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APPLICATION OF RADIAL-EQUILIBRIUM CONDITION TO AXIAL-FLOW CONIPRESSOR
TURBINE DESIGN

By CEUXG-HGAVu and LSXCOLXWOLFEXSTEIX

SUMMARY

Basic general equations gorerning the three-dimensional com-
pressible $OW of gas through a compressor or turbine are giren
in term8 of total enthalpy, entropy, and celocity component8 of
the gas. Two method8 of 80[ution.are obtainedfor the 8implijW,
8teady axially symmetric $OW; one inrolce8 the u8e of a number
of successive plane8 normal to the am”sof the machine and short
d&ance8 apart, and the other incolre8 only three 8tation8 for
a 8tage in which an appropriate radial-flow path is used.
Methods of Axdation-for the limiting ca8e8 of zero and in$nite
blade a8pect ratio8 and an approximate method of calculation
for$nite blade aspect ratio are a180 giren.. In the8e ?nethod8,
the blade loading and the shape of the annular passage wall may
be arbitrarily 8peci~ed.

The analysis shows that the radial motion of gas con8i8t8 of
a gradual, generally monotone component due to the taper in the
passage wall, and an oscillatory component due to the radial
rariation of the specijc mass flow at di@erent stations along
the am’s ~f the machine 8peci$ed in the design.. The streamline
i8 eurred by th.i8raclialjbw and a corresponding radial pressure
gradient is required to maintain this eurmture. ?le magnitude
of thzk gradient is increased with high ilIach number of gas

jlow and high aspect ratio @ blade row. 7%e conventional
method of calculation., in which the efect of radial motion on
the radial distribution of ga8 8tate is neglected, is found to be
applicable only for the limiting case of zero aspect ratio.

An analysis of the equations gocerning the Jow shows that a.
designer is free to prescribe a reasonable radial variation of one
of the relocity component8 or other thermodynamic properties
~f the gas at any station within the blade region. 2%e rarious .
ways of using this degree of freedom and the di#erent types of
design obtained are discus8ed. .A’um.wical computations are
then made -for two type8 of com.pre8sor and one type of turbine.
I%e results indicate that, eren in the case of nontapered passage
walls, appreciable radial mo~ion occurs and the corresponding
e~ect8 are of signi$cant magnitude and 8hould be considered
in dem.gn.

IA’PRODUCTION

The design of a compressor or a turbine (either of which
is referred to hereinafter t-is “a turbomachine?’) may be
clividcd into two phases. The first phase concerns the type
of c~esignto be used, or the determination of the most desir-
stblepossible -rariations of velocity and thermodynamic prop-
erties of the gas in phmes normal to the axis of the machine

between successive blade rows. The second phase

AND

concerns
the design of blades that will giw the desire~ variations of
velocity and other properties of gas in these planes. In the
&st phase, the condition of radid equilibirum (that is, the
radial component of the equation of motion) must be used.
The flow of gas in a turbomachine is curvilinear; it is curved
not only by the whirling motion of gas, but aIso by the
radial motion of the gas (reference 1). The equation of
motion then specifies the radial pressure gradient required
to provide the centripetaI force to maintain the curved flow.

(b) (c]

(a) Stream snriam over four stages of mnkistage hrrfxsrnwhii.
(b) Intersection ofstreamsrrrfwmwith plsne normal to axis.

(c) Intersection of stream aurfirce with axial piarre.
FIGGEE l.=~tresm surface ow?r four sirniisr stages of muitiatoge tnrbwnschine and irtter-

section of stream surface with Planes normal to and mntafning ati of machine.

In figure 1(a), a. curved stream surface over four similar
stages of a multistage turbornachine is shown ancl@ures 1(b)
and 1(c) show the intersections of this stream surface with
pla.nes normal to and conttitilng the axis of the mwhine,
respect.ively. The radial pressure gradient due to the
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whirling motion of. gas is always positive; whereas that due
to the radial motion of gas may be either positive or negative,
depending on whether the cuma.ture cimsed by the motion
is inward or outward from the axis of the machine at the
point of consideration: Even when the. radial motion
involved is sm-dl, if the gas velocity is high and the bkk
aspect ratio is large,, the ~a_d.ialprek:ure gradient due, to.
the radial motion is of significant magnitude compared with
that due to the whirling motion of gas and shoy~dreincluded
in the design calculation.

In the calculation of the state of gas in the.normal planes
far upstream and downstream.. of. a single row of blades,
where the radial motion is small,, the pressure gradient is
essent.iaHydue to the whiding motion alone. Experimental
measurement checked well with the calculation \v.he.nonly
the whirling motion was considered (references 1 to ..3).
For the.general case of the gas in the normal p~a,nesbetww
closely spaced successive blade rows, however, no-satkfactoiy
theory exists to calculate. the. magnitude of the. raclial dis-
placement of the stream~inesand its effect on. the. ra,ikl
distribution of the state of the gas. A preliminary theoretical
investigation of this problem conducted at the NACA
Lewis laboratory was completed in April. 1948 and_ is
presented herein. .._ . . .. . . .,.,...:

In the analysis, the genercdyquations governing the threc-
dimensional flow of gas in ‘turborna.chines are expressed
in terms of toti-denthalpy, entropy, and velocit.y.componmts
of the gas. They are developed priglarily for the case
of steady axially symmetric flow corresponding to fjle l&niting
case of an Mlnite number of blades. Two numericnl..” ——.
methods of solution are pre:~entcd; one uses &”numbei.””of”
successive ..skit,ions through the turbomachine, the other
uses only three stations for q.>~.agein which an appropriate
radia.1-fl.owpath is employed. . . .

Methods of solution for the. limiting cases of veiy small
und very large blacle aspect ratio are then discussed. An
approximate solution of _thc2r..ciial.dksplacement across a
blade row having a finite aspect ratio is_given for the gene.r~l
case in which’ the whirling velocity of gas is prescribed in
design.

The basic equations obtn.intd are ako used to investigate
the maximum compatible number of. radial variations of
the velocity components and other thermodynamic prop-
ert.iesof gas that ,a designer is free to spcc.ify. lt is founcl
that the designer can specify only one such variation at each
station along. the axis of ~he, machine within the blade
region, Various ways- of specifying this variation and
the cliffercnt.types of design obtained are discussed.

The methods developed are applied to two types of
compressor and one type of turbine, in order to. investigate
the magnitude of the radial motion a~d its effcct on design
calculations.

.
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.EQUATIO~S ‘._ :..:
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- GENERAL BASIC EQUATIONS

The tl~ee-dimensions.1compressible flow of gas through
a turbornachine is governed by the following set of general
basic equations (referent.cs4 to 6): ‘. ‘-- - “

From tj~eprinciple of conservation of matter, the cqu~iion
of contliniiity is

ap
~+v. (pv)=o “(1)

..- .._
.::..

(Symbols msed in. thk report are “dcfincclk appcnclii” A.)
The priricipk of ..conservation of momentum is expressed
by the ~Timie.r-Stokesequation as. .

P }:=PF–VP+JLV’7+: V(v’”rl+2[(vP) “vlr+_
., .—

(VI4)x (Vx F-)–: (v. P) (v/J) (2)—.-

where ~_is the external force exerted on unit mass of gin..
The principle of ccms.crvatio.nof energy may be written m

,.. .—
Di D(p-’)
~+ P7=Q+: i3)-.

.- .
where u.is related to T by

------- ..—
. .
.. Du. DT

n=c’m
(4j—

when cc&duction only is considered, Q is given by
!. Q=p-’v.(kvT) ,fg

and @ is t.hcdissipation function given by

. { ---
@=/.b 2V.[(V.V)V]+ (VXT7)’-2(I7,V) (V”7) –: (V.T)’} (6)

For the Fa.ngeof gas tempernt.ureancl pressure usually cn-
cbunter~ in turbomachines, p, PI and T wc accurately
related “by the following equation of stato:

.— -.
p =Rp T (7)

Theo~et.ically,” the preceding icven cqu~tio& together
with the given body for.cc, known vmiat,ions of cC,p, and k

,with te.mpwature, md suitable bounclary and init,itdcondi-
tions, ccknplete.ly determine the flow of gas through the
turbornac.hine.. It is found convenient in t.hc present in-
vestig~tion, hcwrever, to base the calculation on t.ofaJ_
enthalpy and entropy, which are definccl by

i%+ v’—. (8)

where
IL=u+pp-1

-..
(9)>...—

and ._. ..-
Tds=du+p d(P-l) : (10

,,

... --, -....,.

—
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By use of equations (8) to (10), the following forms of con-
tinuity, motion, and energy equations are obtained (app-
endix B):

~.y+
()~% ;t log’ ~–;t ; =0 (h,)

(3b)

Equation (la) gives the continuity relation in terms of
velocity, temperature, and entropy of gas. Equation (2a)
relates the gradient. of total enthdpy with body force,
-i-iscous forces, -ielocity, nncl other properties of the gm.
This ~ector equation gives three scalar equations in three
dimensions. Equation (3n.)gives the rate of change of total
enthalpy of gas tdong a streamline in terms of rate of heat
additions, rate of work done by body cmd viscous forces,
tmd so forth. Equation (3b) gi}-es the rate of change
of entropy aIong a streamline in terms of rate of heat con-”
duction and of dissipation of energy due to ~iscosit.y.

STEADY AXIALLY SYMMETRIC FLOW”

The solution of the preceding general equations with a
given set of suitable boundaq- and initial conditions is
extremely cliffkult. Useful resuhs may be obtained by con-
sidering, as fist done by Lorenz in hydraulic-machine theory
(references7 ancl8), the hniting case of an infinite number of
irdinitesimally thin blades. In this simplification, the force
exerted on the gas by a blade element at any raclius is con-
sidered to be uniformly distrl%utedover the stream sheet.be-
tween two neighboring blaclesat that raclius,and is considered
the body force~in the previous equations. For incompressible
and frictionlessffow, the -raluethus obta.inedgives an average
value in the circumferential direction, provided the departure
from the average due is smaH (reference 1). Because the
number of blades is usually large, this simpMcation is con-
sidered to be reasonable and is ako used in the present in-
vestigation. For steady idet- and e.si~ conditions, alI
partial detivat i-res -with respect to angular coordinate 6
and time t are then equal to zero and the state of gas is a func-
tion of r and z only.

The ideal case of a nonviscous gas wiUbe considered first.
in this case, there esist two more relations defining the
problem. One is the fact that blade force is normal to the

surface of the blade and, consequently, to the relative “-
velocity of gas or the relative stream surface; that is,

77.(7–H)=0 (11)

or} referring to absolute cyIinchical coorclinates r, t?, z and
the relative angular coordinate x,

F&+rF&x+ F. dz=O (ha)

The other is the condition of integrability of the biade
surface,

~.(’7XFj=0 (12)

which in the case of axial symmetrj- reduces to (referenc& 8
and 9)

From the general equations (la), (2a], (3a), and (3b), and
equations (11) and (12a.), the following equations are
obtained for steaciy a-xially symmetric flow of nonviscous
gas: (See appenclix B.)

Ds_ Q
E–T

(13}

“(14)

(15)

(16)

(17)

(18)

(1~*)

In the preceding equations, equation (13) is the continuity
equation; equations (14), (15), and (16) are the three equa-
tions of motion in the radial, circumferential, and a.xial
directions, respecti~ely. Equation (17j is considered to
represent the energy equation and equation (18) to represent
equation (11). In these equations, Q is now the heat trans-
fer from the blade to the gas, uniforrcdy distributed in the
circumferent.id direction, as is the blade force ~. These
seven equations are considered se~-enindependent equations
that relate t-he eight unknown variables, whkh consist of
three bIade-force components, three velocity components,
and iY and .sof the gas. The first three quantities determine
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the.shape of the blade and th~ last.five..quantiticscompletely
determine. the. state of the gjas (all o[her. thermodynamic
properties of gas, such as y, p, and 2’, can be computed
from thmmby using cquwtion&(7) to (10)). -- ‘ -” “

-.

