the condition of integrability of the blade
surface,

F.(vXF)=0 (12)

which in the case of axial symmetry reduces to (references 8
and 9)

ng) 5z rF,,) (12a)

From the general equations (1a), (2a), (32), and (3b}, and
equations (11) and (12a), the following equations are
obtained for steady axially symmetric Sow of nonviscous

gas: (See appendix B.)

L o(r} ,)+bai}. Lo glog, T+717, ;i.loge T)—
s (R vs (@) s
%¥=F,+Tg—':+t7 1201y, (99 s
[I,a(rt,)ﬂ, au-I,,):l 15)
oH_p, T2 T a(rT A A gy

In the preceding equations, equation (13} is the continuity
equation; equations (14}, (15), and (16) are the three equa-
tions of motion in the radial, eircumferential, and axial
directions, respectively. Equation (17) is considered to
represent the energy equation and equation (18) to represent
equation (11}. In these equations, @ is now the heat trans-
fer from the blade to the gas, uniformly distributed in the
circumferential direction, as is the blade force F. These
seven equations are considered seven independent equations
that relate the eight unknown variables, which consist of
three blade-force components, three velocity components,
and A and ¢ of the gas. The first three quantities determine
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the shape of the blade and the last five quantities completely
determine the state of the gas (all other thermodynamic

properties of gas, such as p, p, and T, can be computed .

from them by using eguations (7) to (10)).

For compressors and turbines without blade cooling, the
heat transfer between blade and gas is negligible; the en-
tropy of gas is_then constant slong any streamline accordmg
to the energy equation (17). If the inlet air has a uniform

value of entropy, the radial and axial derlvatlves of entropy

in the preceding equations equa] Zero.

In the case of real gas, the axially symmetric simplified '

forms of the viscous terms in équations (1a}, (2a), (32), and
(3b) can be obtained in & similar manner. These terms in
the equations of motion may be neglected when compared
with other terms in the same equation if the boundary layers
along the passage walls are relatively-thin. Because of the
viscous shearing stresses in the gas a.d]acent. to the blade,
the force exerted by the blade on the gas is now slightly
inclined from the direction normal to the relative velocity
of gas and, consequently, equatlons (11) and (12) are mot
strictly true (the force components, in the equa,uons should
be replaced by the direction cosines of the normal fo the
blade surface).
equation (18) can be obtained from the equation of motion
and the energy equation for steady flow with the a,ssumptmn
that the heat generated from the friétional work remains in
each stream sheet (appendix B) and can therefore be con-
sidered as representing the energy relation in the set of

equations. The entropy increzmse along the streamline is then

computed from a consulera,tmn of the actual compressxon or

e\{pansmn process . -
—-Kp S - .(19)

by the formula (appendm B) .

D . - P . _____.”.._.
'*D—ir—R—nL—(‘fa log, T+V,a log, T) 20)

(n—1)(v—1)

In equation (20), » is considered known. In a given machine,
n may be directly obtained from measured pressure and tem-
perature data. In a new design, n may be obtained from
the assumed polytropic efficiency used in design calculatmns
for uncooled blades:
For compression,

v—1 : R e
A -1
L S T SR (21&)
n e
For expansion, i -
n—1
n_ L
e MR (2””
X - _ 1777_

Because the change in s is usnally small compared with the
changes in /7 and V, the precéding methed of determining s |

Without using equation (11), however, |
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may be adequate to account for the viscous effect in calcu-

lating the pressure and density change along the streamline

for the present problem. This correetion is more important
in the case of multistage compressors. For a viscous fluid,
equation (20) therefore replaces cquation (17) in the previous
set of equations; and equations (14), (15), (16), (18), and
(12a) are considered approximately true.

flow and the shape of the blade.
METHODS OF SOLUTION

~ The preceding section presents seven mdepcndent equa-m

tions relating the eight dependent variables 17, V3, V., H, s,

F,, Fy, and F,, which define the flow of gas and the blade

shape in the blade region. In the direct problem with a given
machine, the shape of the blade scction provides one more

. relation between Fj and F,, giving cight relations to deter-

mine the variation of the eight quantities throughout the
blade region. In the inverse pmblem, an appropriate desira-
ble variation of any one quantify is preseribed within the
blade region; the preccdmg seven equations then determine
the variation of the remaining seven quantities throughout
the blade region. No general solution of these equations
seems possible, however, in either problem. Tiwo numerical

methods of solution are thercfore suggested. In the ﬁrst__

method, the preceding equations are applicd to successive

planes normal to the axis of the machine and short distances
apart; this method is applicable to both direct and inverse .

problems In the second method, a particular case is con-
sidered, in which a simple appropriate radial-low path is
prescnbgd in the design. This method may also be used as
a-simple approximate solution in a direct problem in which

the radml flow path is approumntely I;nown

METHOD. OF FINITE DIFFERENCE FOR SUCCESSIVE AXIAL STATIONS

When:_t,wo successive stations j and k a short distance apart -

within the blade are considered (fig. 2) and V% is denoted

by ¢, equations (14) to (16) may be “ntten for each stallon

as . - . )
dH ¢ dF E)V
dr =F+T5; br+r’ br+V ( (14&)
(V v, ¥ (158)
" oH. ¢ a; dV, dV, '
b i +T b"+r’ bz ~V: -sr_ bz) (16a)

The chanue in total enthalpy and entropy between the two

stations is obtained from equations (18) and 20} (appendm B):

L H ) —H(r) =o sl —5,r))F f Qdt  (i8a)

— . R . . . H Vk’
o P

_ With equation (13),
there are still seven independent cquations defining the
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FiGURE 2—Stations j and &k short distance apart.

where (r) indicates that the gas properties at a particular
station are a function of the radial position of the gas
particle in that station. (It should be noted that because of
radial motion, the radial position of a gas particle af any
station k is different from its radial position at the previous
station 7.)

Instead of integrating equation (13), the continuity
relation between the two stations is readily obtained by
equating the mass flow at the two stations:

G];T']; drk= G',-r, dr; (22)

By expressing @ in terms of H, V, and s, equation (22)
becomes (appendix B)

1 L3 1 8

TSI TR TNTTL TR
Ve (Hk_t_“zﬁ)T le redre=V,; (Hj_%g_)ﬁ le rydry
(22a)

Equations (12a), (14a), (15a), (16a), (18a), (20a}, and
(22a) are now seven independent equations relating the gas
properties and the blade forces at the two stations in the
blade region. In these eqiations, the heat transfer is
negligible in an ordinary turbomachine and can be estimated
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in the case of cooled turbine blades; the temperature 7 is a
known function of H, V), and ¢; n is given; and r, is obtained
from r;and 17, ; Hence, there are only eight unknowns in H,
s, V1, Vi, Vo, Fy, Fo, and F, at the second station k. In the
direct problem, the blade shape gives one more relation
between F; and F,; whereas in the inverse problem, one
suitable relation among the eight unknowns is specified by
the designer. In either case, the unknowns at station k can
be obtained from the known values at station j, the passage-
wall shape, and the preceding relations.

In the free space between two blade rows, or in the space
upstream of the first blade row and downstream of the last
blade row, the force terms drop out of the equations, which
results In equation (22a) and the following equations
(neglecting friction and heat transfer between gas and
passege wall):

H_ 2 ) o
o=v, B EH (15b)
rEE )
%%0 (20b)

‘Equation (22a) and these four independent equations,
together with the given passage-wall shape, completely
determine the variations of the five independent quantities
Ve, Ve, Vo, H, and s outside the blade region. The solution
of the problem over the entire region inside and outside the
blade region, using this step-by-step method, varies with the
type of design and the condition given or prescribed. In
any case, the computation would be quite laborious.

In order to obtain an over-all picture of the radial lowin g
turbomachine and its effect on design consideration in a
simpler way, the following method considering the problem
of a particular case is given:

METHOD OF PRESCRIBED RADIAL-FLOW PATH

In 2 turbomachine, the radial motion of the gas is caused
by three factors:

(1) Tapering of the annular passage either at the inner or
outer wall gives the flow a radial displacement across the
stage, which is, of course, greatest in the lmmedmte neighbor-
hood of the tapered surface.

(2) Even with a nontapered passage, a radial displacement
across the stage may be necessary because of a variation
in the distribution of specific mass flow over the blade height
across the stage.

(3) Even if no radial dxsplacement occurs across the stage
(that is, the same particle occupies the same radial position
at the first station of each successive stage), there will, in
general, be radial displacement of flow within the stage.
This radial low will then be oscillatory in nature, a radial
displacement in the rotor being followed by an equal and
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opposite radial displacement in the stator. This radial flow
arises becausc of the difference between the radial variation
of the specific mass flow within the stage and that at the
entrance and exit stations of the stage:
ment can only be avoided by speufymg zero or the same radial

variation of specific mass flow at all sta,uom of the stage'

in the deSIgn) T T LT

In general, the radial flow of gas therefore consists of 8

gradual, generally monotone, radial motion due to factors (1)
and (2), with an oscillatory motion of period equal to the
stage length due to factor (3) superimposed on it. The

radial flow caused by these three factors will be similar to.
The effect of the radial motion

that shown in figure 1.
on the calculations arises chiefly through the term 0V,/0z in
the radial-equilibrium equation (14a). This term is expected
to be s1gn1ﬁcant mainly because of the oscillatory motion,
which may require significant changes in ¥V, within a smgle
row of blades. The case of oscillatory motion within a stage
with no over-all radial displacement. across the stage will
therefore be considered first.
is nontapered and the radial distribution of gas properties
at the entrance and exit stations of the stage is the same.

