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LIFT DEVELOPED ON UNRESTRAINED RECTANGULAR WINGS ENTERING GUSTS AT SUBSONIC
AND SUPERSONIC SPEEDS!

By HarvarDp Lomax

SUMMARY

The object of this report is to provide an estimate, based on
theoretical calculations, of the forces induced on a wing that is
flying at a constant forward speed and suddenly eniers a ver-
tical gust. The calculations illustrate the effects of Mach
number (from 0 to 2) and aspect ratio (2 to ), and solutions
are given by means of which the response to gusts having ar-
bitrary distributions of velocity can be calculated. The effects
of pitching and wing bending are neglected and only wings of
rectangular plan form are considered. Specific results are
presented for sharp-edged and iriangular gusts and various
wing-air density ratios.

INTRODUCTION

Studies of the gust-response problem for restrained wings
(wings of infinite mass) entering sharp-edged gusts at super-
sonic speeds are already well advanced. Miles, Strang,
Biot, and Heaslet and Lomax (refs. 1, 2, 3, and 4) presented
solutions to such problems for two-dimensional wings;
Miles and Goodman (vefs. 5 and 6) presented solutions for
rectangular wings having tip Mach cones that do not intersect
the opposite edge. Miles and Strang (refs. 7 and 8) gave
results for a triangular wing with supersonic edges. Theo-
retical studies restricted to incompressible flow fields contain
the classical solutions due to Wagner (ref. 9), Kussner (ref.
10), and von Kérmén and Sears (vef. 11), the former con-
taining the solution for the indicial lift on a two-dimensional
sinking wing and the latter two containing the solution for
the lift on a restrained two-dimensional wing entering a
sharp-edged gust. The extension of these studies to include
the gust response for wings of finite aspect ratio has been
carried out by Jones (vef. 12). Later, further extensions to
include the effects of gust shape as well as aspect ratio have
been made by Zbrozek (ref. 13) and Bisplinghoff, Isakson,
and O’Brien (vef. 14).

The purpose of the present report is twofold: first, to
present solutions for a two-dimensional restrained wing
entering a sharp-edged gust at sonic and subsonic Mach
numbers (specifically, Mach numbers equal to 1.0, 0.8, and
0.5); and second, to use these results together with those
mentioned above to estimate the effect of wing aspect ratio
and airplane mass on the lift response for airplanes flying at
various speeds through the Mach number range from 0 to 2
and penetrating both triangular and sharp-edged gusts.

A list of symbols is given in the appendix.

ANALYSIS
THE EQUATION OF MOTION

If induced pitching moments are neglected, the motion of
a rigid wing disturbed from its equilibrium position by
arbitrary external lifting forces is governed by Newton’s
second law. Thus, if w is the vertical velocity of the wing
and m its mass, we can write

m %=2 forces 1)

where the forces to be summed are the aerodynamic ones due
to the gust velocity and the motion of the wing from its
position of equilibrium,

First, consider the force that results from a small vertical
motion of the wing. Suppose the wing has been flying in
steady level flight at a constant speed Uy up to a time #'=0.
Fix an 2yz coordinate system in space (z positive upward)
such that at #/=0 the y axis lies along, and the origin on, the
wing leading edge and, further, such that the wing is moving
in the negative z direction. For ¢'>>0 the wing moves
away from these coordinates, continuing forward at the
constant speed U, along the negative % axis, and now also
moving downward at a constant rate —w=Uyx. The
transient lifting force on the wing induced by such a maneuver
shall be referred to as the indicial lift (positive upward) and
designated in coefficient form by the symbols ¢; or Cp for
section or total lift values, respectively.

