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FLUTTER OF A UNIFORM WING WITH AN ARBITRARILY PLACED MASS
ACCORDING TO A DIFFERENTIAL-EQUATION ANALYSIS
AND A COMPARISON WITH EXPERIMENT

By Harry L. Ruxvax and Cmaries E. WaTEINS

SUMMARY

A method s presented for the calculation of the flutter speed
of @ untform wing carrying an arbitrarily placed concentrated
mass. The method, an extension of recently published work
by Goland and Luke, involves the solution of the differential
equations of motion of the wing at flutter speed and therefore
does not require the assumption of specific normal modes of
vibration. The order of the flutter deferminant to be solved
by this method depends upon the order of the system of differen-
tial equations and not upon the number of modes of vibration
involred.

The differential egquations are solved by operational methods,
and a brief discussion of operational methods as applied to
boundary-value problems is included in one of two appendizes.
A comparison is made with experiment for a wing with a large
eccentrically mounted weight and good agreement is obtained.
Sample caleulations are presented to illustrate the method; and
curves of amplitudes of displacement, forque, and shear for a
particular case are compared with corresponding curcves com-
puted from the first uncoupled normal modes.

For convenience, the method employs two-dimensional air
Sorces and could be extended to apply to uniform wings with
any number of arbitrarily placed concenirated weights, one of
which might be considered as a fuselage. The location of such
masses as engines, fuel tanks, end landing-gear installations
might be used to adrantage in increasing the flutter speed of @
given wing.

INTRODUCTION

The common procedures in flutter analysis of an airplane
wing involve many simplifying assumptions. In particular,
the degrees of freedom of the wing are usually determined by
choosing the first few normsal modes of the structure, and the
wing motion at flutter is then described in terms of these
chosen modes. This approach of employing prescribed
modes is often adapted to the Rayleigh type analysis of
vibration and may be referred to as ‘“Rayleigh type analysis.”
In specific calculations with this method the amount of work
required is proportional to the number of normal modes
involved. In particular, the order of the flutter determinant
that must be solved depends directly upon the number of
modes involved. For simple wings, without concentrated
masses, the Rayleigh type analysis usually yields satisfactory
results with not more than two or three normal modes.
However, if the wing carries concentrated masses, such as

engine, fuel tank, or landing-gear installations, so many
normal modes may be required to obtain satisfactory results
that the Rayleigh method may not be the most feasible
method. '

In cases where many degrees of freedom are involved the
most logical procedure would be to treat the system of
differential equations of motion of the wing rather than to
choose specific modes. For arbitrary wing plan forms this
method would be In general very difficult and tedious to
carry through, although it has the advantage that the order
of the flutter determinant that must be solved depends only
upon the order of the system of differential equations and not
upon the number of modes of vibration involved.

As early as 1929 Kiissner (reference 1) used the differential
equation approach to formulate the problem in the form of
an integro-differential equation for a wing of general plan
form. Kiissner set up some particular examples and sug-
gested a method of solution by & process of iteration. This
method was not followed up until during the war when some
related work was undertaken in Germany but not finished.
Wielandt (reference 2) has recently made contributions to the
treatment of nonself-adjoint differential equations by itera-
tive processes. In the light of these contributions perhaps
the problem of flutter analysis as proposed by Kiissner
warrants further investigation.

Recently, Goland (reference 3) applied the differential-
equation method to a uniform cantilever wing and was able
to carry out the solution of the flutter problem by straight-
forward méthods. Inreference 4 Goland and Luke extended
the solution of the problem of the uniform wing to include a
uniform wing carrying a fuselage at the semispan and con-
centrated weights at the tips. Goland and Luke made use
of the Laplace transform to solve the differential equations by
operational methods for both the symmetric and antisym-
metric types of flutter. In both references 3 and 4, the
objective was to compare flutter speeds and certain flutter
parameters for specific uniform wings calculated by the
differential-equation method with the same quantities calcu-
lated by the Rayleigh method when only the fundamental
bending and forsion modes were used in the calculations.
Fairly close agreement between results calculated by the two
methods were obtained in both references 3 and 4. No
comparison with experiment, however, was made in either
case.
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The results of a systematic series of flutter tests made to
determine the effect of concentrated weights and concen-
trated weight positions on the flutter speed of a uniform
cantilever wing are reportéd in reference 5. After these
experiments were finished, the results were compared with &
theoretical analysis by the Rayleigh method (reference 6).
In cases where the mass of the weight was of the same order
as that of the wing and placed so that the distance between
its center of gravity and the elastic axis of the wing was a
considerable fraction of the wing chord, several normal modes
had to be employed and there was no way of knowing in
advance just what number should be used. Because of this
difficulty and because the wing was 2 uniform wing, the most
extreme case was chosen from reference § and investigated by
the differential-equation method by following an extended
procedure of Goland and Luke. The purpose of this report
is to present the results of this investigation.

This report consists of the main text and two appendixes.
In the main text the differential-equation method is set up
for any uniform cantilever wing with an arbitrarily placed
congentrated weight and the solution, based on an extension
of the method used by Goland and Luke, is developed.
Application is then made to a particular wing-weight system
used in reference 5, and comparison with experimental
results is given. The mass of the weight (weight labeled 7a
in reference 5) was about 92 percent of the mass of the wing
and at each spanwise weight position the weight was placed
so that its center of gravity was about 0.41 chord forward of
the elastic axis of the wing. (It may be mentioned for the
sake of comparison that, in the numerical example treated in
reference 4, the mass of the weight was only 39 percent of the
mass of the wing and was placed 0.1 chord behind the elastic
axis of the wing.) The geometric aspect ratio of the wing
was 6, which was considered large enough to warrant the use
of two-dimensional air forces without aspect-ratio corrections
for oscillatory instability (not necessarily so for the divergent
type of instability (see reference 7)). One other simplifica-
tion was the omission of terms due to structural damping.
The computed results agree remarkably well with experi-
mental results, particularly in regard to trends.

In appendix A the method used by Goland and Luke,
which includes the derivation of the differential equations,
for a wing carrying a tip weight is outlined and extended to a
wing carrying an arbitrarily placed weight. A somewhat
general but brief discussion of operational methods of solving
boundary-value problems is included and illustrated with a
simple example for readers who might be interested but are
not familiar with the operational approach. '

In appendix B the derivation of the flutter determinant is
completed, and & method of solving the deferminant is
illustrated by a detailed calculation of the flutter speed for
the wing and one weight position of the wing-weight combina-
tion discussed in the text. As a final topic in this appendix
the solution obtained for the flutter determinant is used with

the solutions of the differential equations to calculate the
amplitudes and phase angles of the deflection curves of the
wing-weight system at flutter speed.

