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THIN AIRFOIL THEORY BASED ON APPROXIMATE SOLUTION OF THE TRANSONIC FLOW
EQUATION 1

By JOHNR. SPmrrmiand ALBERTA Y. ALKSNR

SUMMARY

The prtxent paper describes a methodfor the approxiqa.te
solution oj the nonlinear equattin.sof transonic small dtiturb-
mmetheory. Although the solutions are nonlinear, the analys-i.s
is suj%iently simple that r& are obtainedin closed analytic
form jor a lurge and .r@r@cant ciiws oj n.onlifling airjoiik.
Application to twodimensi.onal $OWSwith jree-streum Maoh
Itumber near 1 lead~,for instance, to general ezprtwiom for
the determination of the pressure diw!riJ@wn on an airfoii oj
speci$ed geomety and for the shape of an airfoil hating a
prescribed prtxwure distribution and give, furthermore, the
correct can”ation of prawure with Mach number at Mach
n:umkr 1. For @ws that are s-ubsoniceveryuhre, the method
~“eld.9a pressure-correctionJormula thai i-smore acxwratethan
the Prandtl-Qlauert rule and comparesfaoorably m“th existing
higher approximations. For J70WSthat are supersonic emry-
wfiere, the method yields the eqwivakmt,in tranmnic approxi-
mation, of simple wave theory. R& obtainedby applicatwn
oj these general expre.wionaare shown to correspond closely to
em-stingsolutwns and to experimental dai!afor a wide cam”ety
of airfoils.

INTRODUCTION

The difficulty of solving the nonlineax equations of motion
of n compressible inviscid gas has led to widespread use of
approximatee methods in the practical solution of the prob-
lems of airfoil theory. The simplest and most versatile
appro.xinmtemethod is that based on a complete linearization
of the. equttions and stems from the pioneering work of
Munk, Pmndtl, Glauert, Ackeret, and others (see refs. 1 and
!2for a r&um&). Although this linear theory of compressible
flow lms been extensively developed in recent years and is
widely used in aeronautical applications, it has two limita-
tions that m-eof signi6cance in the present discuasicm. First,
linearized theory gives only a tit approximation that is
correct for nirfoils of small thickness ratio. This limitation
is, in some respects, of continually diminishingsignifkanee as
the aeronautical engineer is forced to use thin wings and
shmderbodies to avoid heavy penalties in wave drag. If the
airfoil is not suilicientl,ythin, however, corrections are neces-
sary nnd higher order theories have been developed to M the
need (see ref. 3 for a r4sum6). Second, and more important
for the present discussion, linearized theory requires, in
general, that the Mach number be sufficiently removed from
unity that the flow is either purely subsonic or purely super-
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sonic. If both subsonic and supersonic velocities occur in
different parts of a single flow field, the flow is said to be
transonic and the results of neither linear theory nor the
existing higher order theories are, even qualitatively, in
agreement with the experimentally observed flows.

Transonic flows have been studied successfullyby considera-
tion of a simplilhd, although still nonlinear, theory that was
originally conceived in an effort to provide a useful fit
approximation for the pressures and forces on thin wings
and slender bodies in inviscid flows with free-stream Mach
number very near unity (see ref. 4 for a short r&wm6).
More recent developments described in references 5, 6, 7, 8,
and elsewherehave shown that the useful range of this theory
can be extended to include subsonic and supersonic flows if
slightly diflerent approximations are employed in the deriva.
tion of the fundamental equations. Although the resulting
theory is commoniy designated as transonic small disturbance
theory, or more brieily as transonic flow theory, it is actually
a unified theory for subsonic, supemonic, or transonic flow
around thin wings and slender bodieq and is moreover, the
simplest theory proposed to date that is capable of yielding
reliable results throughout that Mach number range.

This formulation of transonic flow theory provides a set
of equations that differs from that of linear theory by the
addition of one nordinesx term in the ditlerential equation
for the perturbation potential and in the shock relation. If
the flow is purely subsonic or purely supersonic, solutions of
the equations of transonic flow theory can be sought by
application of exist@ methods for approximating the solu-
tions of the exact equations of compressible inviscid flow.
If the flow is transonic, however, the results obtained by
application of these methods are at wide variance with those
observed experimentally and it is necessary to devise new
and appropriate methods of solution. Although methods of
the successive approximation type have recently been de-
veloped that can be applied to transonic flows (e. g., refs. 9
and 10), the principal method that has been employed in
the theoretical analysis of such flows involves the use of the
hodo~aph transformation by means of which the nonlinear
equation for the perturbation potentisJ is transformed into
a linear dMerential equation of mixed elliptic-hyperbolic
type, the Tricomi equation. Although the resulting bound-
axy-value problem is still very diilicult to solve, this method
has been applied with considerable success in the study of
trtmsonig flow around wedge and flat-pla.te airfoils and a
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number of specitlc results have been given in recent yesm
by Guderley and Yoshihara, Vincenti and Wagoner, Cole,
and othem (see ref. 11 for a n%.um$). Extension of this
method to permit, calculation of transonic flows around
arbitrary airfoils with curved boundaries appears, however,
to be a difficult task.

The present analysis is based on & novel method of ap-
proximation that avoids most of the difficulties of existing
procedures while still preserving much of the nonlinear
effects in the solution. Su&ient simplicity is gained by
restricting attention to surface pressures and to flows that
are either purely subsonic, purely supersonic, or have a free-
stream Mach number near 1, that results can be obtained in
closed analytical form for both the direct problem of calcu-
lating the pressure distribution on an airfoil of given shape,
and the inverse problem of calculating the shape of an airfoil
associated with a given pressure distribution. Inasmuch as
the ma=titude of the errors introduced by use of the ap-
proximation procedur~ is not evaluated in all cases by
mathematical considerations, the usefulness and accuracy
of the results are demonstrated by the calculation of the
pressure distribution and drag for many diilerent airfoil
shapes and by comparison with existing theoretical and
e.sperimentalresults.

Of the theoretical results available for comparison, only
two are exact. They are the simple-wave solution for super-
sonic flows without shock wav~, and the variation of pres-
sure with Mach number at Mach number 1. The present
method yields both of these results exactly within the
framework of transonic small disturbance theory.

Although the e.sistingresults mentioned above for wedge
airfoils at Mach number 1 contain certain approximations
beyond those implicit in the use of the equations of tran-
sonic flow theory, the influence of these appro.simations
appeam to be minor and the rea.dts are generally considered
to be very nearly exact solutions of these equations. The
present method produces results for this case that are -in
substantial agreement with these previous theoretical re-
sults. In contrast to the hodograph methods, the necessary
steps am sticiently simple, moreover, that results can also
be obtained for sonic and new sonic flow around arbitrq’
airfoils with curved boundaries. Since previous theoretical
information for such cases is meager, comparisons are made
with a large number of experimental results. In general,
the theoretical results found by application of the present
method lie within the range of e-xperimentalscatter of the
data.

In the subsonic range, no exact solutions axe available for
flow around a thin airfoil. Comparisons are made, there-
fore, with pressure correction formulas, such as that of
IUrm4n-Tsien, and wi~ higher approximations obtained
by iteration methods.

A simple heuristic account of the general method and
extensive discussion of the results are centained in the
main text. Additional details concerning the underlying
basis for the general procedures are contained in the Ap-
pendix.

PRINCIPAL SYMBOLS

speed of sound
speed of sound in the free stream

pressure coeilicient, ~
@m%

ll.cw+l)l’flc
+/2 P

chord
dsection pressure drag coefficient, —

~umzc

[.ilIm’(?’+l)]’@
&#

pressure drag
fl’1.y7+l)

u=
local Mach number
free-stream Mach number
exponent in the relations for airfoil orclimtes

given by equations (56) and (61)
static pressure
free-stream static pre9sure
resultant local velocity
maximum thickness of pro~e
free-streun velocity
perturbation velocity components parallel to z

and z axes, respectively
value of u obtained by solution of equation (21)
value of u obtained by solution of equation (S)
value of u obtained by solution of equution (39)
value of z at which parabolic and hyperbolic

solutions are joined
Cartesian coordinates where z extends in tho di-

rection of the free-stream velocity
value of x at which the local velocity is sonic
ordinates of the upper surface of the fiirfoil
~~a function
ratio of specific heats, for air ?’= 1.4
semiapm angle of wedge nirfoil

do,
pressure gradient,

d~
l._~~m~_~
M*2- 1+ku

k$

M=2-—1
@f=2(Y+l)7]’~

free-stream density of air
thiclmess ratio, t/c
perturbation velocity potential

SUBSCRIPTS

values associated with critical Mnch numb~r
values associated with incompressible flow or with

Jwm= o
values given by linearized comprmsible flow

theory
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M.= 1 values associated with M.= 1
z mu values associated with maximum ordinate of air-

foil
(.=0 values associated with ;. =0,” or with M.= 1

FUNDAMENTAL EQUATIONS AND BOUNDARY CONDITIONS

Consider the steady flow of an inviscid compressible gas
past an arbitrary thin symmetriwd nordifting airfoil, and
introduce Cartesian coordinates x and z with the x axis paxal-
lel to the direction of the free-stream, as illustrated in @e 1.

-i’k)

FIGUREl.—View of airfoil and coordinate system.

Let the free-stream velocity and density-be U. and p., the

perturbation potential be q, and the perturbation velocity
components parallel to the z and z axes be p., or u, and ~,, or
w, where the subscript indicates differentiation. The bound-
ary conditions require that the perturbation velocities vanish
at infinity, and that the flow be tangential to the wing sur-
ftice. The first condition indicates that p is constant at
infinity. The latter condition can be approximated for
thin wings by

(%),.0=UC4 ‘: (1)

where Z represents the ordinates of the airfoil upper surface.
The pressure coefficient CDis likewise approximated to first
order by

(2)

These relakions are familiar from linear theory, but apply
equally for transonic thin airfoil theory. The differential
equation for p is not the same as in linear theory, however,
but is

(3)

where M. is the iMach number of the undisturbed flow and
y is the ratio of specific heats (1.4 for air). It is useful to
note that the coefficient of pn corresponds, in the present
approximation, to 1—M where M_is the local Mach number.

Knowledge of methods for obtaining solutions of equation
(3) is meager, not only because the equation is nonlinear,
but because it can change type (elliptic, hyperbolic), depewi-
ing on the value of Mm and p.. This change of type is an
essential feature of transonic flow, since subsonic flows are
represented by elliptic equations and supersonic flows by
hyperbolic equations. If both types of flow occur in a single
flow field, it is apparent that the differential equation must
change type. In the present case, the type of the equation
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is recognized by the sign of the total coefficient
follows:
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of qn, as

}

>0 elliptic (subsonic)
l_~m2–~ til

- ‘- % <O hyperbolic (supersonic)
(4)

An important quantity in the. discussion of compressible
flows is the critical pressure coefficient Cp~ associated with
the local occurrence of sonic velocity. The appropriate
relation is found by combination of equation (2) and the
relation obtained by equating the coefficient of p= in equation
(3) to zero, and is

(5)

In transonic and supersonic flows, it is also necessary, in
general, to pro tide an additional equation for the discon-
tinuous changes in velocity that occur at shock surfaces.
The neceswq equations, when simplified to the form con-
sistent with the approximations of transonic flow’ theory,
reduce to

Pa= 4% J

where the subscripts iz and b refer to-the values on the two
sides of the shock surface. With the exception of the
Appendix and minor references in the main text, equation-
(6) is not employed explicitly in the following analysis and
discussion because attention is coniined to (a) purely sub-
sonic flows in which no shocks occur, (b) purely supersonic
flows in which shock waves can be approximated with good
accuracy by isentropic compressions, and (c) flows with
free-stmmmMach number near 1 in which the shock waves
axe situated either downstream or far upstream of the airfoil.

The remainder of the present paper is concerned with the
approximate solution of the preceding equations rmd with
comparison of the results obtained in specific applications
with existing theoretical and experimental results. Purely
supersonic flows are discussed fimt because the method of
approximation yields the exact equivalent, in transonic
approximation, of simple wave theory. Purely subsonic
flows are discussed next because of the close relationship
between the results for this and the preceding case. I?lows
with free-stream Mach number near 1 are treated last.

SUPERSONICFLOWS
APPFtOXLMATE SOLUTION OF EQUATIONS

It is convenient in the analysis of supersonic flows to intro-
duce the symbol XHas an abbreviation for the negative of
the coeilicient of P=

Y+ 1
XH=ikfmz—l+lkfjm~=~~mz— l+hw>O (7)

.

and rewrite equation (3) in the form:

—&p=+pu=o (s)
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It is now assumed that ~= is neither zero nor in.liniteand that
it varies sufficiently slowly that its derivatives can be dis-
regarded so that it can be considered, temporarily, as a
constant. At this stage, the problem is equivalent to that
encountered in linearized supersonic airfoil theory (it ~
identical if 1~ is re~laced by i14=2—1) and the solution UHat
the ti~Ofi surface is

U dZujq=-4—
\~ dz

(9)

Differentiation yields

du= u. a?z
~=–~dx’

(lo)

If, now, M.’-l+ku is restored in place of X= so that, in
effect, the local value for hHis used at each point and the
subscript H on u is dropped, equation (10) becomes

du_
%– .@4@~:l+ku~:

(11)

It is immediately apparent that a cextain degree of arbi-
trariness is displayed in the preceding steps and that difFer-
ent results will be obtained depending, for instance, on
whether illmz—1+IM is substituted for & in equation (10)
m above, or in equation (9), or in other equations obtained
by further differentiation or integration of equation (9).
It is shown in the Appendix, however, that the error involved
in the preceding steps can be .as.sessedexactly by examina-
tion of the remainder terms that have been omitted iii
writing equations (9) and (10). The advisability of using
equation (11) is assured by the fact that the error is shown
to vanish, in the absence of shock waves, if&is replaced by
illm’– l+ku in equation (10), but not in equation (9). This
conclusion becomes immediately evident, furthermore, upon
recognition of the fact that equation (11) is the ccnmterpart,
in trmsonic small disturbance theory, of a fundamental
differential equation that occurs in the analysis of l?randtl-
Meyer and simple wave flows (see, e. g., ref. 12, p. 87 or
ref. 13, pp. 190 and 212). Equation (11) is a nonlinear
ordinary dHerential equation for u that can be solved
easily by separation of variables. The result is

(12)

where C is a constant of integration. In applications of
equation (12) to flows that are supersonic everywhere,
perhaps the most logical method for the evaluation of this
constant is to use the expression betweeri”u and dZ/ak ,
provided at the leading edge by the transonic approximation
to the shock relation, that is by equation (6) with u= and w=
equated to zero, ub to (u)d, and Wb to u= (dZ/dz).~. The
result givim by equation (12) with C evaluated in this way
corresponds, to the degree of approximation afforded by
use of transonic small disturbance theory, to shock-expansion
theory. An alternative procedure that leads to a somewhat
simpler result possessing very nearly equal accuracy is to

evaluate C by use of the result indicated by equation (9)
that u=O where dZ/dx=O for any nonsingular & thus

c=;(wl)s~ (13)

whence
; 1u=–

k{ [
– (34.’– 1)+ (M.’-lflfl

7}
–:kU.~ n (14)

The corresponding relation for the pressure coefficient (?, is
obtained by combination of equations (2) and (14), and is

2
“=M.2(.y+l) { [

(J!fm’-l)– (Mm’–l)3fl--

;A4.w+l)$y } (m

It should be noted that the restriction to supemonic flow
imposed in the evaluation of C and in the inequality of
equation (7) requires that equation (15) is to be applied only
to cases for which the quantity in square brackets, that is,
[(M.’–l)W’– (3/2) iMo2(Y+ 1) (dZ/dz)], is positive.

COMPARISON WITH EXfSTING HIGHZR APPROXIMATIONS

Equation (15) is recognized, by comparison with equation
(3-15) of reference 3, page 387,2 as the precise equivalent,
in the transonic small disturbance apprcmtiation, of simple
wave theory for the surface pressure on an airfoil in super-
sonic flow. Exact simple wave theory is lmown, moreovw,
to be perfectly adequate for all practical purposes up to o
Mach number of 3, which is considerably in excess of tho
present range of interest. Within this Mach number range,
the results obtained by use of simple wave theory me almost
identical with those obtained by use of shock-exTansion
theory. Comparisons of the variations of C, with dZ/dxin-
dicated by exact simple wave theory and by equation (16)
are shown in figuIe 2 for several Mach numbers from 1 to 2.
As might be anticipated, the two sets of results are in C1OSO
agreement for Mach numbers near 1, and ditler by an in-
creasing amount with increasing Mach number.

