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PROPULSION OF A FLAPPING AND OSCILLATING AIRFOIL

By L. B. GARRICK

SUMMARY

Formulas are given for the propelling or drag force
experienced in a uniform air gtream by an airfoil or an
airfoil-aileron combination, oscillating in any of three
degrees of freedom: vertical flapping, torsional oscillations
about a fized axis parallel to the span, and angular
oscillations of the aileron about a hinge.

INTRODUCTION

It is the object of this paper to investigate theoreti-
cally the horizontal forces experienced by an airfoil
or an airfoil-aileron combination n a uniform air
stream made to execute flapping motion or to perform
angular oscillations about a fixed axis parallel to the
span. The problem treated is that of an infinite wing,
or wing and aileron, performing steady sinusoidal oscil-
lations in any of three degrees of freedom: vertical
flapping at right angles to the direction of motion,
oscillations about an arbitrary fixed axis parallel to its
span, and oscillations of the aileron about a hinge.

The work of Wagner (reference 1) for calculating
the distribution of vorticity in the wake of an airfoil
in nonuniform motion appears as a starting point. A
vortex wake is generated by the oscillatory motion,
which in turn affects the entire nature of the forces
experienced by the wing. Beautiful experimenteal
checks of Wagner’s theory of the manner in which the
circulation builds up have been obtained by Farren
and Walker. (Cf. reference 2, ch. 9 for 2 more detailed
bibliography.) Birnbaum and Kiissner (reference 3)
have also attacked the problem of obtaining the lift
forces on an oscillating wing by certain series expan-
gions that are rather cumbersome to handle. Glauert
(reference 4) has treated the case of an oscillating air-
foil and has obtained expressions for the forces and
moments that check with Wagner. Theodorsen (ref-
erence 5) has developed compact expressions for the
lift and moments in the case of an airfoil-aileron com-
bination of three independent degrees of freedom and
has applied the results to an analysis of the wing-flutter
problem. The foregoing references are concerned only
with the lift forces, not with the horizontal forces;
however, von Kérmdn and Burgers, who present in
reference 2 a résumé of the work (to 1934) on non-

uniform motion, calculate there the propulsion effect
on a flapping wing. The present paper makes appli-
cation of the compact formulas developed by Theo-
dorsen and of the method outlined by von Kérmdn
and Burgers to treat the propulsion on a wing oscil-
lating in three independent degrees of freedom.

The assumptions underlying the theory are small
amplitudes in the various degrees of freedom and a
(infinitely) narrow width of the rectilinear vortex
wake, as well as the usual assumption of a perfect fluid.
Quantitative agreement with experimental values,
which are not very abundant, can hardly be expected
since the finite width of the wake is important with
regard to considerations of the resistance; neverthe-
less the results can be useful for interpreting such ex-
periments as exist on the so-called “Katzmayr effect”
(reference 6) and for clearing up certain aerodynamic
features of the nature of the flight of birds.! Experi-
mental tests on an oscillating and flapping wing are
heing conducted at the present time by the N. A. C. A.

This paper is not concerned with the problem of
flutter, which is an instability phenomenon that mani-
fests itself in certain critical frequency ranges and is
due to an interaction and feedback of energy because of
coupling in the various degrees of freedom. (Cf. refer-
ences 3 and 5.) Profile drag is to be considered as ad-
ditive to the horizontal forces obtained.

FORCES AND MOMENTS ON AN OSCILLATING AIRFOIL

Consider an airfoil represented by the straight line of
figure 1. The airfoil chord is of length 2b and (its mean
position with b as reference unit length) is assumed to
extend along the z axis from the leading edge z=—1
to the trailing edge z=-+1. The coordinate x=a repre-
sents the axis of rotation of the wing, z=c the coordinate
of the aileron hinge. The airfoil is assumed to undergo
the following motions with small amplitudes: A vertical
motion h of the cnfire wing, positive downward; a
rotation about z=a of angle of attack «, positive clock-
wise and measured by the direction of the velocity v
at infinity and the instantaneous position of the wing;
an aileron motion about the hinge r=c¢ of angle 8,

1 It is Interesting to observe that the Katzmayr effect occurs In nature also in the
motion of fish. BSee ‘“The Physical Principles of Fish Locomotion,” by E. G. Rich-

ardson, Jour. Exp. Blo]og! val. XT1II, no. 1, Jan. 1936, pp. 63-74.
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measured with respect to the undeflected position of
the wing itself.

h
Leading edge c
fTN—a +1
-1, 0i Axid of e z
v rotafion.
Aileron hinge.

Trafling edge.
F1GURE l.—Parameters of the airfofl-aileron combination.