Given the indicial lift coefficient, one can show by using
the prinicples of superposition that the lift due to an arbitrary
variation of angle of attack caused by the vertical velocity
of the wing can be determined from the relation

tl
L ):’—% -%,- J; Cr (' —t)wt)dty’

(2a)

Next, consider the force that is induced on a wing pene-
trating a sharp-edged gust having a uniform upward velocity
w,. If the wing is restrained so that it can move neither
upward nor downward (corresponding in flight to the limiting
case of infinite wing mass), the section or total lift coefficients
induced by & unit value of wy/U, will be designated ¢, or
Cr,, respectively. Figure 1 illustrates the differences be-
tween the boundary conditions for, and the initial variations
of ¢;, and ¢;, for a two-dimensional wing traveling at a

subsonic speed.

t Supersedes NACA TN 2925, “Lift Developed on Unrestrained Rectangular Wings Entering Gusts at Subsonic and Supersonie Speeds” by Harvard Lomax, 1953,
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Ficurs 1.—Boundary conditions and initial variations of c;, and cs,.

Given a value of (%, , one obtains the lift on a restrained
wing flying into a gust having an arbitrary vertical velocity
distribution, w,(#’), by the relation

t'
L (t’)=%.—‘sol- -‘% J; OLg (t,_ t]_') Wy (tl,) dtll

(2b)

Substituting equations (2a) and (2b) into equation (1),
one finds the expression for the vertical motion of an unre-
strained wing flying into a gust; thus,

dw_ ¢S d (¥ i .
" W——ﬁ;a?fo C (' —tYw () dt' +

tl

Since w,(t’) is assumed to be given, equation (3a) is an
integral equation—in terms of w(t’)—of the second kind
with a variable upper limit. It is convenient first to study
equation (32) when the gust is a step function (sharp-edged
gust). For this case we(t;") becomes a constant wy, say, and
equation (3a) reduces to

dw__. gﬁif‘l .7 ’ ’ QS’IDO ’
m—d7—-——-Uo dt, o OLa(t tl )'lD(ll)dtl-*— Uo OLg(t) (Sb)’

The solution to equation (3b) can be used to find the
induced force on an unrestrained wing entering a gust of
arbitrary structure. Methods for solving the integral
equation and applying its solution will be developed in the
subsequent sections.

INDICIAL LIFT ON A SINKING WING

The analysis involved in calculating the indicial lift force
on the wing is based on the assumptions that underlie linear-
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ized, thin-airfoil wing theory in general. Mathematically,
these assumptions imply that the governing partial differ-
ential equation of the flow field is the three-dimensional wave
equation. In terms of the velocity potential ¢ and for an
axial system fixed relative to the still air at infinity, the wave
equation can be written

@

where ¢ is the product of the speed of sound a, and the time ¢’.
For a wing moving in the z=0 plane, the boundary conditions
are that ¢ is continuous everywhere except across the wing
and its vortex wake, (¢.),_, is a constant over the region

bounded by the wing plan form at any given time, and all
velocities vanish outside the starting wave envelope.

All values of C’La and ¢;, used herein have been presented
in previously published reports. The indicial lift on a
sinking rectangular wing traveling at supersonic speeds has
been presented by Miles (vef. 5). As the aspect ratio tends
to infinity, this solution approaches that for the two-dimen-
sional case given in references 1, 2, 3, and 4. At sonic and
subsonic speeds, results for a two-dimensional wing are
available for Mach numbers equal to 1.0, 0.8, and 0.5 (vef. 15)
and for the incompressible case (vef. 16). Finally, the

- Gollll+ P2z=—Qu

‘indicial lift on sinking wings of finite aspect ratio in incom-

pressible flow is presented in reference 12. Curves showing
the effect of Mach number on the two-dimensional values
are presented in figure 2 (2), and the effect of aspect ratio at
supersonic speeds is indicated in figure 2 (b). Tabular
values for the two-dimensional wing flying at Mach numbers
equal to 0.5 and 0.8 are given in tables I and II, respectively.
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Ficure 2.—Concluded.

