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FLUTTER 0)? A UNIFORM WING WITH AN ARBITRARILY PLACED lMASS
ACCORDING TO A DIFFERENTIAL-EQUATION ANALYSIS

AND A COMPARISON WITH EXPERIMENT

By HARRY L. RmriAx and CHAELES E. Yi’ATKIXS

SUMMARY

A methoclis presented-for the calculation of thej?utter speed
of a uniform wing carrying an arbitrarily placed concentrated
maw. The method, an extension of recently published work
by Go?and and Luke, inrolres the solution of the cli~erential
ecwa.twnsof motion of the wing at jhtter speed and therefore
does not require the assumption of spec~~c norrna.1modes of
ribration. The order of the j?wtter determinant to be solred
by this methoddepends upon.& order of the system of differen-
tial equations and not upon the number of modes of vibration
irwolred.
The di~erentia.1equations are solred by operational methods,

and a brief discus~.on of operational methods as applied to
bmmdary-rdut?problems is included in one of two appendixes,
A comparison is made un”thexperimentfor a wing with a large
eccentrically mounted weight and good agreement is obtained.
Sample calculations are presented to Wu#ra.te the .m.ethocl;and
mmres of amplitudes of displacement, torque, and shear for a
particular case are compared with corresponding cwrces co-r-
eputedfrom thejirst uncoupled normai -modes.

For corwenience, the method employs two-dimensional air
-forces and could be extended to apply to uniform u<ngs with
any number of arbitrara”lyplaced concentratedweights, one qf
.u~hichm~gh.tbe considered as afuselage. The location of such
“massesas engines, fuel tanks, and funding-gear installations
might be used to admntage in increasing thejlutter s-peedof a.
giren wing.

INTRODUCTION

The common procedures in flutter a.m+eia of an airplane
wi~u involve many simplifying assumptlions. In particular,
the degrees of freedom of the wing are usually cleterminedby
choosi~~ the first few normal mocles of the structure, and the
wing motion at, flutter is then described in terms of these
chosen modes. This approach of employing prescribecl
modes is often a.dapt.edto the Rayleigh type a.rdysis of
vibration and may be referred to as” R ayleigh type analysis.”
In specific c.alculat.ionswith this method the amount of work
required is proport.ions.l to the number of normal modes
involved. In particular, the order of the flutter determinant
t-hat must be solved depends direct.ly upon the number of
modes involved. For simple wings, without concentrated
masses, the Ra.yleigh type analysis usually yields satisfactory
results with not more than two or three norrcd modes.
IIovre~er, if the wing carries concentrated masses, such as

engine, fuel tank, or lancling-gear installations, so many
normal mocles may be requirecl to obtain satisfactory results
that t-he Rayleigh met-hocl may not be the most- feasible
method.

In cases where many degrees of freeclom are involved the
most logical procedure vrouId be to treat the system of
differentia.Iequations of motion of the m-ingrather than to
choose specific modes. For a.rbit.rarywing plan forms this
method WOUIC1be in general -rery cMEcult and tedious to
carry through, a.lt.boughit has the advantage that. the order
of the flutter cleterminant that must be solved depends only
upon the order of the system of differential equations and not-
upon the number of modes of vibration involved.

As early as 1929 Kussner (reference 1) used the differential
equation approach to formuIate the problem in the form of
an integro-differential equation for a wing of general plan
form. Kussner set up some particular examples and sug-
gested a method of solution by a process of iteration. This
method was not followed up untiI during the war when some
related work was undertaken in Germany but not finished.
Wielandt (reference 2) has recently ma-decontributions to the
treatment of nonaelf-adjoint clifferential equations by itera-
tive processes. In the light of these contributions perhaps
the problem of flutter analysis as proposed by Kiissner
warrants further investigation.

Recently, Golancl (reference 3) appliecl the different.ial-
equation method to a uniform cantilever wing and -wasable
to carry out the solution of the flutter problem by straight+
forvrard methods. In reference 4 Gokmd and Luke extended
the solution of the problem of the uniform wing to include a
uniform wing carrying a fuselage at, the semispan ancl con-
centrated weights at the tips. Goland and Luke made use
of the Laplace transform to solve the differential equations by
operational methods for both the symmetric and a.ntispn-
met-ric types of flutter. k both references 3 and 4, the
objective was to compare flutter speeds and certain flutter
parameters for specific uniform wings calcdat-ed by the
differential-equation method with the same quantities c-alcu-
la.ted by the Rayleigh method when only the fundamental
bending and torsion modes tiere used in the calculations.
Fairly close agreement bet-iveenresults calculated by the two
methods were obtained in both references 3 and 4. No
comparison with experiment, however, was made in either
case.
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The results of a systematic series of flutter tests made to
determine the effect of concentrated weights and concen-
trated weight positions on the flutter speed of a uniform
cantilever wing are reported in reference 5. After these
experiments were finished, the results were compared with a
theoretical analysis by the Rayleigh method (reference 6).
In cases where the mass of the weight was of the same order
as that of the wing amdplaced so that the distance between
its center of gravity and the elastic axis of the wing was a.
considerable fraction of the wing chord, several normal modes
had to be empIoycd and there was no way of knowing in
advance just what number should be used. Because gf this
difficulty and because the wing was a uniform wing, the most
extreme case was chosen from reference 5 and investigated by
the differential-equation method by following an extended
procedure of Goland and Luke. The purpose of thk report
is to present the results of this investigation.