Because there is no blade force acting on the gas, the gas
flowing through the gap between two blades is under a

nearly constant pressure gm,dlent and consequently “tends

to move with the same curvature it acquires while leaving
the first blade. For nontapered passages, the maximurm or
minimum point of the radial-low path is likely to be some-
where near the middle of the gap. (The intersecting curve
of a stream surface with an axial plane is herein referred
to as ‘“the radial-flow path.”  Because of axial symmetry,

the radial-Aow path is the same in any axial plane.) The

stations between blade rows are most conveniently chosen
at these points. The stations in front of the rotor, between
the rotor and the stator, and behind the stator are denoted
by subscripts 1, 2, and 3, respectively. (Sce fig. 3(a).) If
r. and L represent the mean radial distance of the flow path
and the aual length of the blade IO, _respectively, then the

rre= 5 ] (f) 9)
and at stations 1, 2, and 3, 2/L=0, 1,2
FO=f@=1f (1)=—1} |
(24
FHO)=F Q= (2=0" A

where f is a function giving the form 6f the radiéi—ﬁow .p-s.,th
and the prime indicates. dlﬂ"erentmtlon with respect to z/L.
It follows that :

» dr__

V=V, dz~

()

'(This radial displace-

That is, the gas-passage wall

the gap. Similarly, at station 2, 2=L,

(25)'
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1

™ T s

N _ _ .
o L 2r

P ) (a) Nontapered passage.
- o (b) Tapered passage. )
mem 3. —Statmns between blade rows,

At station 1, 2=0,
oo V=0 -

and
oV,

S a‘,,)=—"’ P Veuf” (0 (26)

iﬁasmuéli as E)T [0z is practically zero in passing through

oL T o Vrﬂ"o " _
and ’ o v _ - )
°az)— Iy )

Bccause f” (z/L) determmes Eﬂ /bz or the effect. of mdlal

that it vary continuously; thls condition together w1th
those of equatmns (24) suggests

()=ee (L)

Then -
AT =—=2, f'(1)=n?
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and equations (23) and (25) to (27) become, respectively,

r— =_r=;r1 cos 7 (%) (239)
Viex 2‘—;& Vi.sin = (%) (25a)
"222;' BNy, (262)

a") ——w Y, (272)

For the sinusoidal form of f(z/L), the maximum absolute
value of f"/(2/L) occurs at z=0, L, and 2L, and is equal
to . Even if f/(2/L) is assumed constant between z2=0
and z=L/2, thus hinimizing the maximum absolute value of
f// in the interval, the absolute value of f** equals 8. This
assumption, however, necessitates a discontinuity in f at
z=L{2. The values of #* for the absolute values of f/(0)
and f7/(1) can therefore be considered as small as is likely.
The smooth variation of f/(z/L) and the minimization of
the absolute value of f//(zfL) at the stations make it desir-
able to employ equation (232} in the design. This simple
radial-low path will also give a good approximate answer
to most designs in which the distribution of blade loading
and radial blade force is not too ununiform in the axial
direction. In such cases, this simple sinusoidal curve is
believed to represent the major harmonic of the actual radial-
flow path and the principal effect of the radiel motion may
be obtained through the use of this simple curve.

The radial-equilibrium equation (14b) may be written in
terms of (rs—r,) by use of equations (26a) and (27a)

dH( dS; ;'1 df[ 1 d.";g : re— -
d?"; Tt a_ I’" dl‘ + 1 d?‘ +(_ )—2 2L2 z.£2 (140)
where
i=1,2,3
YWhen-r; is replaced by the dimensionless variable
r¢’=<r rir,.)" equation (14c) becomes
—
dH;' dst + ri )
dri ‘dr ! r;’z re—Tra d'ri re—Ty
,- (‘”,: 1 i ’ r 2YT 2
21 d)" 7 + (— 1) (fg —I ) 1.4. I £.4 (14d)

This form of the radial-equilibrium equation is seen to con-
tain & term directly proportional to the radial displacement,
to the square of the axial velocity, and to the square of the
blade-row aspect ratio. If the blade-row aspect ratio is
large or the axial velocity is high, the effect of radiel motion
may be large even though only a small amount of radial dis-
placement occurs across the blade row.

This method is readily extended to the case where an over-
all radial displacement oceurs across the stage due to tapering
of the passage or due to variation in‘the design from stage
to stage. In figure 3(b), the radial position of a gas particle
originally at r in station 1 is at rz in station 3. For the
oscillatory motion required within the stage, r; is not gener-

(1’1‘{‘7'3)

previous case, it is desirable to have the radial-flow path
consisting of a sinusoidal curve superimposed on the line
passing through (z;, ) and (z;, r3); that is,

ally equal to 5 For the same reason stated in the

r=rt" 2 L+"( r"r3)<l cos"z (23b)

Then
vl Bt () E v s

and
() =0 (n-tEE) 1 o)

inasmuch as 917/0z is practically zero in passing through
the gap. With this value of dV,/dz, the radial-equilibrium
equation (14b) becomes

dHi dst £ dg'f

f dIzt
dr; ‘dr+ ’dr+

2,1 df

Tt

T
(1 4e)

=2
+(=1)* 7 (n—0E"

This equation is similar to equation (l4c}. (If ry=ry, it
reduces to equation (14c).) A similar equation in dimen-
sionless r,/ can also be obtained for this case by dividing r;
by (?‘;—1"3) i

Vith this method of preseribed radial-flow path, if it is
only required to find the velocity distribution in stations
between successive blade rows (to provide data for the design
or setting of blades), the distribution can be obtained by
considering only these planes without making any computa-
tion in the blade regions. For example, suppose that all quan-
tities are known at the inlet station of the stage (station 1),
then for station 2 behind the rotor blade row the follow-
ing relations exist: When the untapered passage walls are
considered, equations (l4c), (18a), (20b), and (22a) give

dH, _ ds; , 2 db dVia | 11 2
T =D, Trp gt Ve g T7 gz Ve (4D

Hyr) =Hi () + ot — 5 )1+ ﬁ' Qdt  (i8b)

n—y

5 2
&2 (rg) =8 (r;) T R .I.Ogg (20(:)

—1)(y—1) Hl_% 172
and
l
;2(H1—" .I,g rzdrz—Izl<H1——.‘ ) [4 Brldrl

(22b)
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If the radial variation of one quantity is known (such as
0f3f0r;=0, OV, ,/0r,=0, or 98,/dr;=0) among ‘the five un-
knowns at station 2 (consisting of {3, V,,, H, 8, and rz(rl)),

all the other quantities can be determined. The procedure.

will vary with different types of design. In meost cases, the

computation may be started with an appropriate value of r;

as a function of r obtained by an- appronmate solution.

With the variation of one. of the four quantities H,, 85, 5, andi

1,2 given, the remaining thres quantities are computed from
equatlons (14f), (18b), and (20c). These values are then

inserted in equation (22b) to determine if the continuity -
relation is satisfied. If it is not, the values must be adjusted .

until the continuity relation is satisfied. An alternative pro-
cedure is to insert these values in equatlon (05), which is
derived from equation (22b), to obtain new values of 7, as
a function of r;, and the entire process is repeated until the
desired accuracy is reached. In s tapered passage, both
stations 2 and 3 must be computed at the same time. "An

application of this method to a nonvortex-type compressor
stage will be given in the section NUMERICAL EXAMPLES .

FOR TYPICAL DESIGNS,

LIMITING CASES AND APPROXIMATE SOLUTIONS

Simplified - radial - equilibrium a.pprox;.ma.tlon.—In thls

commonly used approximation, the gas is assumed to flow.
on cylindrical surfaces for nontapered passage walls; that is,

V=
: } ' (28)
rl—rg—rg .
At these stations, the radlal—ethbnum fquatlon (14b)
reduces to ;. R
dH, _ dst ft | v stt )
drc i d?‘ + 2 d?" +Vz,i dr '(14g) .

where i=1, 2- or3. - :

For tapered pa,ssage walls, a certain s1mple relation among
71, ry, and 7y is assumed, but the term containing dV,/dz in

the rndlal-cthbrmm equation is still neglected (that is,

equation (14g) is used instead of equation (14b)). . =
 With this simplifying assumption, the gas state at station
2 or 3 can be computed much more easily from the gas state
at station 1 and the one c¢ohdition specified at sfations 2
and 3.
sheets, however, is now discarded because of the assumed
relatmn among ry, 75, and r; and is replaced by the followmg
contmulty relation for the entire annular area:

Gg?"g dr_g-—f Gﬂ"l d‘"l

Thus, equations (14g), {18b), and (20c) are used in. this

calculation, with equatlon (220) used as & check on total .

mass flow.

When dsy/dr; is negligible, the followmg equations for the
radial variations of pressure and density can be obta.med
from equations (14g); (B4), and (B8):
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The continuity equation (22b) for individual stream

<22c>

1 LT m -
Pus” "liP_ Vel Ve
YRR @)
F— d I CZV, = "'- . -
v Lo dfi‘ dy,, L 180)

In these two equat.mns, the last term i is ve1y small comparcd
with the next-to-last term and may therefore be noglected.
Under the present assumption, this term becomes zero for
a nontapered passage and the resulting equation may be
more directly obtained, as is usually done, by taking the
approximation mvolvcd in the use of .

_;[_d 1=VL,t2 » o .
-_ EERTEEEY -pt 22— 1‘1 - -‘

_for the equntmn of motlon in the radial d‘lrcctnon in placc of

1 d_’pi
B drt

VG LA ( ) V dT r i
:. L% 'ri_

.Equatlons deuved from thls bas1s of calculutlon in dlmen-

sionless forms are given in appendix D for several types of
design.
Limiting case of zero aspect ratio. —Two hm1tlng cases will

now be discussed for thh the evalua,tlon of the term (——-)

can be avoided. If the blade row has an axial length suffi-
ciently - great relative to . the radml length (that s, 1f ‘the

%),

will be negllglble in spite of any radial dlsplaccment, aeross
the blade row. This extreme situation is designated the

blade-row aspect Tatio is sufﬁclently small)!

zero-aspect-ratio case and differs from the simplified-radial-

equilibrium approximation in that the radial displacement
across the blade row is properly determined and its effect
on the_state of gas is included in the calculation. The
continuity equation (22b) for individual stream sheels is
therefore to be satisfied in addition to equation (22¢), bub
equation (14g) is still used in place of (I14c). In the case
of gas-passage walls having no taper or slight taper, the
difference between the two cases is small; a successive-
approxifiation procedure starting with the result of the
s1mphﬁed-x adial-equilibrium calculation can therefore be
used. This procedure may be outlined as follows:

1. With the given values at station 1 and one preseribed
condition at station 2, use the simplified-radial-equilibrium
equations to find &, Vs, I, and s at station 2 as functlons
of 7,; then compute Ga(r). '

2. By using the value of G;(r,) obtained fmm step 1 ﬁnd
s (ry) from equation (C5).

"3. Substitute this value of r,(rl) into cquatlons (14g),
(18b), and (20c¢) to obtain a second solutmn for £ ¥ .,,, I,
and 8, as functions of r,.