RESPONSE OF A RESTRAINED WING TO A SHARP-EDGED GUST

Load distribution.—The lift induced on a restrained wing
penetrating a sharp-edged gust can also be determined by
solving equation (4) subject to the proper boundary condi-~
tions.? For a wing moving in the z=0 plane, these condi-
tions are similar {o those given for the indicial lift on a sinking
wing in that all velocities vanish outside the starting wave
envelope and ¢ is continuous everywhere except across the
wing and its vortex wake, but differ from the indicial case
in that (¢.).-0 is & constant only over the portion of the
wing plan form that hds penetrated the gust, being zero
over the remaining portion (see fig. 1). This problem has
been solved for a rectangular wing traveling at supersonic
speeds by Miles (vef. 5) and, again, as the aspect ratio tends
to infinity, this solution approaches that for the two-dimen-
sional case given in references 1, 2, 3, and 4. Two-dimen-
stonal wings flying at .he speed of sound and two- and three-
dimensional wings flying in an incompressible medium have
also been considered (vefs. 4, 16, and 12, respectively).

The problem of finding the two-dimensional gust response
at subsonic speeds can be solved by the same method that
was used in reference 15 to find the two-dimensional subsonic
indicial response. For these cases equation (4) reduces to

‘Pzz+ Pzz= Put (5)

11t is interesting to note that the gust 1ift function e1,can be related to the indicial response
following a step variatlon of angle of attack under quite general conditions by the reciprocal
theorems glven in reference 17,

~qg w(14+M,)
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and the boundary conditions for a section in the «f plane are
indicated in figure 3.

Trace of foremost
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Ficure 3.—Boundary vatues for c;,.

The solutions obtained for the load coefficient over regions
1 and 2 shown in figure 3 can be written (details of the
analysis are omitted):

For region 1

Ap_ _Ap _ 8 \/Mo(t—m) (62)
99 (_%) T(1+M)V z+ Mt
W\ 7,

“For region 2

Ap 8

{\/yitﬂzﬁ)j'—i'\/Mﬂ(t" x)(C—' x— N ot)

(6b)

_EFWW)+KE' () —KF'(y) }

2K
[\(ﬁz—xz)(l‘—ﬂloz) V(@ + M) e —a— M)

The symbols E, K, E’(¢), and F’(y) are elliptic integrals
defined in the appendix, their modulus % being given by

_ [Eroa M) =2
’”—\/ AR CES YA @

and their argument ¥ by
Y=are sin \/ Ej—ci()t ®

Equations (6a) and (6b) give the loading over the complete
wing section for values of ¢ less than or equal to 2¢/(1-24p?).
Since Mit/e equals Ugt’/e, the number of chord lengths trav-
eled, these equations represent the exact linearized solution
for the section load distribution during the time required
for the wing to travel 2M,/(1-M?) chord lengths after reach-
ing the gust front. Hence, for & Mach number equal to 0.8,
equations (6) establish the gust response during the first 4.44
chord lengths of travel after the gust penetration. Figure 4
shows the variation of gust loading Ap/gg throughout this
interval and also, for comparative purposes, the indicial load
variation Ap/ga for the first four chord lengths of travel.
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Fieure 4—Gust and indicial loading on two-dimensional wing.
M=0.8.

The dashed curves in figure 4 represent the final steady-state
load distribution adjusted so as to give the same total lift as
the exact solutions for the gust and indicial cases at Ugt'/e
equal to 4.44 and 4, respectively. Thus, to the degree of
accuracy indicated in figure 4, the gust and indicial loadings
at My=0.8 can be approximated for larger values of Ugt'/c
by the expressions

2M, Uy

c—z!l G (Uot’/c)
‘/T \Y l: ci (=) 1—M:E> ¢ (92)
and
c—zx] G (Uot /G) Mo
1/1 Mo V |: < (9D)

The variation of ¢;, and ¢;, for values of Ut'/c greater than

4 will be discussed presently.