SYMBOLS

a nondimensional distance of elastic axis from
midehord measured in half-chords, positive
_ for positions of elastic axis behind midchord
b wing half-chord, feet
e chordwise distance of wing center of gravity
from elastic axis, positive for center of
gravity behind elastic axis, feet
I chordwise distance of weight center of gravity
from elastic axis, positive for center of
gravity behind elastic axis, feet

g gravitational constant, feet per second per
second
I " mass moment of inertia of uniform wing per

unit of spanwise length, referred to wing
elastic axis, pound-second? (mXK?)

I, o mass moment of inertia of weight referred to
wing elastic axis, foot-pound-second?

K, radius of gyration of wing sections about wing
elastic axis, feet

K, radius of gyration of weight about elastic axis,
feet

k reduced-frequency parameter <67w)

L ~aerodynamic lift force per unit of spanwise
length

Ly+iL, =npb*Ly
Ly+iLy =1 ob? [L‘,—L,. (% +a,>:|

A semispan of wing, feet
L location of weight measured from wing root,
feet

Ly, Lo, My, M, serodynamic coefficients as tabulated in
reference 8

M . serodynamic moment per unit of spanwise
length taken about elastic axis

M,+iM, =m b [M,.-i,,(%+a)]
My+iMy =npht | M= (3+e)-24(3+a)+Lu(5+a) |

w weight of wing model, pounds

m mass of wing per unit length

Ww weight of concentrated weight, pounds

N transverse shear force in wing at station

T torsional moment in wing at station

B, R, R, roots of cubic equation

s operator used in Laplace transformation

¢ time coordinate

T, sum of all symmetric polynomial functions in

R,, R,, R, which are of degree n
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2o experimental flutter speed for wing without
weight, feet per second

» flutter speed, feet per second

b% reduced flutter speed

x spanwise coordinate measured from wing root

Y(zp) general mode shape function in bending

y(x) mode shape function in bending after assump-
tion of harmonic motion (y,(%) +w:(z))

EI, fiexural rigidity of uniform wing, pound-feef?

GJ torsional rigidity of uniform wing, pound-feet®

a=% (m+L,+iL,")

2
5=E°,’I—b (mey+-Lo+1Ls")
7=—G‘% (m61 ‘[‘J'Iv'!'ﬂu’v,)
5=%} ([ My iMy)

mass ratio "wb?
k ' m

air density, slugs per cubic foot

P

A complex value of determinant

A, value of A when real and imaginary parts are
equal

Oz, general mode shape function in torsion

6(x) mode shape funection in torsion after assump-
tion of harmonic motion (6:(z)-16;(x))

w circular frequency at flutter, radians per
second

f frequency, cycles per second (2%_

ANALYSIS

As mentioned in the introduction the differential equations
that govern the motion of a uniform wing at flutter speed, as
derived by Goland in reference 3, and a method of solving
the equations for a uniform cantilever wing carrying an
arbitrarily placed weight, based on a method developed by
Goland and Luke in reference 4, are discussed in appendix
A. The analysis, therefore, is devoted to & brief discussion
of the differential equations of motion of the wing, the bound-
ary conditions, solution of the boundary-value problem by
means of the Laplace transform, and the solution of the
flutter determinant.

The differential equations and boundary conditions that
govern the motion, at flutter speed, of a cantilever wing of
length [ with a concentrated weight placed /; units along the
span from the root section and e, units forward of the elastic
axis of the wing, as derived in appendix A, are

¥V (@) — oy () —BH(2) =0 B ¢

8"’ (@) +y () +86() =0 @

fa) y(0)=y'(0)=06(0)=0
(b) ELy"” O)=ELy"' }=GJ&' ©)=0

@ ELy" t—0)—y" L+0)]=— T’Z’” [y () +e6(1)]

@ GJi (zl_O)—afczl+0)1=%—“ ey @)+ E260)]

where

a=E%;; (m—+L,+iL,")

C:)z -
B=E_L (me(+Le+iLy")
2
r=gz7 (me+M,+idL,)

2
b=y U+Me+idds) _,
and where %(z) is the displacement of a chordwise element of
the elastic axis of the wing at span position 2 due to bending;
8(z) is the corresponding displacement due to torsion; primes
associated with ¥ and @ indicate differentiation with respect
to z; EI, is the flexural rigidity of the wing; GJ is the tor-

sional rigidity of the wing; % is mass of the weight; m is

mass per unif length of wing; and e is the circular frequency
of bending and torsion at flutter. In condition (¢) the nota-
tion y’*/([;—0) indicatés that ¢’/'(x) is to have the value
that it approaches as r—/; from the inboard side of the weight
and ¥’’’ (1,40} indicates that y’'*/(z) is to have the value that
it approaches as z—; from the outboard side of the weight.
Similar meanings are given to 8 ([;—0) and {(};-+0).

The quantities L,+iL,, Ls+ils, MAL,+idL/, and
My+184y" can be written in terms of tabulated quantities as

follows:
L,+iL,) =xpb*L,

La + ‘l:La’ = "pr3 [L¢ —Lk (’%'l‘ G)]

M +iM) = | a—Ln (5+a) |

My+ibdy’ =wpb* I:‘Rfa—La (%‘1'@)—3& (%‘l'a)-{-

1 2
L(3+a) |

In reference 8 the vealues of L, L., Af,, and M, are expressed
in terms of Theodorsen’s F and & funetions of reference 9
and tabulated for various values of the reduced speed v/be.

The root conditions (a) and the boundary conditions (b},
of the boundary-value problem, are the usual conditions that
must be imposed upon the equations of a vibrating cantilever
beam (or wing). Conditions (¢} and (d) stipulate discon-
tinuities of determinable magnitudes in transverse shearing

“force and torque, respectively.
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Applying the Laplace transform (see appendix A)

ﬁ" e 15f (@) do=F (s)

to equations (1) and (2) and making use of conditions :(a),
(¢), and (d) gives
$Y(s) —sYy—Yyteuy"" (L—0)—~y""' (L +0)]—
o (s) —B8(s) =0 . (3)

and

§20(s) — 6y e~*u[e’ (I, —0) — 6’ (1,+-0)1+88(s) ++7 () =0 (4)

where
Y,=y""(0)
Yo=y'""(0)

6]_ == 0’ (0)

Solving equations (3) and (4) for 7(s) and 8(s) gives the
Laplace transform of ¥(z} and 6(x), respectively, as

(8*4-88) Yo+ (s24-6) Ya—i—ﬁﬂl(—)ﬁe"’”l[e’ GL—0)—6"U+0)]
g(s

(@8)ey" =0~y 0]
q(s)

y(s)=

- (9)

B(s &0 —ysY— ’YY3'—310£+'Y@-”1[?/”’(51
gls) - -

0) —¢'(6,+-0)]