Although the necessary calculations are vwy easy to ac-
complish in any given case, simple wave theory is not always
used in actual practice. Many calculations rtre based on
linear theory or Busemann’s second-order theo~, Conse-
quently, an additional set of graphs is shown in figure 3 in
which the curves of iigure 2 are repeated together with the
corresponding curves calculated by use of first- cud second-
order theory. No comptins are shown for M.= 1 becauso
the latter theories indicate infinite pressures. It can be men
that equation (15) furnishes a better approximation tlmn
linear theory throughout the entire range of variables shown
on figure 3 and a better approximation than second-order
thqmy for Mach numbers less than about 1,4. It cmi bo

1 Comtin dfxfoss that the quantity .3Jmqy-!-1) tkat apmis IIIomut10n (M)isrepro
sentedby +.1 In ermatfon (3.15) of raferonce 3. ThodifferenceMmsooMMwithncmrc-
spcmdtng dlrkonce In the eoefficfemtk of the nordlne.w term of eqnatlon (3). A1thou~h tho
two morlickants are identfcal at .lf~ -1, and mfgbt appmrto bo orpMltYrnmhtcnt with tho
other a-ptioas of tramanfo flow thmry,Ithasbeenshown tn refmmccs 8, 0,7,8, and @Lw
where that the app@matlonobtafned by use of .V~*(Y+l) Is rnnoh the better of tho two for
Mach nnrnben other than 1.
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FIGURE 2.—Ccrmpftrieonof results indicated by present theory and by
exact simple wave theory.

seen thnt second-order thegry furnishes a very poor approxi-
mation for CPat Mach numbers appl~ac~g ~ity.

In order to explore this behavior further, two additional
curves labeled “third order” and “fourth order,” calctiated
using the formulas of references 14 and 15,3are included on
the graph of figure 3, even though they must be interpreted
in a somewhat more restricted sense than the other curves.
To be more precise, the third-order curve is restricted to air-
foils for which dZ/dx is zero at the leading edge, and the
fourth-order curve to airfoils for which both dZ/dz and
d2Zldti are zero there. It is clear from this sketch that the
nccurrtcy of second-order theory at Mach numbers near
unity is not improved by addition of l@her order terms.
The eqkmation resides in the fact that the larger values of
ldZ/dzIshown on the graphs of figure 3 exceed the radius of
convergence of the power series expansion for CPfor all but
the highest Mach number shown. With the noted restric-
tions on the leading edge, the higher order results of fieme 3
me equivalent to the fit few terms of a power series ex-
pansion, in terms of dZ/dz,of the expression for CPindicated
by exact simple wave theol~. The radius of convergence
of the series depends, of course, on the Mach number and is
given by the value of ldZ/dz[associated with the occurrence
of sonic flow or, in terms of the curves shown on @es 2 and
3, with the termination of the left end of the exact curve.
The failure of higher order theories at negative dZ/dx is thus
of purely mrrthematical origin and has no direct physioal
signitkance.

$Attentfen of those who refer 10rekrark% 16 h dfed to the Idct that the first termapprfng
kithefonrth.order@WIMmta4of amatfon (zWshonfd be 2/3 rather than 1/3. Thfs term Is
wrltfen correctly fn the nnmmfml example @ven fn -uon (IW).

I

SOLUTION OF THE TRANSONIC FLOW EQUATION 513

ADDITIONAL PROPERTIIW, OF ‘kPPFtOXIMATE SOLUTION

Equation (15) has some additional interesting properties
worth noting. Of the two major components of the righb
hand side, the first is recognized upon comparison with
equation (5) as the expression for CPm. Since the remtig
term is zero when CP= C~fl,”it follows that the expression for
the critical value for dZ@c associated with the occurrence of
sonic velocity at n given hIach number M. is

(16)

It follows, furthermore, that a curve representing the varia-
tion of CP with M. for a given dZ/dx, and hence a given
point on the airfoil, approaches tite slope as C, approaches
c Pm.

An alternative form for equation (15) that is useful for
some purposes is the following which expresses Cpin terms of
the linear-theory solution Cp~rather than dZ/dx.

This relation can be written in somewhat more concise form
if expressed in terms of the transonic similarity parameters

cp=2& [1-(+9%1 (18)

where

and r refers to the thickness ratio. Critical values for up
and ~p~ corresponding to the local oocnrrence of sonio
velocity are easily recognized to be the following:

(19)

SUBSONIC FLOWS

APPROXIMATE SOLUTION OF EQUATIONS

The procedure described in the preceding section will now
be applied to the analysis of subsonic flows. Thus, introduce
the symbol h as an-abbreviation for the coefficient of q=

and rewrite equation (3) as follows:

b-wz+-%=o (21)

If it is again assumed that AEis neither zero nor iniinite and
that it varies sufficiently slowly that its derivatives can be
disregarded, the problem is equivalent to that encountered
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in linearized subsonic airfoil theory and the solution UEat
the airfoil surface is

where the subscript
Differentiation yields

(22)

i refers to the values for IM==O.

du~ 1 d%—=— _
dx .&dx (23)

I
MO=I.2 //

!/’
,’

, /’ ‘
,$’

//

,

,

*

$

\

.

,,

Ma! 2.0

— Eq. (15)
———— Exactsimple wave theary

——- Linear theory
—-— 2nd order theary

–---– 41h “ “

I I
.16 .08 0 -.08 -.16

)y tbe method of suoaessive approximation for supemonio flow,

If, in the same manner m described for the supersonic case,
1—.iims-ku is restored in place of & so thnt, in effect, tho
local value for & is used at each point, find the subscript
Eon u is dropped, equation (23) becomes

du_ 1 d$llj

a– ~l—il!m~-~ z (24)

h in the previous discussion of supersonic flows, the error
terms are omitted in writing the preceding relations, but am
included in rLmore complete presentation of the equations
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given in the Appendk. Once again, the resdting relation is
a nonlinear ordinmy differential equation that can be solved
mm-lilyby separation of variables ‘\

In rtpplicrttionsto flows that are subsonic everywhere, the,
constant of integration C is evaluated by use of the result
indicated by equation (22) that u= O where u*= O for any
nonsingular AB)thus

In this way, the following relation is obtained between u and
7Li

‘=~{’-’14[(-M~’-M~’)3’’-~ku,T”}’27)
The corresponding relation for the pressure coefficient C, is
obtained by combination of equations (2) and (27) and is 4

c 2
‘=–Mm’(7+1) { [

(I–M.’) -- (1–iM’m2)3~+

7P
%.’(7+ 1)C.i4 J}

where

(2s)

In the same way as noted for supersonic flows following
equation (15), the restriction to subsonic flow imposed in the
evaluation of C and by the inequality of equation (2o)
requires that equation (28) be applied only to cases where the
quantity in the square bracket is positive.

This result possesses several simple, but interesting,
properties. First of all, the leading term of an expansion
of equation (28) in a series involving ascending powe~ of
CP,is precisely the familiar Prandtl-Glauert rde of linearized
subsonic compressible flow theory

Cp,
CPL= —–

~1–M.2

The coefficients of succeeding terms,

(29)

●

however, do not agree,
with those given by the method of successive approximation.’
Next, the first of the two major components of the right-
hand member of equation (28) is recognized, just as in the
supersonic case, as the expression for the critical pressure
coeilicient CPW. Since the remaining term is zero when
C,= Cp=, it follows that the expression for the critical value
for C!Pfassociated with the occurrence of sonic velocity at
a given hlach number M. is

(30)

4Attsntlon b calfed to the fact tbe.t tbfs same relatfom exrapt for replacmnent of Jf=r(.+l)
by 7+1 fO~the .wmMre.kwns m noted fn footnote 2, bns k found fndermndently by Knsn-
knwu by 8ppll@10n of the WKS motbwl of armrcdmatfon to tbe equations of trammfe
flow tbeocy. l’bls mult, together wfth n number of appllmttoms, fs pnbllshed tn the Sop-
tembcr 19.57IsIe of the Journnl of the Physical &clety of Japan.

It may bo noted that this value is just two-thirds of thati
obtained by use of equation (5) together with the PrandtL
Glauert tie. It follows, furthermore, that a curve illus-
trating the variation of C, with lM. for n given C,g, and
hence a given point on the airfoil surface, approaches idinite
slope as CP approaches CP~. This latter behavior signitks
that a power series expansion of the result will only converge
for Mach numbers less than the critical. Last, the following
result is obtained if equation (28) is e.xpressetlin terms of the
subsonic linear theory solution CP~rather thrm CPi

c,=
{[

–2(1–J’!’!m2) ~ 3 M ‘(l’+ 1) ~
MmyY+ 1) T}

– 1+1 ~:jz , ,L n (31)
m

where

C*, ~
c“’=,- .

hTote that the relation between C, and Cp~ indicated by
equation (31) for subsonic flows is precisely the same as
given by equation (17) for supersonic flows. It follows
immediately that the corresponding expression in terms
of the transonic similarity parameters ~P and ~. given by
equation (18) applies to subsonic, as well as supemonic
flows. In order to illustrate the nature of the results
indicated by equation (18), a plot of the variation of UP
with E. for various Cp~~~ is shown in figure 4. Although
the remarkable symmetry about .f. =0 is a consequence of
expressing the results in terms of the trrmsonic similarity
parameters, the general symmeiry remains, although in
somewhat distorted form, when CPis plotted as a function
of M. for constant CP~~~. Such a plot is shown
in figure 5.

(m

FIGURE 4.-Variation of reduced prwure coefficient, cm with the
similarity parameter, f., for various values of BPL~.

COMPARISONWITHKXE3TlNGHIGHERAPPFtO.&fAllONS.
- ?.

The remainder of the present sectiEiii%iiZubsonic flows is
concerned with an evaluation of the degree of accuracy
achieved by use of equation (28). This discussion is handi-
capped somewhat by the fact that all other theories for
subsonic flows around airfoils are also approximate and that
no exact solutions are known. l?erhaps the most widely
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used higher approximation is(the K&rm6n-Tsie~ >$. (See
refs. 3 and 16 for a r&urn6\) Although tk traditional
derivation of the K6rm&n-Ttien rule is based on the hodo-
gmph method, it is not without+@rest to observe that the
lGfrm6n-Tsien rule can be obtained by use of the present
procedures together with the three assumptions introduced
in the original derivation. These are: (a) that ~ can be
approximated by —1 in the expretion for the speed of
sound, (b) that the perturbation velocities are small, and
(c) that the Mach number can be considered small in the
evaluation of additional effects of compressibility beyond
those indicnted by linear theory. The starting point is
equation (3) with the coefficient of p= replaced by the approx-
inmte relation for 1—Jr, where M is the local Mach num-
ber, afforded by use of assumptions (a) and (b). The
necessary relation can be derived from the energy equat?on

(32)

where

!f=(um+u)’+d

by setting -y= – 1, whence ,

Note that this approsirnation does not permit the att&n-
ment of M= 1 with hi% q/U= and with M. different from
unity. Substitution of this relation for 1–M in place of
XEin equation (23) and integration yields

(34)

The constant of integration is again ev~uated by setting
u= O where u{= O, whence C equals umty. Solution for
u and introduction of the relation between u and Cp jgiven
by equation (2) yields

FOR AERONAUTICS

c,,

4-+ (1/4)fw.@,, ’36)

Replacement of M.2 in the second term in the denominator
‘by 2(1–J-) is consistent with assumption (c) and
leads directly to the familiar expression for the K6rmfm-
Tsien rule

c,,
‘p=~x~+(l–4m)(@ (36)

This rule, in common with the Prandtl-Glauert rule and the
present result given in equation (28), is termed a pressure
correction formula because Cp k given in terms of CPi and
lM. with no further dependence on airfoil shape. A com-
parison of th’e variations of C. with &lm indicated by them
threo relations is shown in figure 6. A grewt mrmy othor
pressure<orrection formulas having widely varying proper-
ties have also been proposed in recent years. One thut
yiekk results in closer agreement with equation (28) than
the Prandtl-Glauert or the K&rmfm-Tsien rule has bem
given by Garrick and Kaplan in reference 17. A purve
illustrating their results is included on figure 6.

A second important method that has been used to obtain
higher approximations for subsonic pressure distributions on
thin airfoils is the method of successive approximation in
which the solution is expressed in a power series in thiclmeas
ratio= In this method, the fit term is the result given by
linear theory, and the coefficients of successive terms are
determined by iteration. Higher approsimations cannot be
expressed in terms of CP,and M. in such a simplo and uni-

–.12
CPC, -:.

1

- -CPO Eq. (5)
Exact isenfrop[c “- -

\\

-.s - — Eq. (28) k

----– Prondtl-Glouerl
——— K6rm6n-Tsien
—-— Gorrick-Kaplon

Cp — ~

o -

.4 — — — .

\
‘\ ‘ \

.8
0. .2 .4 .G .8 1.0

FIGU= 6.—Compariaon of results indioated by present theory and by
varioua prewmre rmreotion formulaa for subsonio flow.
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vmsal manner as with the pressur~orrection formulas, but
depend on the airfoil shape in a more explicit manner. Al-
though a relatively simple and general procedure for tb e
evaluation of the second approximation has recently been
given by Van Dyke (ref. 18), the determination of the third
nppro.xhnntionhas been accomplished for only a few special
shapes. One of these is the nonlifting symmetrical circular-
arc section for which the second approximation has been
given by Hrmtzsche rmd Wendt (ref. 19) and the third ap-
proximation by Asaka (refs. 20, 21, and 22).5 I?igure 7
shows n comparison of the variations of Cp with M. at the
midpoint of such an airfoil having a thiclmessratio 7 of 0.10,
as i.ndicated by equation (28) and by tbe first, second, and
third appro.xirnations. It can be seen that the results ob-
tained by use of equation (28) are identical to those given
by the first approximation (or linear theory) for small Mach
numbers, but depart therefrom with increasing Mach num-
ber and are much closer to the higher approximations for
Mach numbers near the critical It should be noted that
the curves labeled fit, second, and third order represent
the results indicated by successive approximations to the
solution of the esact equation for inviscid compressible flow.
It is also of interest to compare the results indicated by
equation (28) with those indicated by successive approxima-
tions to the solution of the simplified equations of transonic
small disturbance theory. The latter results can be cal-
culated by use of the following expression, which is readily
derived from Asaka’s result by taking the limiting form con-
sistent with the approximations of transonic flow theory:

()c,=– ~ ‘ – L: (7+1)M-’,’–
T ~~9 $2~

[-(
1 281 7——
T )( ~ , +40’08)1%1%’+.108+~ 1n2 +~ ?!?

‘–2”6M5&
–0.5132 ‘7+1)M”’ ,,_

(1–M.’)’

(37)

It can be seen that the curve in figure 8 indicated by equation
(28) is somewhat higher than even that representing the
third approximation, but evaluation of its accuracy rem”ains
diicult because neither the exact solution nor an upper
bound for the results is provided by the classical method of
successive approximation. Attention is called to the faot
that recent developments in transonic flow theory permit the
establishment of an upper bound by application of an alter-
native method of successive approximation that involves the
solution of quadratic, rather than linear, equations at each
step of the iteration process. This process, based on the
methods employed in reference 9. is described in the Appen-
dix, and additional results are given for the specific case
considered in figure 8.

J The rdtn for the tbfrd npproximatlon gfven fn the pwant report dfffw’from those
obmlnoble dfredly from the Sxpr&iom given fn oftber reference ‘illar 21 and 22 due to the
wrreotlon of came mlspdnk These wrrmtfens kave bean vmlfied by mrmapondenee with
the author, mid we pablbhed In the January 195Sfsma of the Joorrml of the Physics] Society
of J8fml.
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FK+uaE 7.-Comparison of the variation of C=with ~. at the mfd-
point of a circ~-arc airfo~ as indicated by present theory and by
armlioation of the method of suooesive approximations to the exaot
&ations for inviscid subsonio flow. .
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FIGTJIM 8.—Comparison of the variation of C!pwith N. at the mid-
point of a circular-arc airfoil in subsonio flow, as indicated by present
theory and by application of the method of suooessive approximations
to the transoniu equation.

FLOWS WITH FREE-STREAM MACH NUMBER NEAR 1

The analysea of supemonic and subsonic flows given in the
preceding sections have started by introduction of a symbol x
for the coefficient of q= and the assumption that x is non-
singular and variea suflicientiy slowly that it can be regarded
as a constant in the initial stages of the analysis. Since the
results so obtained terminate if X=O, or physically if sonic
velocity occurs in the flow field, it is immediately clear that
some change is necessmy to study flows with free-stream
Mach number near 1 where the transition from subsonic to
supersonic flow is an ssential feature. The technique
adopted is to introduce the symbol XPas an abbreviation for
the coeilicient of q. rather than p=, thus

A.=M.z ‘*U= E&kg 4 (38)

whence equation (3) may be written as follows:

%- XPWZ= — (1—fMm*)qY==jp (39)
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If attention is eonlined to flows with free-stream Mach
number 1 so that the right-hand side of equation (39) van-
ishes and if& is replaced by a constant, the resulting relation
given by equation (39) is a linear partial differential equation
of parabolic type that is familiar tim the study of one-
dimensional unsteady conduction of heat. If approximate
solutions for flows with free-stieam Mach number 1 are
sought in this vvay, the amdyeis proceeds through considera-
tions that are generally applied to parabolic diilerentiil
equations, rmd is, in some sense, intermediate between the
mixed elliptic-hyperbolic type of the transonic equation.
The idea of using the equation for heat conductiu for the
study of transonic flows in thisway isnot new, but apparently
originated with Oswatitsch, who suggested it to Behrbohm
for the analysis of interred flows of nozzles (refs. 23 and 24)
The same idea has been applied more recently by O.wvatitsch
and Keune (refs. 25, 26, and 27) to calculate the flow around
the forepart of slender bodies of revolution at free-stream
Mach number 1, and they have shown that the results are
in remarkable agreement with those measured on the hont
half of a circular-arc body of revolution. Although the
parameter XP is regarded throughout as a constant, and
various means areproposed for the selection of an appropriate
value, it develops that the numerical result for the pressures
on the forward part of typical smooth bodies of revolution
depends so slightly on the actual choice that host any
reasonable value can be used for Ap.