4. Repeat steps 2 and 3 if necessary, using the value of
Gy (r;) obtained from step 3.

In the case where there is considerable taper at the passage
walls, it is better to assume r3(r,) according to the taper to
start the celeulation mthel than to use steps 1 and 2.

gt ER
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Limiting case of infinite aspect ratio.—The other limiting
case corresponds to a blade row with axial length negligible
as compared with radial length, and is designated the infinite-
aspect-ratio case. The negligible axial length does not
provide space for any appreciable radial displacement,
hence r, may be taken as equal to r;, or

Gz=G 1 (31)
and for a tapered passage, either the preceding equation or &
relation similar to the one that follows may be used:

Gu=G, BT, 32

Fe,f—T1a®

Either of these two equations now takes the place of the
continuity equation {22b).

Because the change in axial length for a very small change
in V, is also very small, (dV,/dz2); does not vanish. Although
its absolute value does not affect the radial motion because
of the negligible blade-row axial length, the relative value of
0V./0z ahead of and behind & blade row is needed to
determine completely the distribution of gas properties at
these stations. If the loading of the blade in the axial direc-
tion is relatively uniform or the blade is designed to give a
sinusoidal radial-flow path, the curvatures of the radial-
flow path al the two stations can be considered equel in
magnitude and opposite in sense. Then,

RN (T,
(52)=-(%2),

In order to combine this relation with equation (14b) in a
simple manner, it may be assumed that

oV, r) _ v {9V r)
z,1 . E)z 1_ 2,2 az 2
Combining equation (34) with equation {14b) at stations 1

and 2 yields

dH,
dry +

(33)

349

dflz dSp_ dfl di’z

_m da $ b
Tl dr +T’dr3+ d)'1+ drg-i_

. dV,
T,,_ d?‘ l"['.[’zﬂd;r

(3-18.)

For a-typical stage of a given design, equations (14b),
(18b), and (20c), with either equation (31) or (32) and equa-
tion (33) or (34) will completely determine the variation of
gas properties at the two stations.

In appendix E, formulas are given in dimensionless forms
for two common types of design in order to calculate the
variations of gas properties for the two preceding limiting
cases. The results so obtained will give the limits of the
variation of the gas properties along the blade height. If
the difference is large, it is worthwhile to make the caleula-
tion for the given blade-row aspect ratio.

Approximate solution for finite aspect ratio.—For the
general cases where {, and {; are prescribed in design as
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functions of 7, an approximate solution for the radial dis-
placement across the blade row can be determined in the
following manner:

First take as two separate functions

AJr) the function (ry—r) of r satisfying the radial-
equilibrium and total-enthalpy-change equations for
2 given distribution of the other variables

A (r) the funetion (r,—r;)} of r; satisfying continuity equa-
" tion (22) for a given distribution of other variables

It is assumed in this method that the radial gradients in

V. and ¢ depend primarily on the magnitude of the radial __
“displacement (r,—r;) and not on its exact distribution.

Accordingly,

Ag(r) =Y, g(r) (35)

where ¥, is the maximum value of A, and g(r,) is a plausible
form for the distribution of A, satisfying the boundary
conditions: .

gy =g(r.)=0 }
g’ (rl"‘) =0, g(rl.n) =]

If A, is calculated for several values of A,, it is possible to
plot 7., the maximum value of 4., against .. A fairly good

for (36)

approximate solution might be expected to correspond to

the point y.=y.. This process can be further refined by
varying g(r) from the function originally assumed in the
direction of the caleulated function A/y..

By the use of this procedure, the following approximate
value for the magnitude of radial displacement across &
blade row is obtained (appendix F):

(Fa—71}s
14+ A2

rg—r = 37

This value can be used as a starting value for exact calcula-

tions or may be used as the finel value for approximate
calculations. _

APPLICATION TO DESIGN

DEGREE OF FREEDOM IN DESIGN

In the preceding analysis it was shown that within the
blade region there are only seven independent equations
relating the eight dependent variables that determine the
state of gas and the blade shape; whereas in the space outside
the blade, there are five independent equations that deter-
mine the five dependent variables determining the state of
gas. In the inverse or design problem, the designer therefore
has one and only one degree of freedom for prescribing &
reasonable radial variation of one single quantity in all blade

regions, of a different quantity in different blade regions, or
8 smgle relation between several quantities. In addition, he

"is free to specify the taper in the passage wall, the position

where the radial element of the blade is set, and a suitable

condition of gas at stations far ahead of and behind the .
machine as boundary conditions, such as a uniform state of

gas entering the machine.
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In current design practice,” design computation is made
only in the planes between successive blade rows in which
a certain desirable variation of one gas property cah be
specified. The blades are then either selected from cascade
data or theoretically designed to achieve the ecalculated gas
states in these stations. For this reason, the following dis-
cussion of different ways of specifying these variations will
be centered in these planes: For simplicity, only the adiabatic
case is considered. Under this condition, if equation (18a)
is applied to the three successive stalions of a stage and i is
differentiated with respeet to r,  _

_dH,dry

dH, dg’z drs_dt)\_dH, drz - (38)
dr, ' “\dradr, dr)” drs &, drs dr, -

A few ways of taking up the degrees of freedom at these
stations between successive .blade rows are hsted in the
following paragraphs: .= = e

(1} Constant work per unit mass of gas ﬁow over the bla,de
height. This condition is usially specified in the design of a
turbomachine. It relates ¢ behind the rotor to its value
ahead of the rotor by el o '

5'2(7"3) §1(71)+T1 10, Un ' (39)

or : e
dfz df‘z _dhn

df'z a;I d?']_ E .

where ry,, 8,0, is equal to (f2—11) at the blade tip and is
also equal to (f3—¢y) at other radii.

Constant work over the blade height gives consta.nt, total-
enthalpy change over the blade height. If the velocity at
the exit of s stage is equal to that at the entrance, this

condition also gives constant statm—enthalpy cha,nge over

the blade height.
Under the condition of constant Work, equa,tlon (38)
reduces to . T

d'HI de d)"g dHa drg R
drl d?"z dh d?‘;.; drl - (38a)
(2) Constant total ent.halpy'ove—r the blade height:
oH .
>0 (40)

This condition usually applies to the first stage of a com-
pressor and will hold for all succeeding stages if constént
work per unit massover the blade height is employed. If a
nonzero value of dH,/dr, is desired, an Initial preparatory
stage must be specially designed to obtain this value.  In

the last stage, however, it is usually desxra.ble that bH /ar be

neexly zero.
(3) Free-vortex-type distribution of tangentlal veloc1ty

5.=0 o : (41)

or

— L : (39&)

(41a)

This condition is commonly used in turbines and compres-
sors. Ignoring radial motion, in addition to this condition,

-constant total enthalpy and constant axial velocity over the

blade height can be obtained. Considering radial motion,
only one of these two additional conditions can be obtained
in conjunction with equation (41). (Sce scction NUMER-
ICAL EXAMPLES FOR TYPICAL DESIGNS.)

(4) Symmetrical velocity diagram. If ¥,,=V,; and
r=ry=r, the symmetrical velocity diagram gives

— o Vo 1+ Vo, a=or (42)

or e
- nth=ed (420)

Differeli"tlfating':with respect to r yields
LINR: R (42b)

If risr; or T,1¢T 52 the symmetmcal veloc1ty dmgmms
may be defined by o

w O0) ) =wr® o (4_3)
The.n, .
e . (439)

{
With the use of the symmetrical velocity diagram, the acro-
dynamic limitations of gas flow through the rotor and the
stator are reached at about the same time. Reference 10
shows that the blade-profile loss is a minimum with the
symmetrical velocity diagram if the lift-dr ag ralio is con-
stant. For incompressible flow, the change in static pres-
sure or enthalpy is also the same in passing through the rotor
or the stator, and the stage is therefore often referred to as
the ‘‘50-percent reaction stage.” :
(5) Wheel-type distribution of tangential velocity:

=Ko @9
or - . P
S §~Aﬁ (4433

(6) Coost.a.nt- taogential velocity:

1'/’B,t"_—l"{f i (4"5) "

T ) d‘.i K(

(7) Constant axial velocity over blade height:

oV,
or

—0 C e

At a very low speed of gos flow with no cho_;)ge in (iensity,
the specific mass flow will also be constant over the blade

height; there will therefore be no radial flow across the blade

row and equation (14b) reduces to (with the entropy varia-

tion neglected) . o
e S BRCY)

(452)
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And when
oH
or 0
of
T

The equivalence of equations (46) and (47) breaks down,
however, for current aircraft applications, where the speed
of gas flow is high.

If equation (47) is substituted into the radial-equilibrium
equation (14b) with entropy variation neglected, the follow-
ing relation is obtained:

(47a)

The left side of equation (47a) is the tangential component
of fluid rotation VXT7; thus equation (47) is a condition
for potential flow in the free space between blade rows.
If it is desired to take into account in design the effect
of the boundary layers at the inner and outer walls of the
gas passage, instead of equation (46) an appropriate axial-
velocity variation close to the actual one may be preseribed

in design:
d;r:'f= oi(rs)

(46a)

{8) Constant specific mass flow over blade height. In
order to avoid radial movement across the blade row in com-
pressible flow, it has been suggested {for example, reference 11)
that constant axial velocity be replaced by constant specific
mass flow:

dG,_dG, dG,
& dr o dr 0 “$)

Radial displacement can also be prevented by the use of two
conditions instead of three:

4G, dG, dG,
o dr o dr (49)

For designs using either of these two conditions, thesimplified-
radial-equilibrium caleulation is more correct.  Designs
employing no radial flow have the advantage that the cal-
culation does not involve any radial displacement across
the blade row and that the two-dimensional-cascade data
can be directly applied. The final equations derived from
these conditions (equations (48) or (49)), however, are diffi-
cult to solve and the conditions are incompatible with
tapered passage in & multistage turbomachine.

(9) Relative Mach number. For high performance, a cer-
tain variation of relative Mach number consistent with the
radial variation of solidity and thickness of blade may be
specified in design. Then for the rotor,

Vil + (Vea—ory)?
(r—1) I:Hl. - % Vel + 10D :I

For the stator, .
Vel 1+ 15"

=) | Fmg (7 + Vi

=3 =g () (50)

=3M=0a(ry) (61)
2)]

(10) Untwisted rotor blades. For simplicity in fabrica-
tion, especially for a cooled turbine, untwisted rotor blades
may be used. Inasmuch as the flow angle is only slightly
different from the blade angle, the following relation may be

used in design:
dp: _
a’_n_ol

dﬁ2=oJ (52)

drz

(11) Blades with all elements radial. For high-speed rotor
blades, in order to reduce centrifugal stress it may be desir-
able to have all blade elements radial. Then,

F,=0 S (53)

By using this relation, equation (12a) reduces to

F, _
1;—10—[{1"
or
tan §=—Kr (53a)

where K is a function of z.