—0 =y G+ 0],

{a—s%)e—sn[o’ (I, —
g(s)

- (6
where
g(s) =8485t —as?+-yf—abd

Goland and Luke (veference 4) showed that y(z) and (z)

could be written as a converging series by expanding the -

transforms (5) and (6) into power series and applying the
inverse transform. A discussion of this expansion is given
in section 4 of appendix A where it is shown that 1/g(s)
can be written as -

1 1> 7T,
O PR (7
where
’ T0=1
Ty=—5 -
T2=62—I—a
Tg=—..63—a5—ﬁ'y
For nz 3,
Tn= '_'5Tn—_-1+aTn—2+ (0‘5'—'137) Tn—a (S)

When the series expansion of 1/¢(s), equation (7), is sub-
stituted into equations (5) and (6), the transforms ¥(s) and

and
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6(s) become sums of infinite series with terms of two distinet
types; that is, terms of types

A
sm

Be—a E
am

where m is a positive integer.
The inverse Laplace transform of ;1—,,, (see pair mno. 3,
p. 295, of reference 10) for >0 is

P {A} Azt

and the inverse Laplace transform of
p. 298, of reference 10) for z>2,=0 is

I {Be""“}:

sm

e—5%0

(see pair no. 63,

B@—x)™!
(m—~—1)!

(10)

When the expression for 1/¢(s) from equation (7) is sub-
stituted into equations (5) and (6) and the inverse transforms
are applied, the follawing series expressions of ¥(z) and 8(x)
can be obtained:

gt T +s
V=T Bt S e [P R gt
© - p22ts nmz +5
St S e
Bl (—0)—0'Got0)] 35, Dol
] V2045
W =0~y ) [5 35 el
© ._Tn(m_l1)2n+3
2 e 4n

and
T g2ms

'YY22 (2n+4)‘

n=0

T 12n+5

7% Zo Cnt5y1—

n=l

9;0( Zw;‘l (2n+5) 'T[e’(ll_O)—G’(ll'l'O)]

o T (z—l)2 & T, (z—L)¥
[a,,zﬁo EnF5)T &= (2=n+11)! ]_,.

—0)—y (0] 3 B

where in both equation (11) and equation (12) the terms
involving (z—1I;) are to be considered as zero when 2=I,.
Equations (11) and (12) are general expressions for the
amplitudes or displacement of a point z of the clastic axis of
a uniform wing vibrating in bending and torsion under the
conditions of flutter with an arbitrarily placed concentrated
weight. When the weight is concentrated at the wing tip,

7 " (12)
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the equations correspond to those obtained by Goland except
for a difference in root conditions. When the weight is
concentrated at the root (or if the mass of the weight is

reduced to zero), the equations reduce to those for a uniform -

cantilever wing. These equations may appear rather formid-
able in their present form; however, only the first few terms
of each summation seem necessary for most cases.

In the derivation of the flutter determinant in appendix B
it is shown that since terms involving (x—I,) drop out of
both equation (11) and equation (12) at x=I,, the values of
y(l;) and 6(/,) can be obtained from the terms not involving
(@—14). Then, by making use of conditions (¢) and (d)
again, linear expression in ¥,, Y3, and 8, can be substituted
for the bracketed expressions

" G—0)y—y""" (1,+0)]
[0’ @ —0)—¢ (,+0)]

After the substitutions are made, equations (11) and (12)
will contain only the three undetermined coefficients Y, ¥,
and 6, for any particular wing-weight system of the type under
consideration. Observe that conditions (b) have not yet
been used. If these conditions are now imposed upon the
equations, there is obtained a system of three linear homo-
geneous equations in ¥,, Y3, and 6, that may be written for
reference as

A, Y,+B;Y;+C:6=0 (13)

where i=1, 2, and 3. _
The condition that a system of equations such as equations
(13) have solutions other than the trivial solution

172=Y3=91=0

is that the determinant of the coefficients A; B, and C;
vanish (reference 11). This corresponds to the borderline
condition between damped (stable) and undamped (unstable)

oscillations or to the point at which flutter occurs. It will’

be noted that the order of this determinant depends only on
the order of the system of differential equations.

The actual coefficients corresponding to A;, B, and C; are
complex functions of the frequency w, the reduced flutter
speed »/bw, and certain determinable characteristics of the
wing-weight system. The true flutter speed is easily cal-
culated when corresponding values of « and »/bew are known.
These quantities may therefore be considered as (the only)
variable parameters in the determinant of coefficients and
the problem of finding the true flutter speed is reduced to
that of finding corresponding values of these parameters
that cause the determinant, hereinafter called the flutter
determinant, to vanish. If 2 is set equal to zero, the air
forces drop out and the resulting determinant gives the
coupled modes of vibration of the wing in still air. On the
other hand, if o is set equal to zero the nonoscillatory or
divergence condition is obtained.

Several ways of solving the flutter determinant are

mentioned in reference 7. Although more informative

956646—51——23
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methods exist, a graphical method was adopted for the pres-
ent work. For example, a value is assigned to one param-
eter, preferably /bw; the flutter determinant is then
evaluated for this value of #/bw and several values of the
other parameter w. The values of -the flutter determinant
obtained in this manner are complex numbers and if the
real and imaginary parts of 2 sufficient number of determi-
nant values are separately plotted against o, the point or
points where the real and imaginary parts are equal are
obtained. If this process for other values of »/bw is re-
peated, a locus of determinant values with equal real and
imeaginary parts can be plotted against both »/bew and w.
When enough points are determined, these plots give the
values of »/be and o that cause the determinant to vanish.

An illustration of the process of solving the flutter determi-
nant as described in the preceding paragraph is given in
appendix B, which contains the complete solution of the

.determinant for one weight position of the particular wing-

weight system described in the section entitled “Applica-
tion to a Specific Wing-Weight System.” In general, when
solving the flutter determinent by the preceding method,
if the assumed values of v/bw and » are in the neighborhood
of their true values, only a few points need be computed to
obtain a solution. In the absence of experimental values
of these parameters and in view of the work involved in
determining other parameters that depend on 9/bw, it will
be found advisable to use simplified methods to obtain
approximate values with which to start the solution.