If flows with free-stream Mach number different horn
unity are considered so that the right-hand side of equation
(39) remains, and if& is again replaced by a constant, the
resulting dMerential equation is linear and is of elliptic or
hyperbolic type depending on whether the free-strewn Mach
number, rather than the 100alMach number, is less than or
greater than unity. Maeder and Thommen (ref. 28) have
suggested that this linearized equation, or its counterpart
in three dimensions, be applied, together with- a new and
arbitrmy rule for the selection of a value for kp, to calculate
the pressure distribution on complete bodies of revolution
and on airfoils in two-dimensional flows. The selection of
an appropriate value for Xp is much more critical for these
problems than for those discu=ed originally by Oswatitsch
and Keune, however, and the replacement of XPby a eonstan~
results not only in seriou+loss of accuracy in many applica-
tions, but also in loss of certain essential general features of
the solution. In general, results obtained by replacing xP,
or &@x, with a constant appear to be remarkably accurate
if the resulting values calculated for bu/bx are, indeed, nearly
constant over most of the chord. If, on the other hand,
?)u/bx varies substantially over the chord, no choice of a
single value for & will suflice to provide a useful result.
This point is developed further in the course of the following
discussion and in the Appendk. Some criticisms of the
above procedure, although principally from a dHerent point
of view, have appeared in a note by Miles (ref. 29).

In the present analysis, it is assumed once again that Xp
is nonsingular and that it varies sufficiently slowly that it
cm be considered as a constant in the initial stages of the
analysis in which a nonlinear ordinary diilerential equation
is established for u on the airfoil surface. The fial result

for u is determined by integration of this diflerentirdequation
and restores, to a largii degree, the effects of the varintion
of XPalong the chord. The result for the fit stage of the
analysis requires the solution of equation (39) subject to t,ho
boundary conditions given in equation (1) and can be ob-
tained by application of standard procedures. The solution,
has two distinct forms depending on the sign of hP... The
form associated with positive hp is. appropriate for applicw
tion to regions where the flow is accelerating, whereas that
associated with negative lp may be appropriatee for applica-
tion to regions where the flow is decelerating. The analysis
of accelerating flow will be developed first. The direct
problem in which the airfoil shape is specitied and the pres-
sure distribution is sought, and the inverse problem in which
the pressure distribution is spec%ed and the associated air-
foil shape is sought are ticussed for each case.

ACCELERATING PLOWS, DIREc37 PltOBLEMS

Approximate solution of equations for arbitrary airfoil
shape.—A relation for u at the airfoil surface derived by
consideration of equation (39) with positive AP,the boundrny
conditions stated in equation (1), and the form of Green’s
theorem associated with the left side of equation (39) (see
Appendix) is

where

j’p=– (l–fMm’)$ofE, UP= J&J--l
The two alternative expressionsfor UPare completely equiv-
alent. The first is more concise and will be used in the
following equations, but the second is often somewhat sim-
pler to evaluate. If the free-stream Mach number is unity,
the double integd vanishes and UPcan be calcukted directly.
The result so obtained corresponds to that found by appli-
cation of Maeder and Thommen’s proposal of reference 28.
(It should be noted, however, that the general eqmxsion for
P given in reference 28 is incorrect owing to improper trefit-
ment of plus and minus signs.)

If the free-stream Mach number is not unity, equation
(4o) is an integral equation, and it might appear thot little
progress toward a solution has been made. If attention is
confined to the vicinity of the airfoil and to Mach numbwa
near unity, however, it is only necessary to approsinmte
ptt well locally. and it is sticient to substitute Ap/lcfor ptt
or &@~ in the double integral. The integmd can then be
evaluated and the following relationship results:

H, once again, ku, is restored in place of APso that, in offoct,
the local value is used at each point, and the subscript P on
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u is dropped, a simple nonlineax ordinary differential equn-
tion iOobtained for u

Equation (42) can be written in the following form upon
rearrrmgingthe terms nnd squaring both sides.

As ii~the other cases, equation (43) can be solved readily by
sepmation of variables, and the constant of integration can
be evaluated by introduction of the additional condition
that equation (41) provides the correct location Z=Z* for
the sonic point, or point where u= (1–-ii.2) U./l?.2(Y+l).
The result is

[

J1-M.’)U.
M.yy+l) J ‘d!fRf+lLlxi&r*d’Y@

(44)
where Z* is the value for z for which

(45)

This method of evaluation of the constant of integration is
completely analogous to that employed in the analysis of
subsonic and supersonic flows, and is necessa~ in the analysis
of flows with free-strewn Mach number near 1 in order to
avoid in6nite pressuregradients at the point of sonic velocity
on smooth airfoils. This method, moreover, provides a
mechanism for the introduction of direct upstream depend-
ence on airfoil shape in the subsonic region, and its =clusion
in the supersonic region. The corresponding relation for the
pressure coefficient Cp is obtained by combination of equa-
tions (2) and (44) and is

(46)

An alternative e.spressionin terms of the transonic similarity
parameter is

The variation of 02 with & expressed by equation (47) is
exact, within the approximation of transonic small disturb-
ance theory, for flows with free-stream Mach nunibers very
near unity, rmd is associated with the fact that the local

l&rJRB. 9.—View of sfngle+edge airfoil and priooipal dimensions.
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Mach number distribution on an airfoil is independent of
the free-stream Mach number at values of the latter near
unity. This phenomenon has been discussed previously in
references 30, 31, 6, and elsewhere.

Once C. is lmown, the pressure drag d
calculated by use of the following relation

d s2 00 dZcdE — ~— ,Zdx
yu.% c 0 ‘

can be readily

(4s)

Application to single-wedge airfoils.-Sufficient theoretical
and experimental resuhs are available at the present time to
provide considerable insight into the accuracy and usefulness
of equation (46) or (47). The shape for which the greatest
amount of information is available is the &gle-wedge
profle for which both theoretical and experimental pressure
distributions are available. Thus, consider a single-wedge
profile of maximum thickness t and chord c/2 as illustrated
in iigure 9. The ordinates of the airfoil upper surface are

Z=t ~=Tz for O<x<c/2
\ (49)

z=t12=Tcj2 fo; x>c/2 J

and the sero.kpex angle o is equal, to the order of accuracy of
thin tiOil theory, to ~. Substitution of equation (49) for
Z into equations (45) and (46) provides that the sonic point
is at the shoulder (z*=c/2) and that the pressure distribution
on the surface of the wedge at free-stream Mach numbers
near 1 is

A plot of the results for Mach number 1 is shown in figure
10 together with the corresponding theoretical results given
by Guderley and Yoshihara in reference 32. Although some
approximations are introduced in the course of the latter
analysis, the results are generally regarded as virtually an
exact solution of the equations of transonic small disturbance

o

Theory 0
— Eq (50)
—— Ref 32

I

<I

G

2

Experiment ref 33
9=.10

0 Upper surface
u’ Low& surface

f7F.06

n Upper surfoce
Mm= I o’ Lower surfoce

/
.

40 .1 .2 .3 .4 .5
Xlc

FIGUnD 10.—Theoretical and experimental pre+sure distributions for
singkmwcfge airfoils at free-sfmmm iUaoh number 1.
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FIGUREIl.-Summary of other theoretical results for transouic flow
pastsingle-wedgeairfoils.

theory. Also included in figure 10 are experimental results
for Lf. = 1 obtained in the Langley annular transonic wind
tunnel and reported b-y Habel, Henderson, and Miller in
reference 33.

Siuce th? comparisons show-n in figure 10 indicate that
equation (50) provides an approximate solution for the pres-
sure distribution on a single-wedge profile at M.= 1 that is
probably satisfactory for most purposes, and since the varia-
tion of ~P with & given by equation (47) or (5o) is exact,
within the framework of transonic small disturbance theory,
at M. = 1, the principal question remaining in the evaluation
of the degree of approximation afforded by use of equation
(50) is to define the range of :., or _Mach number, over
which it applies. Accordingly, figure 11 has been prepared
to sunumwize the results given previously by Guderley and
Yoshihara for Mach number 1 (ref. 32), by Tmcenti and

-21 I I I I I

o

0=4;0
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‘:
,’

$

Ii

2
II

Experiment ref. 30
. . .m -----25 &“

—— .716 1.130 1
I ! I I I I I

40 .1 .2 .3 .4 -5
Xlc

Wagoner for Mach numbers slightly greater than unity
(ref. 34), and by Yoshihara for Mach numbem slightly less
than unity (ref. 35). The latter two sets of results wero ob-
tained by lengthy numerical calculations and, together with
the re@ts for Mach number 1, are generally regarded ns
being very close to those that would be given by exact solu-
tions of the equations of transonic small disturbance theory.
The results are plotted in terms of ~5–2&. so that the pres-
sure distributions for Mach numbers very near unity should
determine a single line. It can be seen that the variation
of ~P with & indicated by equation (47) or (50) holds until
the absolute value of & is nearly one-half. At groatm
values, the results begin to tend toward those nssocinted
with purely subsonic or purely supersonic flows, and equa-
tions (47) and (5o) are no longer applicable.

Experimental measurements of the flow around single-
wedge prcdiles at free-stream Mach numbers both less than
and greater than unity h~ve been mtide by Liepmann and
Bryson and reported in references 30 and 31. Results wem
obtained for three different profiles having semiapex angles
of 4fi0, 7fi0, and 10°. Plots of the experimental pressure
distributions’for the test Mach numbers closest to unity for
each mofile are shown in fkure 12 i%zether with the theo-
retical pressure distribution edculated by use of equation
(5o). Additional experimental data for other Mach numbms
are not included on @e 12 since those shown are already
for values of L that are somewhat outside the range of vdicl-
ity of equation (50). Ordy the theoretical results given by
equation (5o) are included since examination of the data
reveals that these results dMer less from the theoretical re-
sults shown on figure 11, for Mach numbers near unity, than
the experimental curves differ from either set of theoretical
curves, or even than the experimental curves d.ifler among
themselves. Perhaps the most prominent discrepancy is
that which occ~ near the shoulder. Theory indicates that
sonic veloci~ (CP—2L.= O) occum at the shoulder, whereas
the experimental data, particularly that of Llepmam and
Bryson, consistently indicate that sonic velocity occurs for-
ward of the shoulder. It is interesting to observe that this
discrepancy is greatest for the thinnest airfoil tested.

The foregoing results may be contrasted with th~se ob-
tained by direct use of equation (41) in which case 0V–2&

Q=?y -

,~ /
/“” ~
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FIG~D 12.—Theoretical and experimental presure distributions for three single-wedge airfoifs at free-stream Maoh rmmbere near 1.
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is found to be proportional to I/lG. It is clear from this
comparison that there is no constant with which XPcan be
replticed that would provide a satisfactory solution for the
pressure distribution on a single-wedge airfoil at bee-stream
Mach numbers near unity.

The pressure drag of single-wedge profles at Mach num-
bers near 1 can be found easily by integration of.equation
(48) with the relations given by equations (49) and (50)
substituted for Z and CP. The result is

where r represents the gamma function. This result com-
pares very favorably with the value of 1.75 for := =0, or
Mnch number 1, given by Cole in reference 36 as that ob-
tained by numericnl integration of the pressure distribution
given by Guderley and Yoshihara in reference 32. Cole’s
own theory for the drag of a single-wedge airfoil at high
subsonic speeds, which is fundamentally somewhat less ac-
curate than Guderley and Yoshihara’s theory, gives the value
1.67 for $~=0.

Application to bioonvex circular-arc @foils.-In addition
to data for three single-wedge profdes, Bryson also gives in
reference 30 experimental results for transonic flow around
the front half of an 8.8-percent thick biconvex circular-arc
airfoil followed by a straight section as illustrated in figure
13. Since the pressure distribution on the curved portion

z

I t

x

L
‘.0t39T=T,

FIOUItE13.—View of a half-oircular-aro airfoil and principal dimensions.

of this proiile is the same at Mach numbers near unity as
that on the front half of a complete circular-arc airfoil having
the. same thickness ratio, and additional experimental data
are available for the latter airfoil although for other thickness
ratios, the following analysis is developed for a complete
biconvex circular-arc airfoil. It is moreover sufficient, in
thin airfoil theory,
cular-arc airfoil by

to approximate the ordinates Z for a “cir-

those for a parabolic-arc airfoil, thus ,

:=2’[%)7 (52)

where T is the thickness ratio as indicated in figure 14. Sub-
stitution of this relation for Z into equations (45) and (47)
yields the following result for the pressure distribution on
the airfoil surface.

8:+8(:)%1}’”“3)

/z= 2W [.#-(#)2]./- ,/ t

FIGURE 14.—View of a complete ciroulm-aro airfoil and prinoipal
dimensions.

Figure 15 shows a comparison of the pressure distributions
for Nlach numbers near unity calculated by use of equation

(53) with those obtained from Bryson’s experiments with
the half airfoil. As for the single-wedge protile, the results
are again plotted in terms of ~p—2E= since experimental
results are available only for Mach numbers somewhat
diiferent from unity. It can be seen by comparison of fig-
ures 12 and 15 that the theoretical and experimental results
are in much better agreement for the front half of a circular-
arc airfoil than for single-wedge proiiles. Experimental
pressure distributions for transonic flow past four complete
biconvex circular-arc airfoils having thickness ratios of 6, 8,
10, and 12 percent have been given by Michel, Marchaud,
and Le Gallo in reference 37. Their results for Mach num-
ber 1 are plotted in figure 16 together with the theoretical re-
sults calculated by use of equation (53). These results are
presented in terms of UPbecause transonic theory indicates
that the pressuredistributions for all four airfoils should then
define a single curve independent of the thicknessratio. Re-
sults for Mach numbers other than unity are not intluded on
this plot because the variation of up with .f. for small ~. in-
dicated by equation (47) and subsequent relations is not only
simple but is amply veriiied by the preceding comparisons

I I

II
— Eq (53) I

Experiment
Ref 30 .=.=

L %
---- -.388 .935
-— .570 1.110 I

I
.4 .5

.Vc

FIGurm 15.—Theoretioal and experimental presmre distributions for
half-oircukm-arc. airfoils at free-stream Maoh numbers near 1.
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X/C

FIcimm 16.—Theoretical and experimental pr~ distributions for
oircnlar-aro airfoils; ilfm= 1.

m d by similar discussions elsewherein the literature of tran-
son.ic flow. It crm be seen that the theoretical and experi-
mental results are in substantial agreement. The most
notable discrepancy is that found near the trailing edge, and
can be attributed to flow separation induced by boundary-
layer shock-wave interaction. It can also be seen that the
agreement between theory and experiment is not so good for
the complete airfoils, particularly the thinner ones, as for the
half airfoil. I?art of the discrepancy for the complete airfoils
may possibly be attributed to the experimental technique in
which the airfoil is simulated by a bump on the tunnel wall
and is hence imbedded in the wall boundary layer. Some
comments on this method of testing have been given recently
by Carroll and Ande~on in reference 38.

The pressure drag of circular-arc airfoila at Mach numbers
near 1 has been found by numerical integration of equation
(4S) with the relations given by equations (52) and (53)
substituted for Z and 02 and is

[M.’(7+l)]’fiQ=zd=477
gfl . (54)

The pressure drag of the front half can be evaluated in the
same way by changing the upper limit in equation (48) to
c/2 and is

T~=2&+l.13 (55)

The integrations required to determine the drag results
given in equationa (54) and (55) were evaluated numerically
using Simpson’s rule together with an analytic determination
of the contribution of the region in the immediate vicini~
of the leading-edge singularity. SufEicientiy fine intervals
weie used that the resulting valuea are estimated to be ac-
curate to within about one diggt in the ttid significant
figure, as judged by comparison with the remdts of similar
calculations made with wider interds. It is necessary to
use very fine intervals, particularly near the nose, to achieve

such accuracy, and intervals as small as 0.00006c were used
in some cases

Application to~a family of airfoils having the point of
maximum thic?mess displaced aft of the midchord station,—
The primary object of this present section is to present somo
comparisons of calculated and measured pressure distribu-
tions at Mach number 1 on a number of specific airfoils that
have the point of maximum thicknes aft of the midchord
station. The experimental data are from roferonce 3fI by
J,fichel, ~fmchaud, and Le Gallo, and are for memb~la of

the family of airfoils having ordinates given by

:=A.E-(YI
(56)

where A and n are constmts for each airfoil and n is greater
than unity. The values selected for A. and n determine the
thickness ratio 7 and the location (z/c)zMz of the point of
maximum thiclmess according to the relations

(a==(i)+ (57)

The biconvex circular-arc airfoils discussed in the preceding
section axe special cases of the present family thut corre-
spond to n=2. The point of mtium thickness is looatod
forward or aft of the midchord station depending on whether
n is less than or greater than 2. The particular ~irfoils
tested by Michel, Marchaud, and Le G~o are specinl casea
that correspond to either n=3.38 or 6.05 and have the point
of maximum thiclmess at 0.60 or 0.70 chord. As in the
earlier work by the same investigatora on biconvex circular-
arc airfoils, the results were obtained by simulating the &
foil by a bump on the tunnel wall and are again subject to
criticism regarding the influence of the wall boundary loyor.