For compressors and turbings wi~ho.ut...bladec,o.oling,the
heat transfer between lJade_.tmd gas is negligible; the en-
t.ropy of gas is..then.c..onstamtalong any streagdine accm~ing
to the energy equation (17). “--’”If the in~etair has a uniform
value of entropy, the radial and axial derivatives of entropy
in the.preceding equations equal zero. .-

In the case of real gas, thb wiia.llysymmetric simpli@d
forms of the viscous terms in equations (la), (2a), (3a), and
(3b) can be obtained in a similar manium. These twins in
the equations of motion may be n@ected when compared
with other terms in the same.equation if the boundary layers
along t.hi passage walls are relatively thin. Because of the
viscous shearing st.resscsin the gas adjacent to”i.he blade,
the force exerted by the blade on the gas is now slightly
inclined from the direction no~mal to the relaJive velocity
of gas find, consequently, equations (11) and (12) are riot
strictly true (the force components in”the equa.tiol~ssho~d.,:
be replaced by the direction .cosincs of. the riorrnd [i the
blade surface). Without using equation (11), however,
equation (18) can be obtained from the cquat.ion of motion
and the energy equation for stmdy flow with the assumption
that the heat generated from the frictional work remains.in
each stream sheet (appendix B) and can”ther@re. be. Con-
sidered as representk~ the energy relation i.n the W of.
equations. The entropy increwsealong the streamlineis then
computed from a consideration of the actual compression or
expansion process —.

. .. . .
p=Kp’ (19)

by the formula (appendix B)

D8 ii-y”

( )“””

---
.——_
Dt

~ 10 T ““”(20)R (~_Q (T_~) Vr”’;rk% :+ v.~ &

In equation (20), n is considcre~.known, ln a given machine,
n may be directly obtained from..mcasyr>dpr~~ll!e.and tem-
perature data. In a new design, n may be obtained from
the assumed polytropic efficiency used“in design c@culat,ions
for uncooled blades:

For compression,

7—1 .- .:;- .: . . ... .... .
~ 1or n=

,_l.y-l- ”.:’
(21a)

‘=n— 1 .— --

For expansion,

n.—1“-
n 1. :.. ~21b)

T=— ~=-1 or .... ~=. ..:.&7-1—. .-
Wr I

..-

Because the change in s is usually small compared with the
changes in H and _f7,the preciding method of determining s

-. .-

may be adequate to account for the viscous eflect in c~lcu-
lat.ing t.~epressure and density chtmgo along the streamline
fo~the present problem. This correction is.more import~t
in the cme of multistage compmssors. For a viscous fluid,
equat,ion (20) thereforo rephces cquat.ion (17) in the previous
set of equations; and equations (14), (15)jTli3>~ (18), rmd
(12a) are~considercdapproxhqately true. With equation (13),
there are still seven independent equations defining tho
flow and the shapa of the blade.

METHODSOF SOLUT1ON
.-.. . .. .. .

The preceding section presents seven independent cquw”-
t.ionsreliting the eight dependent vmiables V,, Iru,Vz, H, s,
F,, I’o, tind F,, which define the. flow of gns nnd the blade
shape in t-heblade region. In the dircc.tproblem with a given
machi&~ “the shape of the blade section p~io~’idesone m~~;~
relat.ionbetween Ffi and Fzt giving eight rela,t.ionsto det<r-
mine the variation of the eight. qunntitics throughout the
blade region. In the inverse problem, an appropyia,~cdesjr~-
blc variation of any onc quant.i~y is prescribed within the ~-
blade regjon; ~llepreceding seven equations then dctermino
the vtyiaJion of the rcma.ining seven quantities throughout
the blade. region. No general solution of these equations
seems possible, however, in either problem. Two numerical
methods of solution are therefore suggested. ~ the fi!~!
method, the preceding cquat.ions n.ro applied to successive
planes nornd to the axis of the machine and short distancci - ~
apart; this method is applicmblc to both direct and invcrso.”
problems. In the -second method, a particular casc is con-
sidered, iy which a simple approprirdc radial-flow patl~”is -
prescribed in t-hedesign. This method may also bc. used as
a simple approximate solution in a direct problcrn in which
the radi~l-flow path is approxirnntely known.

----—
METHOD :OF FWITE DIFFERENCE FOR SUCCESSIVE A~AL STAT’WW ..

When:tivo succwsive stationsj and k n short distance apart ‘
w:it.hinthy blade are considered (fig. 2) nnd r~’~ is cIenotccl
by f, equations (14) to (16) may be written for each station. . ._:.. . . .

-.

,-. .

The change in total ent.htdpyand entropy betw’~cn

(14a)

(15a)

(16aJ

—

tho t;vo
stations .i;obtained from equations (18) and (20)(appendix B): -

. . ..----

.
H+–

SJ?’J —sA~J=R (~ _;;;— 1) log, ~lj y
(20rL)

..>:-.. .. . . ... .. ——
,6

. . . .
. .-..

.-T
,. ,.

. ..-—
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izr

ik
FIGURE2,-Stat ions j and k short dhtmlce. apati.

where (r) indicates that the gas properties at a partictdar
station are a function of the radial position of the gas
particle in that-station. (It. shouIclbe noted that because of
radial motion, the radial position of a gas particle at any
station k is diflerent from its raditd position at the previous
station j.)

Instead of integrating equation (13), the continuity
re~ation between the two stations is readily obtained by
equati~~ the mass flow at the two stations:

&k dr~= Girf drl (22)

By expressing G in terms of H, T’, and s, equation (22]
becomes (appenckx B)

(22a)

Equations (12a), (14a), (15a), (16a), (18a), (20a), and
(22a) are now seven indepenc{ent equations relating the gas
properties and the blade forces at the two stations in the
blade region. In these eqtiat.ions, the heat transfer is
negligible in an ordinary turbomachine and can be estimated

in the case of coolecl turbine blades; the temperature

169

Tisa
known function of ~, ~“,ands; n is given; anc~rk k obtained
from rj and T’,,j. Hence, there are only eighi unknowns in II,
.s, T“,,T“~,T“,,F,, Fe, and 1’, at the second station k. h the
direct prckdem, the blade shape gives one more relation
between Ft and Fz; -whereas in the inverse problem, one
suitabIe relation among the eight unknowns is spectied by
the clesigner. In either case, the unknowns at.station k c-an
be obtained from the known values at station j, the passage-
waII shape~ ancl the preceding relations.

In the free space between two blade rows, or in the space
upstream of the first blade row and downstream of the last
blade row, the force terms drop out of the equations, whkh
results in equation (22a) and the folIowing equations
(neglect.ing friction and heat. transfer between gas and
passage vm.1.1):

(N5b)

m
D-t=0 (20b)

Equation [22a) and these four independent equations,
together with the given passage-walI shape, completely
determine the variations of the five independent quantities
T“r,Ye, T’z,H, ands outside the blade region. The solution
of the problem over the entire region inside and outside the
blticleregion, using this step-by-step method, -m.rieswith the
type of design and the condition given or prescribed. In
any case, the computation would be quite Iaborious.

In order to obtain an o-rer-aIIpicture of the raclid flow in a
turbomachine ancl its effect on design consideration in a
simpler way, the following method considering the problem
of a particular case is given:

METHOD OF PRESCRIBED RADIAL-FLOW PATH

In ZLturbomachine, the radial motion of the gas is caused
by three factors:

(1) Tapering of the amular passage either at the inner or
outer waII gives the flow a radial displacement across the
stage, which is, of course, greatest in the immediate neighbor-
hood of the tapered surface.

(2) Even with a nontapered passage, a radial displacement
across the stage may be necessary because of u variation
in the distribution of specific mass flow over the blade height
across the stage.

(3) Etien if no radial displacement occurs across”the stage
(that is, the same particle occupies the same raclialposition
at the fist station of each successive stage), there will, in
general, be rachal cIispIaceme.ntof flow within the sta.~e.
This radial flow -rill then be oscillatory in nature, a radial
displacement in the rotor being follorred by an equal and
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opposite radial displacement in the stator. This raclia~flow
arises bccnusc of the difference betweem the.radial.variation
of the specific nmss flow within the stage and that. at the
entrance and exit stations of the stage; (This la.dialdisplace-
ment can only be a-voidedby specifying zero or t.llesame radial
variation of specific mass flow at ail. stations of the stltige
in the design.) .-. .. . .-

.. . .
In g~nera],the radial. flo~w.of gas t.~erefore consisk. of a.

gradual, gene.rallymonotone., radia.1motion due to factors (1)
and (2), with fin oscillatory motion of period equal to the
stage length due to factor (3] superimposed cm it. The
radial ffo~v.caused by these three factors will be. similar to.
that shown in figure 1. The effect of the. radial motion
on the cahxdations arises chiefly through the term b T~,/bzin
the radid-equilibrium equation (14a). This term is expected
to be signific:a.ntmainly because of the oscillatory motion,
which may require significant changes in ~r,within a single
row “ofblades. The case of oscillator~+”motion ~vithin a stage
with no over-all radial clisplacement across the stage will
therefore be considered firs-t. That is, the gas-passage ti~all
is nontapercd and the radial distribution. .of gas properties
at the entrance and exit stations of the stage is the same.

Because there is no blade force acting on the gas, the gas
flowing through the, gap between two blad~s_&. u~~dera.
nearly constant pressure gradient a.qd consequently tends
to move with the same cuiviturc it acquires while leaving
the first blade. For nont.a.peredpassgges, the maximum m
minimum point of the.radid-flow path is likely to be some-
where near the middle of the gap. (The intersecting curve
of a stret-tmsurface with an axial plane is herein referred
to a.s “the radial-flow pat.h~>’ Becausg of a.xia.lsymmetry,
the radial-flow path is the same in any axial plane.) Tho
stations between blade row~a.re most, conveniently chosen
at. these points. The stations in front of the rotor, between
the rotor and the.sta.tor, and behind the stator are denoted
by subscripts 1, 2, and 3, respectively. (See fig. 3(a).)’- If
ra and L represent the mean radial dist,anceof the-flow path
and the ~xial length of the blade row, respectively, then the
radid distance of the gas payticle at _position z is given” by

“;r’f (;)r—rO= —.— (23)

and at stations 1, 2, and 3, z/L= O, 1, 2

j(o)=f(a=l,j(l)=-1 1f’(o) =j’ (1} =j’(2) =0
(24)

wherej is a function givingJhe form of the.radid-flow p“ath
and the.prime indictites.clifferen,tia.tionwith respect to ‘z/L.
It-follows that

.-
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At station 1, z=O,

-.

(20)

inasmuch as hTT@ is practic.ally zero in prosing thrcmgh
tho gap. Similarly, at station 2, z=L,

—
V7,2=0 _

and “-’

(–)
av,
a2 ~=–

?k-# JTz,~ll(1) (27)
,.

Because j” (z/L) determines hVJhz or t.hc effect of radial
motion~on. the radial-equilibrium condition, it is dcsimblc
that it,.,va.ry continuously; this condition togelhcr with
those of equations (24) suggests

. . .