For a Mach number equal to 0.5, equations (6) are suffi-
cient to establish the gust response for only the first 1.33
chord lengths traveled. Further calculations were carried
out and the exact loading was established for both the gust
and indicial cases for values of Ugt'/c less than or equal to
2.33. These calculations were for the most part numerical
and no simple closed expressions such as those presented in
equations (6) were obtained. Figure 5 contains the results.
Again, the dashed curves represent the final adjusted steady-

state load distribution indicating that the gust and indicial
loadings for A£,=0.5 can also be approximated for larger
values of Uygt’/c by the equations (9).

Section lift.—When integrated across the chord at a fixed
time, the loadings shown in figures 4 and 5 give the variation
of the lifting force on the wing section during the early portion
of the response. In the interval 0<Uyt’[c<My/(1--My)
equation (6a) integrates to give

C Uotl. 4
’wo/Uo=czg=(—0 ) \/Z\—I—o (10)
In the interval Myf(1+DMy) KUt e <2My/(1—M?) the ex-
pression for the loading is too complicated to integrate
analytically and the section lift was calculated by numerical
methods. The results, together with those for ¢; (taken
from ref. 15), are given in figure 6. Since, as time goes on,
¢i, must approach ¢, the curve for the gust response was

simply faired into the curve for the indicial response in the
manner shown by the dashed lines. Finally, for values of
Ut’Je greater than 10, the following equations, taken from
reference 1, can be used:

For M,y=0.5,

44.218

2%
“[5+2(Uo¢'/c)]2} (110)

e T {1—

1.333
5F2(0)c)
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(b) Rectangular wings of aspect ratios 2, 5, and .
Ficure 7.~—Concluded.

The final curves (determined from the previous analysis

and aforementioned references) for ¢;,, the section lift coeffi- -

cient developed on a restrained wing entering a sharp-edged
gust, are shown in figure 7(a) for Mach numbers equal to
0, 0.5, 0.8, 1.0, 1.2, 1.41, and 2.0. ‘Tabular values are given

TABLE I.—VALUES OF ¢;, AND ¢;,, FOR 3,=0.5

Ud’fe | \I=Dfdenf2<| VI—Doer /2 -
()} 1.103 0
.1 .995 .081
2 .882 -158
.3 T2 -236
4 ~691 .301
5 -656 347
.6 .634 .382
7 .6I8 .413
.8 .604 441
.9 .588 .438
1.0 .579 .488
11 581 .509
12 .597 . 5%
13 -617 .545
14 624 .560
1.5 612 573
1.6 .659 . 586
1.7 .69 .508
1.8 677 .609
1.9 -685 -619
2.0 .693 .629
2.5 724 -673
3.0 746 704
3.5 .765 v
40 -781 6
4.5 .75 L7641
5.0 - 806 )
5.5 .816 793
6.0 .825 .806
6.5 .832 815
7.0 L840 .82
7.5 .88 .835
8.0 .854 .845
9.0 .866 .862
10.0 877 87T
o 1.000 1.000

in tables I and II for Mach numbers equal to 0.5 and 0.8.
The effect of aspect ratio at a Mach number equal to 1.41
is shown in figure 7 (b).

TABLE IIL.—VALUES OF ¢4 AND ¢/, FOR M,=0.8

Ul'fe | 1—DMPc1af2 | /1—MEciof2¢
(] 0.478 0
.1 466 .04
.2 .454 . 085
.3 442 L1290
4 .430 .170
.5 .423 . 209
.6 . 426 .234
.7 .433 .256
.8 442 . 276
.9 .451 . 296
1.0 . 461 .315
15 .507 .402
2.0, 546 . 465
2.5 .581 .513
3.0 .610 . 551
3.5 .632 . 584
£0 .652 .616
45 .670 642
5.0 687 . 663
6.0 .714 .7
7.0 738 . 730
8.0 . 760 758
9.0 .79 . 780
10.0 N . 796
- © 1.000 1. 000