Substitution of equation (56) for Z into equations (46)
and (46) yields the following result for the pressure distribu-
tion on the airfoil surface for Mach number near unity:

a #f”’:,Jlw?P R

2-&I’(n+l)
0

z ‘-]+
~[r(n+l)]*

(n–l)r(n–~j ;
2(~-’)F(~-+)12(:)(n-”+

.-

}

.Aqy)+m%j‘“(69]()–2

where r represents the gamma function. If m is any posi-
tive integer greater than unity, the following relations am
useful for evaluation of the gamma function:

#
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r(~)= l.203. . . (m–l)=(m–l)!, I’(1/2)=\&]

Substitution of n= 2 in equation (59) reproduces equation
(63) for the pressure distribution on biconvex circular-arc
airfoils as a special case. Equation (5o) for the pressure
distribution on n single-wedge airfoil can also be obtained
as a limiting case by setting n= co and noting that the chord
of the wedge is designated here as c rather than c]2. Theo-
retical pressure distributions on the airfoils tested by Michel,
Mrwchaud, and Le Gallo am obtained from equation (59)
by substitution of the values 3.38 and 6.05 for n. Figures 17
and 18 show comparisons of the theoretical and experimental
pressure distributions for M.= 1 for the two groups of air-
foils, Except for the discrepancy near the trailing edge
which can again be attributed to boundary-layer shock-wave
interaction, it can be seen that the theoretical and experi-
mental results are in at least qualitative agreement. Some
ditlerencea occur, however, in the levels of the pressure dis-
tribution curves. Comparison with the results for the
circular-arc airfoils shown in figure 16 reveals that the same
trend is in evidence for those airfoils, although to a lesser
degree, and that the difference between the theoretical and
e.sperimental results increases as the point of mtium
thickness moves rearward. It is not clear at the present
time whether this discrepancy is to be attributed principally
to the shortcomings of the theoretical or the experimental
l’esults.

Application to a family of airfoils having the point of
maximum thiokness forward of midchord station.—The test
program of Michel, Marchaud, and Le Gallo reported in
referenca 39 and discussed in the preceding section also
included tests of each of the airfoils reversed in the wind

lbmm 17.—Theoretical and experimental prasum dktributions for
airfoils having maximum tbiokness at 0.60 ohord; Jf. = 1.
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FIGVRE18.—’heoreticalal and experimental pressure distributions for
airfoils having maximum thickness at 0.70 ohord: ilfm = 1.

tunnel so that the point of mtium thickness is located
forward of the midchord station. The particular airfoils
tested are thus specific cases of the family of profiles de-
scribed by equation (56) with x/c replaced by 1—(z/c); that
is, the ordinates are

:=4’-:-(%)’1 ‘
(61)

where A and n are again constants for each airfoil and n is ,
greater than unity. The values sdected for A and n de-
termine the thickness ratio T and the location (z/c)Z~a of
the point of mtium thickness according to the relations

Hz==(i)+
T=2A(n-1)

nS/(n-1)

(62)

(63)

Biconvex circular-arc airfoils are special cases of the present
family that correspond to n=2. The point of mrusimum
thickness is located forward or aft of the midchord station
depending on whether n is greater or less than 2. The
particular airfoils tested by Michel, Marchrmd, and Le
Gallo are special cases that correspond to either n=3.38 or
6.05 and have the point of maximum thickness at 0.40 or
0.30 chord.

Since the integrations encountered when equation (61]
is substituted in equations (45) and (46) for the determination
of Cp are more~diflicult than those encountered in any of



. .. .. .. .... . . .- —....------ ——— —.-— -—— ——

524 REPORT 1359—NATIONAL ADVISORY

the preceding examples, no general formula will be given
for arbitrary n. Two formulas of more restricted generali@
are given, ho~ever. One is applicable when n is any integer
greater than unity, the other when n is one-half plus any
positive integer. The first is

COMMITTEE FOR AERONAUTICS

i 11(–,.;+P x ‘n

r(n–y)r(p+~)
Z*

((34)

I where the svmbol l:. is used to denote the difference between

[( )1[{
n 1P— the preced&g exp~&sion with first z and then Z* substituted

??.=2$.-2 & ~ (n–l)’/$+ for x, that is,

j(z) :*=$(z) –j(z*)

1 (–m” ~2(n—l)r(n+l)&n~l where z*, the location of the sonic point, is found from

()
‘L r(n–~)r v+; v

(–~*/c)’ =~n—1+ r (n+l)~~l
n—1 1 n—l

[r(n+l)]%~ x ()
““lr(n—v)r P+;

()
‘=’ r(n—v)r “+; ‘=1

and r refers again to the gamnm function. The second is

Attention is called to the fact that v and ~ are positive
integers so that when n= (3/2) all the summations drop out.

Again z“ is the location of the sonic point and it is found
from

‘-++’-T%’K7Z-
+k+”)x%)’-’=’

Substitution of .=2 in equation (64) ag~in reproduces
equation (53) for the pressure distribution on bicouvex
circular-arc airfoils. Figures 19 and 20 show comparisons of
the pressure distributions measured at Mach number 1!by
Michel, Marchaud, and Le Gallo with those calculuted~by
use of equations (64) and (65). .The experimental results
shown in sketch (s) are for airfoils that have the point of
maximum thickness located at 0.40 chord corresponding to
a value for n of 3.38. Since results could not be calculated
analytically for this value for n, theoretical results are shoml
for both n=3.O and n=3.5. The corresponding locutions for
the point of maximum thiclmess can be rcmdily calculated
using equation (62) and are 0.423 and 0.394 chord. Simi-
larly, the experimental results shown in figure 20 me for an
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FIGURE19.—Theoretical and experimental premure distributions for
airfoils havfng maximum thickness near 0.40 chord; iM. = 1.
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lhGUILEI20.—Theoretical and experimental pressure distribut iom for
airfoils hatig maximum thickness at 0.30 chord: ill. u 1.

airfoil that has the point of maximum thickness Iocatecl at
0,30 chorcl correspon&ng to a value for n of 6.05; whereas
the theoretical results are for airfoils that have the point of
maximum thickness located at 0.301 chord corresponding to
a value for n of 6.00. These results continue the trend noted
in the preceding section that the agreement bet~een the
present ~sperimental and theoretical results improves as the
location of the point of maximum thiclmess moves fcmvartl
along the chord. The principal discrepmcy remaining is, in
fact, reduced to that near the trailing edge associated With
boundary-layer shock-vi-ave interaction, and is therefore
beyond the scope of any inviscid theory.

ACCELERATING PLOWS, INVERSE PROBLEMS

Approximate solution of equations for given pressure
distribution.—Although all of the prece@g discussion is
concerned with the calculation of the pressure distribution
on an airfoil of specified geometry, an equally important

problem in many engineering situations is the design of an
airfoil to have a specified pressure distribution at a given
Mach number. This poses no new problem in the analysis
of purely subsonic or purely supersonic flows by the present
methods beoause the specification of CP permits the deter-
mination of CP~through application of equation (31) or (17),
and the inversion problem is reduced to the familiar inversion
problem of linear theory. The necessary relation for flows
with free-stream Mach number near 1 can be derived from
consideration of equation (42) as an integral equation in
which u and duldz are given and the &own appears in
the integrand of a deii.nite integral. This equation can be
inverted readily since it has the same form as the relation
encountered in the solution of Abel’s integral equation (see,
e. g., ref. 40, pp. 483484). The inversion thus has the
form of Abel’s integral equation, and is the following in the
present application:

~=wm”-%%%l%.~ ’66)

The desired relation for the ordinates Z(z) of the airfoil cm
now be found by a second integration, and is the following
if it is assumed that Z is zero at the leading edge (z= O).

where Z* is the ordinate at the point X* where u is zero. It
is interesting to note that the two alternative expressions for
Z lead to identical results although the apparent regions of
dependence, as indicated by the limits on the integrals, am
quite diflerent. The same result expressed in terms of
(7Por E, is

(68)
or

A simple application or check of these relations is furnished
by substitution for UPof the relation given in equation (5o)
for single-wedge profiles, whence Z is found to be equal to
h between z=O and z=c/2. ID the same way, substitution
of equation (53) for UP leads directly to equation (52) for
the ordinates of a circukw-axc airfoil, etc. ‘

Application to airfoils with constant pressure gradient,—
An example that permits an additional comparison with an
existing theoretical result given by Guderley in reference 41,
is furnished by consideration of the problem of determining
the shape of an airfoil having a constant negative pressure
gradient at &lm= 1, thus

‘==(’-?=-’(:-3pd(r/c) C C
(70)
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I?mwrm 21.-Shape of the forward part of an airfoil haviug a constant
pressure gradient at free-stream hlach number 1, as indicated by
present theory and by Guderley.

where A= —dCP/d(z/c)is a positive constant. Substitution
of this relation for CPin equation (68) and integration leads
directly to the following result:

:=WWY(%I (71)

The special case considered by Guderley is obtained by
insertion of the values x*/c=3@ and k= 6/5, whence equation
(71) reduces to

:=(:Y”@[(:)’”(’-%:)] ‘’72)

I?igure 21 shows a scale drawing of the profile calculated by
use of equation (72) and of that given by Guderley. It is
evident from the sketch that the present theory iudiciites
larger values for the ordinates Z than are given by Guderley.
Although the latter results are given only in graphical form,
and are hence di.flicult to determine with precision, the
two sets of values for Z appear to be related by a constant
ratio of approximately 9 to 8.6

The case considered by Guderley and discussed above
results in a shape that does not close at the stern. It can be
seen immediately horn equation (71), however, that a closed
airfoil will result if x*/c is equated to 2/5, in which case
equation (71) reduces to

:=i%wA3”[(3w)l
(73)

A plot of the results is shown in figure 22.

X/c

FmunE 22.-Shape of complete airfoil having a constant pressure
gradient at free-stream Mach number 1-

~TM conclusion Is crmllrmed by a new sdntlon fn ck%d anelytfo form given by Cinderley
on P3E0~ of MS kook ‘Theorie Scbnlbmber Shdmnngen” pubfhhed by Spdngm-vedag
In 1957. Clnd6rley%tit k the same fnncl.kmal form as eq.mtfon (72), tmt the oxmeknt
In tho Iattw result h greater by a factor 2/I&$= 9.fQ7/&after mrrwllng an obvfous slfP fn
Ouderley’s final eqnntlcm.

DECELERA’HNG FLOWS

Although it is clear that the preceding relations are not
appropriate for the analysis of flows with free-stream lMach
number near 1 that decelerate smoothly through sonic
velocity, it might appear that the proper expressions could
be derived by formal application of the procedures described
in the preceding section for positive hp to the appro.simate
sblution of equation (39] for negative Ap. The analysis
leads, in the absence of contributions from shock waves, to
the following relation for u at the airfoil surface instead
of equation (40)

where

f=–(1–-ii.’)~~,

The principal difference

.P=J--=J=,[-l

between the results for the two
cases is that the value of u(x). indicated by equation (74)
depends on conditions dow-nstreiunof the point x, whercns
that indicated by equation (4o) for positive XPdepends on
conditions upstream of z. This difference is a funclamentrtl
property of equation (39) and necessitates a change in tho
argument required to disregard additional contributions
from shock waves, because now it is the obliclue shock waves
situated downstream, rather than upstream of z, that
furnish a contribution to u(z). If, however, there are no
oblique shock waves downstrerunof z, or if the contributions
resulting from additional integrals over the shock surfaces
are disregmded so thnt equation (74) can be used as a
starting point in the analysis, the following result is obtained
by proceeding in a fashion analogous to that employecl in
the derivation of equation (47) from (40):

.The symbol z“ agaiu refers to the location
and is equal to the value for z for which

-1 J

of tho sonic point

(76)

The correspontig relation for the shape of an airfoil asso-
ciated with a given pressure distribution at some free-stream
M~ch number near unity can also be found and is the follow-
ing, again wsmning that Z is zero at the leading edge:

No further use is made in this paper of equations (74)
through (77) for decelerating flows at free-stream Mrwh
numbers near 1. As w-illbecome more evident at a later
point in the present discussion, it would appear necesstuy to
use such formulas for the analysis of flows decelerating
through sonic velocity, but the region of dependence in these
rplations is such as either to cast suspicions on their appli-
cability or to require the occurrence of wceptional coinci-
dences. On the other hand, two-dimensional flows thd
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decelerate smoothly through sonic velocity appear to be very
exceptional physically. Further invesijigation is needed
before additional rem&s can be made regarding the role of
the parabolic case with negative & in the analysis of tran-
sonic flows.

The next section will be concerned with an alternative
analysis of certain cases in which decelerating flows occur.

COMBINATION OF ACCELERAllNG AND DECELERATING FLOWS

The calculation of the pressure distribution at Mach
numbers near 1 on an airfoil having such a shape that the
velocity increases over part of the chord and decreases over
the remainder cannot be accomplished by direct application
of any of the relations developed iu the preceding sections.
On the one hand, the parabolic method described for flow-s
with free-stream Mach number near 1 permits the analysis
of flows that pass through sonic velocity, but fails when the
velocity gradient is zero. On the other hand, the elliptic
nnd hyperbolic methods described for subsonic and super-
sonic flows permit the analysis of flows with zero velocity
gradient, but fail if the local velocity is sonic. The break-
down in each case is associated with the fact that the basic
partial differential equation for each case, that is, equation
(8), (21), or (39), assumes a degenerate form when x is zero.
Suc$ cases are, nevertheless, interesting and important since
they can occur in practical applications, and the present
section is concerned with their discussion. The procedure
adopted is based on the idea of joining together various of
the results derived in the preceding sections in such a way
that the failiugs associated with vanishing A axe avoided,
rather than on a complete re-analysis of the problem from a
sufficiently general point of view to encompass the entire
problem in a single sweep.

In order to ih the ideas, consider the problem of calcu-
lating the pressure distribution at Mach number 1 on the
&irfoilwith cusped trailing edge illustrated in figure 23 for
which experimental data are available from reference 42 by
Nfichel, Marchaud, and Le Gallo. The front half of this
airfoil is the same as that of a biconvex circular-arc airfoil
having a thickness ratio of 0.10, but the rear half is shape&
in such a manner that an inflection point is located at 0.75
chord and that the trailing edge angle is zero. The ordinates

I I I
o

Exper;menl’ ref 42
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FmunD 23,-E~Tmimental pressure distribution for an airfoil with
msped trding edge; J1@= 1.
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FIGURE 24.—Chordwise variation of ordinate, Z, and slope, ~~ for

the rear half of the airfoil shown in figure 23.

and slopes of the rear half of this airfoil are shown graphically
in figure 24. No analytic e.spression is given in reference 42
for the ordinates of the rear half.

The pressure distribution on the front part of the nirfoil

where the passage through sonic velocity occurs can be
calculated by use of equations (45) and (46), since it does
not depend on the shape of the rear half of the uirfoil. This
means that the. pressure distribution on the front half of
the airfoil described above is given specifically by equation

(53) for x/c befnveen O and )4. It is clear that the pressure
distribution on the entire rear half of the airfoil cannot be
determined by use of equations (45) and (46) because the
results so calcuhted indicate a point of zero pressuregradient
iu the vicinity of the inflection point. Although this detail,
in itself, is not incorrect, it signals the breakdom~ of the
parabolic method that occurs when A is zero. Positive
evidenm of the breakdown is provided by the fact that the
calculated pressures decrease downstream of the point of
zero pressure gradient rather than increase as indicated by
the experimental data shown on sketch (w) or by simple
considerations of supersonic flow. These results, further-
more, cannot be joined to those obtained by use of equations
(75) and (76) for the part of the airfoil downstream of the
point of zero pressure gradient because the two sets of equa-
tions do not indicate the same location for this point. This
situation should not be too surprising since the procedures
should not be expected to fail abruptly w-henx is precisely
zero, but gradmdly as A approaches zero.