. f(;)=cos~(;) “““’.
Then

-f’’(o)=–7P ,’j’’(l)=f+
.-

,_
--

,.,. . ..-

,,-.
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and”equations (23) and (25) to (27) become, respectively,

(23a)

(25a)

(26a)

(27a)

For the sinusoidal form of j(z/-L), the maximum absolute
value of f“(z/.L) occurs at z=O, L, and 2L, and is equal
to #. Even if -j’’ (z/L) is assumed constant between z= O
and z=L/2, thus ~fiinimizingthe ma.timn absolute vtdue of
f“ in the interval, the absolute YaIue of Y’ equaIs 8. This
assumption, however, necessitates a discontinuity in f“ at
z=L/2. The values of # for the absolute values of ~’(0)
and f“ (1) can therefore be com~ideredas small as is likely.
The smooth va.riation of f“ (z/EJ and the minimization of
the absolute value of j“(z/-L) at the stations make it desir-
able to employ equation (23a) in the design. This simple
radial-flow path will also give a good appro.sirnate answer
to most designs in which the distribution of blade loading
and radial blade force is not too ununiform in the axial
direction. In such cases, this simple sinusoidal cue is
believed to represent the major harmonic of the actual radial-
flow-path and the principal effect. of the radial motion may
be obtained through the use of this simpIe curve.

The rd_ial-equilibrium equation (14b) may be written in
terms of (r~–r,) by use of equations (26a) and (27aj

where
i=l, 2, 3

When--ri is replaced by the d&ensionless variable

()
‘ rf~if= —
r’ — rh

~equation (14c) becomes

Ad‘~=Ti ~~f+r~ rt–rh w
()

i-f +

dr; r~—rh

.
I“ziJ*+ (– 1)’ ~ (r~’—rl’) A2V=,? (14d)

This form of the radiaI-equilibrium equation is seen to con-
tain a term directly proportional to the radial displacement,
to the squme of the axial ~elocity, and to the square of the
blade-row aspect ratio. If the blade-row aspect. ratio is
large or the axial velocity is high, the effect of radial motion
may be large even tbough only a small amount of radial dis-
placement occurs across the blade row.

This method is readiIy extencled to the case where an over-
all radial displacement occurs across the stage due to tapering
of the passage or due to va.riation in the design from stage
to stage. In figure 3(b), the raclid position of a gas particIe
originally at rl in station I is at r~ in station 3. For the
oscillatory motion required within the stage, r~ is not gener-

ally equal to ~ (rl + rJ. For the same reason stated in the

previous case, it is desirabIe to have the racliil-flow path
consisting of a sinusoidal curve superimposed on the line
passing through (zI, rJ and (zS,rJ; that is, ,-

Yr’-r+)(’-cos%) ‘23b)~=r1+r3.~r’2~+2

Then

[ ‘-(r=r=wa’””~ ‘25b)~“,=~+5L
and

()
av,— ~ ,=(–1)’$2

(r’-rw”~’ ‘26b)

inasmuch as a~”.ia: is practically zero in passing through
the gap. With this vahe of Z)VJ&, the radiaI-equilibrium
equation (14b) becomes

(14e)

This equation is similar to equation (14c). (If r,=r,, it
reduces to equation (14c).) ~ simiIar equa.tion in dimen-
sionless rt’ can also be obtained for this ease by clisiding rt
by (r,–rk) i.

With this methocl of prescribed radial-flow pnth, if it is
onIy required to fincl the velocity distribution in stations
between successive b~aderows (to pro-ride data for the design
or setting of blades), the distribution can be obtained by
considering only these planes without making any comput a-
tion in the l.Jaderegions. For example, suppose that all quan-
tities are known at the inlet station of the stage (station 1),
then for station 2 behind the rotor blade row the folIow-
ing relations exist: When the unta.pered passage walls are
considered, equations (14c), (18a), (20b), and (22a) give
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If the radid variation of one quantity is known (sti~h ~S
?Xajhj =0, hT7z,J3r2=0, or “-?@@z= O) ~mo~”””the fivg un--
knowns at station.2 (ccmsistingof ~j, VZ,2,Hz, s2, and r&)),
all the other quantities can bo determined. The proc~d.ure
wiII vary”with .d~.erent typeti of deii~. In tios~ cases,%he
computation may be stmtcd with an appropriate value of rz
as a function of rl obta.incd by a.n amroxirnate solution,
With the variation of one..of the ~ourqu&@ies Hz, si, t~Jjnci
T’,,2given, ihe remkining tti~e~quanttik me computed from
equations (14f), (18b), ‘and (20c). These valu& are then
inserted in equation (22b) “to deterrn~heif. the continuity
relation is satisfied. If it is not, the values must be adjusted.
until the con~~nuit,yrelation is ~atisfied., An al~ernntive.pro-
cedure is to insert these vanes in equation- (C5), which is
derived from equation (22b), t.o obtain new vmluesof r2 as
a function of rl, and the entire process is repeated until the
&sired nccura.cy is reached. In.’~ t~pered”passage, both
stations 2 and 3 must be computed at the same: time. ‘“’lb
application of this mctihod to a nonvcutex-type com”pri&w.
stage will be given in t.hc section NUIkERICAL.EXAMPLES
FOR TYPICALDESIGNS. -. -.

LIMITINGCASES AND “APPROXIMATE SOLU”TIOIW .“. , .

Simplified - radial - equilibrium approximation,—In this
commonly used approximation, the gas is assumed to flow
on cylindrical surfaces for nonbape.redpassage walls; that is,

~7,=o

.1 ._
(28)

rl=ra=ra

At these stations; the raclial-cquilib~ium equation (14b)
reduces to

c-ki v ~ W,,{
. —..

‘H: T{ 2+52 5*+ ‘* ~x= ---(14g)

For tapered passage walls, a certain simple relation a.ti6ng
rl, r2, and ra is assumed, but the term containing ?)VJZ)Zin
the rndial-equilibrium equation is still neglected (that “is,
equation (14g) is used instead of equation (14b)).

With this simplifying assumption, the gas state at st.don
2 or 3 can be computed much more easily from the gas state
at station .1 and the one ioiidition specified at stations 2
ancl 3. The continuity equation (22b)for ind~yiclualstre_qm
sheets, how&wr, is no& discaided becauss of the assumei
relation among rl, r2, and r~ arid is re.placid by the follow%
continuity relation for the entire annular area:.

Thus, equations (14g), (i@J, and (2oc) are used in. .&is
ca.lculation, with equat-jon (22c) used- as a check. on total
mass flow. .—-. . . . ,, ......... .

When dst/dr* is negligible, .t.hefollowing equations for the
radial variations of pressure and density can be obtained
from equations (14g)i (J34), and (B8): . .

.—

.—

C“bMkil%EEFO”R-AERONAtiICS ‘ ““

. . . . .
In theselwo iqu~tions, the last term is very sm~ll compared
with the next-to-last term a.nclmay therefore be n~glec~cd,
Under the present assumption, this term becomes zero for
a nontape.red passage and the resulting equation mny bo
more dhectly obtained, & is usually done, by taking t-he
approximation imvolvcd in the uso of .-

●

,, ~d i_vo,f2
8

.

“=- --L=----pl ri ri
—..

. ...

for the ‘equation df motion-in the radial dircction:in place of

w—

I&~ati.@s derived from ‘this basis of Caicul.tttioni.n clirnen-
sionIess,forms are given in appendix D for several typcs of
design.

I&n&g case of zero aspect ratio,—Two limiting cases wil
. . . .

()

bv,
now be discussed for which the evaluation of the term —?)2 {
can be a~oidcd. If the blade row-has an axial length suffi-
cient,ly_great relative ta the ,radinl length (that is, if tho,--- --

()blade-r’iv qe,ct]&i~ issufficiently small), the term .% ,
..-

wi]l be “ntigligiblein spite of any radial displnccmenLacross
the blade row. This extreme situation is designated the
zero-aspect-ratio case rmd .difiersfrom the sinlpMied-radial-
equilibrium approximation in that the radi@ displncemcmt
acrosi~e ‘bla”de“ro”~viii’properly” de.te.rrninida;id its eff&
on “the.~stateof gas is inc.ludcd jn tho calculation. .The
continu”~tyequat.icm (22b) ~for individutd stream shceL.sis
therefoi% to be satisfied in addiLion to equation (22c), but ‘“
equatio]~ (14g) is still used. in pIace of (14c). In the CMW
of gas-f mssagewalls ha-rin”gno taper-or ‘alight t.ap$r~the
difference between the two cases is small; n succcssivc-
appro~ation procedure sta@ng with i_hg rcsult 01 t~e
simplified-radia.l-equflib~ium calculation can t.her~fore LO _
used. ‘This procedure may be outlined as foIIows:

1. With the given values at stution 1 and one prescribed
condition at station 2, use t.llesimplified-r@ird-cquiIibriu”rn
equations to find fz, VZ,2,112,and s at,st,ation2 aS functions
of rl; then compute ~2(rJ.

2. By using the value of @2(rJ obtained from step J, fkd
r2(~Jfro.~ gqua.tion(C5).

3. S~ibstitute.t& value of. ~2(rJ into ‘cquritions (14g),
(18b), and (2oc) to obtain a second solution for f,, V,,2, 17,,
and S2as functions of rl.

4, Repeat step: 2 and 3 if neccssaly, using t.hc vahc of
GZ(rJobtained from step 3.

In the case where there is consideralio tnper at the pmsngo
walls, it is better to awmne r~(rl) according to the taper to
start the c&dat,ion rather than to use steps 1 and 2.

—.
— -. --

. . ..
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Limiting case of infinite aspect ratio.-The other limiting
case corresponds to a blade row with axial Iength negligible
as compared with radia.1length, and is designated the infinite-
uspect.-ratio case. The negligible axial length does not
provide space for any apprec.iabIe radial disphicement,
hence r2maybe taken as equal to rl, or

(?,= G, (31)

and for a tapered passage, either the preceding equation or a
relation similar to the one that follows may be used:

Either of these two equations now takes the place of the
continuity equation (22b).

Because the change in axial Iength for a very small change
in 17,is also very small, (bT7,/t12) t does not vanish. illthough
its absolute value does not affect the radiaI motion because
of the negligible blade-row a.sisl length, the .reIative due of
b17,/bz ahead of and behind & blade m-iv is needed to
determine completely the distribution of gas properties at
these stations. If the Ioacling of the blade in the a.xia.lclirec-
tion is relat.iveIy uniform or the blade is designed to give a
sinusoids.I radiaI-flow path, the curvatures of the rdial-
flow path at the two stations can be considered equal in
magnitude anclopposite in sense. Then,

(E$)l=-(??), (33)

In order to combine this relation with equation (l+tb) in a
simple manner, it maybe assumed that

.

)
T’-,,,(a+),=–T’Z,2C* ,. (34)

Combining equation (34) with equation (14b) at stations 1
and 2 yields

(3ia)

For a -typical stage of a given design, equatiom (l~b),
(18b), a.ncl(2Ctc),-witheither equation (31) or (32) and equa-
tion c33) or (34) -willcompletely determine the variation of
gas properties at t-hetwo stations.

In appendis E, formulas are given in dimensionless forms
for two common types of design in order to calculate the
variations of gas properties for the two preceding Iimiti.ng
cases. The resndtsso obtained -will give the b-nits of the
-ra.riation of the gas properties along the blade height. If
the diilerence is large, it is worthwhile to make the calcula-
tion for the given blade-row aspect.ratio.