In multistage machines, similar variation in either tan- _
gential velocity, axial velocity, or specific mass flow may be
specified at the similar stations of each stage:

do_disdrs

dr=dr, dr, 69
AV dVisdn }
dr;_ - drg drl (50)
or G
dG[_d 3 drs
&, —drs &, 8

Stages of multistage machines designed for similar variations

of gas properties from stage to stage are termed “‘typical
stages.”
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Types of design.—
design may be obtained by different combinations of those
conditions specified in equations {39) to (56). These
designs may be.conveniently divided into two groups. In
the first group, the condition of constant work at all radii is
spemﬁed in the de51gn That is, equatlon (39) is employed
which gives:

di' 1. di‘s
d . dTl .
an ’ .
dH,_dH, dH, (57)
d dr b d?‘l

In cases where the symiriét-rical irejoéity &iﬁéﬁim"is-'aISd“

specified, by using equation (43a), equation (57) i‘educes to

dh
drl ‘—85‘1'—' wh

and ' (58)
T dﬁ —‘E—l
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A large number of different types of

In the second group, the condition of constant work is not
specified.

The following tables present a few types of des:gn in each
of the two groups for multistage turbomachines consisting of
a number of similar stages. The manner in which the
degree of freedom is.used up at each station of a typlcal
stage and the known characteristics of cach type are given.
The typical stage is considered to consist of a rotor foIIowod
by a stator. - L

These conditions spemﬁed for the typ1ca1 stage as gwen in
the table, completely determine the flow over all the stages.
The flow in the inlet guide vane, if required, is to be deter-
mined by the given condition at the inlet to the machine
and the condition specified at station 1. Similarly, the flow
in the last stator is to be determined by the condition speci-

‘fied behind the last rotor and the given condition at the E"{.lf:

of the machine.

It mdy be desirable for certain applications to use dlﬁelent
types of design in a multistage unit. Those designs can be
obtained by us1ng only the relations of different types at
stations 1 and 2 in the table.

GR_OUP __I
Condxtions seol- T
Type | Station” [. fied atsstagons Characteristi Addttlnnnl rcmnrks
of any stag-a o _
dsy Lo 3
! e a0 _dty_ - . ' oH e
_ e | dr, dr, Va,i=Eyr; it -a—r--o at inlet to machine,
1. Froe vortex 2 9°‘_‘5“‘““”_ work dH, dH, dH. * Constant axial velog ty over blade helght tor Incompressible ﬂow I
i L d punke W Whsinls - 8mall radiel gradfent in axial velomty for compressihle flow. ~—m( af all stations,
3 Oy _dly dry dr;  dr, or - -
dry dry LN : oo .
1 - Syimxgetgcal va- & d; d;-_ v l_bﬂ 5¢U1 efe -
oci am” | 281 % 943 . : :
v clogr @, dr 'E =en __’f{ Combination of wheel-{ype and | If —=0 at inlet to mnchine,
2, Symmetrical veloclty 9 Constant work 1 % €1 . vortex-type tangentiat velocitics. or
dipgram . G dE. aH v "”1 ‘:UI 0] "1 AR IS i - :
&_dts ek Wikl M .9~ Ty : ——=0 at all stations,
3 T dry dr1 drl : ) or .
LRk 3 Large ne_gat_lve radigl gradient of axial velocity &t all stations. " o .
1 d—j_i--zzfr1 dty_dfy_dby_ o Ve 1 =Ery oFf
8. Wheel-type tangen- ] @y dry dr, b oy , It 5-=0atl nlet tomaching,
tial velocity in front 2 Constant work V, — ( K71+5¢U1 Pt Lty oL
of rator s df, ﬁ % ﬁ S —"t/ 7 . —-‘LO af all stations.
ooy
8 - d’l dfl : gy dry dr " Large negatwe radlal zradlent of axfal ve]ocn;y at alI stntlom or
. 4, di
1 Constant work oy %y
aV, 1 4V, o il
4, Sarme m{atlon in 2 . =l p —5E dH, dH, dH, " For incompressible How, this type requires no radisl flow across u ;.-0 8¢ inlet to machine,
axial velocity i . L3 Ty P TRl et blade rows and is_cquivsalent to first type in group. For com-
. L LSS L) pressible flow, small radial gradlent exigts In . dH
3 Ve, €V | . o - e o ~oat all stations.
_Ldrz ’d—rl- _ ] av,, Vi1 d‘, LAY dI - : -
o Tar dr, dr, L . -
1 Constant woik | 1% - . e
w0, g |0 ) o1 :
- varfati bl Pt 3 ' If — =04t inlet to machine,
8 s%:gilge ;,g;ﬂfg; In 2 dry dr dHl_d_Hj aH, No rndia.l flow aeross rotor and stator blades for nontapered or : - s
: | Ty dry passage. ) ] >H
3 4G, d@; "’ - S N : -D—r--ﬂut all stations.
o dr, [29.9% 9% . -
: Sz fdry drp odr )
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GROUP I

Conditions specified
at 3 stations of any
stage

Type Station

Characteristics of low

a6_o

L dn
46,
dry

’ d &g,
1. Constant specific mass flow .d_al_E’,_.‘_
dry dry drg
[{¢]
—3.q

dry

No radial Bow across all blades in nontapered passage.

dv,
dry

=}

a1, 0

2. Constant axial velocity 3
Ta

N o radial flow acrossall blades in nontapered passage for incompressible Sow.,

3. Untwisted rotor blade

NUMERICAL EXAMPLES FOR TYPICAL DESIGNS

The methods of calculation previously outlined are applied
to the typical stages of compressors of types 1 and 2 of group I,
as given in the table. The inlet total enthalpy is assumed
uniform with respect to radius; and with work exchange
with rotor uniform along the radius, total enthalpy is con-
stant with respect to radius in all stations. The calculation
is rendered dimensionless by expressing 2ll veloecities in terms
of [7,, total enthalpy in terms of U/}, and r in terms of »,.
Because the main purpose of the caleulation is to deter-
mine the magnitude of the oscillatory radial motion and its
effect on the radial distribution of gas properties, a non-
tapered passage wall is used. Heat transfer is assumed to
be zero in the calculation and the entropy is assumed to be
constant at each station. The change of entropy across
the blades at all radii is assumed gqual to that obtained from
the polytropic efficiency assumed at the mean radius. This
calculation does not take into account the boundary layers
at the rotor drum and the outer casing, and consequently
is good only for the main portion of gas flowing between
them. This restriction can be removed if more data on the
variation of n with radius are available.

In the comparison of different blade-row aspect ratios in
each design, in addition to the same aerodynamic limitations,
the same axial velocity at the mean radius is used. The
comparison between different cases will be slightly different
if another basis of comparison is used.

Symmetrical-velocity-diagram and constant-total-enthalpy
compressor.—Because the difference between zero- and
infinite-aspect-ratio cases is found to be large in this design,
two calculations are made for a blade-row aspect ratio of 2;

one calculation is based on a preseribed sinusoidal radial-
flow path, the other is based on the approximate solution of
equation (37). The equations based on preseribed sinu-
soidal radial-flow path are given in appendix G. The follow-
ing design constants are used for all cases:

Hub-tip ratio- .- o e 0.6
Limiting Maech number relative to rotor blade. . _____._____._ 0.8
r.— 1
Limiting value of VAL . 0.7
£
Polytropic efficiency at mean radius_ _ - . o ooooaoaoo 0.9
Vedanf Ut o oo oo et - 0. 772

The limiting value of —"—?E—,_-—“ is based on a formula given
z,1

by Howell (reference 12). The last value results from the
use of V,;/U;=08 in the simplified-radial-equilibrium
calculation, and is used for all cases. The results of the
calculation are shown in figure 4. .

Thedistribution of specific mass flow ahead of and behind the
rotor for the different cases considered is shown in figure 4(a).
It may be seen that in all cases except the infinite-
aspect-ratio case, the specific mass flow G/@; increases to-
ward the hub faster behind the rotor than ahead of the rotor;
that is, passing through the rotor, the gas moves toward the

axis of the machine. The magnitude of this displacementis =

obtained from the continuity equation (C5) and is shown in
figure 4(b). In the simplified-radial-equilibrium calculation,
it is assumed that there is no radial motion, but when the.
distribution of specific mass flow is substituted in the con-
tinuity equation (C5), quite large radial displacement across
the blade is obtained. This kind of calculation is therefore
inconsistent. In other calculations, the distributions of gas
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properties are calculated from assumed radial displacements

that are to be checked with the displacements required from
the continuity relation with these distributions, and are
therefore consistent in themselves. The radial displacement:
used in the approximate calculation for A=2 is obtained by
the approximate formula, equation. (37), and is about 25 per-
cent lower than the value obtained from usmg the ‘sinu-
soidal radial-flow path.

The variation of axial velocities is given in figure 4(0),
which shows that the axial velocities inerease toward the hub
in all cases, but at different rates. The high value of axial
velocity at the hub entering the rotor blade allows. the use
of higher turnings at all radii without exceeding the limiting
value of (Va— V5,)/ Ve or ¢Cr at the hub. 16 also helps
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Lo , ——— to give a more uniform Mach number relative to the rotor
\‘ H blade over the blade height. As a result, this type of design
3 3 gives a higher pressure rise and a higher specific mass flow
i 4 than a free-vortex type of design using the same design
Y 3 limitations. In order to utilize this advantage fully, the
\ kY variation of axial velocity should be correctly determined.
\ Y i The calculation of axial velocity based on simplified radial
-9 v — equilibrium gives a result close to the zero-aspect-ratio case, .
\ RS which is also true in the distribution of other properties in
\ A Y this calculation, because in the case of zero aspect ratio, the
N curvature caused by radial motion is negligible and the
\ Y difference in gas properties caused by the radial displacement
'\ '\‘ is very small in the nontapered passage.
The variation of tangential velocities is shown in figure 4(d).
NBEER These velocities in different cases vary in a similar manner
\ v and the difference of magnitude between them is mainly
N LY due to the different value of 5, determined by the different
\ LA values of 17,,/L7; in the various cases.
, Figure 4(e) shows the variation of air angles entering the
S Y rotor and stator blades. The difference between the simplified-
\ G v radial-equilibrium calculation and the case of aspect ratio
of 2 is significant throughout the whole blade height. The
4 simplified-radialequilibrium calculation gives 2 value about
CLIl<A=Z, approximote \ | 3° lower than the aspect ratio of 2 at the tip of the rotor
H blade and at the hub of the stator blades.
v The variation of Mach number relative to the rotor blades
@ \‘ is shown in figure 4(f). The simplified-radial-equilibrium
& : _ \ calculation gives a nearly constant value; whereas the more
-G8 -70 . .75 -8 correct calculations show that Mach number actually de-
Wijas - 3
creases about 10 percent toward the tip for the case of blade-
row aspect ratio equal to 2. (This variation, however, is
only about one-third of that of a similar free-vortex com-
pressor.)
The pressure distributions ahead of and behind the rotor
and the pressure rise across the rotor at different radii are

ry/re:
o
d
-

(f) Variation of Mach number relative to rotor blades.