APPLICATION TO A SPECIFIC WING-WEIGHT SYSTEM

Attention is now turned to the application of the boundary-
value problem discussed in the foregoing section to a specific
problem. The wing-weight system that has been analyzed
consists of a particular uniform cantilever wing and weight
combination described in reference 5. The weight was con-
sidered as concentrated at different specified span positions
but always at about 0.41 chord forward of the elastic axis
of the wing. This weight was selected because of its high
mass compared with that of the wing and because of the
large eccentricity due to the distance between its center of
gravity and the elastic axis of the wing. Pertinent data,
based on measured characteristics of the wing as taken from
reference 5, with the units in feet and pounds are

Chord, feet . .. %
Length, feet___ ... 4
Aspect ratio (geometric) . - .. ._____ 6
Taper ratio____ . 1
Ajrfoil section_______ ... NACA 16-010
W, pounds._ .. 3.48
I, pound-seecond 2_ _ _ __________________ ... 0.00080
ET,, pound-feet 2__________________ ... 977.08
@J, pound-feet 2_______ e 480.56
1/k (standard air, no weight) . __ . __ . ___._._ 32.6
e, feet e 0.013
and, based on measured characteristics of the weight, are

W, pounds_ - . 3.182
e, feet .. —0.2728
I, foot-pound-sesond ®. - _ . ________ ___________.__ 0.013625
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Calculation of the flutter parameters have been made for
the wing without the weight and for the wing with the
weight at six different positions. The calculated results are
compared with experimental results in figure 1 and in table I.
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Fi16URE 1.—Comparison of caleulated and experimental futter speeds for & particular wing-
weight system.

TABLE I—EXPERIMENTAL AND CALCULATED RESULTS
OF FLUTTER INVESTIGATION I

_ Calculated Experimental
oyl
m. . . R
[ Ll
o) | e | wpey | (o) | O | (pe
_________ 25,27 | 6.29 333 22.1 | 7.22 334
11 —0.2728 | 10.28 | 8.23 331 17.4 | 8.88 324
17 —.2728 | 28.04 | 6.903 407 [a26.8 | 681 a2
30 —.2728 | 30.68 | 8.18 526 () (ﬂg) (%
45 —. 2728 | 25.67 | 7.45 401 () (& (L]
46 —.2728 | 24.87 | 7.08 388 218 | 8.06 368
48 —.2728 | 23.60 | 6.07 300 214 | 7.14 320

a It is found in reference 5 that good flutter records for this wing-weight system wero
obtained for several spanwise weight positions between the root section and a point 17 inches
from the root section; but with the weight at 17 Inches from the root seetion the wing appeared
to diverge. However, the oscillograph records for this case showed two possible Sutter
polnts: one corresponding to & frequency of 16.3 eps and anothier corresponding to a frequency

of 26.8 eps (only the first of thess is recorded in reference 5). When the weight was moved .

farther outward.from this point, definite divergence was noted until the weight was at a
point 46 inches from the roof seetion. At this point and from this point to the tip good futter
records were obtained. . :

b Divergencs. . .

It will be noted in table I that all the calculated flutter
speeds are within 7 percent of the experimental values and
the calculated frequencies and reduced speeds are within 15
percent of the experimental values. The calculated flutter
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speeds are generally slightly higher than the experimental
values for ;=17 and slightly lower for /;246. There is no
such consistent trend in the other parameters.

In figure 1 the ratio of both calculated and experimental
flutter speeds for the wing with & weight to the flutter speed
of the wing without a weight is plotied against span position
of the weight. The important thing to note in examining

figure 1 is that the shape of the theoretical curve follows the
~shape of the experimental curve very closely in the regions

where experimental flutter was obtained. The horizontal
dashed line in figure 1 represents the divergence speed for
the wing as computed by the method of reference 12. Al-
though the correct divergence speed for different weight posi-
tions would probably vary, being somewhat lower with the
weight at the tip than at the root, owing to the effect of the
presence of the weight on aerodynamic forces, the agreement
of the approximate value with experimental values is satis-
factory.

General expressions for the deflection curves are derived
in appendix B from which amplitudes and phese angles for
curves of deflection, slope, moment, and shear in bending
and amplitudes and phase angles for curves of angular deflec-
tion and torque in torsion can be computed. The phase
angles and amplitudes for the deflection and shear curves in
bending (fig. 2) and the phase angles and amplitudes for the
angular displacement and torque in torsion (fig. 3) have been
computed with reference to a unit tip deflection for the weight
position §,=17 inches. In figure 4 the amplitudes in deflec-
tion and shear in bending from figure 2 arc compared with
the deflection and shear curves due to the fundamental un-
coupled bending mode of the wing, and in figure 5 the ampli-
tudes in angular deflection and torque in torsion from figure 3

12 30

" O
L1 Q
8| 200
Q).\
jd | £
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Ficure 2—Plot of amplitude snd phase angle of displacement and shear curve in
bending at flutter for %;=17 Inches (amplitude and shear referrod to unit amplitudo
at tip 4 bending). ’
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FIGURE 3.—Plot of amplitude and phase angle of torsional displacement and torque
for Ir=17 inches at flutter (amplitude and torque referred fo unit amplitzde at tip in
bending).

are compared with the angular deflection and torque curves
due to the fundamental uncoupled mode in torsion. There
is a notable difference in the shape of the amplitude curves
computed by the present method and those computed from
the first normal modes. This discrepancy indicates that
several modes would have to be employed to obtain satis-
factory results by the Rayleigh type analysis.

CONCLUDING REMARKS

The method discussed in this report is not limited to a uni-
form cantilever wing with a single weight. By proper atten-
tion to the boundary conditions the theory can quite easily
be extended to apply to a uniform wing carrying any number
of arbitrarily placed weights, one of which might be consid-
ered as a fuselage and made to yield the so-called symmetric
and antisymmetric types of flutter. Furthermore, for con-
venience of application, theoretical values of two-dimensional
air forces have been used. However, since the method does
not depend on the particular form of air forces involved, any
known or available aerodynamic data could be wsed. In
any event, the method is tedious and would, therefore,
not be recommended over the Rayleigh type analysis when
it might be known that only the first few normal modes of
the structure are sufficient to give satisfactory results.

For wings that are not uniform the differential equations
for flutter conditions reduce to ordinary differential equations
with variable coefficients. In this case the solution would,
in general, be much more difficult to obtain. For general
cases there would be no advantage in the operational method
of solution although an iterative process probably might be
used to great advantage.

In conclusion it is pointed out that the location of such
masses as engines, landing gears, and fuel tanks might be
used to advantage in increasing the flutter speed of a given
wing. As shown by the particular problem analyzed herein
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and by other experiences a definite region exists, peculiar to
a given wing, in which masses added forward of the elastic
axis of the wing tend to increase the flutter speed of the wing.

LixeLEY AERONATUTICAL LABORATORY,
NaTroNart Apvisory COMMITTEE FOR AERONAUTICS,
Laxerey Fievp, V., November 80, 1948.



_ APPENDIX A
OUTLINE AND EXTENSION OF METHODS OF FLUTTER ANALYSIS AS PRESENTED IN REFERENCES 3 AND 4

_1. DERIVATION OF THE DIFFERENTIAL EQUATIONS THAT GOVERN THE
MOTION OF A WING AT FLUTTER SPEED

Consider a spanwise element of incremental length dz at
station z of a wing oscillating in bending and torsion in a free
stream of fluid (see sketch 1).