Let us consider sinusoidal oscillations in the various
degrees of freedom and use the complex-number nota-

tion
a=aoei(p‘+4?°)
B=Poe' @ e @
h=heet®tteyp

The constants a,, 8y, and h, represent the maximum

amplitudes in the various degrees of freedom, ¢, o1,

and g, are phase angles, and the parameter p determines-

the frequency of the oscillations. By means of the rela-
tion .

=7 @
an important parameter k is defined, i. e., k=pbfv. It

will be seen that 2x/k is the wave length between suc-
cessive waves in the vortex wake in terms of the half-
chord b as reference length.

The following three formulas for the lift and moments
on an oscillating airfoil of three degrees of freedom are
due to Theodorsen and are taken from reference 5:%

P=—pb*(vrix+xh—wbaa—oT S —TibB)
—27p0bC(k)Q (3)

'%""‘ a)vbd + ?Tb2<‘8];+ a2>& + T15vzﬁ+ TmUbB
+2Tubtf—anbl [ +2mb(a+3)CDQ @

M,=—pb

Mp= fpbzl:T wtba+2T; 1362&—‘—%”211136_3—21; bTif

~Lrpp-rit |erTicwe  ©)

where

Q=va+ib+b<-;———a>&+wlTlovﬁ+%TuB

These equations are to be interpreted as follows: The
real part of P denotes the lift force (positive downward)

? The writer wishes to record the fact that in order to establish a check on thess
general relations he has compared them with the widely varying expressions given
by Wagnper, Glauert, von KArmfin and Burgers, and Kilssner In their special cases
(references 1 to 4). Identical agreement bas resulted in all cases, except that in the
case of Kissner’s formulas a numerical check was madesince an analytic check wasnot
feasible, The numerical agreement was good except in the cass of the wing-aileron
combination where Kilssner makes some rough approximations,

A recent paper by Cleala (reference 7) deserves mention. Cicala derives expressions
for the lift and moment on an oscillating alrfoil that seem to agree with the results of
Theodorsen, although the method is somewhat more involved. The functions de-
noted by Oicala as X’ and A correspond to 1-F and —Q defined In equation (6).
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associated with the motion given by the real parts of
1); i. e., a=ap cos {(pi+g), =P cos (pt+¢), and
h=bhy cos (pt+¢;). The imaginary part of P denotes
the lift force associated with the motions a=a, sin
(Ptt+w), B=p, sin (pi+¢1), and h=hy sin (pi+es).
Similarly M. and M; denote in complex form the mo-
ments (positive clockwise in fig. 1) about z=a and
zr=¢, respectively, due to the motions (1). (The mean
value of @ or B8 is considered zero. When the mean
values are different from zero, the forces and moments
arising from constant values «,, and B, are to be added.)
In equations (3), (4), and (5) there occur various
symbols that have not yet been defined. The I’s,
i. e, Ty, Ty, T, etc., are constants defined completely
by the parameters ¢ and a (veference 5, p. 5). Tor
reference they are listed in appendix I, where there is
also given a collection of the symbols employed in the
notation of this paper. The function C(%) is a useful
complex function of the parameter k (see (2)) and is
given by

Clk)=F(k)+iG(k) (6)
wheras
JRFASED ARR e Ammh)
N+ Y0+ (X1 —Jo)*
a Y, Yot-Jido

BEOED O ASNAL

Functions Jo, Ji, Yo, and Y; are standard Bessel func-
tions of the first and second kinds of argument Z.
Figure 2 and table I, which are taken from reference
5 (with certain minor changes), illustrate these func-
tions,

In what follows we shall be interested only in one
part of the preceding complex equations. Itis an arbi-
trary matter whether to employ the real or imaginary
parts. The choice made here is to treat the imaginary
parts, and we write down for reference the imaginary
parts of equations (1), (3), (4), and (5):

a=qay sin (pt+¢p)

B=P, sin (pt+ey) (N
h=ho sin (pt—+s)
100
F _\F
~—
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40
20 - -
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Figure 2—Ths functions F and —@ agalnst 1/£.
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P=—pb*lvwoyp cos (pt-+ o) —whop? sin (pi+¢s) +wbaayp? sin (pt+ )
— 0T Bup cos (pt+ 1)+ T1bByp? sin (pt+¢y)]

—2menbE] vaq sin (pt-+en)+Hhap 008 (pt-+e)+3(5—a )Jaop 003 (@t

+Z00g, sin (pt-+01) +22b1p cos (pt+p0)

—2mb v €03 (pt-+e)—hp sin (pt-+e)—b(3— )aop sin (pi-+ev)

+2206, c08 (pt-+01) —Sb6ip sin (pi-+0) | (®)

=—pb‘[ (——a)vbaop cos (pt—]-goo)—qrb’( 4-a? )ayp? sin (pt+ )
+T10*Bo sin (pt+ 1) +T140bBep cos (pi+¢r)
—2Tbp* sin (pi-+e0)-+anblop® sin @t-+e) |