This report consists of the main text and two appendixes.
In the main text the differential-equation method k set up
for any uniform cantilever wing with an arbitrarily placed
con.gentratedweight and the solution, based on an extension
of the method used by Goland and Luke, is developed.
Application is then made to a particular wing-weight system
used in reference 5, and comparison with experimental
results is given. The mass of the weight (weight labeled 7a
in reference 5) was about 92 percent of the mass of the wing
sad at each spamvise weight position the weight was placed
so that its center of gravity was about 0.41 chord forward of
the elastticaxis of the wing. (It may be mentioned for the
sake of comparison that, in the numerical example treated in
reference 4, the mass of the weight was only 39 percent of the
mass of the wing and was placed 0.1 chord behind the elastic
axis of the wing.) The geometric aspect ratio of the wing
was 6, which was considered Iarge enough to warranfithe use
of two-dimensional air forces without aspect-ratio corrections
for oscillatory instability (not necessarily so for the divergent
type of instability (see reference 7)). One other simplifica-
tion was the omission of terms due to structural damping.
The computed results agree remarkably well with experi-
mental results, particularly in regard to trends,

In appendix A the method used by GoIand and Luke,
which includes the derivation of the differential, equations,
for a wing carrying a tip weight is outlined and extended to a
wing carrying an arbitrarily placed weight: A somewhat
general but brief discussion of operational methods of solving
boundary-value problems is included and illustrated with a
simple example for readers who might be interested but are
not familiar with the operational approach.

In appendix B the derivation of the flutter determinant is
completed, and a method of solving the determinant is
illustrated by a detailed calculation of the flutter speed for
the wing and one weight position of the wing-weight combina-
tion discussed in the text. As a final topic in this appendix
the solution obtained for the flutter determinant is used with

the solutions of the differential equations to colculate the
amplitudes and phase angles of the deflection curves of the
wing-weight system at fiutter speed.
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SYMBOLS

nondimensional distance of elastic axis from
midchord measured in half-chords, positive
for positions of elastic axis behind midchord

wing half-chord, feet
chordwise distance of wing center of gravity

from elastic axis, positive for center of
gravity behind elastic axis, feet

chordwise distance of weight center of gravity
from elastic axis, positive for center of#
gravity behind elastic axis, feet

gra.vitationa.l constant, feet per second per
second

mass moment of inertia of uniform wing per
unit of spanwise length, referred to wing
elastic axis, pound-second2 (mK12)

mass moment of inertia of weight. referred to
wing elastic axis, foot-pound-sccondz

radius of gyration of wing sections about wing
elastic axis, feet

radius of gyration of weight about elastic axis,
feet

bu
()

reduced-frequency parameter ~..
aerodynamic lift force per unit of spanwise

length
L&iLv’=rpb2Lfi

1 semispa.nof wing, feet
1, locaiion of weight measured from wing root,

feet
L~,La,M~,M= aerodynamic coefficients as tabulated in

reference 8
M aerodynamic moment per unit of spanwise

length taken about elastic axis

weight of wing model, pounds
mass of wing per unit length
weight of concentrated weight, pounds
transverse shear force in wing at station z
torsional moment in wing at station x
roots of cubic equation -
operator used in Laplace transformation
time coordinate
sum of all symmetric polyn oxnial functions in

R,, RS,R3which are of degree n
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ro experimental flutter speed for wing without
weight, feet per second

flutter speed, feet per second

reduced flutter speed

spamvise coordinate measured from -wingroot
general mode shape function in bending
mode shape function in bending after assump-

tion of harmonic motion (VI(Z)+iy*(z))
fiexural rigidittyof uniform wing, pound-feet’
torsional rigidity of uniform wing, pound- feetz

K ()‘7rpb~
mass ratio ~

P air density, slugs per cubic foot
A complex value of determinant
A. ralue of A vihen real and imaginary parts are

equal
e(x,tj general mode shape function in torsion
8(X) mode shape function in torsion after assump-

tion of harmonic motion (8,(x) +ids(x))
a circular frequency at flutter, radians per

second

f 0
frequency, cycles per second ‘~Ji

ANALYSIS

As mentioned in kheintroduction the Mferential equations
t-hatgovern the motion of a uniform wing at flutter speed, as
derived by Goland in reference 3, and a method of solving
the. equations for a uniform cantilever wing carrying an
arbitrarily placed weight, based on a method developed by
Gola.nd and Luke in reference 4, are discussed in a.ppendi~
A. The analysis, therefore, is devoted to a brief discussion
of the differential equations of motion of the wing, the bound-
ary conditions, solution of the boundary-value problem by
means of the La-place transform, and the solution of the
flutter determinant.

The diilerentiaI equations and boundary conditions that
govern the motion, at flutter speed, of a cantilever wing of
length 1with a concentrated weight placed 1, units along the
span from the root section and ezunits forward of the elastic
a-.xisof the wing, as derived in appendti At are

y’v(z) –a-y(z) –pe(z) =0 (1)

(2)e“ (x) +’yy(z) +66(Z) =0

(a) v(O) =y’ (0)=8(0)=0
(b)” Erby’’(z) =EI~y’”(~ =GJe’(~ =0

(c) EIJy’’’(l0)o) –y’” (1,+0)]= –~ a’[y(l,) +ead(l,)]

(d) GJ[19’(1,-0) –@(l,+O)]=~ u’[e,y(l,) +Kz’d(l,)]

where

~=~a (m+ Lv+iLu’)

P=& (T~et+Le+iL’)

cd’
‘{=~J (meI+~fIf+i~~~’)

6=:J (I+h.I@+iM/)
t

and where y(z) is the displacement of a chordwise element of
the elastic a.sisof the wing at span posit-ionz due to bending;
o(z) is the corresponding displacement due to torsion; primes
associated with v and 8 indicate differentiation with respect
to x; EI* is the flexural rigidity of t-hewing; GJ is the tor-

sional rigidity of the wing; ~ is mass of the weight; m is

mass per unit length of wing; and a is the circular frequency
of bending and torsion at flutter. In condition (c) the nota-
tion y’” (11—0) indicat& that y“’(x) is to have the value
that it approaches as z~ll from the inboard side of the weight
and y“’(11+0) indicates that y“’(z) is to have the value t-hat
it approaches as ~+ from the outboard side of the weight.
Similar meanings are given to 8’(1,–0) and 8’(1,+0).