X
y

)

dx . J

ALTLLTIRARLRRENRNR AN

Elostic axis.,
1

—_ Te

—

Station x
Wind direction

BRETCE 1.

The displacements ¥ and © of an element of the elastic axis
are functions of z and 2. In order that this element remain

in dynemic equilibrium the external forces and moments on

the element must balance the inertia forees and moments.

The external forces and moments consist of transverse
shearing forces and torsional moments, which are transmitted
from one element of the wing to the next, plus the aero-
dynamic lift force and pitching moment and internal or
structural damping. Structural damping is not taken into
consideration in this discussion, although its inclusion would
add no computational difficulties.

The transverse shearing force acting upward at z is

Y

and that acting downward at (z-dz) is
Y Y
N+ fpm £, 3B, 53 i (A2)

Similarly the nose-down torsional moment acting at x is
o 3]
I=GJ >z (A3)

Y %0

and at (z4dz) the nose-up torsional moment is

2
T+% dr=67 L 16728 iz (A4)

The two-dimensional aerodynamic forces acting on an ele-
ment dr of an oscillating airfoil have been derived by
Theodorsen (reference 9) and can be written as a lift force
and aerodynamic moment acting about the elastic axis of
the wing, respectively, as

L dr=(L, ¥ +aL, S teLetaly 57)dr (49

M o= ( MY + My G+t Mio+bly 3 ) de (46)
The inertia force of the element dx can be written
*Y 0 -
(m 5z tme %?) dz (A7)
and the inertis moment as

a2

o0

Diagrams of the forces and moments acting on an element
of wing of length dx at station # are shown in sketch 2,

L dx
N

oT
N T+-f)—_r-d:
N+Tz:d:
%Y 220 J20 2
(m—”t +tmey ¥ T3 dx I_dtﬂ"'mel—gtl!,)dr

BRETCH 2.

Imposing the conditions of dynamic equilibrium of the
element at ¢ by equating inertia forces to external forees and
inertia moments to external moments gives the two dif-
ferential equations that govern the motion of the wing:

aY oY , 00
m W +m31 W=—Efb w_i-szyY-l_wLy, E_l— szge-l-ng -a{

o%e oY
ISptme 5z

846

A9
oY 00 (49)
ot

2
=67 L0, Y +aly G + MO+ My 5



FLUTTER OF A UNIFORM WING WITH AN ARBITRARILY PLACED MASS

2, BOUNDARY CONDITIONS FOR A UNIFORM CANTILEVER WING CARRYING
AN ARBITRARILY PLACED WEIGHT AT FLUTTER SPEED

The boundary conditions that must be imposed upon
equations (A9} for a uniform cantilever wing are

1y Y(,5)=0

@ EI, [ba_r Y(r,t)_l=u=0
@) 0(0,5=0

o .
&) EL| ;¥ (x,t):L=l=0
. o
5y EI, [ﬁ Y(ﬁ‘.‘-,i’):lr=z=0

>
© GJ [a o, f):L=l=0

These are the usual conditions that must be imposed on a
vibrating cantilever beam. Condition (1) is the condition
that the end at =0 is supported (either hinged or built in).
Conditions (2) and (3) imply that this end is fixed or built
in. Conditions (4), (5), and (6) imply, respectively, that
there is no bending moment, transverse shearing foree, or
torsional moment acting at the tip z=I.

If there is an arbitrarily placed weight on the wing, other
conditions must be imposed that will determine the effect
of the weight upon the motion of the wing. If the weight
is considered as concentrated at some point on the chord
line at station z=l;, it will create discontinuities in both
transverse shear and torsional moment. The magnitude of
these discontinuities are known functions of the mass of the
weight, the location of the weight, and the acceleration of
the wing. The remaining conditions required to complete
the boundary-value problem for the general motion of the
weighted wing are, therefore,

(@) EI, { I:al;" Y (z, t):lz=(,l_o,—|:§_; Y, t)]z=ul+a)}

WL o
=7 |28 Y(z, +asp 9(21,5):[::!1

® & 3 I:aél‘ oG t):l Z=(ly~0) ——l:% -9 @ t)] z=(440) }

e o* 2 0%

For the purpose of flutter analysis it is assumed that the
motions in both bending and torsion are harmonic and that
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the frequencies in bending and torsion are equal. Therefore,
only the particular form that the solution to the boundary-
value problem has when these conditions prevail need be
sought. These conditions imply that Y (z,) and ©(x,f) are
of the forms

Y, =y@)en
} (A10)

o(z,f) =0(x) e**

where, on the right-hand side of equations (A10), ¥ and 6 are
now complex amplitude functions of the span coordinate z
from which the shape and phase relation of the wing at
any fixed time during flutter can be obtained.

If the values of ¥ and ¢ from equations (A10) are sub-
stituted into both differential equations (A9) and into the
boundary conditions, the problem is greatly simplified. The
differential equations become independent of # and appear
as ordinary differential equations with constant coefficients.

-After making the substitution and rearranging terms, the

equations of motion can be written as

EI, %— (m~+L,+iL, )y — (me;+ Lo+1Ly") a?g:o]
2 : (Al1)
GJ gTZ+(me1-{-M,,+iM,,') oyH(I+MyHidly)e?8=0
or more simply as
&
Y oy —o=0
(A12)

d .
d—xg-l-‘ryT59=0

The boundary conditions also become independent of ¢ and
can be written as follows:

(1) ¥ (0y=0
2" y'(0)=0
(3) 6(0)=0

@) ¥ ®=0
&) ¥ =0
(6") 6'/(Hh=0

e @) +et]

(™) ELly"" G—0)—y"" :+0)]=—

cd

®) GII =00 G+ 0]="2 e 0+ Ko 0]
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SOLUTION OF BOUNDARY-VALUE PROBLEMS IN ORDINARY DIFFEREN-
TIAL EQUATIONS BY OPERATIONAL METHODS AND APPLICATION TO A
BEAM CARRYING AN ARBITRARILY PLACED WEIGHT

The boundary-value problem given by equations (A12)
and conditions (1’) to (8’) can be solved by straightforward
methods of solving ordinary differential equations with
constant coefficients. The operational method, however,
is a much easier and shorter approach, particularly in view
of the discontinuities in shear and torque. -

Briefly, the solution of a boundary-value problem by .

operational methods consists of applying the Laplace trans-
form to the differential equations, the initial conditions (root
conditions when applied to beam problems), and certain
forms of other boundary conditions; of solving the resulting
system for the transform of each dependent variable; and
then applying the inversion.integral to the results. The
remaining boundary conditions are then used to set up
relations among whatever undetermined pa.rameters that
might remain,

In the case of flutter analysis a complete solution to the
equations is not needed but only the conditions under which
an unstable equilibrium may exist. The relations that. can
be set up between. the undetermined parameters correspond
precisely to this condition. In other words these relations
appear as a system of homogéneous equations and the satis-
faction of the condition that this system of equations have a
common solution other than the trivial solution corresponds
to the borderline condition separatmcr the damped and
undamped oscillations of the wmg

The Laplace transform of f(z) is

L @)= | e @) de=F (0 (A1)
where s may be real or complex and z>>0. The sufficient
conditions that this infinite integral exist are that f(z) have

no infinite discontinuities for =0 and that f(z) be of ex-

ponential order asz—> . (Seereference 10.) In other words
finite discontinuities such as those appearing in the foregoing
problem do not invalidate the operational approach.