+ 200t a-+ )| vea sin. (t-+e0)+hiap cos (pi-+en)

+b(§—a>aop cos (pt-+¢0) +20f sin (pt-+¢)

+228p cos (pt—l-qol):l—l—vab’n-(a,-l——)GI:vao cos (pi-+eu)

~lp S ) 3—)eup sin @t-+e0)+ 20, cos (pt-+o)

~ 326 sin @i+ | ©)

My=—pb| Tusbawp c05 (pi-+ o) —2Tiab'eap? sin (pi-+ ) +2°Tiohy i (o)

— b Tabop €08 (pi-+ ) +LTsbep? sin (pt-+:) + Tibhop* sin. (pt-++ |

—pvszuF[vao sin (pt+eo) +hep cos (PH‘%)"H’(%— >aop cos (pt+w)

+5’vﬁ0 sin (pt-r) +525up cos @t+¢l)]—pvb*TuG[vao cos (pl+er)

—hop sin (pt+eg)—b -—a o sin (Pt‘l‘%)'l' —0B, cos (pt+e1)

Ty pp sin (PH-%):I (10)

In addition to these equatlons we will need the expression for the force on the aileron. This equation is obtained
in complex form as (use formulas on pp. 5-8, reference 5)

Pﬂ= —pb2<—1)T4¢.1’— T(il."" ng&—iUTag_iTgé>

—2pbv1/1_¢,—ﬁl— 51—t oV T—0B+ - (1—0) Tl |
—2pvbTm0(k) Q
And the imaginary part is

Pﬂ=—pb“|:—vT4aop cos (pt+go) +Tihop?® sin (pt+gs) —bTsegp? sin (pi-+gpo)
— 3 Tfup 008 (@t-+o1) +5Tube* sin (t-+er) |—20boyT=e] 2(1—)eup cos (pi-+on
+ oy T=a8 sin (pt-+en)+ 52 (1—c) Tuofp cos (pt+¢o]—2pvbT e sin (p+0)
~+hop cos (pt+soa)+b<-—a P cos (pttg, )+ vﬁo sin (pt+¢y)
-l-—‘bﬁop cos (pt+so1)]—2pvbTmG[vao cos (pt+po) —hep sin (pi--¢,)
—b(5—)oup sin (pt-+0)+2of cos (pi-+o) — 5258w sin (pi-+e) | an
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Following the method of von Karméan and Burgers
(reference 2), the average horizontal force will be
determined in two ways: (1) by the energy formula
given in equation (12), and (2) by the force formula
given in equation (13). The agreement of the results
of the two methods will thus furnish a check on the

work.
ENERGY FORMULA

W=E+P.» (12)
where W represents the average work done in unit
time in maintaining the oscillations (7) against the
forces and moments (8), (9), and (10); E represents the
average increase in kinetic energy in unit time in the
vortex wake and; P.v denotes average work done in
unit time by the propulsive force P..?

FORCE FORMULA
P,=#pS*+aP+8Ps 13y
where P, is the propelling force; « and g are given in
(7); P in (8), and Ps in (11); S is obtained from the

. .1 . ..
relation S=1IBE y+/zF1 where v is the vorticity

distribution. The value of S is finite, since v is infinite
in the order of 1/——1T— at the leading edge z=—1, and is

given in equation (25) and derived in appendix IL.*
We proceed first to evaluate W in equation (12).
The instantaneous rate at which work is done in main-
taining the oscillations is
W=— (Ph+M.a+}Mgb)
For the average work done in unit time we have

W= f (Ph+M.o+Maf)d (14)

On employing equations (7) to (10) and performing the
indicated integrations, we obtain after some lengthy
but elementary reductions

We=robZ (Bil?+ Biad+ Bufi+ 2B cchot-2Byfol

+2Bsaolso) (15)
where
B,=F
ao{i-0- (e G-+
B=v -+ 33(Tar )

3 When theenm-gyreleasedlnthawakelnunlttimsislesthanthework required
In unit time to maintaln the oscillations, i. e, E<W, then Px is positive and is a trae
propelling force. When E>W, then P: is negative and denotes not propulsfon but
resistance or drag.