The quantities LU+iLY’, Le+iL/, Mv+ilifv’, and
M6+LWU’ can be written in terms of tabulated quantities as
follows:

Lv+iLv’ =rPb2L~

“+’L’’==’’3F-L’G+’)I

iMV+ilMy’=rpb3
[Y’’-L’G+’)l

[-= 4 ) - (i+’)+
Alo+id$:=.pb’ U –L ~+a – Vh

( )1

2
L, ~+a

In reference 8 the values of.& L=, Mh, and IM=are expressed
in terms of Theodorsen’s F and G functions of reference 9
and tabulated for various va.lues of the reduced speed u/baL

The root conditions (a) and the boundary conditions (b),
of the boundary-value problem, are the usual conditions that
must be imposed upon the equations of a vibrating cantilever
beam (or wing). Conditions (c) and (d) stipulate discon-
tintities of determinable magnitudes in transverse shearing
force and torque, respectively.
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Applying the Laplace transform (see appendix A)

J
“ e-’~(z) oh=;(s)

o

to equations (1) and (2) and making use of conditions .(a),
(c), and (d) gives

@~(8) —SY2– Y3+Pll[y’” (II—O)—y’” (ll+o)]—

@(’s) –f?;(s) =0 (3)
and

.s2;(s)– el+e-s~l[(? (1,–0) —6’ (l,+ O)]+&?(s) +~(s) =0 (4)
.

where
Y,=y’’(o) ‘“
Y,=y’’’(o)

9’=6’ (o)

Solving equations (3) and (4) for ~(s) and %(s) gives the
Laplace transform of y (x) and d(z), respectively, as

(s’+s~) Y,+ (s’+8) Y,+f?(?l-Be-s’1[6’ (11-0) –#(1,-~0)~ ,~(s)= g($)

(.s2+8)e-’11[y’’’ (0)-O) –y”’(l~+O)], ‘
(-f(s) (5)

and

ii(s)= S481—7SY2—7Y3–6’la+~eaJl[y’” (1,–0) –y’’’(l I+O)]+
“(j’’s) --”””--

(~42-sA)e-’~l[#(Zl– O)—8’ (11+O)]
q(s) (6)

where

g(s) =s~+W-c2s2+y&–c48

Goiand and Luke (reference 4) showed that g(z) and 6(x)
could be written as a converging series by expanding the.
transforms (5) and (6) into power series and applying the
inverse transform. A discussion of this expansion is given
in section 4 of appendix A where it is shown that l/q(s)
can be written as ~~

1
~=$”go ~ n (7)

where
TO=l

T1=–6

T,=82+C2

TS=-&-CY&fly

. . . . .
For n~ 3,

T.= –6Tn-l+aT._S+ (a&–f17)T.-3 (8)

When the series expansion of I/g(s), equation (7), is sub-
stituted into equations (5) and (6), the transforms ~(s) and

~(s) become sums of infinite serieswjth terms..of two distinct
types; that is, terms of types

A
~

and
Be-sz~

@

where m is a positive integer,

The inverse Laplace transform

p. 295, of reference 10) for x>O is

of : (see pair no, 3,

H
L-1 4 = AX”-l

s= (m–l)!

Be-,zo

and the inverse LapIace t.mnsform of ~

p. 298, of reference 10) for X>XOZOis

~_l Be-’z@
{}
_ .= B(X–ZO)”-l

Sm (m–l)!

(9)

(see pair no. 63,

(10)

When the expression for l/q(s) from equation (7) is sub-
stituted into equations (5) and (6) and the inverse transforms
are applied, the follmving series e.xprcssionsof v(z) and o(z)
can be obtained:

.1.20”$;Z:;! +d’~ so (:;~! –

- Tn(x–l,~2”+5_~[#(z,-0) –0’(1,+())] ~0 (2n+5) !

[[Y’’’(zo)o) –y’’’(2,+o)] ~ & ~n@-Q2”+’+n-” (2n+5) !

m -Tn(x—lJ2”+3
20 (2n+3) ! 1

and

(11)

where in both equation (11) and equation (12) the terms
involving (z—Q are to be considered a.szero when x=1,.

Equations (11) and (12) me general expressions for the
amplitudes or displacement of a point z of the elastic axis of
a uniform wing vibrating in bending and torsion under the
conditions .of flutter with an arbitrarily placed concentrated
weight. When the weight is concentrated at the wing tip,
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the equations correspond to those obtained by G&ml except
for a difference in root conditions. When the weight. is
concentrated at the root (or if the mass of the weight is
reduced to zero), the equations reduce to those for a uniform
cantilever wing. These equations may appear rather formid-
able in their present form; however, onIy the first few terms
of each summation seem necessary for most cases.

In the derivation of the flutter determinant in appendix B
it is sho-wn that since terms involving (z—ll) drop out of
bohh equation (11) and equation (12) at Z=il, the dues of
v(Q and 6(1J can be obtained from the terms not involving
(z–l,). Then, by making use of conditions (c) and (d)
again, linear expression in 1“2,Y3, and 81c.a.nbe substituted
for the bracketed expressiona

[y’’’ (to)o) –#’’’(l,+O)]
and

[e’(lI–o) –8’(1,+0)]

Mter the substitutions are made, equations (11) and (12)
will contain only the three undetermined coefficients Yq, Y~,
and &for any particular wing-weight system of the type under
consideration. Observe that conditions (b) have not yet
been used. If these conditions are now- imposed upon the
equations, there is obtained a system of three linear homo-
geneous equations in Yz, Ys, and 191that may be written for
reference as

AtYz~B*Y3~Cto,=0 (13)

where i= 1, 2, and 3.
The condition that a system of equations such as equations

(13) have solutions other than the trivial solution

r2=Y~=8~=o

is that the determinant of the coefficients Af, Bi, and ~~
vanish (reference 11). This corresponds to the borderline
condition between damped (stable) and undamped (unstable)
oscillations or to the point at which flutter occurs. It wiU
be noted that. the order of this determinant depends only on
the order of the system of differential equations.