T T 1 shown in figure 4(g). The difference in pressure distribu-
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tions may explain to a certain extent the dlﬁerence found
between measurement and the simplified-radial-equilibrium
calculation. The pressure rise acros¥ the rotor is fairly
uniform in the case of an aqpect rat10 of 2 and isa desu‘a.ble
feature. - : P

The velocity diagrams at three radu for a,spect 1at.1os of O :

2, and « are shown in figure 4(]1) If this stage is used as

the first stage of a compressor, the permissible tip rotor

speed of this design at standard sea-level conditions is equel

to 868 and 826 feet per second for A=0 and A=2, respec-

tively. The specific mass flow per unit annulus area, cor-
rected to standard sea-level conditions, is equal to 41.5 and
40.0 pounds per square foot per second for A=0 and A=2,
respectively.
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The design constants used are the same as in the previous cal-

culation,’ In addition, 1%, and Vg ; are considered to be equal

to Wsz and W, 1espect1voly, at the mean radius. In this
type of design, the simplified-radial-cquilibrium approxima-
tion is eqmvalent to the zero-a,spect-ratlo case, because, due
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APPLICATION OF RADIAL-EQUILIBRIUM CONDITION

to the constant value of #17% in this design, the radial motion
across the blade does not affect the caleulation in the zero-
aspect-ratio case. That is, the same values of H;, Hs, {1, &,
V721, and 175 oceur in both cases and the entire ealculation
is the same. (See also equation (¥'6).)

Because the radial motion involved in this type of design
is meinly due to the compressibility of gas, the difference
between the zero- and infinite-aspect-ratio cases is not large;
hence the calculation for a finite-aspect-ratio case is not
made. :

The distribution of specific mass flow ahead of and be-
hind the rotor is presented in figure 5(a). Even in the zero-
aspect-ratio or simplified-radial-equilibrium case with a
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(f) Pressure distributions and pressure rice across rotor.
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(g] Velocity diagrams at different radii '

FIGTRE 5.— Concluded. Free-vortex and constant-fotal-enthalpy ecompressor
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constant axial-velocity distribution, considerable change
oceurs in density, which requires an appreciable amount of
outward radial motion to obtain the given design conditions
behind the rotor. Although the amount of this radial motion .
is small (fig. 5(b)), its effect on the variation of gas properties
is not entirely negligible. Its effect can be seen in the curves
of figures 5(c) to 5(g), which are somewhat similar to the
symmetrical-velocity-diagram and constant-total-enthalpy
design in nature but of smaller magnitudes.

If this stage is used as the first stage of & compressor, the
permissible tip rotor speed at standard sea-level conditions is
equal to 758 feet per second for A=0. This tip speed is
about 13 percent lower than that of the corresponding case
of the previous design. The specific mass flow corrected to
standard sea-level conditions is equal to 38.6 pounds per
square foot of annulus ares per second for A=0,.which is
7 percent lower than that of the corresponding case of the
previous design.

Free-vortex and constani-totel-enthalpy turbine.—The
design constants used in the calculation are: A;<1, U,/a;,,=
0.5, Viysfa,,:=0.8, Viinfer, =04, Vy,=0, and polytropic
efficiency at mean radius equal to 0.87. For the simplified-
radial-equilibrium approximation or zero aspect ratio,
1,./U; is constant and so is 1,4/T7;, which is found by the
continuity relation to be equal to 0.877. The same velocity
at station 2 is used for the infinite aspect ratio, thus making
the only difference at station 1. The results of the calcula~
tion are shown in figure 6. .

The distribution of specific mass flow ahead of and behind
the rotor is shown in fgure 6(2). DBecause of the constant
axial exit velocity, the specific mass flow is constant behind
the rotor. Except for the case of infinite aspect ratio, there

is ap inward radial motion of gas in passing through the rotor

{fig. 6(b}), the magnitude of which is about two and one-half
times that in the previous free-vortex compressor (fig. 5(b)).
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The varmtmn of axial velocity ahead of the rotor is shown
in figure 6(c). An increasing axial velocity toward the hub
of about 15 percent would be required for an aspect ratio of 2,

Figure 6(d) shows the radiel variation of gas angles
entemng rotor blades. The difference is only important at

“the hub, In the actual case of an aspeet ratio of 2, the
simplified ealculation would give an angle of attaclx 3" to —1° _

too high at the hub. -
The absolute and relatwe Mach numbers of gas ahead of
the rotor are shown in ﬁgure 6(e). In the getual case of an

aspect ratio of 2, the Mach number at the hub is about

3 percent higher than the simplified caleulation. }
Figure 6(f) shows the pressure distribution ahead of the
rotor. For an aspect ratio of 2, the pressures at the Lip and
at the hub are about 2 percent higher and 3 percent lowel
than the simplified calculation, respectively.
-The velocity diagrams at three radii for the zero and
infinite aspect ratios are shown in figure 6(g).
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SUMMARY OF ANALYSIS AND CALCULATIONS

In axial-flow turbomachines, radial motion of gas occurs
because of the tapering of the passage walls and the variation
of gas conditions across blade rows specified in the design.
The direction and the magnitude of this radial flow depend
“on the type of design, the tapering of the passage walls, the
blade-row aspect ratio, and the Mach number of gas flow.
Even in the free-vortex type of design employing nontapered
passage walls and requiring no change in velocity distribu-
tions from stage to stage, an appreciable amount of oscillatory
radial motion oceurs within the stage.

This radial motion gives an additionsal term to the ordinary
radial-equilibrium equation. In the free space between blade
rows, this additional term is spproximately equal fo the
product of the square of axial velocity and the curvature
caused by the radial flow. Depending on whether the
curvature is positive or negative, the radial pressure gradient
caused by the whirling motion of gas is decreased or increased,
respectively, by this additional term.

The determination of this radial-flow path requires a long
process of step-by-step calculation. It is found, however,
that a sinusoidal radial-flow path gives an effect on the
radial variation of gas condition between blade rows as
small as possible without discontinuity in the curvature of
the streamline. It may therefore be desirable to preseribe
this simple radisl-flow path in the design. Also, inasmuch
as it represents the major harmonic of the radial-flow path
that may exist in any design in which the blade loading is
relatively uniform in the axial direction, the calculation
based on this simple radial-flow path gives good approximate
results.

Methods of solution for the limiting cases of zero and
infinite blade aspect ratios and & simple approximate solution
of the radial displacement across the blade row having a
finite aspect ratio are also obtained.

The analysis made of the maximum compsatible number
of the degrees of freedom in specifying the radial variations
of gas properties in stations between successive blade rows
of a turbomachine shows that the designer is free to specify

one such variation at each of the stations. The various
ways to use up these degrees of freedom and the resultant
types of design obtained are discussed.

The usual method of calculation, which neglects the radial
motion, gives results close only to the case in which the axial
length of the blade row is much larger than its radial length,
and is not good for the case of a finite blade-row aspect ratio.
The difference between the results obtained by the usual
method and the method suggested herein is found to be
quite large in a design employing constant total enthalpy
and a symmefrical velocity diagram along theradii. Caleula-
tion made for this type of compressor, using the same limit-
ing Mach number, seme limiting turning, same axial velocity
at the mean radius, and for a blade-row aspect ratio of 2,
gives the following differences between the usual and the
suggested method:

1. The radial variation of anal velocity ahead of the rotor
is 13 percent for the usual method and 28 percent for the
suggested method, and the radial variation of axial velocity
behind the rotor is 53 percent for the usual method and
40 percent for the suggested method (all expressed in terms
of their values at the mean radius).

2. The air angles differ from 1° to 3° at the hub and at
the tip.

3. The radial variation of Mach number relative to the
rotor blade in the usual method is 9 percent lower than
that in the suggested method.

4. The radial variation in static-pressure rise scross the
rotor is 13 percent for the usual method and only 2 percent
for the suggested method.

5. The mass flow in the usual method is 4 percent higher
than that in the suggested method.

6. The allowable rotor speed in the usual method is
5 percent higher than that in the suggested method.

LEewrs FriceT ProPULSION LABORATORY,
NaTroNAL ApvisorY COMMITTEE FOR ABRONAUTICS,
CLEvELAND, OmHI0, January 1, 1849.
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SYMBOLS
The following symbols are used in thls report o vV ‘absolute vector velocity of gas -
aspect ratio of blade oW, T S R V.  radial component of 7 )
a velocity of sound .. . _ V.  #xial component of V
O,  lift coefficient SR Vs  tangential component of V
[ specific heat of gas at constant pressure W magnitude of w
¢ specific heat of gas at constant volume : W  vector velocity of gas relative to rotor blade
DDE differentiation with respect to tlme followmg motion | W, tangential component of w
of gas ¥ maximum radial dxsplacemen'& over blade height
F external force per umt mass of gas (gene;al case), z distance along axis of turbomachine
circumferentially uniformly distributed blade force | « _angle between absolute velocity of gas and axis of
per unit mass of gas (axially symmetric case) turbomachine
F, radisl component of B angle between relative velocity of gas and axis of
F, axial component of F turbomachine : S
F, tangential component of F ¥ ratio of specific heats, ¢,/e,
g - .
b form of radial-flow path : | oA radlal dlsplacement a,cross rotor, rg—ny
G mass flow per unit fow area perpendmular to axis —{1
of turbomachine -~ . T 5 dimensionless turning, T, o
g form of radla,l-dlsplacement dlstrlbutmn ¢ angular momentum about z-axis per unit mass of
H total enthal it of gas, b e gas, Vs
enthalpy per unit o g8 + 7 small-stage or polytropic efficiency
3 enthalpy per unit mass of ga,s - +P o ' ] angular coordinate measured from some fixed radial
’
__line : .
K constant - o= - SR
‘absolute viscosity of gas
k thermal conductivity of gas I; hass den:1ty of gas g
L axial length of blade row (fig. 3) - blade solidity
ﬁf Ihx,::l[:scsho?z::er of gas- o @ dlssflpntlon of energy due to viscosity per umt volume
: Lo : o 77 of gas per unit time - -
n polytroplc expm;ent of actual expa.nsmn or compres— o funct%on P ' . : B
sion process of gas _ ; 1 dinate d relative to rot
_ x  angular coordinate measured relative to rotor
static pressure : w rangular velocity of blade _
heat input to unit mass of ga.s along its path of motion Subseripts
per unit time from neighboring gas particles in 1 if.)heé. d of rotor
iﬁiﬁll‘;ls;?:;eﬁmfrco;: blade and passage wall in ) 5 -~ -behind rotor and ahead of stator
3 “behind stator and ahead of next rotor
B gas constant o ¢ "S‘a.t1sfy1ng continuity equation
r radial distance measiitéd from axis of turbomachme ¢ satisfying radial-equilibrium an d to ta,l-enthal cqua-
o mean radius of radial-flow path (fig. 3(a)) - tio 3: . g 4 Py .qu .
" o= ir,. e k Jhub .
H ] - . . R
s entropy per unit mas§of gas i any szaf;mn between two bladerows. = _
8.7, e. simplified-radial-equilibrium approxxmatlon .;c a,?gz sta Lhon t dist d ¢ £ stati
T absolute stream temperature of gas I i;1221111gsv:fue 1stance downs rea.m of sta an
t tim .
U ma.gem’oude of T m ‘at meah radius
7 vector velocity of blade at radius no —usgd “ilth r toﬁmdlcate radius where maximum radml .
% internal energy per utiit mass of f gos with 0° absolute as 1SPACEMENt OCCHTS -
base temperature . 8 simplified-radial-equilibrium approx1mat1on
V  magnitude of V £ tip :
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APPENDIX B
DERIVATION OF EQUATIONS