There exists another possibility for the determination of
the preswmedistribution on the rear half of the present airfoil
by joining together solutions. It is to use the formulas
developed for supersonic flow, but with the fial constant
of integration adjusted so that the pressure is equal, at the
point, of connection, to that given by the solution for the for-
ward part of the airfoil. This procedure corresponds to the
use of simple wave theory for the calculation of the difference
in pressure between an arbitrary point on the rear of the air-
foil and the point of connection. In this way, the following
equation results for the pressures on the rear of the airfoil at
Mach numbers near unity:

(7s)

where Z’ refers to dZ@c, and UP(X) is the value of ~P at
x=x.
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The most cxmvenient point for joining the two solution9
in the application described in @urm 23 and 24 is at ZIG=
0.50. Then the pressures on the forward half of the airfoil
can be calculated directly by use of equation (53), the values
of (~~ and Z’(X) are

Vp(m=a.(;)=%-{: (–l+ln4)]? z’ (;)=0 (79)

and the following expression result: for the pressures on the
rear half of the airfoil at Mach numbers near unity:

(80)

Figure 25 shows a comptin of the experimental pressure
distribution for Mach number 1 given by Michel, Marchaud,
and Le Gallo in reference 42 and the corresponding theo-
retical values calculated using equations (53) and (80)
together with the valuea for dZ/dx given in figure 24. The
theoretical and experimental results bear about the same
relationship to each other as those shown previously for
biconvex circular-arc airfoils although effects of boundaxy-
layer shock-wave interaction extend over a larger fraction
of the chord of the cusped airfoil. This di&ence is in
agreement with the results obtained from schlieren photo-
graphs and given in reference 42 that indicati that the shock
wave meets the airfoil, at Mach number 1, at 78-percent
chord for the cusped airfoil and at 95-percmt chord for the
biconvex circular-arc airfoil of the same thickness ratio.

It is apparent that the pressures computed over the rear
half of the airfoil by using equation (80) will tend to be
somewhat too negative because the use of this relation cor-
responds to the use of simple wave theory and hence &
regards the infhmnce of a family of incoming compression
waves arising from the sonic line. Some idea of the magni-
tude of this effect can be gained by examination of iigure 26
which shows a comparison of the pressure distribution on
biconvex circular-arc airfoils at Mach number 1 calculated
using equation (53) for the entire airfoil, with t&ose cfdcu-
lated using equation (78) for various fractions of the chord.c
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o Experiment (ref 42)
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FIGURE 25.-Theoretical and experimental pressure distribution for
tbe airfoil shown in figure 23; .iVm = 1.
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Fxmmm 26.4mparison of pressure distributions for the rear pnrt of
a oirmdar-aro airfoil as indica&d by the parabolio and hypmbolio
methods; M.= 1.

L further example involving accelerating and decelerat-
ing flow at Mach number 1 is furnished by examining the
case of the symmetrical double+vedge airfoil of arbitrary
thickness ratio for ~hich a solution has been given by
Guderley and Yoshihwa in reference 32. Figure 27 sho~
a plot of their result together With the corresponding result
calculated by the procedures described above. The result
for O<x<c/2 is calculated by use of equation (50). That
for c/’2<x<c is calculated by use of the follotig equation
which is obtained from equation (78) by equating ~J~ to
O, Z’(X) to T, and Z’(z) to –~.

~p= –2(3)2fi (81)

The d.iilerence between the two pressure distributions on
the rear half of the airfoil is again the result of the neglect,
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FIGURE 27.—Comparkon of the pressure distributions for a double-

$ ~n~~o~~m~,~d~~d by ‘he Pr=ent theory and by GuderlcyL m.
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in the present ~nrdysie, of the contribution of the fwnily of
incoming compression waves arising from the sonic line.

It is evident from these three examples that the prdsent
procedure of joining solutions is capable of yielding results
thut are at least qualitatively correct and that, although
somewhat greater accuracy is undoubtedly desired, this
procedure may be useful until such time as a more general
analysis of ncceleratingdecelerating flows is acco~plished.

COMPARISONOF RESULTSFOR MACH NUMBER1 WITH
THOSE FOR OTHER MACH NUMBERS

The remainder of this report is concerned with the discus-
sion of some selected examples that illustrate the relation
between results for Mach number 1 and those for other
Mach numbers. This discussion is divided into two parts.
The first is concerned with comparisons of pressure distri-
butions on the same airfoil at different Mach numbers, and
the second with prewre drag.

PRESSIJRE DISTEIEUTION

Attention is directed in this section to comparisons, for a
number of airfoils, of the theoretical pressure distribution
for Mach number 1 with that for the highest Mach number
for purely subsonic flow and that for the lowest Mach num-
ber for purely supersonic flow. Pressure distributions for
these two Mach numbers, designated more briefly as the
lower rmd upper critical lMach numbers, respectively, are
of particular significance not only because they represent
the results associated with the bounds of the transonic
range, but also beciiuse they are typical of the pressure
distributions for all purely subsonic or purely supersonic
flows. All of the theoretical results shown are calculated
by application of the general expressions derived in the
present paper. The results for Mach number 1 are the ‘
same as discussed in detail in the preceding section. Sub-
sonic pressure distributioti are calculated by use of equa-
tion (28)1 and supemonic pw.saure distributions by use of
equation (15). The lower critical Mach number is deter-
mined from equation (3o) by ~eplacing C~iwwith the most

negative value of CPi thpt occurs in each case, and solving
for .ii4.. The upper critical Mach number is determined
from equation (16) by replacing (dZ/&c)mwith the value of
dZ/dzat the lending edge and solving for M..

Consider, first, the single-wedge airfoil for which the
pressure distribution at Mach number 1 is given by equation
(60) and illustrated graphically in figure 10. Figure 28
shows a comparison of this result for the specific case of
u wedge having a semiapex angle O of 0.10 radians with
those for the upper and lower critical Mach numbers.
The lower critical Mach number is, of course, zero be-
cause the velocity is sonic at the corner for all free-stream
Mach munbers less than the upper critical. The pres-
sure distribution for Mach number O is given by

CP=c,,=+’l?L- (82)

Tbe three curves shown on figure 28 suflice to show that
the pressure distribution on a single-wedge airfoil at Mach
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FIQURE X3.-summary of presure distributions for upper and lower
critioal Maoh numbers and for Maoh number 1. SingI&wedge
airfoil with a semiapex angle, 13,of 0.10 radian.

number 1 bears a much closer rwemblance to that at the
lower critical Mach number than to that at the upper critical
Mach immber. It is interesting to note, moreover, that the
diilerence between the pressure distribution at Mach num-
ber 1 and that at Mach riumber O is very nearly constant
across the chord.

Consider, nmt, the half circular-arc airfoil for which the
pressure distribution at lMach number 1 is given by equation
(53) and ihstrated graphicdy in figure 15. Figure 29 shows
a. compar@on of this result with those for the upper and
lower critical Mach numbers. The computation of the pres-
sure distribution for the lower critical Mach number involves
the use of the following expression for C$ which is obtained

by integration of the auxiliary relation of equation (28) with
Z replaced by the expression given in equation (52) for
b<&c/2 and by TC/2 for x>cj2:

Cpf=-:’rl+(’-wal ’83)

The results illustrated in tlgure 29 display a remarkable prop-
erty that the subsonic part of the pressure distribution at
Mach number 1 diffem from the pressure distribution at the
lower critical Mach number by nearly a constant, and that
the supemonic part of the pressure distribution differs from
the prwsure distribution at the upper critiwd lMach number
by nearly the same constant, although of opposite sibm.
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x/c

FmuaE 29.-Summary of presure distributions for upper and lower
critical Maoh numbers and for Mach number 1 for half-oiroular-aro
airfoils.

In order to investigate e this d.Merence further, the pres.ire
distributions at the upper and lomer critical Mach numbers
have been calculated for the complete biconvex circular-arc
airfoil rmd each of the four related airfoils having mnxhnum
thickness forward and aft of the midchord station for which
the results for Jlach number 1 are shovim in f@res 16
through 20. The results are shorn in @ure 30. It can be
seen that the three pressure distributions for each airfoil .-
berm the same general rdationship to each other as noted
above, although the difference between the pressure disti-
butions is not almays quite so constant as is observed for
the wedge and circukr-arc profles.

PR~RE DRAG

Once the pressure distribution is knoxvn for a given airfoil,
the pressure drag can be obtained directly by integration of
equation (48). The corresponding expression in terms ?f ;a
and ?& is

Although the present theoretical results only permit the
calculation of pressure drag for Mach numbers near 1 and
for Mach numbers greater than the upper critical, these
results, together with existing theoretical and experimental
results, can be used to sketch the variation of pressure drag
with hlach number throughout the transonic range. The
airfoil for which the most information is available is, of

course, the single-wedge prone for which an approxirnnto
solution for Mach numbem less than 1 hns been given by
Cole (ref. 36) and improved reoently by YoshiharfL (ref. 35),
that for Mach number 1 by Guderley and Yoshihara (ref. 32),
and that for Mach numbers greater than 1 by Vincenti rmd
Wagoner (ref. 34), and experimental data have been given
by Liepmann and Bryson (refs. 30 and 31). l?@re 31 sho~vs
a plot of these results, all in terms of the reduced parameters
~a and ~. and recast into the form consistent ~vith the present
formulation of the basic equations for transonic flo;v (see
ref. 5, 6, or 9 for additional information on this point),
together with the results computed by use of tlm present
theory. The new results are indicated by tho solid lines, tho
former by dashed lines and by data points. The short verti-
cal lines on the data points indicate Bryson’s estimate of i,he
experimental accuracy of the data. As can be seen, the only
poimt of difference between the present results and tho pre-
viously existing results is at Mach numbers slightly in excess
of the ,upper critical, and results from the error incurrecl in
approximating the pressure jump through the bo;v shoclc
wave by simple wave theory (i. e., by eq. (16) rather thtin
eq. (6)). The positive slope of the drag curve at ~.= O, or
Mach n&ber 1 is in agreement with the result indicated by
equation ‘(51) and is typical for airfoils that do not CIOS8at
the rear.

Figure 32 shorn a summary of the comparable informnt,ion
for the front half of a biconvex circular-arc airfoil follo~ved by
a straight section, for=ivhich experimental data have been given
by Bryson in reference 30. The theoretical values are ngttin
indicated by a solid line, and the esperimenttd values by
data points.’ Although the amount of information availnblo
is much less than for the single-wedge airfoil, the results for
both cases show striking similarity.

Results for half airfoils are not typical of those for complete
airfoils, however, as can be seen by comparison of the pre-
ceding results with the corresponding theoretical and ex-
perimental results illustrated in figure 33 for complete bicon-
v~x circular-arc airfoils. The experimental results are thoso
given by Michel, Marchaud, and Le Gallo in reference 37
and are obtained by integration of equrttion (48) together
tith experimental values for the pressure distribution. The
most prominent difhrence concerns the slope of the curvo of
~~ versus ~~ at ~~ =(), or Mach number 1, for which the sarno

procedures that led to positive values for a half airfoil, lend
to zero slope for a complete airfoil. It can be seen thmt the
experimental data support these values of the slope in both
cases. Although the calculated values for drag are some-
what greater than those measured in the wind tunnel, most
of the discrepancy can be attributed to tho local effects of
shock-wave boundary-layer interaction that occur near the
trailing edge. Because this phenomenon depends on Rey-
nolds number and may be of greatly diminished importance
at full-scale conditions, Michel, Marchaud, and Lo Grdlo in-

~Thempez-hnentsl vafne shewn fn figure 32 differ somewhat fmm them glron orlglmlty
In ftgme 21 of rofmenc? 30 b.smnse of tho mrrectlon o! some frmtmmlofm fn tho ealcolotfon of
the dreg fmm the expmimentaf prasmre rlfstrlbntlons given fn flguro Xl of roforonco~. A1-
Umngh no mplfmmtlon fs known for the suktantinl negativedJOKlmlhated at eubcrit[cnl
Mashnnmks anditsesiskmeomogthofndfmtiw of .wmeskrtcomlngs of thoexpnrlmentnl
tedmfqn%its e&lrreneebrm unmktakible m~nenes of themeasuredprcsmmWrtbu.
tfon. That this is m =n M seeo at a gfanm by comparimn of tho mmsored p~ dtatrl.
MMon wfth that fnrllmted by llmarfzed mm-lo flow theory, for whloh tho drag Is zcre.
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FIOURE 30.-Summmy of pressure-distributions for upper and lower Oritical Maoh n-m and for Mach number 1 for a series of airfoils tith
different positions of maximum thioknes.

troduced, in the discussion of their experimental results, the
concept of “extrapolated drag” to represent the drag that
would occur in the absence of separation. This quanti~ is
calculated by consideration of a pressure distribution that
cl~ers from the experimental pressure distribution in the
vicinity of the trailing edge as a result of the replacement of
the pressures actually measured by those obtained by ex-
trapolation of the trends indicated at stations upstream of
the separation point. Accordingly, the values for “extrapo-
lated drag” given by Miqhel, Marchaud, and Le GaUo are
also shown on figure 33. As might be expected, the theo-
retical values for drag are in better agreement with the valu=
for “extrapolated drag” than with those obtained directly
from the actual measurements.

The results for biconvex circular-arc airfoils are typical of
those for other complete airfoils. Attention is called, how-
ever, to the fact that the experimental values given by
hIichel, Marcbaud, and Le GaUo in reference 39 for the air-

foils that have the point of maximum thickness located for-
ward of the midchord station are not so reliable ~ those they
give for airfoils that have a more rearward location of the
point of maximum thickness. This reduction in accuracy
results from the facts that the method of testing and the
tied spacing of the oriiices tend to diminish the accuracy
with which the contribution of the region near the leading
edge can be evaluated, and that the contribution of this
region is, at the same time, of increased importmme.

Figure 34 shows a summary of the calculated results for
the pressure drag of the two families of airfoils described by
equations (56) and (61) with values for n ranging from 1.5 .
to 6. For this range of n the airfoils described by equation
(61) have a range of location for the point of maximum thick-
ness that extends from about 0.30 to 0.55 chord, and those
described by equation (56) have a range of locations extend-
ing from about 0.46 to 0.70 chord. In addition to lines for
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FIGURE 32.-Summary of theoretical and eqerimenti resuRs for the drag of half-ciroular-m’c airfoils.

constant f., which correspond to lines of constant Mach
number for a group of airfoils having the same thickness
ratio, s line is also shown for & which corresponds to the
line for the lowest Mach number for which the flow is purely
supersonic. It can be seen that the variation of pressure
&ag ~th he lo~tion of th~ point of madmum thickuess at

Mach number 1 is quite different horn that indicated by
lines of constant to, or Mach number, for purely supersonic
flows, but is rather similar to that indicated by the line for
$. An interesting feature of the results for purely super-
s;~ic flow is that the drag is not the same in forward and

reverse flow, as is indicated by linearized compressible flow
theory (see ref. 43 or M).

CONCIJJDINGREMARKS

It appears worthwhile, in conclusion, to summarize nnd
contrast the alternative discussions presented in the main
text and in the Appendix of the general procedures involved
in the approximate solution of all the problems treated in
this paper. The arguments presented in the Appendis are
based essentially on the idea of diminishing tho importance
of the higher order terms, and hence cmcentmto on the

,
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contributions stemming from the double inte~,pl of the in-
tegral equation appropriate for each case. The arguments
presented in the main text lead to the same conclusions, but
are based essentially on the idea of linearizing the tram.onic
equation in a small region by replacing part of the nonlinear
term by a cmsta.nt X, and-then introducing different values
for h for difTerentpoints in the field. This procedure might
be considered equivalent, in some sense, to the replacement
of the original nonlinear equation by a different linear differ-
ential equation for each point. Results obtained by solution
of the equations at this stage depend, of course, on the choice
of x and must be assembled in order to determine the ihl
results. This step is accomplished in each case by putting
the results into such a form that a ii-et-order nonlinear ordi-
nary d.iflerentialequation is obtained upon substitu~~ for
k the quanti~ it originally replaced. At this point, the
equations encountered coincide with those obtained following
the procedures described in the Appendix and the remainder
of the analysis proceeds in identical manner. b the cases
cimsidered herein, the differential equation is always of sfi-
ciently simple form that it ean be integrated analytically and
the result expressed in closed analytic form. This integra-
tion implicitly introduces the assumption of continuity of the
velocity or prewwe distribution and leads, upon evaluation
of a sirgle constant of integration, to the final result.

&as ~RONAUTICAL LABORATORY
NATIONAL ADVISORY COMMITTEE

N1oFmmr IkDLD, CALIF., J@.
FOR AERONAUTICS
11, 1967
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APPENDIX A

REINSPECTION AND ANALYSIS OF METHOD OF APPROXIMATION

INTRODUCTION

The methods used in the main text of this paper are appwd-
ing for their brevity and for the efficiency with which approix-
mate solutions of the nonlinear equations of transonic flow
theory are found. These methods are not entirely satisfying
to the critical reader, howe~er, because certain elements
appear to be arbitrary and there is no a priori way in which
the accuracy of the approximations can be judged. Both the
virtue and weakness of these procedures are the result of
introducing the essentiaI simplifications at the beginning of
the analysis. If the introduction of approximations is
deferred to the end, the relations that occur in the initial
stages of the analysis are, of course, more complicated than
those presented in the main text. Consideration of these
relations is, however, essential for an understanding of the
basis for the method of approximation.