The actual coefficients corresponding to At, Bi, and C*are
complex functions of the frequency co, the reduced flutter
speed v/bw, and certain determinable characteristics of the
wing-weight system. The true flutter speed is easily cal-
culated -whencorresponding values of u and v/Zmare known.
These quantities may therefore be considered as (the only)
variable pa.rneters in the determinant of coefficients and
the problem of fiding the true flutter speed is reduced to
that of finding corresponding values of these parameters
that. cause the determinant, .hereina.fter called the flutter
determinant, to vanish. If u is set equal to zero, the air
forces drop out and the resulting determinant gives the
coupled modes of vibration of t-hewing in stiU air. On the
other hand, if ~ is set equaI to zero the nonoscillatory or
divergence condition is obtained.

Several ways of solving the flutter determinant are
mentioned in reference 7. Although more informative

methods exist, a graphical method was adopted for the pres-
ent work. For example, a value is assigned to one pa.ram-
eter, preferably tI/bw; the flutter deternina.nt is then
evaluated for this value of t@w and several values of t-he
other parameter w The values of =theflutter determinant
obtained in this manner are complex numbers and if the
real and imaginary parts of a sufficient number of determi-
nant values are separately plotted against u, the point or
points where the real and imaginary parts are equal are
obtained. If die process for other dues of vfbu is re-
peated, a locus of determinant values with equal real and
imaginary parts can be plotted a.ga.instboth z@a and w.

When enough points are determined, these plots give the
values of v/haand a that cause the determinant to vanish.

An ilhstrat-ion of the process of soh-ing the flutter determi-
nant as described in the preceding paragraph is given in
a.ppendi~ B, which contains the complete solution of the

.determinant for one weight position of the particular wing-
weight system described in the section entitled “Applica-
tion to a Specific Wing-Weight Syst.e.m.” In general, when
solving the flutter determinant by the preceding met-hod,
if the assumed values of w/haand w are in the neighborhood
of t-heirtrue values, only a,few points need be computed to
obtain a solution. In the absence of experimental values
of these parameters and in view of the -work involved in
determinhg other parameters that depend on viba, it -will
be found a&isable to use simplified methods to obtain
approximate values with which to start the soht.ion. .

APPLICATIONTO A SPECIHC WfNG-~EIGH~ SYSTEM

Attention is now turned to the application of the bounda.ry-
value problem discussed in t-heforegoing section to a specific
problem. The wing--weight system that has been analyzed
consists of a.particular uniform cantilever wing and weight
combination described in reference 5. The weight was con-
sidered as concentrated at diflerent specified span positions
but al-ways at about 0.41 chord forward of the elaetic axis
of the wing. This weight was selected because of its high
mass compared with that of the vring atid bec.ati”e of the
large eccentricity due to the distance between its center of
gravity and the elastic a.xieof the w@. Pertinent data,
based on measured characteristics of the wing as taken from
reference 5, with the units in feet and pounds are

Chord,feetl------------------------------------- %
Length, feet ------------------------------------- 4
Aspect ratio(@ometric)-------------------------- 6

Taper ratio -------------------------------------- 1
Airfoil section ------------------------------------ NACA 16-010
w,pou&-------------------------------------- 3.48
1, pound-second ~-------------------------------- 0.00080
EIb, pound- feet ~--------------------------------- 977.08
GJ, pound- feet ~-_---: --------------------------- 480.56
l/K (stadardair, no weight) ---------------------- 32.6

ei, f~t------------------------------------------ 0.013

and, based on measured characteristics of the weight, are .
w=, poun&------------------------------------- 3.182

ez, feet ------------------------------------------ –0.2728
Iw, foot-pound-second ~--------------------------- 0.013625

956646-51-23
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Calculation of the flutter parameters have been mada for
the wing -without the weight and for the wing with the
weight at six different positions. The calculated results are
compared with experimental results in figure 1 and in table I.
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TABLE I.—EXPERIMENTAL AND CALCULATED RESULTS

OF FLUTTER INVESTIGATION

I Ca’ou’oted I ‘Xperi-’a]
(t)

(c{a) e[bu (lL) (CL) vfbw (;s)
—— . . — — — —

.. -.-.. . ;:;; 6.29 333 22.1
-0.2728

7.22 324
8.23 331 17.4 8. S8 324

-.2728 28:04 407 .26.8 6.81 282
-.2728 30.68 :: 5% (b)
-.2728 25.67 7.45 401 & j~6 ~~-.2728 24.87 7.06 S68
-.2728 Z?.60 &07 3@.1 2i.4 7:14 32A

I I I I I 1,

ieeordawore obtsfnecl.
b Divergence.

It will be noted in table I that all the calculated flutter
speeds are within 7 percent of the experimental values aid
the calculated &equencies and “reduced speeds are within 15
percent of the experimental values. The calculated flutter

speeds are gcmerally slightJy higher than the esperirncntal
values for 11=17 and slightly lower for 11>40. There is no
such con_@tent trend in the other pammetcrs.

In figure 1 the ratio of both calculated and experimental
flutter speeds for the -wingwith a weight to the flutter speed
of the wing without a weight is plotted against span position
of the vwight. The important thing to note in examining
figure 1 is that the shape of the theoretical curve follows the
shape of”the experimental curve very closely in the regions
where experimental flutter was obt,aincd. The horizontal
dashed l@e in figure 1 represents the clivergencc spcecl for
the wing as computed by the method of reference 12. Al-
though the correct “divergencespeed for clifferent-rrcightposi-
tions would probably vary, being somewhat lo#er with tho
weight at,the tip than at the root, owing to the effect of tho
presence of the weight on aerodynamic forces, the a.grecmcnt
of the approximate value with experimental vahles is satisf-
actory.

Generalexpressions for the cleflcction curves are derived
in appendix B from which amplitudes and phnse angles for
curves of deflection, slope, moment, and shear in bending
anclamplitudes and phase angles for curves of angulm deflec-
tion and torque in torsion can be computed. The phase
~ngl~ and ~plitudes for the deflection and shear CUrVCSin
bending @g. 2) and the phase angles and amplitudes for the
angular clispla.cementand torque in torsion (fig. 3) have been
computed with reference to a unit tip deflection for the weight
position 11=17 inches. In figure 4 the amplitudes in deflec-
tion and”shear in bending from figure 2 arc compared with
the deflection and shear curves due to the funclnmental un-
coupled bending mode of the wing, and in figure 5 the ampli-
tudes in anguhr deffection and torque in torsion from figure 3
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Disi%nce af’onq spon, b.