From equations (4), (7), and (9), and the relations

R=c¢,—c¢, (B1)
and
'r=z—: B2)
there is obtained
— P
— T g (p) (B3)
From equations (8) and (B3), ]
Y g(\N1g (¥
dH=7"5d (p)_rd< 2 ) B4
From equations (9) and (10), '
Tds=dh—2 ®5)
By use of equation (B3),
Y4 (P\_%
Tds—"1d (p) ! B6)
By use of equation (7},
_ 1 x dp -
d(R) 'Y—l P Ty—17p ®B7)
-1 2
v—1 d (log' p’) ®B8)
1 2y\_
T y—1 d (10g, p) d (log. p) (B9)
1
== 4 log. D—d (g, ) B10)

Equation (1) may be written as
v.V + Di log, p=0

Combining with equation (B10) yields the following form of
the continuity relation:

—Di (R) 0 (12)

From equation (2) and the fo]lowing relations

V+ 1 D Iog,

and

Vv)V=;5 VV2 VX E@XW

there is obtained

av —TXEXT) 45 VV*—F—— sz+" I:V’V+3 V(- w]+

2[R VITHTAX XT3 @A | @D

L= R
P

From equations (B4) and (B6),
Lovialypmvg— 2 (2)5.
2VY -l-pr VH. 7_1V 5 -[-pr
=VH—TVvs

Combining with equation (B11) yields

v

VH=F+TVe+ VX (VX T) — 2 +2 [\7’-1 +3 V- V)]-{-

Lo 109 PHEDX 0x T)—3 77) o}

From equations (8) and (B5),

DH . Ds

1Dp DV
DTt

+7

_ mDs : (1 DV
T+ 2T ( vp+ oy
By combining with equation @),

%{—-T Dt+19p+v (F—r [wv-:- v(v- n]—l-

LB Ea M THEAX XD - 7P En})

When combined with equations (3) and (10),

241 247 (P2 P4y T [+

Ha[wn v T+ EaX TXT) -5 0:7) 7 ) G

From equations (3) and (10),

Ds &
Th=@+3
or

Ds @

Di T+R (3b)

For steady axially symmetric flow of nonviscous fluid,
equation (3a) reduces to

H—+FV ®12)
From equation (11},
F-V=FU
=FU
=rFuw (B13)
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From equation (15), B I

rFy=V, a("Va)_I_V a(rV,)

=:liol ST @iy

Combining equations (B12), (B13), 'ém_d_ (31_4) ‘yields

DH

(18)

For steady axially symmetric flow .of a viscous fluid,
equation (18) is obtained by applying motion and energy
equations to a mass system with a fixed control surface,
as shown by the solid lines in figure 2. Under steady
axially symmetric flow, the mass inflow dm, in time df is
equal to the mass outflow dm; in time df, the state of gas
within the control surface is unchanged, and the state of
gas at stations § and k is constant with respect to 6. By
equation (B11), the sum of the tangertial blade force and
the tangential viscous gas forces exerted by the surroundmg
gas particles on the system is equal to

1 D@V |
}" Tt 8 dm,

The torque about the z-axis exerted by these tangential

forces on mass dm; is therefore simply % dm; and the

work input to mass dm; by these tangentlal forces in tlme

dt is equal to : ol
D (rVe)
Dt

dm; o dt=w[.(er)k— (f'Va) j]d"-r-"i '

In passing from station j to station k, in addition to receiving
th'is Work input the gas particles are doing work ‘against the
gas partlcles Thls negative work is usua]ly small, however;
if it iS assumed that the heat generated by the frlctmnal
work is added back to the same gas stream, the heat addition
cancels the negatlve work, and the energy equatlon for
steady flow gives

H—H) dm,éﬁ:" Q dm, dt=+al(V)s— (V) Jdm,

or

Q+ D(TVU)

- (18)

where @ denotes the rate per unit mass at which the gas
stream sheet is receiving heat from ext,ernal source through
blades or other passage walls. :
When equation (19) is given, the entropy cha.nge can be
obtained in the following manner: From equation (B10),
( )_ lo —D 1 15
DI\R) v—1 D“ ge T 0ge p (B15)

Bu tby :.qﬁati.o.ns _("19) and N ',
D 1 D
piloge =5 iy loee T
Substituﬁng into equation (B15) gives
Ds o7/ 1 1\D
t E (’y—l—n—l) Dt log, T

n—

mﬁt log, T (B16)

For steady axially symmetric flow, equation (B16) reduces
to o

Q‘E.._-R n—y

o= (7 5 low. 747,

For successive axial st.a’uons jand ka short dlst-ance apart,
equation (B16) gives

2 log. T) 20)

8x(re)—8;(r) =R m [loge Th(re) — 1°g¢ Ty(ry)]

_ n—y T (r)
=k a=00—1 % T,y

B17)

Inasmuch as the temperattre change between the two
successive stations is small, if the enthalpy is measured with
0° absolute as the base temperature, the temperature ratio
can be considered equal to the enthalpy ratio:

k

-

T b T

11 "hj H, Y;’ - (BIS)

Substituting equation (B18) into cquation (B17) gives
Vi

H,— —
£ 7 (20w
7

Sj(?“_;) R(,n 1)(7

8:(rs) 1y log
7,77

The. density ratio between the two stations is obtained
from equation (B10)

I U,
&=<£fs)"‘1 T E
ps \T}

- (Bi"g)'

Combining with equation (B18) yields
1 ]
. 7 2 *—1
..... : ) H — ¥ 2" _ny .
’ S 73 e © (B20)
P1 Vy
H Y

Substituting into equation (22) gives

% ...ff. r o % _"f .
Vz,k(Hk—Z;—k y 16 Rfk dr{:=.V's,j (IIJ—%L)T 16 ET‘,- dr,

(22a)



APPENDIX C
DETERMINATION OF RADIAL DISPLACEMENT BY USE OF CONTINUITY EQUATION

Equation (22) may be written as a linear differential equa- | The value of G, /@, is found by the condition that total
tion for r* as a function of r;, provided G,{r;} is known: mass flow at stations 1 and 2 is the same:
d(r? ) Gl (r)
drl Ga (rl) " (r2 h)
re\ G, t_ T2t !
s G (ry) (7'2 B Gz t Co
¢ I\
=) ey ndntnd O ruan” i dny
Ttk Gﬂ ( ) rl.t 1,
when divided by rs 3,
F1.e Tt G]_(rl) rl é’_y_ Hence
)‘2 t) (rz t) n G (rl) Tial: €2 G,
- v 7 (D)
If ¢, and @G; are unknown and only G/G, ; and G,/G,,, are f“ %-f Y rdn
known, & modification is necessary: -
Ta.n Gz.:
)= -(2) ] —3 (G5)
Pa.t Tae Rl (T)
) —_ _( ) G[ t frl.t G]_g ?'1 d_ﬁ (03) fe Gl,t ) 3 @.
Ta.t Gz: T‘L.tf'u nnﬂ(r)rx.zru
1 G2.t 1
APPENDIX D

EQUATIONS FOR SIMPLIFIED-RADIAL-EQUILIBRIUM CALCULATIONS

Equations to calculate distributions of gas properties at
three stations of a typicel stage under the simplified-radial-
equilibrium approximation for a few fypes of design are
given.

GROUP I

Free vortex.—For this design,

dty_
o= (D1)

When the inlet total enthalpy is constant with respect to r
and the radial variation of entropy is negligible, equation (14g)
reduces to

av,.
s =0 (D2)
The variation in tangential velocity is, by equation (D1),
o= Vs 4 (D3)
3

At each station, by using equations (30) and (D3),
D Vi
s

When the preceding equation is integrated from r to r, and
the relation .
o=/
Yo

is used, there is obtained

b -]

(D4)

This equation holds for all stations, provided the appropri-
ate values of (V,. /a;) are used. It follows from equa-
tion {D2) that at each station

G_»
G z_Pz (D5)

The radial position of gas at station 2 or 3 can be obtained
by numerically integrating equation (C5) using distributions
of specific mass flow given by equation (D5). An alternate
method is to expand the right side of equation (D4) into a

binominal series. Because *5— 7 (Y. ‘) l:(r’) —1] is usually

less than 0.15, three terms Wﬂl be sufﬁuent Let p, repre-
sent the average density in the annulus between » and r,
then

e
2rpr dr
Pr r

p: w(ri—r3p,

% ? s, ;) +|: h ¢
21 8 I

and inasmuth as

1
=1+;

. (D6)

PraVia (r.2—r®) =praVea (72, 2—ry’)
187
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or . . .