Approximate solution for finite aspect ratio.—For the
general cases where ~1 and ~z are prescribed in design as

TO .LYIAL-FLOIVCOMPRESSORAND TURBINEDESIGN J’fg ___

functions of r,, an appro.simate solution for the radial dis-
placement across the blade row can be determined in the
following manner:

First take as two separate functions

Ag(rJ the” fuhct.ion (rz-rJ of rl satisfying the rdial-
equilibrium and tots.1-enthalpy-change equations for
a given distribution of the other variables

AC(rJ the function (r*–rJ of rl satisfying continuity equa-
tion (22) for a given distribution of other variables

It is assumed in this method that the radial gradients .@
t“. and r depend primariIy on the magnitude of the radial
displacement (r’–rJ and not on its exact distribution.
&cordingIy,

A,(?’J =y, g(r,) (35)

where y. is the maximum -due of ACand g(rJ is a pIausibIe
form for the dist.ribution of & satisfying the boundary .._
conditions: .

g(rl,,) =g(?l,,) =0
for

}
(36)

g’(rl..) =0, 9(r1,J = 1

If ACis calculated for severaI dues of &, it is possibIe to
plot y., the maximum value of &, against y,. .~ fairly good
approximate solution might be expected to correspond to
the point y,=y,. This process can be further refined by
va.ryiug g(rJ from the function originally assumed in the
direction of the calculated function AJy,.

By the use of this proceclure, the following appro.simat-e
m-due for tho ma=gnitucle of radial displacement. across a
blade row is obtained (appendix F):

r2_r,=(r2–r,),
l+A’

(37)

This value can be used as a starting va.lue for exact calcula-
tions or may be used as the final value for appro.timate
calculations.

AppliCatiOn TO DESIGN
DEGREE OF FREEDOM LX DEWGS

In the preceding anaksk it was sho~ that ~thin the
blade region there are onIy seven independent equations
relating the eight dependent -w-iables that. determine the
etate of gas and the blade shape; whereas in the space outside
the blade, there m-e five independent. equations that- deter- -
mine the fire dependent variables determining the state of
gas. In the inverse or design problem, the designer therefore
has one and only one degree of freedom for prescribing a
reasonable radial -rariationof one singIe quantity in all blade
regions, of a clifferent.quantity in different blade regions, or
a single re~ationbetween se-reralquantities. In addition, he
is free to specify the taper in the passage wall, the position
where the radial element of the blade is set, and a suitable
condition of gas at stations far ahead of and behind the
machine as boundary conditions, such as a uniform state of
gas entering the machine.
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In current design practice.,”design computation is mqde
only in the planes bet,wee.nsuccessive blnde rows in which
,a certain desirable variation of ohe” gtis property cah be
spccificd. The blades are then either selected from cascade
data or theoretic.aIIydesigned to achieve the,ga.lculateclgas
states in these stations. For this reason, the follo-wing dis-
cussion of different ways of specifying these variations will
be centered in these.phmes: For simplicity, only the adiabatic.
case is considered. Under this condition, if equation (18a)
is applied to the three successive stni,ions of a stage and is
differentiated with respect to rl, -

A few ways of taking up ~he degrees of freedom at these
stations between successive blade rows are Iisted in the
foIlowing paragraphs: .-> .L ... . ...

(1] Constant.work per iihit mass of gas flow over the blade
he~ght. This condition is usudly specified in “thedesign”of a
turbomachifie. It relates ~ behind the rotor to its value
ahead of the rotor by

f2(@ =tl(rl) +L% 6J71,, (39)
or

(39a)
. .

where rl, ~&U1,t is equal to (~z—”~l)at the blade tip and is
also equal to (~z—fJ at other iadii.

constant work over the blade height .g-ivesccmst.anfit.otal-
enthalpy change over the blade height. If the velociLy at
the exit of a stage is equal to that at the e.ntra.nce,this
condition also gives constant static-cnthalpy chm.ge over
the blade height.

IJnder the condition. of constant work, equation (38)
reduces to ..—. . . .

(2) Constant total ent.halpyover the-blade height:

hH
T=* (40)

. .

This condition usually applies to the first stage of a com-
pressor and will hold for all succeeding stages if const.iint
work per unit mass-over the blade height is employed. If a
nonze.ro value of dHJdrl is desired, an initial preps.ratory
stage must be specially designed to o.btain this +alue. In
the last stage, however, it is usually desirible that bII/b be
nearly zero. _

(3) Free-vortex-type distritmtion of t.angentiaI velocity:

b~_o ----
m–

(41)

or
~i=Ki (41a)

This con~ition is commonly used in turbincs and con~prcs-
sors. I@oring radid motion, in nddition ~o this condition,
constant total enthalpy”and constant a.sialvelocity over the
blade height c.a.nbe obtained. Considering radinl motion,
only one of these two additional conditions can be obt.nincd
in conjunction with equation (41). (See section Nui%k
lCAL EXANIPLE.Sl?OR TYPICALDESIGNS.)

(4) Symmetrical velocity diagram. If. ~:’,,1=T“f,, “and “”
rl=TS= r, the symmetrical velocity diagram gives

Differe~iht.ing~withrespect to r yields

If rl#ra or ~7,,1#T+Z,2,the symmetrical
may be defined by

(42)

(42U):“

(42t))

veIociLy diagrnms -

(m)

(43a)
-—

With t,h?uso of the symmetrical velocity ciit-igram,the aero-
dynamic limitations of gas flow through tl~c rotor nncl the
stator me reached at abgut the same time. Refcrencc 10 ..
shows that the blade-profile” loss is n minimum with the
symmetrical velocity din~am” if the lift-dreg ratio is con-
stant. ‘For incompressible flow, the change in static pres-
sure or e.I~t,halpyis also the same in passing through the rotor
or the siator, and the.stage is therefore often referred to ns
the “50-percent reaction stage.”

(5) W%eel-type distribu~igm_of tangential ~elocit.y:

or

,.. . ..-.

(6) Coqst.a.nt.tnngent.i~l-velocity:

T7e,*=Kt

(7) CGiitnnt axial -reIoc.ityover Made height.:

aJ7*

T’=o .-

@j -”

(44a)
.-

-

(45)” ._””

(45a)

(46)
.-

h a very low speed of gns flow with no chnngc in density,
the specjfic mass flow will also be constm~L.over, the _~h@a
height.; there will therefore-be no rndinl flow nc.rossthe blnile
row and equation .(14b) reduce.s to (wit-hthe Pntropy wu’in-
tlionneglected)

aHJ-t)ro——. --=
ar r2 br

(47)

.-
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The equivalence of equations (46) and (47) breaks down,
however, for current. aircraft a.ppIicat.ions,-where the speed
of gas flow is high.

If equation (47) is substituted into the radia.1-equihbrium
equation (14b) with entropy variation neglected, the folIow-
ing relation is obtained:

al-z z)l”,_o
-a+i–3; – (47a)

The left. side of equation (47a) is the tangential component
of fluid rotation VXT; thus equation (47) is a condition
for potential flow in the free space between blade rows.

If it is desired to take into account. in design the effect
of the boundary laTers at the inner and outer walls of the
gas passage, instead of equation (46) an appropriate a.sial-
velocity variation close to the achual one may be prescribed
in design:

(iI”-z ,
-=qi(rt)
dr,

(468)

(8) Constant specific mass flow over blade height. In
order to avoid radial movement across the blade row in com-
pressibleflow, it has been suggested (for example, reference 11)
that constant axial velocity be replaced by constant specific
mass flow:

(4s)

Radial displacement can also be prevented by the use of two
conditions instead of three:

(49)

For designsusing either of these two conditions, thesimplified-
raclial+quiIibrium caIculat.ion is more correct. Designs
employing no rad~alflow hare the advantage that the cal-
culation does not involve any radial displacement across
the blade row and that the two-dimensional-cascade data,
can be directly applied. The final equations derived from
these conditions (equations (4S) or (49)), however, are diffi-

“ cuIt to so~ve ancl the conditions are incompatible with
tapered passage in a multistage turbomachine.

(9) Relative lIach number. For high performance, a.cer-
tain variation of relative lIach number corwistent with the
radial variation of solidity ancl thickness of blade ma-y be
specified in design. Then for the rotor,

For the stator, ●

r=,;-+T;,/ =-il&=y7*(r*) (51)
(-r-u [H2–+ (~”””z,2’+ T“;i)]

(10) TJntwisted rotor blades. For simplicity in fabrica-
tion, especially for a cooled turbine, untwisted rotor blades
may be used. Inasmuch as the How angle is onIy slightly
different from the bIade angle, the foIlowing relation maybe
used in design:

(52)

(11) Blades with d eIementsradial. For high-speeclrotor
blades, in order to reduce centrifugal stress it may be desir-
able to have alI blade elements raditil. Then,

FT=o (53)

By using this relation, equation (12a) reduces to

F
~=Kr

or
tan P=–Kr (53a)

where K is a.function of z.
In multistage machines, simik variation in either tan-

gentia.1velocity, asial velocity, or specific mass flow may be
specified at the similar stations of each stage:

or

(54)

(55)

(56)

Stages of muh istage machines designed for similar variations . ..-
of gas properties from stage to stage are termed ‘{typical
stages.”
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Types of design,—ii large number
design may be obtained by difTercntcombinations of those

of different types of In the _iicond group, ”the condition of cone’t.ant“w;oi’liis not
specified,

The following ~.abIespresent,a few type.iof ded~ in each
of the two groups for multistage turbornttchinesconsisting of
a number ?f similar stages. Tlm manner in which t.ho
degree of freedom is usecl up at each station “of a .typicfd
stage a:n”dthe known characteristics of each type ma given.
The typical stage is considered to consist of n rotor followcd
by a stator.

These conditions spcc~ed”for the typical stagcl fts-give~’in
the table, completely determine the flow over aII the stages.
The flow in the idet guide vane, if required, is to be dctzw-
mined by the given condition at the inkt to the- mttchino
and the condition specified at station 1. Similarly, the fiow
in the last stator is to be determhd by the condition spcci-
ficd behiild the last rotor and the given condition at thcetit
of the machine.

It maybe desirable for certain applications to usc diilere.ni
types of design in a multistage unit.. Those designs can be
obtained by using only the relations of different. types at..-—
stations 1 and 2 in the tab~el

conditions specified in equations .(39). to (56). These
designs may be conveniently divided into two groups. In
the first group, the condition of constant work at all radii is
specified in the design. That is, equation (39) is employed,
which gives:

d~l dts
)ii!z=zi ““

and
dH, clH, dH3

. T1– di-, –x

(57)

J..

In cases where the symm&ric.al velocity diagram is “-also““
specified, by using equation (43a), equation (57) reduces to

and

--

&=d ,&drl rl=ur’

dH, cW, dH8
Z71’x=x““}”

(58)

. .
“-”.GROUP:I” “. “

.

—

AddItloncd pmmrks
.—

Cohdittone s “;;~.
Station Ftied at 3.sta lam

of any stage.,. . . .. ,<..
—

Type

1.dfl
1

F*-O d~l dr* tfr* ~ .
—.—. —
drl drs dra V8,~=K#{

dH1 dHg dH3 Constant exfrd veloc”ty over bide height for Incompressible O,ow,
— .—.— t“Small radial gradfen !n axfaI velocity for cornprossiblc flow.
drl drl drl ,.. .

alr
If ~=0 at Inict to “macbfnc,

.
.2 ~ Constant woik1, Fro@vortex

MI
~=0 titall stations.

,. . ..- ....+ ..... .. ... . ....:..::.,. .,._.J..*. .. .... .=... ..
“-””’”””tar;’“ittT1~~

d~l d/2 dt$ V@,l-y *
—.— -— .Qrrl 71drl drl ~

‘-”- ‘1

Combination of wheel-ty e rmi

(

-.-, r. ..’ .-

)

WI ““itU1 < rLt r~
vortex-type tangent ial vc ocit its,

dH1 dilz dHa vd,*. ~+yt –—=— .-. .
drl drl drl rl h

Large negativa radh?f gradient of axiaI velocity at all stations.