FIGL-RE3.—Plot of amplitude and phsse sngle of torsfonaI displacement ~d 60zque
for ?1=17 inches at flutter (mnplftude and torque referred to unit nmplitnde at tip in

bending).

me compared with the angular deflection and torque c.ur-ies
due to the funcIaruent,aIuncoupled mode in torsion. There
is a not-able difference in the shape of the amplitude cumes
computed by the present method and those comput.ecIfrom
the first normal mocles. This discrepancy indicates that
severaI modes wotdd have to be employed to obtain satisf-
actory results by the Rayleigh type a.mdysis.

CONCLUD1h’GREMARKS

The method cliscussedin this report is not hnited to a uni-
form cantilever wing with a single weight. By proper atten-
tion to the bouncla.ry conditions the theory can quite easily
be extended to apply to a uniform wing carrying any number
of arbitrarily placed weights, one of which tight, be consid-
ered as a fusehtge and made to field the so-called symmetric
and a.ntieymmetric types of flutter. Furthermore, for conv-
enience of application, theoretic.a.lvalues of t~o-dimensional
air forces ha-i-ebeen used. IIovrever, since the method does
not-depend on the particuhu form of air forces in~ol-red, any
known or available aerodynamic data could be used. In
any event, the method is tedious and wouId, therefore,
not be recommended over the Rayleigh type analysis when
it might be known that-only the fist few normal modes of
the structure are sticient. to give satisfactory results.

For wings that are not uniform the difFerent,iaIequations
for flutter conditions reduce to ordinary clifferentialequations
with -ra-riablecoefficients. In this case the solution WOUIC1,
in general, be much more di.tlicult to obtain. For general
cases there would be no acl-rantagein the operational method
of solution although an itma.tive process probably tight be
used to great aclvantage.

In conclusion it is pointed out; that the location of such
masses as engines, landing gears, and fuel tauks might be
used to ad~antage in increasing the flutter speed of a given
wing. As shown by the particular problem a.nalyzedherein
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and by other e-xperiencesa definite region e.sists,peculiar to
a given wing, in -which masses added forward of the ela.st.ic
axis of the wing tend to increase the flutter speed of the wing.

,
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APPENDIX A
OUTLINEANDEXTENSIONOFMETHODSOFl?LUTTERANALYSISAS PRESENTEDIN REFERENCES3 AND4

.1. DERIVATION OF THE DIFFERENTIAL EQUATIONS THAT GOVERN THE
MOTION OF A WING AT FLUTTER SPEED

Consider a spantise element of incremental length CZZat
station x of a wing oscillating in bending and torsion in a free
stream of fluid (see sketch 1).

Elm+tic OXA?.

*
Whd d;rec f;on

~Stafion z

SKEmE 1.

The dispkicernentsY and 0 of an element of the elastic axis
are functions of %and t. In order that this element remain
in dynamic equilibrium the external forces and moments on
the element must balance the inertia forces and moments.

The external forces and moments consist of transverse
shearing forces and torsional moments, which are transmitted
from one element of the wing to the. next, plus the aero-
dynamic hft force and pitching moment and internal or
structural damping. Structural damping is not taken into
consideration in this discussion, although its inclusion would
add no computational difficulties.

The transverse shearing force acting upward at $ is

(Al)

and that acting down-wardat (z+dx) is

N+$:dx =–EIh WbSY–EIh ~y d~ (A2)

Similarly the nose-down torsional moment acting at x is

T= ~J @
ax

(A3)
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and at (x+ dx) the nose-up torsional moment is

(A4)

The two-dimensional aerodpa.mic forces acting on an ele-
ment dx of an oscillating airfoil have been derived by
Theodorsen (reference 9) and can be written as mlift force
and aerodynamic moment acting a-bout the elastic fixis 01
the wing, respectively, as

(M dx= a2MvY+ cdl.’ ~:+ u2M@+wM~’ ~
)

dx (A6)

The inertia force of the element dz can be written

(AT)

and the inertia moment as

(A8)

Diagrams of the forces and moments acting on an element
of wing of length dm at station x are shown in sketch 2.

SKETCH 2.

Imposing the conditions of dynamic equilibrium of the
element at x by equating inertia forces to external forces and
inertia moments to external moments gives the two tilf-
ferential equations that govern the motion of the wing:

(A9)
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2. BOUXDAEY CONDITIONS FOR A UNIFORM CAYITLEVER WING CARRYING

A?JARBITRARILY PLACED WEIGHT AT FLUTTER SPEED

The boundary conditions that must be imposed upon
equations (A9) for a uniform cantilever wing are

(1) Y(o,t) =0

‘2) ‘r’[:y’xJ’)lz=o=O

c3) e(o,t) =o

‘4) ‘4s’7(’’)12=2=0

These are the usual conditions that must be imposed on a
vibrating cantilever beam. Condition (1) is the condition
that the end at x=O is supported (either hinged or built b).
Conditions (2) and (3) imply that this end is fixed or built
in. Conditions (4), (5), and (6) imply, respect,ively, that
there is no bendirg moment,, trammerse shearing force, or
torsional moment acting at the tip x=1.

If there is an arbitrarily placed weight on the wing, other
conditions must be imposed that will determine the effect.
of the weight upon the motion of the W@ If the meight
is considered as concentrated at some point on the chord
line at station z=l,, it will create dimontinuities in both
transverse shear and torsional moment. The magnitude of
these &continuities are know functions of the mass of the
weight, the location of the weight, and the acceleration of
t-he wiqg. The remaining conditions required to complete
the boundary-vtdue problem for the general motion of the
weighted wing are, therefore,

For the purpose of flutter analysis it is assumed that the
motions in both bending and torsion are harmonic and that

the frequencies in bending and torsion are equal. Therefore,
onIy the partimilar form that the solution to the boundary-
va.lue problem has when these conditions prevail need be
sought. These conditions imply that I@jt) and 0 (x,t) are
of the forms

I’(z,t) =y(z) 13f”’

}e(~, t) =6(z) dw’ .
(A1o)

where, on the right-hand side of equations (A1O), y and 19me
now complex amplitude functions of the span coordinate z
from which the shape ancl phase relation of the vzing at
any fixed time during flutter can be obtained.