Pr 1(7'1 t—N ) Vza Bh.l (‘ﬁ,:’*ﬁ,ﬁ
Pra(re,f—rd) I Ph,z(rz.s’—fz.hz)

(:)" (n) [ ( ):I%: |

The change of total enthalpy across the rotor is
—Hy=w{ti—§1)

Then o | B
%_' w_(fg___;_l)_ R T
I_{l_l-{_ Hl -

COMMITTEE FOR AERONAUTICS

where

T T'n
-V ez;.—Vm.h

the quantlty —-—17———
&1,

Ina.smuch as

H,=h,

a’lt

1+— Verd+ Vo)

and

is to be chosen by the desiglié;_ |

7 \2 o R —
m.tx:(_v_?‘;’ S

; . —
i = 'sz .2 Ulz—Vll y
For compressor, * o - e N—ﬂ[ 2.0+ (UnLd— Vo z) ]
rﬂ h
Hy T VaunTia Vear— V“ "ULE where A is the limiting Mach number to be chosen by the
Hy  "rg Uy Vi H1 designer,”
e TlhT/zInFr—hV“r—‘e”
Hz e Uiy Vein

L ('Y'—l)-Mz [( +(l‘

The pressure distribution at each station is obta,med by
raising its density distribution (equation (D4)) to the power .
The pressure changes between the stations at different .
radii are obtained by combining these pressure distributions .
with the pressure change across the rotor at the radius where
the value of the polytropic exponent is known or agsumed.
The angle that the gas velocity makes with the axis of the
machine at any radius is obtamed from the known ta.ngentlal
and axial velocities. at .

Symmetrical velocity dlagram.—For the nontapered pas- '
sage, r=ry=r and from equations (39) and (42a)

dn_db_ )
dr dr :
P Qe
5’1—%-—’%7* (D9)
= Tde U _
2 2 J
or
Vou 11 din,
"Ul.t 2 ?'I,Ix 2 r
_ + (D10)
Vos_ L 7 811y
U]__g 21"1,; 2 r

When equation (DlO)ls suf;;tfituﬁed in’-oo.equaﬁi(')-ﬂ @0,

& =2 bp Cf) 1" 6: Ul_ g’
on7 -P br :F_____21"

1, 1
Y +Z"_(ﬂ_r{.t5tUl.t).z_;’_s -

DI

Where the minus sign is used for station 1 and the plus 51gn

zji):| (D8

Inetgration from r) to r yields

st .Ut [(r') ( );45 U, ‘) 1og,
@G

for station 2.
o {
Pr

(D11)

where the minus sign is used for station 1 and the plus sign

for station 2.

For the case where the inlet total enthalpy is constant w1th )
respect to radius and the radial variation of entropy is

negligible, the variation of axial velocity is obtained from
equation (14g):

dV dt
Vs dr 2 g‘dr

= =0y (2?'1.:2:':2-"_)_
Integmtion from r,, to r gives
o T Y
(Ux J  \Ui, ;) A
where the plus sign in the last term is used for station 1 and
the minus 31gn for station 2.

(D12)

;’%F)ia, log, = (D13)
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When both 1V and V7, are known, the radial variation of
density can also be obtained by applying equation (B20) at

the station:
L

H—% (Ve4Va [
L - (D14)
| H-5 (Ve + V)

In the tapered passage, the gas is assumed to flow in
conical surfaces, which gives the value of r; as a function of
r.. Equations (39) and (43) give the distributions of { and
T’s as shown by equations (E5) and (E6), respectively, given
in appendix E. The distribution of axial veloeity at station 2
is the same as that given by equation (E8). The density
distributions can be obtained from equation (D14). After
these distributions are known, the distribution of specific
mass flow @ is known and the radial displacement is found
by using equation (C5).

In compressors of this design, the maximum value of

LI A A

T is usually at the hub. Iis value there is to be
z,l
set by the designer. Then
Tz n
_$— ﬁh s hTrazn YEII‘V
b= ria Uy Vers Ul,:

and
Ta,n
7'17:6 rlh.‘zlhrl

f=—" b=
it i Ux:

1321!_.[0 Lk

Vera

(D15)

In this type of design, the limiting Mach number is usually
at the hub. Hence the denominator of the last ferm of
equation (D8) should be replaced by

1 ['I,z.l,b)a_{_ Ulh—‘ﬂlh)]_{_ [ ?zlh ’9! )]
(r—1)al# Ui, Uvi UI: U
The rest of the caleculation is the same as in the previous
design.

Wheel-type tangential velocity in front of rotor.—¥When
the cese of constant total enthalpy is again considered at
the inlet and the radial variation in entropy is neglected,
with

Ea

e D16)

-
a=Kirn= 8.1,t

equation (14g) gives

adVen

dT =—4 Klz‘f'l

Integrating from hub to radius r yields
. Vel =V id—2 K& —rs%)

) () =2 (B () - ()]

Ut o U1,z Ult 1.8, L.t (Dl") _
With radially constant work input to the rotor, and a non-
tapered passage,

or

rﬂ"‘_, =K, rl}4, T'L,tUl.t

(D18)
(BTG
Ul : Ui Ly W) )
4 [}:"‘ 8, log. ?—_?; (D19)

Equations (D17) and (D18) show that the axial velocity
rapidly decreases with radius at stations 1 and 2. If X in
equation (D16) is chosen to be wf2, the difference between
this type of design and the previous one is very smalil.

GROUP IT

Untwisted rotor blade.—Equation (52) gives

.‘et — ol

- =tan ;=K (D20)

where i=1, 2. When equations (14g) and (D20) are used,
the following relation is obtained:

1 OJT‘i do.‘yﬁ i : g £2 wl’ g, dHi dsi w‘r;
[(1 +I7 2) ‘[ dl‘; Ki dr‘ - T(‘JF‘{— Kt—"
O21)
or
T 2
[A+KH V.ot Kwry d; t-f_*_}ift_ V.2+3KwV..
Tt rs
_dH{ ds,,
=drn T, d—r-i—Zcugr, (D22)

Either equation (D21) or (D22) can be solved by a standard
method of numerical integration.
used to find the remaining velocity component. In equations
(D21) and (D22), dH./dr; in later stations, except at the
station shead of first rotor, is, in general, not equal to zero
even if it is equal to zero at the inlet. These ratios are to
be determined by using equation (18b). The term contain-
ing entropy in the equations may be significant in the case of
cooled turbine.

Equation (D20) is then



APPENDKX E

EQUATIONS FOR ZERO- AND INFINITE-ASPECT-RATIO CALCULATIONS

The method of calculations is given for the two types of
design used in the numerical examples.

FREE VORTEX

Zero aspect ratio.—In this type of design, the zero-aspect-
ratio case is the-same as that of . the smphﬁed—radml—
equilibrium approximation.

Infinite aspect ratio.—By equations (31) and (B20},

'[72 1

- =1 . él‘&z -
x”’"’:&:eg%ﬂ Hl 2 ' (I’L".eT)‘Y !
T'rs,l P2 Ifz_]/;_f V¢.1
_2H — (Vo i’ + Vi) e
=, — (Vo 7+ V..r) T @D

An additional relation between V,,; and V, is necessary
in order to solve the equation. In the section Limiting case
of infinite aspect ratio, two equations are suggested. For this
design, equation (33) gives _ ' '

{lel +d Vg 2

Or -

Via+ V.s=constant E2)
and equation (34) gives - -~

z,1 dV, 2

Ve d +Vea —ar =(
or |

V24V, 2—-const.a,nt} (E3)

Also from equations (F4) and (F5), When the square term
in A, is neglected
(E4)

The three preceding equat,xons give- practlcally the same
results.
A convenient procedure of calculatlon is as follows

1% 1Vg = constant

(1) In order to compare the result with other cases, the

same value of V,;, may be used. From equation (El),
Vz.2.m is determined.

(2) Imsert these values in equatlon (E2), (E3), or (E4) to
obtain the constant in the equation.

(3) Assume a number of values of V,; obtain V,, by the
same equation. Then use the following equation, which is
obtained from equations (E1) and (D3), to solve for r/r.:

)

8""!] V

(Voa,0*— e B V (Vau)’

s,-—sl s,—:, —1
) T v‘.;)
190 . .

(4) Plot V.. and V., against r/r,, and obtain 17,; and V,,
at the values of »/r, desired.

When the distribution of axial velocity is known, the den-
sity variation at any station is obtain®d from equation (D 14)
The pressure variation at each station is obtained by raising
the density ratio to the v power. The pressure changes
across the stage at different radii and the air angles are ob-
tained in the same manner as in the simplificd-radial-
equilibrium calculation.

SYMMETRICAL VELOCITY DIAGRAM ~
- Zero aspect ratio—With radial displacement not equal to
zero, the equations for tangential velocities are different

from the expressions of equation (D10). From cquations (39)
and (43) . e

at,_ dt
Fowr o
;.=ﬂ1’ 8. Uy,
U 2 E5)
4
ﬁ__wrx +r1 N1 U
) ) .
and B
E_ § __ﬂ__f'l.tax
Ul: TzUn 2ry: 21 (EG}

. Vea & (1 +r1.t5:)ﬂ
- le E,: 21"1: "2r

From equation (14g), neglecting the radial vaviation in
entropy, '

AV dt,
”T_—r_gi i’ta—

For station 1, frdm equation (E5) L e

dI - 1 ford 1,80, 1ln_3&
2r.d 2n

Vi o ==z 7 2

) wh=— U]_,gz
Integ'rating from 7, to r, yields

V) _l _ri_.r_n._»’)
Un ( +6‘1g3 ™ P ‘h,t’

which is the same as equation (D13).

sz d —_"'" (
VeadV, o= “"2’—“ (or 12+5zU1 ddn

'=_2r;’ 1.‘<?"1 +_) ( )

For station 2,

rlt"tUl.: wr drz
T2 )% dn
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Integrating from ry ; to 7, yields

B0 (3 £) ) oo

i

which differs from equation (D13).

The density distribution at station 1 is the same as the
simplified radial approximation, whereas that at station 2 is
obtained by using equation (D14). The solution of this
case is a process of successive approximations. Values of
rs(ry) obtained in the simplified radial approximation can be
used here as the starting values. Then the distributions of

0.2 Vg b2, 20d G are caleulated from the preceding equa-
tions, and new values of ry(r,) are computed from equation(C5).
Usuelly, only two or three eycles are necessary to obtain
the correct value, because the difference between this ease
and the simplified-radial-equilibrium approximation of this
type of design is smell. .