—1
I“

{

Symmetrical VO.
locity diagram”

2 C.omrta@ work

anIfF-O at inlet to mnahinc,
2. Symmetriwd velocity

diagram w- “
~-O at all stations.

. . .+,
.-> -:-!. . ...”

affIf~-O atl nlrt to mrwhlno,

,.. .
dtl d~2 r&, v*,l=Krl ‘ ‘“ ‘
— =— =— -2Kr,
drl !5 .drI .. .

(..
V., ~~- Kr1+8t WI,<~

“)
~

dH1 d~f% dH8 r2— .— .—
drl drl drl

.
Large negative radial gradient of axial velocity at alI stations.

8. Wheel-type tangen-
tial veloclty in front
of rotor ,.

2 \,Constmtvrorlr—. aH
~-O at all stations....

8 dj_l df8—. —
drl drl

— .,.. .
,

dil dta .-
-.

qy

dH1 dH2 dH8 For incompressible flow, this type requires nn radial flow acrow
—.= .—
drl drl drl “- blade rows and I..ccmivalent to first t pe krgrow. Forcornrpressibk flow, smrrll radial gradient ex sts In f.-. -.
d@-dV~ * all:. g

-.. .

?fr’l dr2 ~
--

1 1, Constant woik

If ~=0 at inlet tn machine,

az~
~=0 at alf stations.

2 1[
dTr,,l dV= *
~- drl ‘“4.Same vrdation in

axial velocity ,~-~.

dVz,l dtiz,8
3

drl drl
.

dfl dfa—.-
drl drl

....
1

{

Constrmt work

dC71 dU9
2 — .—

drl drl

. . . .

?m
If ~=0 at hrlut to mnchhrc,

aH
~-O at nll statlorra.

5.Same varfatfon in
specifio mass flow

dH1 dH1 dHi——-.
drl drl drl

df?i dt7z dG8..— —
dr, dr, dr,

No radial flow acrosj rotor apd itatm’ blades fm nontapci.od
passage.

df?ldf78
8 —.—

drl drl
.

,.-.
.,. .,,.- . I

.-
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GROUP 11

Condkious specified
T~pe station at 3 statIoa9 of any

stage
Characteristics of flow

dfJ1
1 q -0

dG2
L Comssant SPPC!5Cmass flow

dG1 dd+ if+ ~2 —-o —.— .—.drz X’OradiaIEow across d blades in nontapered passage-.
drl drz drz

dG3
3 ~-o

dV ~
1 A- o

drl

2. Constant axird veIo@ty
all; ,% o dl;.l dl; * dV. *SO

2 —.-. 4
~ drl drz dra N’oradial ffow across aif bIades in nontapered passage for fnmmpresafble flow.

all; ,%
3 —-odr,

J.
dl$l
q ‘0

3. lintwfstd rotor blade 2 % @l dB2 dflz ~
—-o —.—. —.
dri drl drz dra

3
dfia
X3-0

~NUSlERICALEXAMPLESFOR TYPICALDESIGN’S ] one calculation is basecl on a prescribed sinusoidal raclia.l-
The methods of calculation pre-riously outlined m-eapplied

to the typical stages of compressors of types 1 and 2 of group I,
M ti-ren in the table. The inlet total ent.ha]rw is assumed

.“

uniform with respect to radius; and with -work exchange
with rotor uniform along the radius, total enthalpy is con-
stant with respect to radius in all stations. The calculation
is rendered dimensionlessby expressing all ve~ocitiesin terms
of Zrt, total entha.lpy in terms of Z~fs,and r in terms of r~.
Because the main purpose of the calculation is to deter-
mine the magnitude of the oscillatory rmlia.1motion and its
effect on the radial distribution of gas properties, a non-
tapered passage wall is used. Heat. transfer is assumed to
be zero in the calculation and the entropy is assumed to be
constant at. each station. The change of entropy across
the blades at all radii is assumed ~ual to that obt ained from
the polytropic efficiency assumed at. the mean radius. This
calculation does not take into account the boundmy layers
at the rotor drum and the outer casing, and consequently
is good only for the main portion of gas flowing betmeen
them. This restriction can be removed if more data on the
variation of n with radius are available.

In the comparison of different blade-row aspect ratios in
each design, m addition to the same aerodynamic limitations,
the same axial veIocit.y at. the mean radius is used. The
comparison between different cases will be slightly difTerent
if another basis of comparison is used.

Symmetrical-velocity-diagram and constant-totaI-enthaIpy
compressor.—Because the difference between zero- and
infinite-aspect-ratio cases is found to be large in this design,
t,WOc&ula.tions are made for ~ bla&-row_ aspect. ratio of 2;

flow path, the other is based on the approximate solution of
equation (37). The equations based on prescribed sinu-
soidal radial-flow path are given in appendix G. The follow-
ing design constants are used for rdIcases:

H.ub-tipratio-------------------------------------------- 0.6
LimitingMachnumberrelativeto rotorblade--------------- 0.8
LimitingmJueof ~r’-~~.~” ------------------------------- o-~ .
Polytropic efficiency at mean radius ------------------------ O. 9

v..l.dut ------------------------------------------------ 0-772
T’#,*– 1;,1 is based on a formula given

The Iimiting due of ~. ,
.?.

by HoweI1 (reference 12). The Iast value results from the
use of ~7z,I,h/~~t=0.S in the simp~ified-radial-equfibrium
calculation, and is used for aII cases. The results of the
calculation are shown in figure 4. .

The dist.ributionofspecificmassflowahead of and behind the
rotor for the different cases considered is shown in figure 4(a).
It may be seen that. in aII cases except the infinite-
aspect-ratio case, the specific mass flOWWGt ~creases~0-
-ivardthe hub faster behind the rotor than ahead of the rotor;
that is, passing through the rotor, the gas moves toward the ......
axis of the machine. The magnitude of this dispIace~ent”~
obtained from the continuity equation (C5) and is shown in
fiegyme4(b). In the simplified-radial-equilibrium calculation,
it is assumed that. there is no dial motk bu~’when ~he. -
distribution of specific mass fIow is substituted in the con-
tinuity equation (C5), quite Iarge radial clisplacementacross
the blade is obtained. This kind of calculatiori is therefore
inconsistent. In other calculations, the distributions of gas
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properties are calculated from aswmed radial dkpla.ce.ments””
that are to be. checked with the displacements required from
t-he continuity relwtion with these .distribut.iogs, and me
therefore consistent in thems.eIve.s, The radial displacement
used in the approximate ctdculation for ~=2 is obtuined by
the approximate formula, e.qufltiou.(32), and is about 25 perc-
ent lower than the value obtained” from using thi sinu-
soidal radial-flow path.

The variation of axia.1..~~.elocitiesis- given in figure 4(c),
which shows that t-heaxial velocities increase toward the hub
in all cmcs, but at ditlere.ntrfites. The high value of axial
velocity at the hub entering the rotor blade allows the use
of higher tmrningsat all radii without exceeding the limiting
value of (~7p,z-17C,J/V’,,1or ;(7; at the hub, It. also helps

/.0

*
+ .8
L

.. .

.6 1

t.o L2 /.4 L,6 ‘0
G/G, rl-r,

rt -rh

(a) Distribution of specific mass flow. (b) Radial di9pIacanrcnt ;orc& rotor.

Lo

.9

.
$.8

.7

!f-- 0 ..2 .3 #
F&
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(d) Variatirm ofhngrntlal velocities.

.——
I

—A=O
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.64
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II?) Preswe dist ribut ion- and pressure rise across rotor.

to give a more uniform 31rwh number relative to the rotor
bIade over the blacle height. AS a resuIt.,this type of design
gives a higher pressure rise and a higher specific mass ffoN-
than a free-~ortex type of design using the same design
limitations. In order to utilize this advantage fully, the
~a.riationof axiaI velocity should be correctly cletennined.

The calcula.tionof axial velocity based on simplified radial
equilibrium gives a result close to the zero-aspect-ratio case, .
which is also true in the distribution of other properties in
this calmdation, because in the case of zero aspect ratio, the
curvature caused by radial motion is negligible and the
difference in gas properties caused by the raclialdisplacement
is very small in the nontapered passage.

The variation of tangentitd-velocitiesisshown in figure4(d).
These ve~ocities in clifferent cases vtiry in a sinda.r manner
ancl the difference of magnitucle between them is mainly
due to the different -raIueof 6, cietwmined by the different
-rahles.of 1~,l,hf~’ in the various cases.

Figure 4(e) shows the variation of air angles entering the
rotor cindstator blades. The difference between the simplified-
radid-equilibrium calculation and the case of aspect. ratio
of 2 is significant throughout the whole blade height. The
simplifiecl-raclia.l~equilibriu&calculation gi-ies a due about
30 Iower than the aspect ratio of 2 at. the tip of the rotor
blacle and a-t.the hub of the stcttorblades.

The rariat ion of hIach number relative to the rotor bIacles
is show-n in figure 4(f). The simplified-radial-equilibrium
calculation gives a nearly constant value; whereas the more
correct calcuIatiom show that Jlach number actmaliy de-
creases about 10 percent to-wardthe tip for the case of blade-
row aspect ratio equal to 2. (This variation, however, is -
onIy about one-third of that of a simiIar free-vortex com-
pressor.)

The pressure distributions ahead of and behind the rotor
and the pressure rise across the rotor at. difTerent.radii are
shown in fi=gyre4(g). The dtierence in pressure distribu-

.

A
.?..

[h)

(h) Velocfty dfagrama atdiffereut radii.

FIWEE 4.—ConcIuded. Symmetrkd.velooi cy4i~m and comtdnt-totaknthakr y mrmresmr.
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tions may explain to a certain extent the difference founi
between measurement and tbe simplified-ra.did-equilibrium
calculation. The pressure: rise wwciss-the rotor is ffiriy
uniform in the case of an aspect ratio of 2 and is a desirable
feature. , ..s..

The velocity diagrams at.hree rgtdii~for&pect ~ratios“of.0,
~ and co are gho~~nin fi~i 4(h). If this staggeis US&ias-!
the first stage of a, compressor, the permissible tip rotor
speed of this de:signt@ standurd sea-le<eI conditions is equal
to 868 and 826 feet per .sccond for A.=0 and A=2, respe~
tively, The specific mass flow per unit annulus-area, cor-
rected to standard sea-level conditions, is cquaI to 41.5 and
40.0 pounds per square foot per second for A=O and A=2,
respectively.
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type of”design, the simplfled-radial-equilibrium approximw
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.4PPLICATIOIY OF RADIAIrEQUILIBRIUM CONDITION

to the constant value of rl”~ in this design, the racliaImotion
across the blade does not affect the tale.uh=ttionin the zero-
aspect-ratio case. That is, the same values of 111,Hz, ~1,fz,
T“z,ljand ~~,~occur in both cases and the entire calculation
is the same. (See aIso equation (F6).)

Because the radiaI motion involved in this type of design
is mfiinly due to the compressibiIit-yof gas, the difference
between the zero- and infinite-aspect-ratio cases is noi Iarge;
hence the calculation for a finite-aspect-ratio case is not
made.

The distribution of specific mass flow ahead of and be-
hind the rotor is presented in figure 5(8). Even in the zero-
aspect-ratio or simplified-radial-equilibrium case -with a

f.o

.9

.