RESPONSE OF AN UNRESTRAINED WING TO A SHARP-EDGED GUST

Given the indicial lift response Cy, and the response for a
restrained wing penetrating a sharp-edged gust Cy,, one can
use equation (3) to find the motion of an unrestrained wing
entering a sharp-edged gust having a constant upward
velocity wy. As in reference 4, the lift on the unrestrained
wing can be related to an infinite series of integrals involving

Ci, end Cp,,  First, set

Ust’ U/’
T 7 T1—
¢ c
»_, _2m
o K pocS

so that, by integrating equation (3) with respect to t’, one
finds

w=%ffoz,g(ﬂ)dn+'l‘ff OLa(T—‘Tl)w("'l)d"“:-O (12)
®Jo rJo . '

Then use the relation

o —(d10]dr) (s}

and iterate equation (12) using Liouville’s method of suc-
cessive substitutions. (See ref. 18.) This yields

W(;Lm= OLE(T)—%LT OLa(T -_ 1'1) OLE(Tl)dTI‘l‘ #

ZIEJ;TOL(,(T—TI)dTIJ;TI OLQ(TI—Tz)OLg(Tz)de—. . (13)

Equation (13) converges uniformly 3 for all +. By means

3 The statement made in reference 4 on the convergence of this serles Is unnecessarily

restrietive. Since the greatest values of Cr,and Cr, are Oy () and Ci, (@), the goneral term
of the series does not exceed

1 T 7 T2 T
‘-‘—;[CLa(w)]" Cr (=) 0 dr, 0 dr, b dry .. 0 drn

that is, does not exceed
" [CLa(m)] * CL‘(”) =
L n

and by the ratio test the series converges uniformly.
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of it, Cp/(we/Uy) and ¢if (wo/Us), the total and section lift
coefficients induced on unrestrained wings entering a sharp-
edged gust, have been calculated and the results are shown in
figure 8. Table III indicates the range of Mach numbers and
aspect ratios for which calculations were made, the numbers
in the chart referring to the individual figures in which the
results are presented. It should be noted that results are
given for a wing flying at My=1 and having a finite aspect
ratio. Such cases can be calculated from the indicial and
restrained gust responses presented in reference 5. These
responses are still valid at My=1 for values of the time
variable up to that for which the wave envelope induced by
one side of the wing crosses the opposite side. A wing of
aspect ratio 5 flying at the speed of sound travels 13 chord
lengths during this time interval, and this is sufficient to
establish the significant part of the response to a sharp-
edged gust for p <300.

TABLE III.—VALUES OF MACH NUMBER AND ASPECT
RATIO FOR WHICH CALCULATIONS WERE CARRIED OUT

A
2 5 @
Mo\

[ 2 RO F— 8a
] -~ 8b
.8 Se

) 5N 1 N . 8z 8d

L02  ecemoooaen 1) T F—

112 8k

) 151 S PO 8i 8e

1.41 8l 8§ 8f

The chart also shows that the gust response for the
unrestrained wing was calculated at M;=0 for an infinite-
aspect-ratio wing (for comparative purposes) but not for
finite-aspect-ratio wings. The gust response on both infinite-
and finite-aspect-ratio wings in incompressible flow has been
studied extensively by means of operational methods in
references 12, 13, and 14. 'Where comparisons can be made,
the results obtained in this report using equation (13) agree
well with those given in the references mentioned.

RESPONSE OF UNRESTRAINED WING TO ARBITRARY GUST

The function Cy/(we/U,) presented in the previous section
can be thought of as the indicial gust response for lift on an
unrestrained wing. In this sense it is apparent that the
lift on a wing penetrating & gust in which w is a function of
the chord lengths traveled can be calculated by superposi-
tion and is represented by the integral

d (7 Oylry) wlr—11)

O=7: ) w00 T

dTl (14)

By means of equation (14), the lift induced on a wing moving
at the constant speed U, and entering a gust, the vertical
velocity of which starts at zero and increases linearly with
distance of penetration, is simply the integral of Cy/(wo/Uy).
Thus, representing the section lift coefficient developed by a
wing entering a gust with a unit gradient by the symbol Cz,

we can write
0L3(7)=J; _OL(TI) dry

wo s (15)