The following discussion of ,the approximate solution of
problems of transonic.flow theory is based on consideratitmof
integral equations derived from the differential equations of
transonic flow theory by standard application of Green’s
theorem. Site the details of each of the three cases, hyper-
bolic, e~lptic, and parabolic, are somewhat different, each
case is considered separately. - In each case, exact r&lations
me retained as long as possible and the approximations,
when introduced, are seen to be closely related to those
employed in the method of successive approti”ations com-
monly used in the determination of higher approximations in
compressible flow theory. The following paragraphs will be
concerned at the outset with the derivation of integral equa-
tions for each of the three cases, and subsequently with the
discussion of the simplification and approximate solution of
these equations.

DERIVATIONOF INTEGRALEQUATIONS

AU of the subsequent analysis proceeds from Green’s
theorem. There are many forms of Green’s theorem, but a
sufficiently general form for all of the present purposes is that
associated with the linear operator ~($1) defied as follows
(ref. 45, pp. 244-247):

Z(Q) =XJ=+Q=+ZQ. (AI)

where ~ and ~ are constants. Green’s theorem states that
the following relation holds between any two arbitrary func-

! tions Qand x having continuous first and second derivatives:

1~#ftCOS (7@ ds (A2)

in which ~ refers to the interior of an arbitrary region
bounded by the curve ~ as shown in figure 35, ~is called the

- adjoint differential operator
—.
Il!z(+) =h#=+ #*x—Js+=

~ represents the quantity

A=~A2 COS (?L,z) + COS2(7t,2)

and b/bv stands for a derivative in the direction v, and cnn be
written as a linear differential operator.

:= Q=cos(v,z)+ QZcos(v,z)

The direction v is called the conormal, and its direction
cosines are related to those of the normal n according to

z Cos(v,z)=x Cos(n,z)

z Cos(v,z)=Cos(n,z)

HYPERBOLIC CASE

The initial step in the present derivation of the integrrd
equation appropriate for the discussionof the hyperbolic caso
is to subtract km= from both sides of equntion (3), nncl to
write the resulting equation as follows:

—h=p~+vu= (Mm2—I +kU-Ax)Pm=jH (A3)

The symbol X= refers to any positive iinite constnnt. Tlm
form of Green’s theorem associated with the Iinenr operntor

z(p) =Zlf(q) = —xHp=+q.* (A4)

will now be applied, whenca

3=—AH, 3=0, Z.(p)= z.(p) (A6)

The quanti~ Q is now identtied with the perturbation
potential W,and # with an elementary solution of ~lR(i)=O,

(
a’s

n

\

FIG- 36.—Region of integration.
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in particub with the unit supersonic source u= defined as
follows:

10 for (z–,f)’<X~(z-~)’ (A6b)

If the region ~ is so selected that the inequidity expressed
in equation (A6a) holds throughout, equation (A2) reduces
to

J–$2%8=avESS~=(q)d~= SSj=d~ (A7)

E z

in which ~H and VErefer to the special forms of ~ and v
consistent with equation (A4) or (A5), the running coordi-
nates of integration are ~,~,and the field point at which p is
to be evaluated is Z,Z. Equation (A7) is now applied to
the region indicated in figure 36. Note that the wing, wake,
and shock waves must be excluded from the region of inte-
gration. It should be noted that figure 36 is only a schematic
illustration to help define the quantities involved in equation
(A7), and that the shock wave, indicated as a detached bow
wave, might instead be attached to the leading edge, to the
trailing edge, or situated somewhere along the chord. The
single shock wave illustrated in figure 36 could, moreover,
be replaced by a complicated system of shock waves. The
region ~H may likewise be considered to consist of a single
region, or as the sum of a number of regions as typified by
ridding to %H t,heregion situated upstream of the bow wave
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Fmmm36.—Iteglonof integrationfor thehyperboliccase.

and within the dotted lines of figure 36. In any case, the
general considerations remain the same, and the following
integral equation is obtained for q at an arbitrary point X,Z:

where

in which u and 1refer to conditions on the upper and lower
sidm of the wing and wake, where

in which a and b refer to conditions on the two sides of the
shock wave &, and where

ELLIPTIC CASE

The integral equation appropriate for the discussion of
the elliptic case can be derived by use of procedural analo-
gous to those described in the preceding paragraph for the
hyperbolic case. The initial step is to add l~p= I% both
sides of equation (3), and to writs the resulting equation as
follows:

Aw=+pzz= [AB—(1—fi.~—ku] q==j~ (A9)

&in the hyperbolic csse, the symbol h~refers b any positive
iinite constant. The form of Green’s theorem associated
with the linear operator

z(p)=Z.($o)=AEfo=+ (0. (A1o)

will now be applied, whence

The quantity Q is now_identiiied with p, and t with an
elementary solution of .7&(+)= O,in particular the unit sub-
sonic source defined by the function

In this way equation (A2) reduces to

in which & and VErefer to the special forms of ~ and 9
consistent with equation (A1O) or (Al 1), the running coor-
dinates of integration am &~, and the field point at which q
is to be determined is X,Z. If equation (A13) is now applied
to the region ~E surrounding the wing, wake, and shock
waves, as illustrated in figure 37, and the a priori aswunp-
tion is made that the perturbation field attenuates sufli-
ciently fast with distance to negate the contribution of the
surface integral over the large circle in the limit as the radius
goes to iniinity,” the following integral equation is obtained
for @ at an arbitrary point X,Z:
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where AP and A@q/b~) have the same meaning as in equw
tion (As), but where

in which a and b refer to conditions on the two sides of the
shock wave &, and where

PARABOLIC CASE

The initial step in the derivation of the integral equations
appropriate for the discussion of the parabolic case is to
subtract XPP=from both sides of equation (3), and to -write
the resulting equation = follows:

p= —App.= (M.* — l)%C+ (kpz2-.xP)%=fP (A.15)

The symbol XPrefers again to a fhite constant, -which may
be either positive or negative. The form of Green’s theorem
associated with the linear operator

/
Z(p) =zp(p) = q=—kpwz (A16)

will now be applied, whenm

2=0, B=—b, ZP(P) = W.+AP% (A17)

The quantity Q is again identified with P, and $ with an
elementary solution ~f ~P(~) = O, in particular with the
function

o for —
::$0 ‘A18b)

This function wsumes a role in the analysis of the parabolic
case that is analogous to that of the unit subsonic and super-
sonic sources in the elliptic and hyperbolic cases. In mathe-

matical literature, the linear partial differential equation
~P(P)=O with positive Ap arises in the study of heat con-
duction, and the function UPis often referred to M a unit
heat source. If the region ~ is so selected that the inequality
expressed in equation (A18a) holds throughout, equation
(A2) reduces to

H (~1P up
* aup

— ) 1
— —h@@ Cos(n,z) d$

GP—Q aVp

.
Ss

up~p(p)d~= SSupjdii(A19)

E E

in which ~P and VPrefer to the special forms of ~ and v
qmsistent with equation (A16) or (A17), the running co-
ordinates of integration are ~,~, and the field point at Which
p is to be determined is Z,Z. It is apparent from the condi-
tion imposed on ~p, that xJ(z- ~) is greater than or equal
to zero, that lnvo distinct subcases result depending on tlm
sign of Ap.

Positive Xp,—If APis positive, the region 3P appropriate
for the application of equation (A19) is that part of space
upstrewn from me point Z,Z. Again the wing, woko, and
shock must be excluded from the region of integration, as
illustrated schematically in figure 38. If equation (A19) is
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now applied to the iegion & and it is assumed that the
perturbation field attenuates su.iliciently fast with distanco
to negate the contribution of the surface integral ovor the
outer boundmy in the limit as the radius is incrmsed to
i.niinity, the following integral equation is obtained for p at
an arbitrary point Z,Z:

~(z,z)=—+ H
z

Po ‘-A+)dE-kJ/Px14%9EP-‘PAZ

(A20)
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where AP and A(&@{) have the same meaning as in equa-
tion (A8), but where

&_% ~%b
bvp avp bvp

in which a and b refer to conditions on the two sides of the
shock mwe ~P, and where

Neg%tive~F,—If APis negative, the region ~P appropriate
for the appli@ion of equation (A19) is that part of space
downstream from the point z, z. If equation (A19) is ap-
plied to the region ~F surrounding the appropriate part of
the wing, wake, and shock waves, as illustrated in figure 39,
and the contribution of the surface integral over the outer
boundrq vanishes as the radius is increased to infinity, the
following integral equation is obtained for q at an arbitrary
point x,2:

where the symbols have the same meaning-as in equation
(A20), mcept that ~p and ~, now refer to those portions of
the shock waves and space situated downstream from Z,Z.

SOME ,PROPERTDM OF THE INTEGRAL EQUATIONS

Although the four integral equotions derived in the pre-
ceding paragraphs and written explicitly in equations (A8),
(A14), (A20), and (A21) are quite different in most respects,
they do possess a number of properties in common that are
of concern in the present discussion. Perhaps the most
obvious similarity is that each integral equation consists of
a term that involves integration over the wing and wake,
rmother term that involves integration over the shock waves,
and a third term that involves integration over the surround-
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FIGUB?J 39 .—Region of integration for the parabolic ease with XP<O.

ing space. The integrals extend over all space in the elliptic
case, but only over part of space in the parabolic and hyper-
bolic cases. It is important to realize that there is no direct
connection between the region of integration in each of the
integral equations and the region of dependence in the mlu-
tion, or in the physical flow, and that these two regions may,
in fact, be distinctly diflerent in some applications.

The first term in each integral &quationinvolves a distri-
bution of sources u proportional to A@@~) and doublets
i3@~ proportional to Ap. Since A@P/h~) is equal, accord-
ing to the boundary condition given in equation (l), to
Z7mA(dZ/dX)and AP is proportional to an x-wise integration
of the lift, it follows that the part of the term containing
sources is associated with the thickness distribution, and
that part containing doublets, with the eEects of camber
and angle of attack. The latter part of the first term is zero
for all of the nonlifting airfoils discussed in the main test of
this paper. The fit term in the elliptic and hyperbolic
cases is familiar in compr~ible flow theory because, upon
equating AB.to1—M.s or XHto Mms— 1, it reduces to the well-
lmown solution for q in the linearized theory of subsonic
and supemonic flow around thin airfoils.

The second term in each integral equation, involves a dis-
tribution of sources u proportional to ~i$@@Y) over any
part of the shock waves that is situated in what otherwise
would be part of the region of integration ~. There is no
doublet distribution on the shock wave, as on the wing and
wake, because p is continuous across the shock wave. Al-
though the contribution of the integral over the shock waves
is often di.flicult to evaluate because @@3v) is unknown
and must be determined as part of the solution, there are a
number of important applications in which this term either
vanishes completely, or contributes nothing to the values for
~ along the chord of the airfoil. The simplest class of
problems for which this term vanishes is, of course, that in
which the flow is subsonic everywhere and is hence shock-
free. The contribution of this term will also vanish in parts
of the field even if shock waves are present, provided they
are situated entirely downstream of the region of integration
in the hyperbolic case or the parabolic case with positive
XP,or entirely upstream of the region of integration in the
parabolic case with negative & The contributions of the
shock wave vanish in the above situations because the com-
plete term disappeam from the integral equation. If the

mains, however, each element of the shock waveterm re
provides a contribution to p that depends upon its strength ‘
and orientation. There are, moreover, certain directions in
which an element of a shock wave can be oriented that result
in no contribution to P in the parabolic and hyperbolic
casea. Thus, in the parabolic case, the contribution vanishes
when the element of the shockwave extends perpendicular to
the z axis, so that cos (n,z) in the second term of equation
(A20) or (A21) is zero. It is similarly evident from equation
(A8) that an element of a shock wave contributes nothing
to pin the hyperbolic caaeif the direction cosines and velocity
components on the two sides of the shock wave satis~ the
relationship

Cos (nb,Z) CA= %-ub

COS (~bj~) w~—wb
(A22)
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This relation can be expressed completely in gmmetric terms
by combining it with the following equation that can be
derived lhm consideration of the fact that p is continuous
across the shock

(A23)

Thus, the contribution to p vanishes if the element of the
shock wave is oriented so that

- Ew5r=t@n’@=’”(AM)

If the same line of reasoning is applied to the elliptic case,
relations analogous to equations (A22) through (A24) occur
in which X= is replaced by —A=. From such considerations
it would appear that the contribution to p vanishes if the
element of the shock wave is oriented so that

(A25)

Since &is required to be a positive quantity, however, it is
clear that there is no orientation for which the contribution
vanishes. In the hyperbolic case, on the other hand, ~= is
required to be positive and there are always two particular
orientations for which an element of a shock wave contributes
nothing to w It is interesting to note, before leaving the
discussion of the second term of each of the integral equa-
tions, that the particular orientation for which an element
of a shock wave provides no contribution to P coincides in
all three cases, elliptic, parabolic, and hyperbolic, with the
directions of the characteristic lines of the associated form
of the linear partial differential equation, ~(P) =0. The
reader should observe, however, that these characteristic
lines have no particular physical eigniflcance, inasmuch as
their existence and direction depend on an arbitrary choice
of a value for k.

The third term in each integral equation involves integra-
tion of the effects of a distribution of sources u proportional
to j over that part of space surrounding the airfoil that is
enclosed within the region of integration X. The contribu-
tion of this term does not vanish, except in almost trivial
circumstances such m occur, for example, in the hyperbolic
case for points upstream of a bow wave provided & is
equated to Mm2—1 so that f=iszero. Discussion of the
contribution of the third term in each integral equation will
consequently constitute the subject of much of the remainder
of this Appendix. An interesting property of each of the
integral equations that is worth noting before proceeding
to the more speciiic discussion of each case is that the inte-
grated strength of the sources in all space exterior to the
airfoil, including those distributed along the shock waves, is
equal, but opposite in sign, to the integrated strength of the
sources distributed alo~m the entire chord of the airfoil.

SIMPLIFICATION AND APPROXIMATE SOLUTION OF
THE INTEGRAL EQUATIONS

ISOgeneral methods are known for the analytical solution
of the integral equations given in equations (AS), (A14),
@20), and (A21). Although certain simplifications can be

made by restricting attention to nonlifting cases, and to
cases in which the shock waves are nbt in the region of
dependence, the essential difficulties remain because the
integral equations are nonlinear, just as is the differential
equation from which they are derived. The principal method
that has been employed in the past for the solution of similar
problems is that of successive approximation in which p is
expanded in a power series of some parameter such as the
thickness ratio, and the coefficients in this series are cloter-
mined as the solution develops. The first approximation in
these methods is generally either the solution for linmrized
compressible flow theory or for incompressible flow, ancl the
second and higher approximations are determined by itera-
tion procedures in which linear equations are solved at every
step. In practice, these methode have -been found very
di.fiicnltto apply to problems of compressible flow, and calcu-
lations of higher approximations than the second have, in
most wee, proved prohibitively lengthy. (See ref. 3 for n
r&um6.) Serious questions of convergence remain in tho
existing solutions of this type, and it is doubtful if the results
apply when mixed subsonic-supersonic flow occurs.

Another type of successive approximation procedure which
involves the solution of qu@ratic equations with every
iteration step is described in reference 9 and applied to the
calculation of pressure distributions on circulnr-nrc airfoils
for all Mach numbe= up to unity. Although the calcula-
tions could only be accomplished after the introduction of
certain approximations, whose influence on the result is
difiicult to ascertain, the general procedure appears to succeed
even with the occurrence of mixed flow.

The methods applied in the main text of this paper can bo
considered as the first step of still another type of successive
approximation procedure in which certain nonlinear features
are incorporated into even the first approxirnntion. This
procedure possesses the advantage of yielding results thn~
disclose much of the nonlinear effects in the first approxi-
mation, and of making unnecessary, in many npplicationst
the diflicult task of iteration to determine higher approxi-
mations. A simple heuristic description of the nnalysis is
given in the main text. The following paragraphs are con-
cerned with a more detailed examination of the approxima-
tions involved in the analysis, and of the relationship between
the present approximation and the approximations previously
employed in the solution of problems of compressible flow,
Although it is apparent that much of the discussion could be
applied to lifting airfoils, attention is coniined, as in the main
text, to symmetrical nonliftiug airfoils for which tho follow-
ing relations are to be applied in the ii-at term of ench
integral equation:

(A26)

HYPERBOLIC CASE

The tit problem to be discussed is the approximate
solution of the integral equation given in equation (AS) for
the hyperbolic caae under the restrictions that the flow is
purely supersonic so that

M.2–I+lXL>0 (A27)
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Equation (As) contains both a line integral over the shock
wave ~H and n double integral over the surrounding region
Z.. The double integral can be int”~ated z-wise, however,
because the integrand is a perfect differential. This partial
integration resuhs in a term that exactly cancels the line
integral on the shock wave and equation (As) can be re-
written as follows:

The symbol > below the integral sign of the second term
indicates that the integration is to be carried over the lines
&=x~~(lz–~1) extending upstream from Z,Z. Diileren-
tiation yields the following relations for w and 2@x:

U(X,Z)=-Q
6=

z’(z-&lz])–

It should be noted that equations (A28), (A29), and (A30)
me all integral equations and that each is an exact ralation
valid for any positive value of AH.