;E

.,7

‘%5 Im Los ..% 95 /.00 1.c15 Lto Lls /.20

P1/P;,m PZlb,m PJP1

(0 Pressure dktributiorss ond pressure rue across rotor.

A=(J or s.r. e. A=cc

-A.. .&
.+&,v.=““’’”v&,,,.

UL. Af meon mdius

.#gf&,, .&:t,.

A f hub
(a

lgi VeIocitS diagrams at diEerent radYL

FIG~E 5.– ConcIuded. Free-vorttix and mnstent-totakentlmlpy mmpresser
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constant a.tial-veIocity distribution, com~iderable change
occurs in density, -which requires an appreciable amount of
out.w-ardradial motion to obtain the given design conditions
behind the rotor. .41thoughthe amount of this radial motiog . _~
is smalI (fig. 5(b))$ its effect on the variation of gas properties
is not ent.ireIynegligible. Its effect can be seen in the curves
of figures 5(c) to 5(g) ~which are somewhat similar to the
symmetrical--reIocity-cIiagram and const.ant.-tottd-enthalpy
design in nature but of smaIIer magnitudes.

If this stage is used as the first.stage of a compressor, the
permissible tip rotor speed at standard sea-Ievel conditions is
equaI to 758 feet. per second for ~=0. This tip speed is
about 13 percent lower tha.n that of the corresponding case
of the previous design. The specific mass flow corrected to
standard sea-level conditions is equal to 38.6 pounds per
square foot of annulus area per second for ~= 0, .-which is
7 percent lower than that of the corresponding case of the
previous desi=gu.

Pree-vortex and constant-total-enthalpy turbine.-The
design constants used in the ca.lc.ulationare: .Ifl<l, lJ,jal,C=
0.5, ~“O,I,h/%,t=0.8, ~“~,1,~/aLt=O.4,~“o,z=O,and polytropic
efficiency at mean raclius equal to 0.87. For the simplified-
radial-equilibrium a.pprosimat-ion or zero aspect ratio,
T’Ji7, is consta.ut and so is l“Ji7,, which is found by the
continuity relation to be equal to 0.877. The same -relocity
at station 2 is used for the i.nfiuiteaspect ratio, thus making
t-heonly difference at station 1. The results of the calcula-
tion are shown in figure 6.

The distribution of specific mass flow ahead of and behind
the rotor is shown in &ure 6(a). Because of the constant
asial esit velocity, the specific mass flow is constant behind
the rotor. Except for the case of infinite aspect ratio, there
is an inward radial motion of gas in passing through the rotor _ ._
(@. 6(b)), the magnitude of -whichis about two and one-half
times that in the previous free-vortex compressor (fig. 5(b)).

/.0

.9

+ .8
L

.7

.6
.8 ,9 1.0 0 .Cw5 .0[0 .0/5 XW .a25

G/lG, rl - r=
rt - rh

(a! Distribution ofspecific mass flow. (b) Radfel rikplacement across rotor.

FIGL_RE 6.—Free-vortex and eomtant-totaI-enthafpy turbine.
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The v-ariat.ionof axial velocity ~head of [-[lcrotoIIis sho<vn
in figurcfl(c}, & incrmsing asial veIocity towmd.t.lm hub
of about 15 percent woykl be required for an mpcct. m~io of 2,

Yigure 6(~) shows the radial variation of gas angles
entering,,rotor blacles. The difference is o~y importmt nt,
the hubj In the ..actua.lcase of an ,aspcct ratio of 2, the
sirnpliflcd calculation would give an angle of attack 30 to”4°
too high at, the huh. .,---- . ..-.-.

The absolute and rela,tive 31ach numbers of gas nhen~”of
the rotor are shown in .figurc 6(e). In the qctmd CMOof ml
tispect ra~.ioof 2, the” Lliich numb& at tic hub is “ibout
3 percent highii than t.ho&mplified calculation.

F@Ire.6 (f) shoys the pressure distribution nhcad o~ the . .
rotor. For an aspect ratio of 2, the pressures at the tip md

at the. I&b me about 2 percent higher nnd 3 pmccni loyy~ .
thm th~ simplified ctdculat.ionjrespectively.

.The veIocity diagrams at three radii for the zero nnd :
imite, aspect ratios are shown in figure.6(g].
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APPLICATION OF RADLkL-EQUILIBIUUM CONDITION

SUhIIWiRY OF’ ANALYSIS AND CALCULATIONS

In axial-flow turbomachines, radiaI motion of gas occurs
because of the tapering of the passage mdfs and the variation
of gas conditions across blade rows speciiied in the design.
The direction and the magnitude of this radial flow depend

‘on the type of design, the tapering of the passage -rmdIs,the
bIade-row aspect ratio, and the lIach number of gas flow.
Even in the free-vortex type of design employing nontapered
passage walls and requiring no change in velocity distribu-
tions from stage to stage, an appreciable amount of oscillatory
radial motion occurs within the stage.

This radial motion gives an additional term to the ordinary
radial-equilibrium equation. In the free space between bIade
rows, this addit.ions.I term is appro.ximat-ely equal to the
product of the square of axia.Ivelocity and the curvature
caused by the radiaI flow. Depending on -whether the
curvature is positive or negative, the rddial pressuregradient
caused by the whirling motion of gas is decreased or increased,
respectively, by this additional term.

The determinantion of thk rfidial-flovrpath requires a long
process of step-by-step calculation. It is found, however,
that a sinusoidal radial-flow path gives an etlect on the
radial variation of gas condition between blade rows as
small as possible without discontinuity in the curvature of
the streamline. It may therefore be desirable to prescribe
this simple radial-flow pat-h in the design. ~lso, inasmuch
as it represents the major harmonic of the radial-flow path
that may exist in any design in which the blade loacling is
relatively uniform in the axial duection, the calculation
based on this simple radiaI-tlow path gives good approximate
results.

AIethods of solution for the lirnit.ing”cases of zero and
infinite blade aspect ratios and a simpIe appro.xima.tesolution
of the radid displacement across the blade row having a
finite aspect ratio are also obtained.

The analysis made of the maximum compatible number
of the degrees of freedom in specifying the radial variations
of gas properties in stations between successive blade rows
of a turbomachine shows that the designer is free to specify

TO &YL4L-FLOTV COMPRESSOR AND TURBLW DESIGA= 183

one such variation at each of the stations. The various
ways to use up these degrees of freedom and the ‘resultant
types of design obtained are discussed.

The usual method of calculation, which negIects the radial
motion, gives results close only to the case in -ivhichthe a-xiaI
length of the blade row is much larger than its radial length,
and is not good for the case of a finite blade-row aspect ratio.
The difference between the results obtained by the uswd
method and the method suggested herein is found to be
quit-e large in a design empIoying const.a.nttot-al enthslpy
and asymmetrical veIocity diagram along the radii. Calculat-
ion made for this type of compressor, using the ssm.elimit- .
ing hfach number, same Iimit-ingturning, same a.tiaIve~ocit.y
at the mean radius, and for a blade-row aspect ratio of 2,
gives the following dtierences between the usual and the
suggested method:

1. The radiaI variation of a.xia.Ivelocity ahead of the rotor
is 13 percent for the usual method and 28 percent for the
suggested method, and the radial variation of axial wIocity
behind the rotor is 53 percent for the usual method and
40 percent for the suggested method (all expressed in terms
of their values at the mean radius).

2. The air angles ditTerfrom 1° to 3° at the hub and at
the tip.

3. The radiaI variation of l~ach number reIative to the
rotor blade in the ustial method is 9 percent lower than
that in the suggested method.

4. The radial variation in static-pressure rise across the
rotor is 13 percent for the usuaI method and only 2 percent
for the suggested method.

5. The mass JIowin the usual method is 4 percent higher
than that in the suggested method.

6. The allowable rotor speed in the usuaI method is
5 percent higher than that in the suggested method.

LEWIS FLIGHT PROPUMION LABORATORY,

ANATIO NAL i4DVISORY COM>IITTEE FOR .4EROPiAUTICS,

CLEVELAND, OHIO, Janua~ 1, 1949.
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APPENDIX
SYMBOLS

The following symbols fi~-used in this report: .-

h

K
k
L
AI
m
n

P
Q

s
8. r. e,
T
t
u
v
u

v

r~—rh
aspect ratio of blade row ‘T

-.=.

velocity of sound
fift Coefficient ‘“.~ -

speciiic heat of gas at constant pressure
specific heat of gas at constant volume

differentiation with respect to time following motion
of gas ...-

externa.1force. per unit mass”of gas (ge.ned case);
circumferentially uniformly distributed, bIade force
per unit mass of gas (axialIy symmetric case)

radial component of ~
axial component of F
tangential component of F
form of radial-flow path
mass flow per unit flow area perpendicular to axis

of turbomac.h~ye --
form of radial-displacement distribution

total ent,halpy per unjt of gas, ~+~ ._.

enthtdpy per unit mass of gas, u+: “ -“”

constant .

thermal conductivity of gas
axial length of blade ro~v(fig. 3)
hlach riumber of gas . . . .
mass of gas .,.-.

polytropic gxpo~egt of actual expansion”or cornp;es-
sion process of gas

static pressure _-..
#-

heat input to unit mass of gas along its path of motion
per unit time from neighboring gas particles in
general case or fronl blade and pm:age wall in
axially symmetric case

gas constant .,.
. .

radial distance measfied from-axis of turbomachine
mean radius of radi&flow path (fig. 3(a))

r —
r’ ‘rh
entropy per unit mass of gas—.

simplified-radial-cqu;librium”approximation
absolute stream temperature of gas
time
magnitude of ~
vector velo.ci~ of blado at ra.&usr
inte.rnaIenergy per u-tiitmassof gas -with0° absolute as

base temperature
——.

magnitude of $7
184 .’”

.

~:” .. .

-.

‘absolute vector velocity of gas .——.
radial component of ~
‘&ial component of V
tangential component of V
magnitude of v .
vector velocity of gas relative to rotor blade -‘“ “=
“timgentialcomponent of ‘W
maximum radial displacement over blndo heighti
distance along axis of turbomachine
.angIe between absoIute velocity of gas and axis of

turbomachine
angle between relative velocity of gas and axis of

turbomachine
ratio of specific heats, cJco
radial displacement across rotor, rz—rl 1

dimensionless turuing, ~,

anguIar momentum about z-axis per unit mass of
gas, rV8

small-stage or polytropic efficiency ,.

a.ngula.rcoordinate measured from. some fixed ..rrdid
___Iine .,

‘absolute viscosity of gas
‘mass density of gas
blade solidity
‘dissipation of energy due to viscosity per unit volume

““~ of gas per unit time
“~function ,

_angula.rcoordinate measured relative to rotor .—
-; angular velocity of blade —.

%bscriuts:
1.

2
3
c
e

h
i
j
k
1
m
n

8

t

..ahea.dof rotor
behind rotor and ahead of stator

.-

~behind st.ator.gnd a-headof n~t rotor
“’~atisfyingcontinuity equation

.-,

satisfying radial-equilibrium and total-enthalpy equa- .
tions .

hub
tiny station between two blade rows. .—.-
any station

“-station short distance downstream of stat.ion”j ,
_limiting vtdue
“at mean radius

- used with r to indicate radius where maximum radial .
displacement occurs I

simplfied-radial-equihbriurn approximation

_tip

. .-
—. ---- .. . . .. .------ I

,.. - ..-,



APPENDLX B
DERIVATIOA’OF EQUATIONS

From equations (4), (7), and (9), and the relations

R=cp–c,
find

~=%
c=

there is obtained

()
dh=& d “~

P

From equations (8) and (B3),

‘H=* ’G)+’(T)

From equations (9) and (10),

Tds=dh–~

By use of equation (B3),

()
Tds=&d : –~

By use of equation (7),

()
d ~ =y~$~ $

()
=~ d Ioggfy‘y—1

()
=& d loge: –d flog. p)

~~1 d (log. T) –d flog, p)_—_

Equation (1) may be written as

V.v+glog, p=o

(Bl)

(B2)

(B3)

(B4)

(m)

(B6)

(m)

@8)

(B9)

(B1O)

Combining with equation (B1O) yields the foIIowing form of
the continuity relat.ion:

V.v+*g Iog. T-g (;)=O (la)

From equation (2) and the following reIations

and

bhere is obtained

From equations (B4) and (B6),

=VH— Tvs

Combining with equation (Bl 1) yields

By combining with equation (2),
.