The Laplace transform of the nth derivative of & con-
tinuous function with continuous derivatives, for which the
function and all its derivatives are of exponential order,
can be obtained directly from equation (A13) as

L{f*@)}=s"F (&) —s"'F (0) —s™2f"(0)— . . . —f*(0)

(A14)

The Laplace transform is linear in the same sense as
differentiation or integration. That is, if a;, and &, are
constants

Lig.f*@ 4, fr @)+ . .. —I—aof(m)-'%-bma’"(x)—l-
« Fbob()} =@, L{f @)} +@ur L@} ...+
aL{f @)} +baL{e"@®)}+ . . . +bL{6)} (A15)
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Thus the Laplace transform of a linear differentisl equation
with constant coefficients is generally a sum of expressions
similar to equation (A14).

In equation (Al14) the quantities f(0), F/(0), .
f1(0) are the boundary conditions at the origin of the
dependent variable (wing root) that corresponds to constants
of integration. When these quantities are given, they are
put directly into the transformed cquation. When the
quantities are not given, they correspond to what has been
called undetermined parameters in the preceding paragraphs
and must later be determined in terms of other boundary
conditions.

Finite discontinuities in a function or any of its deriva-
tives are taken into account by proper attention to the
limiting values that the function or its derivatives have on
the two sides of the discontinuity. In particular, if a func-
tion and its first » derivatives are of exponential order, if
the first (n—2) derivatives are continuous, if the (n—1)*
derivative has a finite discontinuity at %, and if the nth
derivative is continuous except for a singular point at
(see sketch 3), the Laplace transform of the nth derivative
has the form

L{f* @)} =s(s)—s"f(O)— . .. —
sfﬂ—z (0) __fn—l (O) _e—az'u[fn—[ (x0+ 0) _fn-—i (xo_o)]
(A16)

where f(z,+0) is the value of f(2) as x approaches %, from the
right and f(z—0) is the value of f(z) as z approaches x,
from the left. In other words the terms in the brackets
express the magnitude of the discontinuity in f**(z) at 2« in
the (n—1)* derivative at x,.

(=)
|
I
7 (=x) |
i
f (l') .f n-l (x)

Sp--

SKEICH 3.

An examination of the boundary-value problem, equation
(A12), shows that the transform will be given by a sum of
expressions precisely of the form of equation (A.16).

In order to interpret the transformed function f(s) in
terms of the original function f(z), use may be made of the

| inversion integral discussed in text books on operational

calculus; or one may refer directly to tables of transform.
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As a simple example the operational method is applied to
a cantilever beam carrying an arbitrarily placed weight and
assumed to be vibrating in & vacuum in bending only.

The boundary-value problem for this case can be written

£,
ET, %ﬂ=mw2y (A17)

(a) y(0)=y'(0)=0
(b) y"'O=y""O=0
() EL" (:—0)—y" h+0)]=—

(A18)
Tt

where the symbols have the same meaning es in equation
(A12).

If the root conditions (a) and the boundary condition (c)
are used, the transformed problems solved for 7(s) gives

— SYa w l
y(s) P 4+ 8“—- &ty El": sil(_li
Mes®

where, for brevity, Y,=y"(0), Y,=%"""(0), and a4=E__L.

e~ (A19)

The inverse transform of equation (A19) is (see pair nos.
31 and 32, p. 296, and relation 12, p. 294, of reference 10)

'y(m)=322 (cosh oz—cos ax) +3—;3 (sinh ar—sin ox)+

-

eangI y(@)[sinh al—1)—sin a(z—0)] (A20)

or

>

y(z =‘,£:2 (cosh ax—cos ax) —{-3—:3 (sinh ax—sin oz}

Wee? 172

3 ET, ~ (cosh ol —cos ol)) +

3 (sinh oly—sin all)] [sinh a(—1) —sin a(@—L)]
{A21)
where the last bracket is zero when z—[, <0.

Imposing boundary conditions (b) gives two homogeneous
equations in ¥, and ¥;. Each value of o that will cause the
determinant of the coefficients of Y, and Y3 to vanish corre-
sponds to 2 mode of vibration.

This result has been applied to the wing and weight dis-’

cussed in the text of this report with the weight located 17
inches from the root. The deflection and shear curves due
to the first uncoupled modes in bending only have been

- than g(s).

computed and are plotted in figure 6. Corresponding re-
sults have been computed by a 20-station process of iteration
discussed in reference 13 and plotted in the same ﬁgu.t;e.
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FIcURE 6.—Plots of deflection and shear curves é¢omputed from the first uncoupled modes
in bending by the differentizl-equation method and by the 20-station iteration process of
reference I3 (referred to unit tip defection).

4. REPRESENTATION OF THE INYERSE TRANSFORM OF THE BOUNDARY-
YALUE PROBLEM, EQUATION (A12), BY A POWER SERIES

The transform of both y(z) and 8(z) of equation (A12) is
of the form

Pu(s) | Pole) gy

f&= q(s) q(S)

(A22)
where P;(s) and P,(s) are polynomials both of lower degree
Neither Py(s) or Py(s) have common factors with
g(8) where ¢(s) is of the specific form

g(s) =s*+-as*+bs* o= (—R\) (P —Rp) (¥ —Rs)  (A23)
where the coefficients a, b, and ¢ and the roots squared E;,
R,, and R; are complex. The inverse function associated
with such a transform gives f(x) in terms of circular and
hyperbolic funections of z/R;, but with the results in this
form the process of solving the flutter determinant becomes
very cumbersome.

By making use of the properties of symmetric funetions,
Goland and Luke (reference 4) outlined a simple method of
obtaining the multinomial expansions or Maclaurin’s series
for the transforms of equations (A12). The inversions of
these expansions give ¥(z) and #(z) in the form of convergent
series and thus circumvents the meticulous task of finding
the roots of g(s).