The results of linearized supersonic flow theory, as well
as those of the counterpart, in the small disturbance theory
of trrmsonicflow, of higher approximations can be reproduced
from any of the above equations upon equating&to M.s– 1.
In this way, all contributions of tit order are included in
the first term on the right and the contribution of the second
tmm on the right is, at most, of second order. Thus, the
familiar expression of linearized supersonic flow theory
follows immediately upon disregarding the contribution
of the second term

u(z,2)=— ~~1 Z’ (z–@f@’–llzl)+O( u’) (A31)
m—

Its counterpart, correct to second order in Z’, can be deter-
mined by application of the method of sucwasive approxi-
mations in which the contribution of the second term is
approximated by replacing the unknown u by the &at-order
nppro.ximation provided by equation (A31) and integrating.
In this way, the following result is obtained for points on
the airfoil.

Note that although the first- and secondarder approxi-
mations for u are different in general, first-order theory is
sutlicient to determine to second-ord$r accuracy the point
where u vanishes, that is where dZ@c= O. First-order

;heory, moreover, provides the exact location for the point
)f zero u in the absence of shock waves, but this simple
‘esuIt is true only to seccnd order if there are shock waves
~ituated within the Mach foreccme of the poid (z)O).
&lthough the difficulties of integration are such that only
fie first few steps of the method of successive approximation
M be evaluated in all but the simplest examples, the
method can, in principle at Ieaat, be repeated indehitely
to establish the result accurate to any desired order. The
result for u on the airfoil surface appears in the form of a
pow-emeriesinvolving ascending powers of (dZ/okc)/(M.s-l)3fi.
[t is clear that a valid approximation is obtained provided
the absolute value of dZ/& is sufficiently small at all points,
and the Mach number is not too close to unity. The
failure associated with excessive positive values for dZ/dx
usually occurs near the leading edge of the airfoil and is
associated physically with detachment of the bow wave
and the occurrence of local regions of subsonic flow. The
failure associated with excessive negative vah.ws for dZ/dz,
and Aarly illustrated in figure 3 of the main text, usually
occurs near the trailing edge of the airfoil and is purely
mathematic.d in origin. In actual practice where only
the fit term or two may be evaluated, the result fails to
provide adequate information regarding the ultimate con-
vergence or divergence of the series and the question must
be settled in each application by appeal to more exact solu-
tions. It is important to realize that these uncertainties
are not inherent in the integral equations given in equations
(M8) through (A30), but enter the analysis with the assump-
tion that the solution can be approximated satisfactorily
by application of the particular form of the method of
successive approximation described above.

The method of analysis employed throughout the main
text is equivalent, from the pre9ent point of view, to the first
step of a slightly different method of successive approximat-
ion that proceeds horn consideration of the infinite set of
relations that redt if diflerent vahm are selected for ~igin
the determination of conditions at different points in spaca
Analywmbased on such a system of equations are more com-
plex, in general, than those based on a single equation, but
this increase in complexity is counterbalanced, in the present
applications, by the fact that approximations can be in-
troduced on the basis of local, rather than global, considera-
tions. This fact makes possible the incorporation of some of
the higher order or nonlinear contributions, as well as all of
the first-order contributions, into the fit term on the right
in each relation of the infinite set, thereby reduc~~ the con-
tribution of the term containing the unknown u ($,{). If
a rule for the selection of AHcan be found that achieves this
effect and if it can be expressed in analytic form, the infinite
set of relations can be expressed once again in the form of a
single equation; and the remaindar of the analysis can prc-
ceed in a manner analogous to that described in the pre-
ceding paragraph for the classical method of successive
appr”oximation.

The method employed in the analysis of the hyperbolic
case in the main text of this paper is equivalent to the tit
step of a successive approximation procedure based on the
iniiite set of equations for &@x typified by equation (A30)
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withAHequated to the local value of Mms- 1+ku(x,z) in
each relation. Although it would appear horn cursory
exmn.inationof equation (A30) that the error incurred in so
dohg wotid be of second order, it will be demonstrated
below that the result is actually accurate to second order and
that the error is, at most, of third order. Although equations
(A29) and (A30), upon which the remainder of the discussion
of the hyperbolic case is based, are exact within the app&i-
mations of transonic flow theory, they are not in the most
advantageous form for the following discussion because of
the presenw of the integral in the second term of each rela-
tion. If, however, attention is contlned to the evaluation of
the result at the airfoil surface to second-order accuracy,
and to cases for which XKis restricted to values that differ
from M=’- 1 by, at most, a quantity proportional to u(z,z),
that is &=JM.3-l +au(z,z), the integrals can be integrated
and the following relations result:

( )‘u w-l++?.E
u&>o)=–~” ~–& (h 2(M.Z—1)

+O(U3) (A33)

all(z,o) U. d’Z U@&’-l+kU–hr)+O(&) (AM)—_
ax ––&d& ~

It is now clear that the substitution of ilf~’— 1+ku for X~in
equation (A34) yields

atf’(z,o)
—=-~J,,f :“l+h%+o(”’)ax (A35)

.—

This result corresponds to equation (11) of the main text and
leads, upon integration and insertion of the auxiliary relation
that w vanishes where dZ/dx is zero, to equation (15) relating
Cp and dZ/dx. This relationship is commonly designated as
that of simple wave theory. From the above discussion, it is
clear that equation (15) must be correct to at least second
order, as indeed simple wave theory is known to be for the
pressures on the surface of an airfoil. If there are no shock
waves in the region influencing conditions at the point (z,O),
the flow field is characterized by a single family of waves;
and it can be shown that the error term indicated in equation
(A35) vanishes completely. The resulting relation is thus
exact within the approximation of transonic flow theory. It
is intcresting to observe that the use of the same relation for
k= in equation (A29) for u lead9 to .

U. dZ ku’
u= —

@Im~-I+@+4(M ~2_1)+W@ (A36)

and rewilts in errors of second order if only the first term is
used.

There is another choice fork= that is not mentioned in the
main test that will remove the second-order error if only the
fit term of equation (A29) or (A33) for u is used and that is
A==ill.a— 1+ (ku/2), since then

“-+%%o(u’)‘(A”)

This result is not the same as that of simple wave theory, but
is recognized upon rearranging SEthat

(A38)

as being the square root, with appropriate choice of sign, of
the shock relation given in equation (6) with U. and W.
equated to zero. The result obtained by use of equation
(A38) is thus equivalent to that obtained by equating the
pressure at eac~ point of the airfoil surface to tlmt on a
tangent wedge. Such a procedure haa been proposed
previously and is sometimes called “tangent-wedge theory.”
Although the first two terms of the formal expansion of
either equation (A38) of tangent-wedge theory or equation
(14) of simple wave theory agree with the second-order
result obtained by use of the method of successive appro.u-
mations and given in equation (A32), the results of eitlmr
simple wave theory or tangenbwedge theory me to be pre-
ferred in applications because they approximate the proper
termination of the solution when dZ/dx becomes too large,
and do not fail spuriously at larger negative values of
dzldx.

~C CASE
The second problem to be discuesed is the approximate

solution of the integral equation given in equation (A14)
under the restriction that the flow is purely subsonic so that

l–Mm2–&>0 (A39)

This restriction implies that the integral over ~E is zero,
since there are no shock waves in a purely subsonic flow.
Thus, equation (A14) reduces to

Differentiation yields the folIowiug relations for u and
aup2

where

{ }
f.= A.–[l–Mm’–ku&r)l ~
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Equations (A40), (A41), and (A42) are all integral equations
and each is exact for any positive value for XE. The solu-
tion of any of these integral equations is complicated not
only because the relations are nonlinear, but also because
the kernel, designated by uz or its derivative, is intinite at
the point E=x, f= z.

The familiar rewdt of linearized subsonic flow theory can
be obtained from any of the above equations by replacing
AEby 1–Mmz and disregarding the contribution of the double
integral as being of higher order. The corresponding result,
correct to second order, can be obtained by application of
tlm method of successive approximations in which the
contribution of the double integral is apprwdrnated by
means of the &t-order result to evaluatefsat each point.
Eigher approximations can be obtained, at least in principle,
by repeated application of the same procedure except that
~. is evaluated at ench step by use of the results of the next
lower approximation. In this way, an approximate expres-
sion for the solution is determined in the form of a truncated
power series. Although the difficulties of integration are so
great that few cases have been evaluated beyond the second
approximation, it appears that the process converges to the
desired solution for thin airfoils provided that certain well-
known difficulties associated with stagnation points are
properly accounted for and that, as in the hyperbolic case,
the Mach number is not too close to unity. Again the re-
sults provided by the method of successive approximation
indicate no definite limit for the Mach number. Compari-
son with mperimental results shows that the trends dis-
played by the results are generally confirmed for Mach
numbers less than the critical Mach number, but are es-
sentially refuted for greater Mach numbers.

It is interesting and informative to compare the results
obtained in the manner described above with those obtained
by application of an alternative version of the method of
successi+-e approximations described in reference 9 that
involves the solution of quadratic rather than linear algebraic
equations at each step of the iteration prcceas. The equation
fundamental to this discussion is obtained from equation
(A41) by again equating & to l–ikfm’ and integrating the
double integral by parts. In this -way the following integral
equation is determined for u:

(A43)

Although equation (A43) is completely equivalent to equa-
tion (A41), it is, in certain respects, superior from the point
of view of obtaining approximate solutions. This is because
the predominant effects of the region near the point Z,Z,
which form a major contribution to the value of the integral
in equation (A41), are furnished in equation (A43), by the
term involving the square of u standing outside the integral.
Although the difficulties of integration areas great or greater
than encountered in the classicalmethod of successive approx-
imations and only the first few steps can be evaluated without
approximation in any speciilc application, certain general
features of the solution are clearly defied. In particular, it
is shown in the report version of reference 9 that the resdts

obtained for flows that are subsonic everywhere converge, in
the limit of an infinite number of iteration steps, to the same
rwult as ultimately obtained by application of the classical
method of successhw approximation. Whereas there is con-
siderable doubt about the precise range of convergence of the
latter result, the result obtained by application of the quad-
ratic method of successive approximation clearly terminates
with the occurrence of sonic velocity somewhere in the flow.
The termination of the solution is recqyized by the dis-
appearance of real roots of the quadratic equation and is
apparent at every step of the iteration process. It is evident,
moreovex, from comparison of the two sets of results that the
series expansion for the solution obtained by the classical
method of successive approximation converges only for purely
subsonic flows and that the results indicated for mixed or
transonic flows are false. These properties of the result
obtained by the quadratic method of successive approxima-
tion are consistent with the numerous arguments and proofs
for the nearly nonexistence of continuous shock-free transonic
flows that have been advanced in recent yearn. (See ref. 46
for a brief r6sum6.)

This difference in behavior can be readily illustrated if one
considers the expressions for the pressure coefficient at the
midpoint of a symmetrical circular-am airfoil that are obtain-
ed following the completion of the first two steps of each
iteration process. The result provided by use of the classical
method can be readily obtained from the third-order result
quoted in equation (37) of the main text and is

The tit term represents the result obtained if one ccnsid-
ers equation (A41) and disregards completely the contribu-
tion of the double integral. The result is precisely that of
linearized compressible flow theory for the particular point
under discussion. The second term represents an approxima-
tion for the contribution of the double integral obtained by
replacing f~ for each point in space with the result provided
by linearized theory. The results obtained by application of
equation (A44) indicate that —CPincreases indefinitely with
increasing value of 7/(1—Mmz)sfl and appear to apply for
mixed, or transonic, flows as well as for purely subsonic flows.
The corresponding results obtained by use of the quadratic
method of successive approximation are found by considera-
tion of equation ~A43). A first approximation obtained by
disregarding completely the contribution of the double
integral is

and a second approximation oblai.ned from the evacuation of
the contribution of the double integral by use of the result
provided by linearized theory for f~ at each point is

[
c,=_2(=f”’) ~_

Mco’(-r+l) ~

(A46)
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The results obtained by application of either equation (A45)
or (A46) also indicate that – C, increases with increasing
values of r/(1 —M.~)3n, but that this trend terminates
when CP reaches the critical value associated with the
occurrence of sonic velocity, that is, when

~ _ 2(1—M.f)=c
P

——

.M yy+l) ‘“
(5)

At this point, the slope of a curve representing the variation
of Cp with &f. is infinite. In spite of these distinct differ-
ences in behavior, it is important to note that a formal
power series expansion of equation (A46) in terms of r
agrees to second order with equation (A44), and that this
agreement increases by one order of ~ upon the completion
of each additional iteration step. Results obtained follow-
ing completion of additional iteration steps continue to
follow the same trends. Those indicated by the classical
method never provide any information regarding the precise
range of convergence, and those indicated by the quadratic
method always terminate with the occurrence of sonic
velocity.

The method employed in the main text can be considered
aa an alternative procedure devised in any attempt to im-
prove the quality of the tit approximation and to diminish
thereby some of the necessity for the evaluation of higher
approximations. Before proceeding, it is important to recall
that equations (A40), (A41), and (A42) are all integral
equations valid for any positive value for &; and that each
can be considered, in the same way as described for the
hyperbolic case, as a typical member ‘of m iniinite set of
relations that result if different values are selected for &
in the determination of conditions at diilerent points in
space. It appears plausible that an increase in the accuracy,
although not the mathematical order, of the first approxi-
mation might occur if XE is equated not to simply 1—ll.z,
but to l—~Z.2–ku(z,z) because then the function jx in
the double integral of each integral equation reduces to
k[u(z,z) –u(&~)] (bu/b,f) and hence vanishes at the point
~=z, {=z where u., i3u@x, or ?PuE~ are idnite. If this
procedure is applied to equation (A40) or (A41) for q or w,
and only the contribution of the single integral is retained,
it is clear that the desired improvement W not be obtained
for all Mach numbers up to the critical because the function
41 —ilJm2-hw that appears in the denominator of each
term vanishes with the occurrence of sonic veloci~, and the
numerator does not vanish simultaneously. It is interesting
to note, nevertheless, that the result for the pressure coeffi-
cient on the airfoil surface that is obtained in this way from
equation (A41), that is,

“p(x’o)=d$a==~e“47)
corresponds to the use of the local, rather than free-stremn,
Mach number in the l?randtLGlauert rule; and that this
result is the counterpart, in transonic small disturbance
theory, of an approximation proposed by Laitone, Szebehely,
and Truitt (refs. 47 through 51). It is immediately apparent
that although this result diifers from the l?randtl-Glauert
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FmwE 40.—Variation of Cmwith iv. at the midpoint of a oiroular-aro
airfoil, as indioated by equation (A47), by present theory, ancl by
the method of suooessive approximations.

rule in the same direction as the higher order approximations,
tbe effects of compressibility are greatly overestimated at
points where the local velocity approaches sonic velocity.
A @icsl set of results illustrating this statement k shown
in. @gure 40 in which are repeated the curves of figuro 8
showing the variation of ~r with iv. at the midpoint of a
10-perrmnt-thick circular-arc airfoil together tith the corre-
sponding curve calculated by use of equation (A47).

The relations developed in the discussion of the elliptic
case in the main text do not encounter any such difficulties
as the local Mach number approaches unity. Th6 difference
in behavior is a consequence of the fact that the latter
results are based on the equation for 2@x rnther than that
for p or u. That such a difference might occur can be seen
by examination of equation (A42). The denominator again
approaches zero as the local Mach number apprordcs 1,
but the numerator is always zero at the point of maximum
velocity. Since sonic velocity is iirst encountered with
increasing Mach number at the point of maximum velocity,
it is apparent that an indeterminate form occurs at the
n-itical Mach nkber and the possibility at least exists that
the gain sought by forcing fg to be zero at the point whore
YuB/b& is iniinite will be realized. That a gain in accuracy,
ilthough not the mathematical order, of the solution is
actually attained by this procedure is shown in the main
text by comptin with existing higher approximations,
Further coniir.mation of this conclusion is shown by the
mmparison illustrated in figure 41 in which the curves of
Egure 8 showing the variation with M. of Cp at the mid-
point of a 10-percent-thick circular-arc airfoil me repeated
kogether with the curves calculated by use of equations
(A45j and (A46) representing the first two approximations
tihed by the quadratic method of successive approxi-
mations.
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l?IGrmE 41.—Variation of Cpwith M. at the midpoiot of a oircular-
arc airfoil, ns indicated by present theory and by two alternative
methods of successive approximations.