: {2 [@,).v]T+wp)x(vxm –;@.n@,)})

When combined with equations (3) and (10),

~ { 2 [(VP).W ~+ (VP)X @X~) –+ (v.~) (vP)]) (Sa)

From equations (3) and (10), . .

For steady axially symmetric flow of nonviscous fluid,
equation (3a) reduces to

From equation (11),

F“F=F.F

=FaU

=rF~u @13)
185
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From equation (15), ...1”

aO’ve) ~ a(rvo)
?)? ’+’?)2

rl’o= V, —

D (TVO)
‘7%- “-

. .
. (B14)

Combining equations (B12), (B13), and (B14) ‘yields

(18)

For steady axially symmetric flow of a viscous fluid,
equation (18) is obtained by applying motion and energy
equations to a mass system with a fixed control surface.,
as shown by the solid lines in figure 2. Under steady
axially symmetric flow, the mass inflow dml in time dt is
equal to the mass outflow dmk in time dt, the state of=gas
within the control surface is- unchanged, and the state of
gas at stations j and k is constant with respect to 6. By
equation (B 11), the sum of the tangential blade force and
the tangential viscous gas forces exerted .by the surrounding
gas particles-on the system is “equalto

I D (rKJ ~mf
T--l%---

.
The torque about the z-axiii ‘exerted by these tangential

D(rVtJ
forces ou mass (Zmjis therefore simply ~ .dmj and the

work input to mass .drni by these tangential forces in time
dt is equal to

‘(rve)dm,ju dt=w[(i-VO)~–(Tve)J-h
Dt

.—

In passing from station j to station k, in addition to receiving
this work input, tho gas particles are doing work against the
axial a.ml radial viscous forces exerted by the surrounding
gas piirticles. This negative work is usually small, however;
if it R assumed that the heat ge.neratcd by the frictional
work is added back to the same gas stream, the heat addition
cancels the negative work, and the energy” equation
steady flow gives

J
(Hk–Hj)dm,=” ,? Q CZmjdt+u[(rVJ~- (rVJj]chnj

Y
or

for

(18)

,.

where Q denotes the rate per unit mass at which the gas
stream sheet is receiving heat from exttina.1source th~ough
blades or other passage walls. .:

When equation (19) is given, the entropy change can be
obtained in the following manner: From equation (B 10),

D.s
()

D_—
Dt R –7: 1 % ‘–Dt 10g”p

(B15)

But”~y equations (19) and (7),
.

~Dlo Tg log, P=n_I ~~ g’

Substituting into equation (B15) gives

D10‘R (n–lfi~-1) Di “ T (B16)

For steady axially symmetric flow, equation (B16) reduces
to

~8=.B
Dt (

~ 10 2’+ v.(n–;fi~-1) 17’ h- “ )
: log, T (20)

For successive axial stations j find k a shor~dist.~ncoapart; “”i
equation. (B16) gives

% h) –sj(rj) =R (n _;;;_ ~, [k% Tk (rk)–log, Tj (rj)] ‘

— Tk(r,)
‘R (n–l) (;–1) 10g’ Tj(?’j) (B17)

Inasmuch as the temperattme change between the two .
successive stations is small, if the eni%alpy is mewmrcd with
0° absolute as the base temperature, the temperature ratio
can be co~sidered equal to the entha.lpyratio:

Substituting equation (B18) into equation

.-. (B18) ~

(BI7) gives

The density ratio between the two stations is obtained
from equation “(B1o)

(Bi9j

,

~ombining with equation (B18) yielcls

Substituting into equation (22) gives
I



APPENDIX C

DETERhILNATION OF RADIAL DISPLACEMENT BY USE OF CONTliWITY EQUATION — —

Equation (22) may be written a.sa linear differential equa- The ~aIue of G,,JG2,,is found by the condition that total
t.ionfor rzzas a function of rl, provided G2[r1) is lmown: mass flow at stations 1 and 2 is the same:

_ =2 G1(rJd(rz’)
drl G,(r,) “

If G1 and Gz are unknown and only GJGl,t and GJGz,, me
known, a modification is necessary:

().

a

“()
L’ 2 Gl,t_

1– ‘*rz,t
r2.t G–

(C’4)

s

,,,,$, ‘r’) z r, dr,

‘“h ~ ““““

Hence

(*Y=’-F-(%)]

APPENDIX D

EQUATIONS FOR SINIPLIFIED-RADIAL-EQUILIBRIUM CALCULATIONS

Equations to caIculate distributions of gas properties at
three stations of a t.ypicaI stage under the simplified-radia.l-
equilibrium approximation for a few types of design are
given.

GROUP1

Free vortex.— For this design,

(Dl)

When the inlet total enthalpy is constant with respect to r
and the radiaI variation of entropy is negligibIe,equation (14g)
reduces to ---

d V..t=o
dr~

(D’)

The variation in tangential velocity is, by equation (Dl),

T?,*= T“e,f,, ‘: (D3)

.At each station, by using equations (3o) and (D3),

y;; ~7-s k (v#.trJ :
b d

When the preceding equation is integrated
the relation

/
G.=l ~

is used, there is obtained

from r to r,, and

‘=kwwwllr ‘D’)Pt

(C5)

This -equation hohls for aIl stations, provided the appropri- “
ate v-alues of (Vu,JaJ are used. It follows from equa-
tion (D2) that at each station

Gp— =—
(7[ p,

(D5)

The radial position of gas at station 2 or 3 can be obtained
by numerimdly integrating equation (C5) using distributions
of speci& mass flow given by equation (D5). h alternate
method is to expand the right side of equation (D4) into a

binominalseries. Becausei~ (~~[(~~–1] is usually

Iess than 0.15, three terms will be su”ffi~ent. Let ~, repre-
sent the average density in the annulus between r and r;,
then ‘

and inasmuth as

F,ilV..l (rI.?—r12)‘Fr,2~;4 (r2,?—~22}
1S7
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or

The change of tottd enthalpy across.the rotor is

H2–x7,=co(l,-~J
Then —

%+~(r~-rl) :.:
1--, 1

Ibr.compressor, “

,.. .
“r: T78,2JJ-T78,1,h

the qua.ntity i
~“~,l,h

is to b8 chosen by the hsigncr.

Inasmuch as
(D7)

—

..-

and

.

=-J+j (v.,,,?+ Vo,l,?}

w,,, 2
(q,?=

()T

=& [Vz,l,?+ (uI,?– VW)*I

-. -- --——.

—

. ...

.—

,.-—

where 11~~is the !miting I@ch number-to. be chosen by: ~hi “. ,
dcsigner,- ,

—-

—.

The pressure distribution- at each stqtion is. obtained .by”
raising its density distribution (equation (D4) ) to the power ~.
The pressure changes. be~w.egn the stations at different.
radii am obtained by combmmg these pressure-dktributions.
with the pressure change across the rotor at the radius where
the value of the polytropic exponent is known” or asstimcd.
The angle that the gas velocity makes with the a:xisof the
machine at any radius is obtained from.tha known tange.nfiial
and axial velocities, .’-- .-

asymmetricalvelocity diagram,—For the nontapercd pass-
age, rl——ra=r and from equations (39) and (42a)

or

(D9)

When equation (D1O) is substituted into equation (30),
—

where the minus sign is uied for station 1 nnd the plus sign
for station 2. Inetgration from r~ to r yields .-

—

(DII) ““;

---

where the minus sign is used for station 1 and the plus sign
for station 2.

For the case where the irdct total enthalpy is constant with - ~
respect ,to radius and the raditd variation of entropy isi a
negligible, the variation of axial veIocity is obtained from
equation (14g):

—.

-.. . .-

Integration from rh to r gives

where the plus sign in the last term is used for station 1 and
tho minus sign for station 2.

,.-
~.



APPLICATION OF RADIAL-EQUILIBRIUM CONDITION

When both 1“~and ?“Zare known, the radial variation of
density camalso be obtained by applying equation (B20) a-t
the station:

‘=r:::~hl

(D14)

In the tapered passage, the gas is assumed to flow in
conical surfaces, which gives the vaIue of rz as a function of
TI. Equations (39) and (43) give the distributions of ~ and
1“~as shown by equations (?35) and (E6), respectively, given
in appendix E. The distribution of axial veIocity at station 2
is the same a.s that given by equation (ES). The density
distributions can be obtained from equation (D 14). After
these distributions are known, the distribution of specific
mass flow (? is known and the radial displacement is found
by using equation (C!5).

In compressors of this design, the ma..ximum due of
T%hw. -r
- v#,2— Ba,l
TI,h

l-z, ~
is usually a-tthe hub. Its value there is to be

set by the designer. Then

In this type of design, the biting hlach number is usuaIIy
at the hub. Hence the denominator of the last term of
equation (D8) should be replaced by

kAw[(w+(‘l’E:’l’hYl+:[(*Y+(%Yl
The rest of the ca.lctiat.ion is the same as in the previous
desiem.

Wheel-type tangential velocity in front of rotor.—IThen
the case of constant total enthaIpy is again considered at
the inlet and the radial variation in entropy is negIected,
with

~~,1=h”lrl= V8,1,1~1 (D16)

:
equation (14g) gkes

TO AXIAL-FLOW COMPRESSOR AND TURBINE DESIGN 189

Integrat~kg from hub to radius r yields

VZ,?=~z,1,+2 K?(r?-rl,~~

With radially constant work input to the rotor, and a non-
tapered passage,

(D19)

Equations (D17) and (D18) show that the a.x.h-dvelocity
rapid~y decreases with radius at stations 1 and 2. If KI in
equation (D 16) is chosen to be w/2, the dtierence between
this type of design and the previous one is very small.

GROUP II

Untwisted rotor blade,—Equation (52) gives

V6,i–cdrt

v.,, =tan I%=Kt (D20)

where i=l, 2. When equations (14g) and (D20) are used,
the foIlowing relation is obtained:

(D22)

Either equation (D21) or (D22) can be solved by a standard
method of numerical integration. Equation (D20) is then” “““.
used to find the remaining velocity component. In equations -
(D21) and {D22), dH:/dri in kiter stations, except at the
station ahead of first rotor, is, in general, not equal to zero
even if it is equal to zero at the inlet. These ratios me to
be determined by using equation (18b). The term contain-
ing entropy in the equations may be significant in the case of
cooled turbine.
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A~PEND~ E .

EQUATIONS FOR ZERO- AND INFINITE-ASPECT-RATIOCALCULATIONS

The method of calculations is given for the two types of
design used in the.numerical examples.

FREE VORTEX

Zero aspect ratio,—In this type of design, the zero-aspect-
ratio case is the- same as thwt of. the simplified-radial-
equilibrium approximation.