For the development of these series it is first necessary to
consider ¢(s) as & cubie in s?; namely,

R;

g) = 11 (P—R) =g n 1~ (A24)

By making use of the binomial theorem, 1/g(s) can be
written as

1 12 R: R}

3
s DR 5 ) @)
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Equation (A25) is independent of any interchange of the | @, b, and ¢ of equation (A23); for example,
parameters R;, R, and RE; and thus satisfies the description '

of & symmetric function in these parameters. (For a dis- To=1 A

cussion of symmetrie functions see reference 11 or any text Ty=—a

on higher algebra or theory of equations.) If the indicated

multiplication in equation (A25) is carried out, the results Ty=a’—b 3 (A28)

can be written
p T3=—a‘"’+2a.b-—-c

TG+t . AR ) (A2 e )

With the aid of equation (A26) and equations (9) and (10)
of the text, the inverse transform of equation (A22) or of
7(s) and 8(s) can therefore be written as a sum of terms of the
type given in equations (9) and (10) where the T,'s enler as
coefficients in the numerator and are easily evaluated in
To=—aT, 1 —bTs—cTus (A27) | terms of the coefficients of a known cubic equation. In the
application to flutter analysis only the first few T’s are
where the value of any Tu-; is to be disregarded when | usually necessary because the resulting series is generally
n—3j<0, every T, can be written in terms of the coefficients | found to be highly convergent.

i
g(sy s°

where the general term T, represents the sum of all possible
symmetric polynomials in B;, R,, and E; which are of degree
n and with all coefficients unity. By making use of Newton’s
" identity relative to symmetric polynomials, that is

]

APPENDIX B

~ DERIVATION OF THE FLUTTER DETERMINANT AND SAMPLE CALCULATIONS
INTRODUCTION

In this section the flutter determinant is formally derived and the method described in the text for solving the determi-
pant is illustrated with sample calculations for a specific example. Also final expressions for the deflection curves are given
from which amplitude and phase-angle curves of deflection, shear, and. torque are calculated for & specific case. The ealculated
amplitudes are compared with corresponding curves computed from the fundamental uncoupled modes in bending and torsion.

DERIVATION OF THE FLUTTER DETERMINANT
In equations (11) and (12) of the text it is first necessary to evaluate the expressions

"' G—0)—y" (Ll+0)]

¢’ :—0)—¢" (. +0)]

in terms of Y5, Y5, and 6;,.  Since terms involving (x—17;) drop out of both equation (11) and equation (12) for z=1[;, the values
of y(l,) and 6({,) can be obtained directly from these equations. The values of y(/;) and 8(;) substituted into conditions (¢)
and (d) of the text give the desired relations; namely,

and

Y (,—0) —y'"(ll+0)=——— () +e8(0:)]
W pe* T, l2nts T2
=~ EIg {Y : [(5 o) 2 i i1 2 @ ]J’
T Z 2n45 T ll n+3
T llz +5 Tﬂll2n+1
g [@_m) SErarte D (z-nTm]} &Y
and
¥ = 0) = (h+0)= 75 [eay () + K0 0]
_ Wue T2t T2+
LA A ) paF LSS P Juaia
T l12 n+s Tnllz n+3
T oK 5 iyt 5 gh e

T bt 2"t T2+
& [(326 Ky ) E (2?1+5)‘+K2 E m]} (Bz)

=0
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Substituting equations (B1) and (B2) into equations (11) and (12) gives
Y(@) =hy(x) Yo+-ho (@) Yo-+-hs(2) 0, (B3)
8(z) =g:(2) Yo 1 g2(2) Ya-+-gs(2) 6, . (BY

where

L] nﬂ;?n-r HTww T Z 2n44 T l12 +2 T (:E_zl)Zﬂ-l'a @ 1L z_l )2ﬂ+3
b (@) =2, (9n+2)!+ g - { @niD1 T ElLg [(5 ex7) 2 eIt (2n-'~2)':l|: 2 T EEnT T Ty ]‘

T n+4 242 ] — 2n+a
T [(e—Km 5 g te 5 | 5, e

n=0 a=0 (2TL+ 5) !

T,a2ts Tzt T | o LIS IE, o T(a—l)™ | =, T m—l)™
() =8 23 Gyt (2n¢3>'+‘E [(5 ~e) 23 e n_o(zrws)':[[ T @t o T @nt3 ]“

=0

BW e T2+ T2+ To(@—1)%*
KB [(eﬁ" KM 2 ey (zn+5)r+317—3 = PRy ey
T l 2nt+5 T Z 2n41 T (ﬂ:—l )"ﬂ+a T (x___ll)ZH'rS
ha(x)= ﬁ?@{,(2n+5)' +E’Ig I:(ﬁ eza)z (9,,,_11_5)1 2 21 (2n1 1)r]|: T (2nt 1;))r };{, PrEE T

BT e T ] 2k T2 & Talz—1)2n%s
GJg I:( &8 —Kyla) Z (2n 5)l+‘K2 Zﬂ (2-nf{—1) l_]% (2n-1-5)!

T (x—lx)znﬂ = Tal—0)*+

i) 2n 1 5)[ =0 (2)‘1-}-1)!

Ma

]
I

T Zl 4 T llin +2
a@=—v> (2nT4)I+ arg '_(eﬂﬁ ~EM) L nrarte (2n+2)'] ["‘
Wwwg‘y T Zl.z 4 T len-rz T (x_ZI)Zn—S
o K e ap sl Pa ey

- T gtnts T T30 e Toa—b)®™ o T,@—l)
92(17)——72(%_!_5),-{- @Jg [(""5 Kﬂ‘f)z(znls)r+ Z_—(zn+3)‘!][°‘,§ CTRE P ey ]‘

n=0

Wty T, 5,204 Tl o T, (m—b)*
Elg | O~ Z(zniy-s)r+2 Gn L3 = onFa

and

 g2ntl T2 Woe? T,
s(0) = 2(2;;1), a3 (,,n“j_5),. oy | @8- Is;a)z(zn+5),+

$ Luli? ‘“:”: > T.—l)>" o T,,(x—ll)“ﬂ]_

,,=0 @n+1)! = @5 T & @rt!
wm ,Y 2n 5 T l Znt1 = T (m__l )211.-}-5
EI o l:(ﬁ €20!) E (‘7n—5)'+ez gu (2nfl-1) ‘:I =3 (2n.+15)‘

By imposing conditions (b) of the text
¥ O=y"O=¢0=0

upon equations (B3) and (B4), three equations are obtained (written in the text as equation (13)):

A4:Y o+ B Y3+ Ci6=0

where i=1, 2, and 3 and
Ai=k" O B,=h,"" () Ci=hy"" @)

‘.4.2=h1_,.” (l) Bz=h2”, (l) 02=h3’”(l)
As=g"() By=g.' () Co=g:"()
Imposing the condition that the equations (13) have a solution other than the trivial solution ¥,=Y¥,=6,=0 results
in the flutter determinant
AJ_ Blol
A= Az .Bz 02 =0 (B5)
4 By G
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SAMPLE CALCULATION OF FLUTTER SPEED AND DEFLECTION CURVES

A method of solving the flutter determinant given in the text is illustrated here by the solution of the determinant for
the wing-weight combination discussed in the text when the spanwise location of the weight is 17 inches from the root. The

values of b_fu=7]é that are chosen are in the neighborhood of the experimental value and have available tabulated values of
Theodorsen’s function Ok)=F-+iG.