PARABOLIC CASE

The third problem to be discussed is the approximate
solution of the integral equations for the parabolic ease
under the restriction that the free-stream Maoh number is
near unity. Two integral equations are given depending
on whether kp is positive or negative. Inasmuch as no use
is made in the main text of the equation for negative AP,the
foUowing remarks will be ecmfined to the case for positive
}P, for which the integral equation is given by equation (A20):

iJ,.”p(%-2)c0s(n’Jz’ds‘AM)
where

“P=JZ2--]
The third term of equation (A48) represents the contribu-

tion of sources distributed along the surface of any part of
the shock system that is situated upstream of the point cr,z.
This term has the property of effectively continuing the
source distribution of the iirst term smoothly through a
concave corner when the adjacent flow is supersonic. In
this way, the singularities in the velocity and pressure that
occur at such corners when the adjacent flow is subsonic are
replaced, when the adjacent flow is supersonic, by the dis-
continuous, but finite, jump associated with an oblique
shock wave. The contribution of this term vanishes if
no part of the shock system is situated upstream of Z,Z
or if the shock wave is parallel to the z axis. In that which
follows attention is confined to cases in which it is premuned
tlmt one or both of these conditions are satisikd for all
points situated upstream of the trailing edge. The integral
over the shock waves thus contributes nothing to p at any

5~~uo7~O_sd

point on the airfoil surface, and the remainder of the discus-
sion will proceed with considerations involving only the
fir% two terms of equation (A48), and with the correspond-
ing equation for u obtained therefrom by differentiation
with respect to x. These two equations reduce to the fol-
lowing forms for points on the airfoil surface (i. e., z= O):

where

It can be seen from examination of the preceding relations
that the integral equations for the parabolic case are non-
linear and singuhu just as are the integral equations for the
elliptic case. The following discueaion of the appro.sirnate
solution of the equations for the parabolic case will proceed,
therefore, through applications of considerations that are
very similar to those described in the discussion of the
elliptic case in the preceding section.

The results found by application of the linearized theory
for sonic flow described in references 23 through 28 follow
from equation (A49) or (A50) by equatingfp to zero so that

(A51)

and selecting a value for Ap. Various means have been
proposed for the selection of an appropriate value for hp.
In reference 28, the ordy one of the above references that
pertains directly to two-dimensional flows,. Maeder and
Thommen suggest that &. be determined by equating it to
the value for kbufi, obtained by differentiating equation
(A51), that occurs at the point along the chord at which u
is a maximum in ineompresaible flow. As noted in the
‘main text in the discussion of the solution for the wedge,
the results obtained by application of this linearized theory
for sonic flow past thin airfoils may be at considerable
variance with other theoretical and experimental results.
A further illustration of this statement is provided in fig-
ure 42 in which the results given in figures 16, 18, and 19
for the circular-arc airfol and the two related airfoils that
have the point of maximum thickness at 30- and 70-percent
chord are repeated togethw with the corresponding results
obtained by application of the procedures described in refer-
ence 28. It can be seen upon comparison of these results
with the exparhnental results shown in @es 16, 18, an,d
19 that the agreement between the pressure distribution
calculated by application of the linearized theory for sonic
flow and that measured experimentally deteriorates as the
pressure gradient departs from a constant. It is apparent
from equation (A51) that the accuracy cannot be improved
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in any essential manner by the adoption of a difFerent rule
for the selection of an appropriate value for Ap. This follows
from the fact that the entire curve representing the pressure
distribution is proportional to l/& and can be ahhxed
in scale, but not in form, by use of oth&r values for kr.
Possibilities for iteration always exist, and it is conceivable
that improvements in accuracy could be attained by in-
serting the solution of linearized sonic flow theory into the
terms involving f~ in equation (A49) or (A50) to obtain a
second approximation, etc. To do so would be a laborious
task and there is always present a grave danger that the
procws will diverge, or not converge sutliciently rapidly to
be useful, when the fit approximation is as far from the
proper solution as may be inferred horn figure 42 for the
airfoil with maximum thiclmes-sat 30-percent chord.

The procedures employed in the main text for the approx-
imate solution of the equations for the parabolic case closely
parallel those used for the approximate solution of the equa-
tions for the hyperbolic and elliptic cases. It is, conse-
quently, not surprising that the following discussion of these
procedures from the point of view of the @.gral equations
given in equations (A49) and (A50) is very similar to that
in the preceding sections of the Appendix. The general
considerations are the same in all three cases, but the para-
bolic case more closely resembles the elliptic case than the
hyperbolic case because of the singular nature of the kernel
in the double integral; that is, UPand u~approach infinity at
the point :=x, ~=z. The expressions applied in the main
text follow from consideration of equation (A50) as a typical
member of an infinite set of relations that result if Ap is
replaced with the local value of k&@c and the contribution
of the double integral is disregarded. At free-stream Mach
number 1, the function jp thus reduces to zero at the point
where UPis infinite, and it again appears plausible that less
loss in accuracy is incurred by disregarding the contribution
of the double integral than in alternative procedures in which
fp iS not zero at thispoint. At free-stream’ Mach numbers
different horn unit-y,jr is not zero although it can be made
as small as desired by approaching SufEcientlyclosely to free-
stream Mach number 1. The results obtained by solution of
theremaiuingrelation, which is a first-ordernonlinear ordinary
differential equation, are completely consistent with the

.AyC

by present theory and by linearized transonio flow theory; M. u 1.

above remarks. The pressure distributions calculated by
use of only the first approximation are indeed in good nccord
with existing theoretical and experimental rcaults, and tho
initial variation of 09 with M. at free-stream Maoh number
1 is given exactly; but no indication is provided of the sub-
sequent variation of CP with llm at Mach numbers con-
siderably removed from unity.

If, on the other hand, the pressure distribution is calculntecl
by” substitution of lP= for XPin equation (A49) rmd differen-
tiation of the resulting expression to obtain an equntion for
u, tha function in the double integral that corresponds to f“
in the above disckon does not vanish at the point &=x,
{=z where the kernel is tite. , If the preceding discussion
can be considered to imply that the effective removal of tlm
singularity is important in the approximate solution of
singular integral equations, it may be anticipated ‘that tho
results obtained using equation (A49) ~ not, in general,
be so good as those obtained follotig the procedure em-
ployed in the main text.

1.

2.

3.

4.

5.

6.

7.

8.

REFERENCES

Hemle~ Mas.A, and Lomwi, Harvard: Supersanio and Transonio
Small Perturbation Theory. See. D of General Theory of High
Speed Aerodynamics. VOLVI of High Speed Aerodynamics and
Jet Propulsion, W. R. Seam, cd., Princeton Univ. Prees, 1954.

War& G. N.: Linearized Theory of Steady High-Speed Flow.
Cambridge Univ. k, 1956.

LightMl, M. J.: Higher Approximations. See. E of General
Theory of High Speed Aerodyuamim. Vol. VI of High Spcod
Aerodynamics and Jet Propulsion, W. R. Sears, od., Prfnooton
univ.preSS,1964.

von KAnmiu, .Th.: On the Foundation of High Speed Aerodynam-
ics. Sec. A of General Theory of High Speed Aerodynamics.
Vol. VI of High Speed Aerodynamics and Jet Propulsion,
W. R. Sears, cd., Princeton Univ. Press, 1954.

Spreiter, John R.: On Alternative Forms for the Baeio Equations
of Transonio Flow Theory. Jour. Aero. Sci., vol. 21, no. 1.
Jan. 19% pp. 7&72.

Spreiter, John R.: On the Application of Transonio Similarity
RulH to ‘iViugsof Finite Span. NACA Rep. 1153, 1963.

Viucenti, Walter G., Dugan, Duane W., and Phelps, E. Ray:
On Espenmental Study of the Lift and Pressure Distribution on
a Double-TVedge ProfUe at Mach Numbers Near Shock Attach-
ment. NACA TN 3225, 1954.

Heaslet, Max. A., and Fuller, Franklyn B.: Particular Solutions for
Flows at Maoh Number 1. NACA TN 3868, 1956,



THiN AIRFOIL THEORY BASDD ON APPRO~TE SOLUTION OF TBE TRANSONIC FLOW EQUATION 545

9. Spreiter, John R, and Aiksne, Aiberta Y.: Theoretical Predictions
of Pressure Distributions on Noniifting Airfoils at High Subsonia
Speeds. NACA Rep. 1217, 1955. @ormerly NACA TN 3096.)

IO. Heaslet, Max A., and Spreiter, John R.: Three-Dimensional Tran-
sonio F1OWTheory Applied to Slender Wings and Bodies.
NACA TN 3717, 1966.

11. Spreiter, John R.: Theoretical and Experimental Analysis of
Transonio F1OWFields. NACA—University Conference on
Aerodynarnica, Construction and Propulsion. VOL II, Aero-
dynamics. A compilation of the papers presented, Letis Fiigh;
Propulsion Laboratory, Cleveian~ Ohio, Oct. 20-22, 1954.

12. Sauer, Robert: Introduction to Theoretioai Gas Dynamica. J. W.
Edwards, Ann Arbor, Mioh, 1947.

13. Liepmann, Hans Wolfgang, and Puokett, Alien E.: Introduction to
Aerodynamfos of a Compressible Fluid. John Wiiey and Sons,
Ins., 1947.

14. Donov, A. E.: Ploskoe Krylo s Ostr.ymi Kromkami v Sverkhzvuk-
ovom Potoke. Izvestiia Akademii NAU& USSR 1939, pp.
603-626.

15. Donov, A. E.: A Fiat Wing with Sharp Edges in a Supersonic
Stream, NACA TM 1394, 1956.

16, Kuo, Y. H., and Sears, TV. R.: Piane Subsonio and Tmnsonio
Potential Fiows. See. F of General Theory of High Speed
Aerodynamics. VOL VI of High Speed Aerodynamics and Jet
Propulsion. ‘?7.E. Sears, wL, Princeton U~iv. Press, 1954.

17, Garrick, I. E., and Kaplan, Carl: On the Fiow of a Compressible
Fiuid by the Hodogmph Method, I—Unification and Extension
of Present-Day Remits. hTACARep. 789, 1944.

18, Van Dyke, Mfiton D.: Second-Order Subsonio Airfoii Theory
Including Edgo Effeots. NACA Rep. 12741956.

l% Hrmtzsohe, TV., and Wendt, H.:. Der Kompressibiiiti%eirdbs
ftlr dthme wenig gekrihnmte Prdle bei Unterschailgwohwindig-
kdt. Z. a, M, M., Bd. 22, Nr. 2, Apr. 1942, pp. 72%86.

20. Asaka, Saburo: On the Velooity Distribution over the Surface of a
Symmetrical Airfoil at High Speeda, II. National Soience
Report of the Oohanomizu University, vol. 5, no. 1, 1954, pp.
60-78.

21, Asaka, Saburo: Application of the Thin-’iVing-Expansion Method
to the Fiow of a Compressible Fiuld Past a Symmetrical Cirouiar
Aro Aerofoii. Jour. Phy. Sot. Japan, vol. 10, no. 6, June 1955,
pp. 482-492.

22. Asaka, Saburo: Errata: Application of the Thin-Wing-Expansion
Method to the Flow of a Compressible Fiuid Past a Symmetrical
Ciroular Aro AerofoiL Jour. Phy. Sot. Japan, vol. 10, no. 7,
July 1955, p. 593.

23, Behrbohm, H.: Ntiherungstheorie des unsymmetrischen S&ali-
durchgange in einer Lavaidilse. Z. a. M. M., Bd. 30, Nr. 4,
Apr. 1950, pp. 101-112.

24. Behrbohm, H.: Sohafidurahgang in zwei-und dreidimensionaien
Dllsemtromungeu. Z. a. M. M., Bd. 30, Nr. 8/9, Aug./Sept.
1950, pp. 268-269.

26. Omvatitsoh, K., and Kuene, F.: The Fiow Around Bodies of Revolu-
tion at Maoh Number 1. Proc. Conf. on High-Speed Aeronautics,
Polyteohnio Institute of Brookiyn, Brooklyn, N. Y., Jan. 20-22,
1955, pp. 113-131.

20. Keune, F.: Berioht tlber eine Ni$herungathmrie der Str6mung um
Rotationski%per ohne Ansteihmg bei Maohzahl Eins. DVL
Berfcht Nr. 3. Wegtdeutsoher Veriag, K6in und Opladen, 1955.

27. IGmne, F.: ~er den Kompressibilitiltseinfluss bei und nahe
Maohzabl Eins ftir K&per kieiner Streckung und schianke
Itotationsktirper. 2s. f. Fiugwiss. 4 Jahr., Heft 1/2, Jan./l?eb.
1956, pp. 47-53.

28. hfaeder, P. F., and Thommen, H. U.: time Results of Linearized
Transonio Flow About Slender Airfoiia and Bodies of Revolu-
tion, Jour. Aero, Soi., VOL23, no. 2, Feb. 1956, pp. 187-188.

29. hliks, John W.: On Linearized Transonio F1OW Theory for Slender
Bodies. Jour. Aero. Soi., vol. 23, no. 7, Juiy 1956, pp. 704-705.

30. Brysorq Arthur Ear~ Jr.: On Experimental Investigation of
Trrmsonio Flow Past Two-Dimensional Wedge and Cirouiar-
Am Sections Using a Maoh-Zehnder Interferometer. A7ACA
Rep. 1094, 1952. (Formerly NACA TN 2560.)

31. Llepmann, H. W., and Bryson, A. E., Jr.: Transonio Flow Past
Wedge Sections. Jour. Aero. SOL, vol. 17, no. 12, Dec. 1950,
pp. 745-755.

32. Guderley, Gottfried, and Yoshihara, Hideo: The Fiow Over a
Wedge Profiie at Maoh Number 1. Jour. Aero. Soi., vol. 17,
no. 11, Nov. 1960, pp. 723-735.

33. Hab@ Louis IV., Henderson, James H., and Miiier, Mason F.:
The Langley Annuiar Transonio TunneL NACA Rep. 1106,
1952.

34. Vincenti, Waiter G., and Wagoner, CM B.: Tranacmio Flow Pasta
Wedge Profile With Detaohed Bow Wave. NACA Rep. 1095,
1952. (Supersedes NACA TN’s 2339 and 2688)

35. Yoshihara, Hideo: On the Fiow Over a Finite Wedge in the Ikrwer
Trarwonio Region. WADC Teoh. Rep. 56-268, June 1956.

36. Cole, Juiian D.: Drag of Finite Wedge at High Subsonio Speeds
Jour. Math. and Phys., VOL30, no. 2, July 1951, pp. 79-93.

37. Miohel, R., Marobaud, F., and Le Gailo, J.: I%mde des kmiements
tranmoniqua autour des profiis lenticulairea, a irmidence nuiie.
O. N. E. R. A. Pub. No. 65, 1953.

38. Carroli, James B., and Anderwm, Gordon F.: Boundary-Layer
Effeot on Looal Mach Number M easurements on a Ciroular
Aro Haif Profde. Jour. Aero. Soi., VOL 23, no. 6, June 1956,
pp. 604605.

39. Miohel, R., Marchau& F., and Le Gaiio, J.: Influence de la position
du maitre-muple sur lea ~couiements tramsoniques autour de
profda a pointes. O. N. E. IL A. Pub. NO. 72, 1954.

40. Frank, Phiiip, and v. Mime, Ri&ard: Die Differential-und
Integraigleiohtmgen der Mechanik und Physik. hlary S.
Rosenberg, New York, 1943.

41. Guderley, K. Gottfried: Singularities at the Sonio Velooity. Teoh.
Rep. F–TR-1171-ND, Air Materiel Command, U. S. Air
Force, June 1948.

42. h~ichel, R, Marohaud, F., and Le Gaiio, J.: Influence d’un point
d’ioflexion a l’arriere d’un profd en bmdement transsonique.
La Recherche A6ronautique, No. 40, Juille~ Aout, 1954, pp
16-19.

43. von K&rmAn, Th.: Supersonic Aerodynamics=prinoiplea and
Appiioations. Jour. Aero. Soi., vol. l% no. 7, July 1947,
pp. 373-409.

44 Heasle\ Max. & and Spreiter, John R.: Reciprocity Reiations in
Aerodynaroios. NACA Rap. 1119, 1953.

45. Webster, Arthur Gordon: Partial DiHerential Equations of Mathe-
matical Physios. G. E. Steobert and Co., New York, 1933.

46. von IWm6n, Theodore: Solved and Unsoived Problems of High
Speed Aerodynami~. Proc. Conf. on High-Speed Aeronautics,
Poiyteoh@o Institute of Brookiyn, Brookiyn, N. Y., Jan. 20-22,
1955, pp. 11-39.

47. Laitone, E. V.: New Comprkbility Correction for Twp-Dimen-
siofial Subsonic Flow. Jour. Aero. Soi., vol. 18, no. 5, hfay 1951,
p. 350.

48. Szebehely, V. G.: Local Compressible Pressure Coefficient. Jour.
Aero. Sci., vol. 18, no. 11, Nov. 1951, pp. 772-773.

49. Laitone, E. V.: Use of the Imcal Maoh Number in the Prandtl-
Giauert Method. Jour. Aero. Sci., vol. 18, no. 12, Dee. 1951,
pp. 842-843.

50. Truitt, Robert Wesiey: Analo~ of the Special Theory of Relativ-
ity to the Study of Compressible Fiuid Flow. Bulletii Ifo. 44,
Dept. of Engineering Research, ATorth Caroiina State Cdioge,
June 1949.

51. Truitt, Ibbert Wesley: Prediction of Subsonio Pressure Distribu-
tions by the Sound-Spaoe Theory. Buiietii No. 47, Dept. of
Engineering Researoh, North Caroiina State Cofiege, Sept. 1950.