If the wing flies into a gust with a triangular-shaped dis-
tribution of w, having its maximum intensity w, a distance h
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chord lengths from the front, it follows at once that the
resulting lift response Cr/(w,/U,) is given by

r

[Ce(n)); 0LZr<h

S

o | 020G R h<r <2k

! (16)
= [Ce(N—20r—P)+

[ Ce(r—2h)]; 2h <7 J

Examples of the various gust shapes and the responses in
lift and vertical motion of wings penetrating them are shown
in figure 9.

Variation of gust intensity =——=——
Path of point on wing
Variation of lift on wing

Ficure 9.—Gust shapes and responses.

MAXIMUM LIFT DUE TO GUST PENETRATION
SHARP-EDGED GUST

Consider the maximum increase in lift caused by the
entry of the wing into a sharp-edged gust. This increment
is given for the.range of Mach numbers, aspect ratios, and
wing-air density ratios shown in table III by the maximum
values of Cpf(wo/Us) and e,/ (wo/T,) on the curves shown in
figure 8.

First, let us consider wings of infinite aspect ratio. For
such wings the variation of the maximum gust-induced lift
coefficient with Mach number is shown in figure 10, and a
cross plot in which A4, instead of p is held constant is pre-
sented in figure 11. The values for p= = arve the steady-state
values given by the simple equations

o) (2m/T—D47%; Mo<1
Wof Uo/ maz l4/me’>l

The difference between the lift increment on a restrained
wing and that on one with a finite value of p is seen to be
most pronounced at the high subsonic Machnumbers. Notice,
for example, that the percentage increase in [¢if(Wof/Up)lmaz
found by increasing M, from 0 to 0.8 is 67 for p=ow
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F16ure 10.—Maximum increment of lift induced on a two-dimensional wing entering a uniform sharp-edged gust.
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Freure 11.—Maximum gust-induced 1ift on two-dimensional wings.

(Prandt]l Glauert rule) but only 37 for p=200. Table IV
indicates the relative increase in [e;/(wo/Up)lmar caused by
compressibility for three -different values of the wing-air
density ratio.-

TABLE IV—~PERCENT INCREASE IN (¢)me: RELATIVE TO
ITS VALUE AT M,=0.

.
Noo#

N 300
Ao\

200

67
—4

e, e
[ST-T-1

12

Consider next the effect of aspect ratio on the maximum
lift increment induced on a rectangular wing penetrating a
sharp-edged gust. When p=o this increment is again given
by the steady-state value of the lift-curve slope and is

‘presented for A=w, 5, and 2, in figure 12. These steady-
state values are taken from the numerous studies made of
lifting surfaces traveling at subsonic and supersonic speeds.
On the supersonic s'de, for cases in which Ay/MZ—1>1, the
equation (see, e. g., ref. 19)

Cs ) 4 (1 )
o/ Uo/ max \/Moz—l( . 24VM7—1
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Fieure 12.—Maximum increment of lift induced on restrained rectangular wing entering a uniform sharp-edged gust.

applies and, for cases in which 1> A4+/MZ—1>0, the curves
in reference 20 were used. On the subsonic side the portions
of the curves in the range 0 < Ay/1—MZ<2 were again taken
from reference 20. The results in references 19 and 20 are
sufficient to cover the entire Mach number range for the
A=2 wing. TFor the A=5 wing the values on the subsonic
side outside the range 0 <Ay1—MZ2<2 were taken from a
curve * that was compiled from a large number of solutions
for lifting surfaces traveling at subsonic speeds.

The values of [Cn/(we/Up)lma: for rectangular wings
traveling at supersonic speeds, given in figure 8, and the
incompressible-flow solutions, given in references 12, 13,
and 14, were used to prepare the curves in figure 13. The
dashed lines between the Mach numbers of 0 and that for
which AvAM@—1=1 are interpolated, the two-dimensional
results presented in figure 10 lending credence to the validity
of the interpolation. Figure 14 presents the aspect-ratio
effect on [Crf (wof Up)lmez 8t My=1.