If the -dues of Y and 6 from equations (A1O) are sub-
stituted into both dilferentia.1equations (A9) and into the
boundary conditions, the problem is greatly simplified. The
ditlerentia.1equations become inclependent of t and appear
as ordinary ditferentid equations with constant coefficients.

.After making the substitution and rearranging terms, the
equations of motion can be written as

or more simply as

d4y
~.–cry+d=o

d%
-@+vyw=o

}

(A12)

The boundary conditions also become independent of t and
can be writ,ten as follows:

(1’) y (0)=0

(2’) y’(o) =0

(3’) 19(o)=0

(4’) y“(l) =0

(5’} y“’(i) =0

(6’) 6’(1)=0

(7’) EIJu’’’(10)O) –y’’’(lI+O)]= –~ &[y(lJ +e#(lJ]

(s’) GJ[f?’(1,-0) –t?’(1,+0)]=~ a2[@l,) +KN&)l

.

.
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SOLUTION OF BOUNDARY-VALUE PROBLEMS IN ORDINARY DIFFEREN-
TIAL EQUATIONS BY OPERATIONAL METHODS AND APPLICATION TO A

BEAM CARRYING AN ARBITRARILY PLACED WEIGHT

The boundmy-value problem given by equations (A12)
and conditions (1’) to (8’) can be solin.xlby straightforward
methods of solving ordinary differential equations with
constant coefficients, The operational method, however,
is a much easier and shorter approach, particukidy in view
of the discontinuities in shear and torque. ‘

Briefly, the solution of a boundary-value problem by.
operational methods consists of applying the Laplace trans-
form to the differential equations, the initial conditions (root
eanditions when applied to beam problems), and certain
forms of other boundary conditions; of solving the resulting
system for the transform of each dependent variable; and
then applying the inversion integral to the results. The
remaining boundary conditions are then used to set up
relations among whatever undetermined parameters that
might remain.

In the case of flutter analysis a complete solution to the
equations is not needed but only the conditions under which
an unstable equilibrium may exist. The relations that cm
be set up between. the undetmmined parameters correspond
precisely to this condition. In other words these relations
appear as a system of homogeneous equations and the satis-
faction of the condition that this system of equations have a
common solution other than the trivial solution corresponds
to the borderline condition separating the damped and
undamped ”oscillationsof the wing.

The Laplace transform of j(%) is

L{.f(@ ) =JO”e-’’j@.@ dx=~(s) (A13)

where s may be real or complex and z> O. The sufficient
conditions that this infinite integral exist are that j(z.) have
no infinite discontinuities for z 20 and that j(z) be of ex-.
ponential order asZ4 co. (See reference 10.) In other words
finite discontinuities such as those appearing in the foregoing
problem do not invalidate the operational approach.

The Laplace transform of the nth derivative of a con-
tinuous function with $ontinuous derivatives, for which the
function and all its derivatives are of exponential order,
mm be obtained directly from equation (A13) as

L{y(x) ) =S’f(s) –.s’-’j (o) –s’-’f ‘ (o) – . . . –j”-’(o)

(A14)

The Laplace transform is linear in the same sense as
differentiation or integration. That is, if ai and b{ are
constants

L{(LJ”(z) +&l,f”-’(z) + . . . +a,j(x) +bno~(z) +

. . . +h@)}=anL{.f”(x)] +a...J{(z)](z)] + . . . +”

aJ{j(z) }+i5mL{eqz)]+ . . . +t)oqe(z)} (A15)

Thus the Laplace transform of a linear differential cquwtion
with constant coefficients is generally a sum of expressions
similar to equation (A14).

In equation (A14) the quantities j(0), j’(0), . . .
P-’(0) are the boundary condi~ions at the origin of th;
dependent variable (wing root) that corrcsponck to constcmts
of integration. When these quantities arc given, they are
put directly into the transformed equation. When the
quantities are not given, they correspond to what has hccn
called uncletermined parameters in the preceding pa.mgmphs
and must later be dete.rmincd in terms of other boundary
conditions.

Finite discontinuities in a function or any of its deriva-
tives are taken into account by proper attention to the
]irding values that the function or its derivatives hnrc on
the two sides of the discontinuity. In particular, if a func-
tion and its fist n derivatives are of exponential order, if
the first (n—2) derivatives are continuous, if the (n— 1)’~
derivative has a finite discontinuity at ZO,t-mcliI the mth
derivative is continuous except for a singular point at zO,
(see slmtch 3), the Laplace transform of the nlh derivative
has theform

L{y”(x) ] =djqs) –s”-y(o) – . . . –

L#n-z(0) —Y-l(0) –e-’zo[fn-’(zo+ O)–fl-i(zo— O)]

(A16)

wherej(cco+ O) is the value of j(x) M x approaches Z. from tho
right and .f(xo—O) is the value of j(z) as z appronc-hcs r.
from the left. ,In other words the terms in the br~clicts
express the magnitude of the discontinuity in P-l(x) at M in
the (n— 1)’~ derivative at Xo.

I
Xo x—

SKETCH 3.

An examination of the boundary-value probkxn, equation
(A12), shows that the transform will be given by a.sum of
expressions precisely of the form of equation (A16).

In order to interpret the transformed function ~(s) in
terms of the original function j(x), use may be made of the
inversion integral discussed in text books on operational
calculus; or one may refer directly to t.ablcs.of transform.
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As a simple example the operational methocl is appliecI to
a.cantilever beam carrying an arbitrarily p~aced weight and
assumed to be vibrating in a vacuum in bending only.