Table II shows the actual computations required to evaluate the coefficients 4, B;, and C,; for b—z=7.1429 (k=0.14)

and two values of E‘%_—=f (f=25 cps and =28 cps). From colums @), @), and @ the determinant for f=25 cps is

(14.9200—2.85741) (12._8320——'2.03151:‘) —(7.3286—0.60021%)
A=|(11.8000—3.66954) (10.2970—2.85661) . —(5.4711—0.93233%)
(0.17030—0.661344) —(0.09077-}0.593419) —(0.41138—0.288641)
or
. A=1.0326 — 0.6948¢
Similarly, for /=28 cps,
(18.6380—3.81151) (15.0860—2.63997) —(9.1238—0.854331)
A=| (15.5930—5.093517) (13.0080—3.79467) —(7.1158—1.39881%)

—(0.041774-0.87098¢) —(0.23526--0.75948:) —(0.51403—0.37017%)
or

=—0.4029 — 0.0312%

The determinant was evaluated in this manner for the same value of v/be and several other values of /. The process was
then repeated for b% =6.25 and several values of f and for %=5.00 and several values of f. The real and imaginary parts of

the evaluated determinant for each value of #/bw and the corresponding values of f are separately plotted in figure 7. The
ordinates of the intersections of the different pairs of curves of real and imaginary parts were scaled in figure 7 and plotted as

A, against both ¢/bw and f in figure 8. The zero ordinates of these curves give the value of o/bw <%=6.93) and the values of

f (f=28.04 cps) for which the determinant vanishes. From these values the flutter speed is readily calculated to be
(27) (28.04) (6.93)
' 3

o= (be) (6.93) = (2xdf) (6.93)= =407 fps

As pointed out in appendix A the deflection curves at any specified time are given by equatior;s (A10)
Y(z,t) =y (z)e**=y(z) (cos wi-}1 sin wf)
O (x,t) =08(x) e™* =0(x) {cos wi-+1% sin wi)

3 ’ e
- L0 Il?eolf l . / : \
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where final forms of ¥(z)} and 6(z) are given by equations (B3) and (B4) and where, at least, the relative values of the unde-
termined coefficients Y5, Y3, and 6; in equations (B3) and (B4) must be known. If the set of values of s/bw and  that satisfy
the flutter determinant is used to determine the coefficients 4, By, and C'; in equations (18), there is obtained a system of
three homogeneous equations in the three unknowns Y3, ¥, and 6, that have solutions other than the frivial solutions
Y,=Y,=6,=0. If these equations are each divided through by any one of the unknowns, say ¥,, there is obtained a consist-
ent system of three equations in the two ratios ¥;/¥, and 6,/Y,. Any two of the three equations can therefore be solved for
these ratios. Consequently, equations (B3) and (B4) can be written with one undetermined parameter that appears as a
factor in each equation. Furthermore, since the coefficients A;, B:, and C; are complex numbers, the ratios Y;/Y, and 6,/Y>
are complex numbers and equations (B3) and (B4) contain complex coefficients. The real and imaginary parts of these
equations can be separated and the equations written as follows:

y(@) =Ty (z) +iga ()]
} (B6)
6(x) = Y[6a(x) +163(x)]
If these relations are substituted into equations (A10),
Y (z,0) =Y, {y:(z) cos wf—y,(x) sin wi-+i[y.(z) cos wi+7:(z)sin «f]}
(B7)
6(z,8) =Y,{6:(2) cos wt—8(x)sin wf1+4[6;() cos witfa(zx)sin wi]}
or
Y (@, ) =Yov [y @ P+ @] [cos (wb+¢1) 11 sin (wt+¢1)] -
8(z,t) =Y /[ @) P+ [6:@) T [cos (wt+62) 11 sin (wi+¢s)]
where @
—tan-1 $2\%)
=@
and (=)
1 8:(z
=t g @)

and where ¢;— ¢, represents the difference in phase apgle between bending motion and torsion motions at z.
The real parts of equations (B8) are interpreted to mean the motions in bending and torsion taken in a positive sense.
The imaginary parts can then be interpreted as representing these same motions with a phase shift of #/2 radians.
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I TABLE II—SAMPLE CALCULATIONS OF COEFFICIENTS A; B;, AND C;

[k=0.14]
® ® ® @ ® ®
(o) « g v ’ paRLt e
25 0.65247 —0.20341% — 0.484704:0.028651: 0.03178-0.051697 0.16724—0.036617 0.983021-0.003757
28 i 0.81846—0.255157 —0.60800-0.03594% 0.03986--0.06485¢ 0.20984 — 0..045937: 0.977894-0.004687
@ L@ ® ® @
[O@X®+®17; Zhiﬁg' Zhﬁfg. [OXO+®@]Ys

7,12
2 (2n+4)1

0.16622--0.00033:

(1.0108 —0.002284) Y;

0.04721+0.00007%

0.4674410.00127¢

(0.47534 —0.000467) ¥

0.1658240.00041< (1.0127 —0.002852) Y3 0.04713-+0.000097 0.46583--0,001572 (0.46682—0.000587) Y3
@ ® @ @ ®
[@X@ YW =@ +@+®@ [~ DX®]IY, [-@X@Y: - - [~@X®k:

(—0.02289-1-0.001327) 6,

(1.0108—0.002287) ¥
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(—0.00658—0.010775) Ya

(~—0.00187—0.003067) Y
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2n+1
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®
®1e®

®

W o
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1.3695-1+0.00727%

(1.33874-0.016839) 6,

(—0.00527—0.008605) ¥,
+ (—0.00149—0.002447) Y,
-+ (1.3387-+0.016834)6,

(1.0122+-0.000077) Y5
~+(0.47575-1-0.000214) Y3
-+ (—0.38791—0.00327:)4,

(—2.5332—0.000174) Y,
4 (—1.1907—0.000513) Y5
-+ (0.97082--0.008184)6,

1.35794-0.00899:

(1.3193-4-0.020957) 6,

(—0.00658--0.010777) Y,
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+(1.2193+4-0.012784)6,
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(—0.27634.—0.000567) Y,
-+ (—0,12982—0,000211) Y3
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