It should be noted that in the vicinity of My=1, the curves
for which A=, p= = (figs. 10 and 12), and probably also

4§ The curve was taken from an article prepared by Robert T. Jones and Doris Cohen for
the forthcoming series on High-Speed Aerodynamics and Jet Propulsion, Princeton Uni-
versity Press.

those for which A=5, p= o (figs. 12 and 13 (a)), are not
valid representations of the gust-induced lift on actual wings
flying at these speeds, although they do represent solutions
to equation (4) consistent with the boundary conditions
previously discussed. For the two cases mentioned, the
assumptions on which equation (4) is based are violated.
These assumptions are more closely approached, however,
as the wing-air density ratio and the aspeet ratio decrease.
Hence, for lower values of 4 and u the solutions given herein
for wings traveling in the transonic speed range have justifi-
cation on a physical as well as & mathematical basis.

TRIANGULAR GUST

The maximum increase in lift on a two-dimensional wing
passing through a triangular gust having its maximum
intensity 12 chord lengths from its front is shown in figure 15.
For the lower values of p, the variation of [cif(w/Up)lmaz
with Mach number is similar to that calculated for the
sharp-edged gust and shown in figure 10. As p increases,
however, a comparison of the results shown in these two
figures indicates the importance of the assumed gust shape in
estimating the maximum gust-induced lift. Table V shows
the difference in the compressibility effect obtained for the
sharp-edged and triangular (12 chord lengths to apex) gusts.
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Figure 13.—Maximum inerement of lift induced on a rectangular wing entering a uniform sharp-edged gust.

TABLE V.—RATIO OF THE VALUE OF (Cr)mez AT My=0.8 AND
1.0 TO ITS VALUE AT M,=0.

\ Gust Mo=0.8 Mo=1.0

type

B Sharp Tri- Sharp Tri-

edge angle edge angle

60 124 126t | 14 1.51

100 1.29 1.28 1.59 1.58

200 1.37 1.33 1.88 1.67

300 1.39 1.34 2.03 1.70

© 1.66 1.38 @’ 1.85

Figure 16 presents the aspect-ratio effect on the maximum
ift response for rectangular wings penetrating triangular-
shaped gusts. The values at M;=0 were calculated from
the results given in reference 12 and again the dashed lines
represent an interpolation.

CONCLUDING REMARKS

Results are presented for the lift developed by a restrained
two-dimensional wing flying at a Mach number equal to 0.5

or 0.8 and penetrating a sharp-edged gust. Similar results
are reviewed for Mach numbers equal to 0, 1.0, 1.2, 141,
and 2.

A method is given whereby the lift can be estimated
(neglecting the effects of airplane pitching and wing bending)
for unrestrained rectangular wings in the aspect-ratio range
2 to «, flying in the Mach number range 0 to 2, and penetrat-
ing gusts of arbitrary structure. Specific results are given
for sharp-edged and triangular-shaped gusts.

In general, given variations in the wing aspect ratio, the
wing-air density ratio, and the gust shape have their maxi-
mum effect on the gust lift when the wing is flying at a
high subsonic speed.

AnMEs AERONATTICAL LLABORATORY
NaTioNAL Apvisory COMMITTEE FOR ABRONAUTICS
MorrerT Fieup, Cavir., Feb. 3, 1968.
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Ficure 14—Maximum gust-induced Iift on rectangular wings.
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APPENDIX .
LIST OF SYMBOLS Subseripts:
aspect ratio g response of restrained wing to unit, sharp-edged
speed of sound gust . . . .
chord length s response to gust with unit velocity gradient
a indicial response on sinking win
. . . L g g
wing lift coefficient, 25 ‘
A . L
section lift coefficient, 712 REFERENCES
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