The boundary-due problem for this case can be-written

d’y
EIb &4=mu2y (A17)

(a) y(o) =&!’(o) =0 1
(b) y“(t)=y’’’(~=o

(c) IH,[y’’’(lo)o) –Y’’’(l,+o)]y–y Y(L)J
where the symbols have the same meaning M in equation
(A12].

If the root conditions (a) and the boundary condition (c)
are used, the transformed problems so~ved for ~(.s) gives

vvhere,for brevity, Yz=y” (0), YS=y’” (0), and C#=m&.

The inverse transform of equation (A19) is (see pair nos.
31 and 32, p. 296, and relation 12, p. 294: of reference 10]

h CW-cos ax)+= (siuh ax-sin ca) +‘y(z) =;; (Cos

or

17,
y (z)==(cosh @ —COSa-x)+= (sinh ax-sin M)+

where the last bracket is zero when x—11~ O.

Imposing boundary conditions (b) gives two homogeneous
equations in Yz and Y& Each value of a t-hat-wilIcause the
determinant of the coefliciente of Yz and I’s to vanish corre-
sponds to a.mode of vibration.

This result has been applied to the wing and weight die- ‘
cussed in the text of this report with the weight located 17
inches from t-heroot. The deflection and shear cum-es due
to the first uncoupled modes in bending only have been

computed and are plotted in figure 6. corresponding re-
sults have been computed by a 20-stat.ionprocess of iteration
discussed in reference 13 and plotted in the same fig~e.

Distooce along span, in.

FIGURE 6.—Plot2 of deflection and shear curves twmputed from the first uncoupled modes

in bending by the di!Yerenti&eqnatfon method aud by the Wstation itemtiin process of

reference K? (referred to unit tip deflection).

L REPEESEXTATION OF THE LNVERSE TRANSFORM OF THE BOUXD.4RY-
VALIJE PROBLEM, EQUATIOh’ (A12), BY A POWER SERIES

The transform of both y(z) and 8(z) of equation (A12) is
of the form

f (s) =:$)
+P,(s) ~_w—.

g(s)

inhere.~1(s) and l’z (s) are polynomials bo t,hof lower de=gree
than q(s) . ATeit,her1’1(s) or .PZ(s) have common factors with
g(s) -whereg(s) is of the specific form

q(s)=sq-as%bs+c= (A-R,) (s’–.%) (@–R,) (An)

where the coefficients a, fit and c and the roots squared RI,
R2, and R3 are complex. The inverse function associated
with such a transform gives f(x) in terms of circular and
hyperbolic functions of xl~ti but with the resuhs in this
form the process of soh-ing the flutter determinant becomes
very cumbersome.

By making use of the properties of symmetric functions,
Goland and Luke (reference 4) outlined a simple method of
obtaining the multinomkd e.xpmsions or Mac.laurin’s series
for the transforms of equations (A12).. The inversions of
these expansions give y(x) and o(z) in the form of convergent
series and thus circumvents the meticulous task of finding
the roots of q(s).

For t-hedevelopment of these series it is fist necessary to
consider g(s) as a cubic in #; namely,

()g(s)= Ii (.S2-RJ=S6 : 1–:
i=l i=l

(A24)

By making use of the binomial theorem, I/q(s) can be
written as
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Equation @25) is independent of any interchange of the
parameters RI, Raj and Rs and thus satisfies the description
of a symmetric function in these parameters. (13’ora dis-
cussion of symmetric functions see reference 11 or any text
on higher algebra or theory of equations.) If the indicated
multiplication in equation (A25) is carried out, the results
can be written

1
(

—=4 To+~+;+ . . .g(s) 8 +%+ . . .
)

(A26)

where the general term T, represents the sum of aIl possible
symmetric polynomials in RI, R2, and RSwhich are of degree
n and with all coefficients unity. By making US6of ~ewtori’s
identity relative to symmetric polynomials, that is

T.= –aTn-l–b Tn-z–cT=-3 (A27)

where the value of any Tn-~ is to be disregarded when
n—j< O,every T. can be written in terms of the coefficients

a, b, and c of equation (A23); for example,

TO=l

Tl=–a

T,=a’–b

}

(A28)

T8=–a3+2ab–c

. . . . .

With the aid of equation (A26] and equations (9) ancl (10)
of the text, the inverse transform of equation (A22) or of
~(s) and ~(.s)can therefore be yritten as a sum of terms of the
type given in equations (9) and (10) where the T.’s enter as
coefficients in the. nume.mtor and are ea.siIy erahmtcd in
terms of the coefficients of a known cubic equation. In the
application to flutter analysis only the first fcw l!’,’% me
usually necessary because the resulting series is generalIy
found to be highly convergent. ,

APPENDIX B

DER1VATIONOF THE FLUTTERDETERMINANTAND SAMPLECALCULATIONS
INTRODUCTION

In this section the flutter determinant is formall~ derived and the method described in the text for solving the determi-
nant is illustrated with sample calculations for a specific example. Also final expressions for the deflection curves are given
from which amplitude and phase-angle curves of deflection, shear, and torque are calculated for a specific case. The calculated
amplitudes are compared with corresponding curves computed from the fundamenta.1uncoupled modes in bending and torsion.

DERIVATIONOFTHEFLUTTERDETEE~lINANT

In equations (11) and (12) of the text it is fit necessary to evaluate the expressions

and
[y’’’(l*–o) –y’’’(l,+o)l

[e’(l,–-o) –e’(l,+O)]

in terms of Y2, Ya,and 61. Since terms involving (x–Q drop out of both equation (11) and equation (12) for z=lI, the vahm
of y (1J and 6(1J can be obtained directly from these equations, The values of Y(Q and 0(1,) substituted into conditions (c)
and (d) of the text give the desired relations; namely,

and

0’ (11–0) –-e’ (11+0)= ~ [e2v(lJ +K22W1)1

(BI)

(m)



—

in the flutter determinant

A=

956646-51-24

A, B,C,

A, B2 C2 ==0 (B5)

& Ba C,
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.