Infinite aspect ratio.-By equations (31) and (B20),

2H1–(V0, ?+ V.,?) , ,. ... . .
‘2112– (V0,22+v.,:)

“ (El)

An additional relation between V,,l and V~,Zis necessary
in order to solve the equation. In the section Limiting case
of infinite aspect ratio, two equations are suggested. For this
design, equation (33) gives _

or

and equation (34)

v..,+V.,*=constant (i32)

gives -- -

dK,2_oV,,l ~+ V*.2 &

or
VJ+ VJ=constant (E3)

Also from equations (F4) argi (F5), vihen the square term
in A. is neglected ,... . .

V,,lVz,2= constant “@4)

The three preceding equations give practically the same
results.

A convenient procedure of calculation is as fo~ows:
(1) In order to compare the result with other cases, the

same value of V.,l,mmay be used. From equation (El),
~s; is determinecl.

(2) Insert these values in equation (E2), (E3), or (E4) to
obtain th.oconstant in the equation.

(3) Assume a number of -dues of V,,l; obtain T’,,sby- the
same equation. Then use the following equation, which is
obtaine-d from equations (El) and (D3), to soIve for r/rG

(;)~,

T z,,
,7 ,—,z,

190

(4) Plot V,,l and VZ,2against r/rt, and obtai~ 1’,,1and V,,!
at the values of r/r ~desired.

When the distribution of axial velocity is known, the dcm-
sity variation at any station is obt.ain?dfrom equation (D14).
The pressure variation at each station is obtained by raising
the density ratio to the ~ power. The pressure chvngcs
across the stage at different radii and the air angles arc ob-
tained in the same m~nner as in the simplificd-ra~lal-
equilibrjum calculation.

SYMMETRICAL VELOCITY DIAGRAM --

. Zero aspect ratio,—With radial displacement not equa~ to
zero, the equations for tangential ve.loc~ties arc different
from t,hoexpressions of equation (D1O). From equations (39)
and (43)

dll =d{z_
5, z,–”r’

(135)

From equation (14g), neglecting the radial variation in
entropy,

Vz,idd 1 dt<
‘ =—@~

For station 1, from equation (E5) : – -

Integrating from riito r, yields

which is the same as equation (D13), For station 2,

-..

..-

— ,

-1

-.

. . --
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Integrating from r,,~ to r, yields

.- —--- .—.-.--— —----- --—---—-—- --. .--—----
TO AXIAL-FLOW COMPRESSOR ALND TURBINE DESIGN .191

* ._

[%Y=(’W-J-3W(:’%)%). “)
rl, t rl, z

which differs from equation (D13).
The density distribution at station 1 is the same as the

simplified radial approximation, whereas that at,station 2 is
obtained by using equation (D 14). The solution of this
case is a process of successi~e approximations. VaIues of
rs(rJ obtained in the simplified radial appro-ximat.ioncan be
used here as the starting values. ‘l%en the distributions of
V6,Z,Vz,z,p2,and Gzare cahdated from the preceding equa-
tions,and,new wdues of r,(rl) are computed from equation(C15).
Usually, only two or three cycles me necessmy to obtain
the correct value, because the difference. betmeen this case
and the simplified-radial-equilibrium appro-tiation of this
type of design is small

Infinite aspect ratio.—The first equation for the condition
G,=G2 is the same as equation (El). The second equation
necesa.ry to solve this case is a little more complicated than

that in the previous type of design because ~# 0. If equa-

tion (34a) is used,

or
1“7=,? v=,1
~+ -u: -= –$,+constant (E1O)

In order to compare the resulhof thiscase with other cases, the
same value of V&l,~ may be used. Then from equation (El),
T’>,%mis found, and the constant in equation (E1O) is evalu: .___
ated by using this set of lr~,~,~and ~7&~. ~ few values -
of V&lare assumed at. any other given radius, with corre-
sponding values of VZ,2obtained from equation (E1O). The ““
correct values of V& and 1~,2that wi.11satisfy equation (El)
are obtained by interpolation.

.\fter the distribution of axial velocity is known, thq den-
sity distributions are obtained from equations (D 1I) and
(D14), and pressure distributions, total enthalpy change,
and air angles are obtained in the same manner as before.

APPENDIX F

APPROXIMATE VALUE OF RADIAL DISPLACEMENT ACROSS BLADE ROW’ HAVING FINITEASPECT RATIO FOR GENERAL CASE “

IN WHICH ~1 AND fi ARE PRESCRIBED ~’ DESIGNAS F~NCTIOh’SOF r[

In the latter part of appendix E, distribution of axial veloc-
ity is expressed in terms of known H, ~, rl, and rz(rl). .Nter-
nati-idy, this distribution can be expressed in terms of radial
displacement and its value determined by the simplified-
radi&cquiIibr@m caIctdation, for which A.= 0. For a
nont.apered passage, it is seen from equation (14c) that

and

(F2)

()By substituting (rl+&) for r~,expanding 1+$
–2

in a. bi-
.

nomia.1 series, and neglecting terms of greater order than

()
~’
rl ‘ equation (F2) becomes

‘d drl
dV.2,8--%WJ(1+2)+‘L2=VZ,2,, drl

‘W$)-’+w?) (7?3)
.

If A.(r,) is known, equations (F1) a.nci (F3) may be solved
as linear fist-order differential equations in V%12and ‘t7Z,22,
respectively, giving (omitting the subscript 1 on r)

(F4)

and

where

P(r) =s,:A.dr+~ {(AJ’-[AJrJ]2 }

(E’5)

For the liiiting case of zero aspect ratio, the last term in
equation (Fl) approaches zero so that V=,l=V51,~,whereas
V,,z is obtained by integrating equation (F3) vnth the third

and subscript m may here refer to any radius between hub I term neglected.

and tip.

936643-31-14
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,

‘J2$%b’)”““ (F6)

When equation ‘@4) is integra~ed.by parts and Ae(r~) is
replaced by y, g(r) as in equa$iori (35), there is obtained

()
=2
~ Jew(r)

V.,? =Vz,l,?+e (V2,i,m2–T7ziI,m,?)–

If it is desired to compare the general case with other cases on
the basis of the same V&l,~, then Vz,l,~= V,,l,~,8. By the use
of the mean-value theorem of integral calculus, the precgding
equqtion can be written as

(F7)

—

COMMIiiJ!EE FOR AERONAUTICS

where V= is a mean value of V,, 1,,2between r and rr,,,the
mean-depending on the choice of the function g(r). If the ap-
proxim~tion is made in letting V., ~,~= V,, ~,~r.,cquat.ion (F5)
may be written as

where .—

W(,)-$+J–-=@l (r)+; y, {[g(r) ]~–[g(r,m)]’}

The change in the distributions” of Vg,I &d V,,2 with the
maximum displacement y, for a ~iven-g(r) is now detwrmincd
b~”differentiating equations (F7) and (F8), assuming {hit

.

— — —

-. --

() (
*2

mu~e-x()
VcQi(T) —-@-log,v,,a= -* ~ >:)““Pa(r) w, dw (r) ~ w(r)

2 dye ‘— Yewql(r) +y’{[g(r]]2—~(r.) ]~] + ~+ ~ dye –X @@ (F1O)
2, -1-Z,*Z dye.--.

By subtracting equation (F1O) from (F9) and neglecting three srncdlterms containing y,/V~
.-

.
The equation of continuity, equation (22), maybe written

as

-=[1+’*1[’+4@d ’12)
Plv. 1
Pav:,a

by replacing r, with r, +y.g(r). It is here.assurn.edthat-the
displacement Ac for the continuity equation has the same
form as, but may differ in magnitude from, Ae. If $he
variation of pl/p2(r) with y, is neglected, that is, the density
distribution is assumed to be. determined primarily by the

tangenti~l velocity distribution, differentiation with respect
to yc for a given ~(r) gives

If the same diat.ribution of V~,l and l“s,~satisfies
continuity and equilibrium equations, y, is a function of yt
determined by the differential equation, which is obt.aincd .
by dividing equation (Fl 1) by equation (F13):

(F13)

both tha :

dyc 1— =—
dye 2

L -—

1

{
I+v, W)l’-[drm)]’

}
w(r)

() 1 ;, ~

(F14) ;
w(r) —

v,,? ; ‘ w(~)

.-

1

.— —
—.

.—

I

.-
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In order to evaluate equation (F14), the form of g(r),
which is implicit in the equations used, must be found. .b
order-of-magnitude result may be obtained, however, by
equating the right side of equation (F14) to a constant —I@’
and determining the value of the constant.from the boundary
conditions on g(r). Because this assumption involves set-
ting dg~d~e equal to a constant, it is equivalent to the
assumption already stated that for the selected. A,=yg g(r),
the corresponding A=diflers only in amplitude. In order to
obtain the order-of-magnitude result, the right side of equa-
tion (F14) is simplified by

(a) Setting the first two terms in the bracket equal to 2
(b) Considering the terms involving ye and VCnegligible

when they are compared with unity
(c) Ignoring the last term in the bracket because it

contains J’Z,~ ()2 ~ 3in the denominator of equa-.L
tion (1714)is written in terms of r/r, instead of r,

()
2

the term ~
()

becomes ~ 3, which is about

250 for 11=2 and ~=0.6.)

& a resuh of this sirnpliflcat.ion,equation (F14) becomes

Rewriting equation (F15) gives

(F15)

(IH6)

When equation (F16) is dfierentiated with respect to r and

the relation ~r PI(r) =g(r) is used,

~$9(r) ++ $.9(4 +[(-&K)--j]9(4 =0

This equation gives g(r) as a Bessel function of the fist
order and argument (r/~K). The vake of (m/~K), and
thus of K, is determined by the boundary conditions g(rh)=
g(rf) = O. In order that g(r) have. a single masimum, t-he

first eigenvalue of this. boundary-vrdue problem must be _
taken. ii satisfactory approximation to this solution may
be obtained without involving BeaseI functions by replacing
g(r)/r in equation (F16) by g(r)/r~, differentiating, and -.
solm-ng:

r
——

g(r) =e ‘= (K1 cos 1T+K2 sin lr)

where

The boundary conditions are determined by using t-hefirst
eigenvalue for K,

(F17)

and therefore,

(This approximate equality is correct within 1 percent for
(r./r,)>O.5.) Substituting this result in equation (F15)
gkes

d&.= _K2= _ r,–r, ‘= _&4,
dye ()7

In this very rough apprckrnation, dyddy. is therefore equal
to minus the square of the aspect ratio. By integrating
equat,ion (F18) and by Ietting y.,, equal the va.lue of ye
correspondkg to y.= O (simplified-ra.dial-equilibriumapprox-
imation),

y.=y..—~%e (3?19)

.4 solution corresponds to yc=yc=y, which when substituted
into equation (F18) gives

(37)
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EQUATIONS FOR FINITE-ASPECT-RATIOCALCU~ATION .

In the numerical example of the symmetrical-velocity-
I

dV.,22 u 2
()

~ (r,
‘%%+%% (G2)

–rz) ‘l=z:~s=– ~~,f rza
diagram and conat.ant-total-e.nthalpy compressor, computa- dr,
tio~ is made for a blade-row. aspect ratio of 2, with a pre-
scribed simp~e sinusodial radial-flow path. Inasmuch as
the term containing radial v“&iation of entropy is not con-
sidered, substituting equation (E5) i@_(14c) gives

and

,.

From the relation ,.
. .

and integrating equations (Gl) and (G2) from rh to r, there
results

,.
and

..:,..

--------

With this set of equations replacing (E7) and (E8), the
rest of the calculation .is tie same as in the mro-aspect-
ratio case. Equation (37). is used as s@ting value ,ynd by
appropriate interpolation after two cycIes of calculation the
third or fourth cycle usually gives sufllcient accuracy,

\
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