Infinite aspect ratio.—The first equation for the condition
G,=@; is the same as equation (£1). The second equation
necessary to solve this case is a little more complicated than

that in the previous type of design because %#0- If equa-

tion (34a) is used,

V; dT’xl_{_sz <§1d;l+§—2dr2
=_§ 1t =—or
Then -
V. 2+ V7, = —w¥?t-constant
or
Vol . 2 -
Tz +—U‘,-= Y +constant 10y

In order to compare the result of this case with other cases, the

same value of V,, , may be used. Then from equation (E1),

V%es.m is found, and the constant in equation (E10) is evalu-

ated by using this set of V,; » and Vi, A few values
of V,, are assumed at any other given radius, with corre-
sponding values of V7, , obtained from equation (E10).
correct values of V7, and V7, that will satisfy equation (E1)
are obtained by interpolation.

After the distribution of axial velocity is known, the den-
sity distributions are obtained from equations (D11) and
(D14), and pressure distributions, total enthalpy change,
and air angles are obtained in the same manner as before.

APPENDIX F

APPROXIMATE VALUE OF RADIAL DISPLACEMENT ACROSS BLADE ROW HAVING FINITE ASPECT RATIO FOR GENERAL CASE_
IN WHICH {; AND {; ARE PRESCRIBED IN DESIGN AS FUNCTIONS OF r;

In the latter part of appendix E, distribution of axial veloc-
ity is expressed in terms of known H, ¢, ry, and ro(ry).  Alter-
natively, this distribution can be expressed in terms of radial
displacement and its value determined by the simplified-
radial-equilibrium calculation, for which A,=0. For a
nontapered passage, it is seen from equation (l4c) that

ey, s b
I z,l1 d—l‘[_ z,1,2 ( (F]-)
and
L ’z b d gl 1Y 15 S d d 1
I z!dgr 2‘—.‘ 22,6 7. V 2. (L) (V 7-)2 r2+§-’ ;2<
(FZ)

-2
By substituting {r;+A,) for r, expanding ( 1-[-%) in a bi-
" 1

nomisal series, and neglecting terms of greater order than

2
(A?:) , equation (F2) becomes

de,ﬂ_ d‘[’zza- Az
Via = Voo, Ste 5 (T) 0 (1450)+

dts (o A, db
&, dry (2 7‘13) s dr z)
If A,(ry) is known, equations (F1) and (F3) ma.v be solved

as linear first-order differential equations in 7,2 and V4,
respectively, giving (omitting the subseript 1 on r)

\78 2=e(%)2 J:':; Adr [ﬁ:({% T’rz.l.sz) e_(’_;_)’ J:‘:-A'drdr_}_vm'mz]. |

F3)

. (F4)
and
R . “Id .- 24, d 3 2 d #(r -
£ =¢€ (L) "o § Nral S Fd—;ff— (A‘) 77 5 :l (L) T 2, m } (F5)
where For the limiting case of zero aspect ratio, the last term in

@)= [ scdr+3 {Ar—IaC1)

and subseript m may here refer to any radius between hub
and tip.

956646—51——14

equation (F1) approaches zero so that V,,=V,, ,, whereas

V... is obtained by integrating equation (F3} with the third
term neglected.

The
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3f; & d,.;z)a’r

When equatmn (F4) is lntegrated by parts and A,(rl) is
replaced by ¥, g(r) as in equation (35), there is obtained

T ( ) hm(f)

:ll z,t

Yep1 ()
2d () @L\T
1, —e

(F6)

2— .Vz 1 .m. 12) -

dr - -

()Mmf

in which

o (1) —f g(r)dr '

If it is desired to compare the general case with other cases on
the basis of the same V,, », then V,, .=V, .. By the use
of the mean-value theorem of integral ca]culus, the preceding
equation can be ertten as

( )mﬁr) '
[ ( ) ”'mm—l:l

Vz.lz'—' g1, sz=_e

(F7)
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L]

Where Vv is a mean value of T 2, ,’ bctween r and r,,‘, the
mean depending on the choice of the function g(r). If the ap-
proximation is made in letting V,, 5, n=V,2,m, s, cquation (F5)
may be written as

V‘z 2 —T 3,2,8 _I’r:.ﬁ.tz [e_(%) ”.ﬁ(r)"‘l]'{"yciﬂs(r)—yez‘Pi(r)
_ _ (r'8)

where .

a0 =8 =) +5 % OP T}

R ¢s(’r)=e_(%)z‘°mﬁ;e(f)"’(’) EF(;I_)_(% & dr
and '

: 504(1‘).=e_(%)zv(r)_ﬁr e(%)z"(r) §_[g_£p]_’éi; fHtdr

The é]iz__i.:ngé in the Eiiétrib-u‘t;ions_-df V,1 and Vs with the
maximum displacement y, for & given g(r) is now determined
by diﬂ’erentiating equations (F7) and (¥8), assuming that
Tm Vi1, and V.5 2 are independent of ¥, .

__;; log.V,, 1—'m- (I) ei1(r)e ( ) -

. (F9)

25 loge}-e———‘-*!*'—(L) ()"’“’(”(m(r)m{[g(r)]f ol )+‘°’(")+V‘ dant)_

2 ,“;‘f’;’, ff‘ ,d‘“(") <r10)

By subtracting equation (F10) from (F9) and neglectmg three small terms containing y,/ V,’

2 (L) ‘P!( ) (I . ( )y. 1(r) Tf—“é ( )ﬂ.:pz(f){ [g(r)]; (’Eg(rm)]z})_%%;—g ..

1/’2

" The equation of continuity, e-qua,tion (22), may be written
as o S

A +?/¢9(r)] I:l +y. 7 9(7')]

PzV- 2 (F12)
by replacing r, with r;+y. g(r). It is here assumed that the
displacement A, for the continuity equation has the same
form as, but may differ in magnitude from, A..
variation of pi/ps(r) with y,. is neglected, that is, the density
distribution is assumed to be. determined primarily by the

If the:

- (F11)

tangential velocIty dlstrlbutmn, d1ﬁ'erent1at10n with respect
to y. for a given g(r) gives

g

d V,'l r

d
~+— log, += dr 0
@ Ve 1+ycg—(,.fl 1+y¢f; g(r)

(F'13)

If the same distribution of V,; and 17, satisfies both the
continuity and equilibrium equations, ¥, is a function of ¥,
determined by the differential equation, which is obtained
by dividing equation (F11) by equation (I'13):

dy, 1
dy, 2

() (r)
0}

3‘ [9’ (T)]

1+yc9(7"’ .

Tf el V 2

()”ﬂ"“ 'V_’ ()w’){ [g(r)]*—[q(rm)r}

] (")2

Vi (%) o1(r) o

e1(r)
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In order to evaluate equation (Fi4), the form of g(r),
which is implicit in the equations used, must be found. An
order-of-magnitude result may be obtained, however, by
equating the right side of equation (F14) to a constant —K*
and determining the value of the constant from the boundary
conditions on g(r). Because this assumption involves set-
ting dy./dy. equal to a constant, it is equivalent to the
assumption already stated that for the selected A,=y. g(r),
the corresponding A, differs only in amplitude. In order to
obtain the order-of-magnitude result, the right side of equa-
tion (F14) is simplified by

(2) Setting the first two terms in the bracket equal to 2

(b) Considering the terms involving y. and y, negligible
when they are compared with unity

(¢) Ignoring the last term in the bracket because it

2
contains 17, 4% (%) in the denominator (If equa-
tion (F14) is written in terms of r/r, instead of »,
3 2 2
the term (%:) becomes (1%,) , which is about
250 for A=2 and -=0.6.)
t
As a result of this simplification, equation (F14) becomes

dy (L) ei(r) e

F15)
dye~ 70) ¢
+a’r g
Rewriting equation (F15) gives
~(5) a0 =22+ 440 ®16)

When equation (F16) is differentiated with respect to r and

the rela.tlon - o1 (r)=g(r) is used,

Lo+ £90+[(Fg) — o0 =0

This equation gives g(r) 28 a Bessel function of the first
order and aergument (x/LK). The value of (x/LK), and
thus of K, is determined by the boundary conditions g(r,) =
g(r=0. 1In order that g{r) have a single maximum, the

first eigenvalue of this. boundary-value problem must be
taken. A satisfactory approximation to this solution may
be obtained without involving Bessel functions by replacing
g(r}/r in equation (F16) by g(r)frm, differentiating, and
solving: '

T

g =e_2T"‘ (K, cos Ir+ K, sin In)

where

1 1
=) e-wr
The boundary conditions are determined by using the first
e_ig_enva.lue for K,

w
1",—1‘),

I FL7D

Twn, . T
gr)=Ke # sin —

and therefore,

( _____I,.__N_Fz_
L) K (r—rnt 4r2 (ro—ra)?

(This approximate equality is correct within 1 percent for
(rafrs}>>0.5.) Substituting this result in equation (F15)

gives ) _
dy. _ (TN
oy K= (—L )— A

In this very rough approximation, dy./dy. is therefore equal
to minus the square of the aspect ratio. By integrating
equation (F18) and by letting .. equal the value of y.
corresponding to y,=0 (simplified-radial-equilibrium approx-
imation},

(F18)

Ay, ¥19)

A solution corresponds to y.=y.=vy, which when substltuted -
into equation (F18) gives

c"" yc.&

y=1+'A_s
or
_ A,
a=fer, @7



. APPENDIX G -

EQUATIONS FOR FINITE- ASPECT-RATIO CALCULATION

In the numerical example of the symmetncal—velomty—
diagram and constant-total-enthalpy compressor, computa-
tion is made for a blade-row.aspect ratio of 2, with a pre-
scribed simple sinusodial radial-flow path. Inasmuch as
the term containing radial variation of entropy is not con-
sidered, substituting equation (E5) into (14c) gives

an 3

df'z "(L) (?'1—7'2)1 3 =—Z}1: =5 2+5)dr1 (G2)

From the relatmn
A .’<?_'_!__?‘_z” o
_ra )\

)
e

T —ry 1

. .'(1

S

. +(L) (1"1'—'?'2) V” ___Ul ' <___ (Gl) andlmtegmtmg equa.tlons (G1) and (G2) from ry to 7, thex
o DL <f<f> |
(z2) = ) C8:) - f" ) Grui)e () 3

(HLEDO (’”‘)f( e
RN DN @Ge@] e

With this set of equations replacing (E7) and (E8), the
rest of the calculation is the same as in the zero-aspect-
ratio case. Equation (37} is used as starting value and by
appropriate interpolation after two. cyeles of calculation the
third or fourth cycle usually gives sufficient accuracy.

\.
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