SAMPLE CALCULATION OF FLUTTEFZSPEED AND DEFLECTION CURVES

A method of solving the flutter determinant given in the text is ihstrated here by the solution of the cletcrrninrmtfor
the wing-weight combination discussed in the text when the spamvise location of the weight is 17 inches from the root. The

values of ~=~ that are chosen are in tho neighborhood of the experimental value and have available tabulated values of

Theodorsen’s function C(k) =F+W. .-

Table II shows the actmd computations required to evaluate the coefficients At, .Bt, and Oi for ~u2=7.1429 OC=O.14)

and two values of ~=j ~=25 cps andj=28 cps). From colums @, @, and @ the deter.&inant for j =25 cps is

(14.9200–2.8574i) (12.8320–2.0315i)
A= (11.8000–3.6695i) (10.2970–2.8566i)

(0,17030-O.66134i) –(0.09077+0.59341i)
or

A=l.0326 — 0.6948i
Similarly, for ~=28 cps,”

(18.6380–3.8115i) (15.0860–2.6399i)
A= (15,5930–5,093i5i) (13.0080–3.7946i)

–(0,04177+0.87098i) – (0.23526+0.75948i)
or

A= —O.4029— 0.03~2i

–(7.3286–O.60021i)
–(5.4711–O.93233i)
– (0.41138–O.28864i)

,

–(9.1238–O.85433i)
– (7.1158–l.3988i)
–(o.51403–o.37017i)

The determinant was evaluated in this mamm for the same value of @W and several other values of f. Theprocess was

I – 6.25 and ~everal values of j and for ~= 5,00 and several values off.then repeated for ~a– The real and imaginary parts of

the evaluated determinant for each value of v/bu and the corresponding values off areseparately plotted in figure 7. The
ordinates of the intersections of the different pairs of curves of real and imagimmyparts were scaled in figure 7 and plott cd m

A, against both u/bwand j in figure 8.
(2=60’3)and’hevalu’sOf

The zero ordinates of these curves give the value of v/bw *U

f (j=28.04 Gps) for which thti determinant vanishes. From these values the flutter speed is readily calculated to bc

v= (b(i)(6.93)= (27rbj)(6.93)= ‘2r) ‘28”~) ‘6”93) =407 fps

As pointed out in apperidk A th~ deflection curves at any specified time are given by equations (A1O)

Y(z,t) =y(z) &J’=y(x) (cos wt+i sin @

e(~,t) =8(@ef”’ =6(z) (COSat+; sin @

3 1.2

2 .8

At
he

4

0 0

-50 31 32 28 29 :“ 30 25. 26 27 28
-.4

Frequency, cps .”.
27 28 .29 30 31 3256 78

Frequency, cps Reduced spee@ vfbu

(a)&5.oo. (b) ;w=6.2Li. - (C) ;U=7.1429.
(a) A. against frequency. (b) A, against rcducad speed,

FIGURE 7.—Plots of A against frequency for particular values of reduwd speed. h =17 inches. FIGURE 8.—Plots of A. against frequency and reduced epeccl. 11-17 inchce.
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where final forms of g(z) and t)(z) are given by equations (B3) and (B4) and where, a-tIeast, the relative values of the unde-
termined coefikients YZ,1“3,and&in equations (B3) and (B4) must be known. If the set of values of v/fJaand a that satisfy
the flutter determinant is used to determine the coefficients Atr Bt, and et in equations (13), t-hereis obtained a system of
three homogeneous equations in the three unknowns I“z, T*, ancl @l that have solutions other than the trivial solutions

.——

%“2=Yt=81=0. If these equations are each divided through by any one of t-heunknowns; say YZ,there is obtained a consist-
ent system of three equations in the two ratios 1“1/IT2and 01/Y2. Any two of the three equations can therefore be solved for
these ratios. Consequently, equations (B3) and (B4) can be written with one undetermined parameter that appears as a
factor in each equation. Furthermore, since the coefficients A,, B*, and ~, are complex numbers, the ratios Y,/Y, and 81/Y*
are complex numbers and equations @3) and (B4) contain complex coefficients. The real and imaginary parts of these
equations can be separated and the equations written as foliows:

If these relations are substituted into equations (A1O),

Y(z,t) =Y,{?J,(Z) Cos d-y,(x) sin Cot+i[y,(x) Cos C&+-y,(z)sin d] }
\

e(fc,t) = Y~{e2(2jCoscot-d,(x) sin G)t+-ip,(z) Cos cd+6’,(z) sin cd]} j
or

(B6)

(B7)

(B8)

and
+~=tan-’ ‘m .

YL(@

@,=t.m-, -

and where @l—+2represents the ~erence in phase angle between bending motion and torsion motions at x.
The real parts of equ@ions (B8) are interpreted to mean the motions in bending and torsion taken in a positive sense.

The imaginary parts can then be interpreted as representing these same motions with a phase shift of ii/2 radians.
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TABLE II—SAMPLE CALCULATIONS OF COEFFICIENTS ~, Bi, AND C,
[k= O.14]
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25 0.65247 – 0.20341i
— ———

28 0.81846 –O.25515i

I @

I
0.16622 +0.00033i

——
0.16582 -l-O.00041i

I~“
{– O.02289+0.001321~0,

I (– O.02866+0.00164Z>8,

1
1.3695 +0.00727i

1.3579+ o.oo899i

– 0.48470+ 0.02865;

–0.60800+ 0.03594;

[@x@+@lY2

(1.0108 –O.00228i) Y,
.—.

(1.0127 –O.00285z~ Y,

l/(h) =@+@H-@

(LO108-O.00228i) Y%
+ (0.47534 –O.00046i) Ys

+ (–0.02289+ 0.00132i)0,

(1.0127 –O.00285z~ Y,
+ (0.46682 –O.00058t) Y,

-1-(–0t02869+0.00164W,
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[@+@%

(1.3387 +0.01683?? (7,

(1.3193+ 0.02095i)0,
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0.03178 +0.05169i I 0.16724 –O.03661i

0.03986+ 0.06485i 0.20984– 0.04593i
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X (2n-I-3) !

0.04721+ 0.00007i 0.46744 +0.00127i
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