4 Formula (13) is obtained by a slight extension of the method of referencs 2, pp.
305-308. ‘The “suction’ force xoS?arising from the infinite vorticity at the leading edge
is explalned in reference 2 (pp. 52 and 306) along lines laid down by Grammel and
Clsottl. (See also reference 8, pp. 135 and 203.) The fact that this Infinity occurs
tmplles that the ideal flow for an infinitely thin wing is unrealizable. We are regard-
lngthjscase,however,asallmltingoneofaw’lngthatlsroundedandsmoothatthe
leading edge and sharp at the trafling edge
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B.=%[(%——2aF+—g>cos (¢2— o)
~(-6)sin (e |

Bs—{( 4 “+T 1’F+T‘° g>cos (pr—e1)
—(%’% %G)sm (w—sax):l

TIBIC (( +2>1110+T]2 F
+ T——"ZTT”—-%E>G:I$D (m—wo)}
In order to celculate E in equation (12), we need the

expression for the vorticity in the wake. The magni-
tude of the vorticity in the wake is given in complex

form by e
U="Ueire” (-32) (16)

where Ue'* is a complex quantity determined in (19).
(Cf. reference 5, p. 8, in which z instead of —1 is used
in the exponent.) From the definition of the circula-
tion about the airfoil as the integral of the vorticity in
the wake we have in complex form

—-f Udz= —Eer"e"‘ (17)

Also from reference 5, equation (8), the condition for
smooth ﬂow at the tmﬂ.mg edge leads to the relation

E_‘;]‘Ud:c—voz+h+b ) +Tw

+5275=Q
Combining (17) and (18) we may write

r=2+— |, "(\/E—l)wx

On equating coefficients of ¢? on both sides of this
relation and solving for the qua.ntlty Upete (for the
evaluation of the definite integral in terms of Bessel
functions see reference 5, p. 8), we obtain

Ugefr=—4(A+1B) (J+iK)e™*

Jl—l"Yo Yl"—JO
D JK— D 4

D=t T (B o, S+ B

(18)

(19)

where,
J=

and
A

A=va, cos go—hep sin p;—b %—a P sin ¢
+$E’v,30 cos :pl-—-%i;_bﬁoP sin ¢ (209
B=vay sin ¢ot+hep cos ¢a+b<%~ >aop cos ¢y

+‘1i9‘17130 sin ¢1+,€—;bﬂop CO8 ¢ )
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When the imaginary part of U is denoted by v, which
is the only part of interest, the vorticity in the wake is
given by

= A, cos kr+4B, sin kz (21)

where
2d4o=(BK—AJ) sin pi—(AK-BJ) cos pt

1Bo= (BE—AJ) cos pt+(AK+BJ) sin pt

The induced vertical velocity at a great distance z
downstream is

W(x,)d:c’ = (Ao sin kx—B, cos k)

W=
—e T—2’

2_71'
The difference in potential at points of the x axis in the
wake is

bS vdx=

and the kinetic energy in the wake (per unit length) at
o point z along the surface of discontinuity far from the
pirfoil is®

$r—y=bS vdz=1(do sin ka—B, cos kz)

Ei= o0 (dr—1) (22)

2%(110 sin kxz—B, cos kzx)?

=4p72-[(BK—AJ) cos (pt-}+kz)

+ (AK+BJ) sin (pi+kz)]?

The mean value of E; with respect to time is inde-
pendent of « and is given by

lf "Bd=25 4By

We shall now proceed to the direct calculation of P, from (13).

and in complex form is given by

423

And, finally, the average value of the increase in energy
in the field in unit time is

2pby

E’=0E1=‘m(A’+BZ)
or also
E=npb L 0o+ Cra+ Cubi-+2Cuae
+2C58oho+2 CsesBal (23)
where

-2+ (-1)]
oL BT
04=%[—1 sin (tpn—%)‘l'(l— )cos (son—‘soo)]

O= 2| ~ 22 5in (o) + 32 cos (o) |

05—%[ T 1 BT 5— >T" 08 (p1—¢p)
+z<T?l° 5~ > Tu) sin (4’1—900)]

Equation (12) now defines P.» and hence P,. We
have .
Poy=W—FE
P,=mpbp [ Aih*+ Asa*+ Ao +2 Asarha
+2A4580h01-2. A5 80]
where from equations (15) and (23)
A1=B1—01, A2=B2—02, etrc.

or

(24)

The value of S is derived in appendix IT

Again we shall use only the imaginary part of this expression which is

1/2 (M sin pt+N cos pi)

where

(25)

M=2F| vay cos go—hop sin @—b(——-a agp 8in goo+—vﬁo cos pl—‘—ll‘bﬁqp sin ¢1]

—2@G] vay sin pthep co8 w3+b E—a P CoS @+ fvﬂo sin ¢1+€—;‘_bﬁop cos qol:l

+bagp sin tpo‘—'?r‘\’ —c* 0B, cos %—%}bﬁop 8N ¢,

$ The expnmion 2pw.(¢n—¢ ) lsactual]yeqmlbo—wg: taken along the surface of discontinuity (the z axis) where ¢=¢a—¢; and %-w.. The latter expression is

equal Lo

[(“) (b") ]mkenoveraproperspaceintarval i. e., represents the kinetic energy in a certain volume.
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and
_ T, o Ty
N =2F] v sin go-+hep cos ¢p+b ——a P €08 ¢o+—"080 SID 13 by co8 ¢y

+2G] vy cos po—hop sin @3 —b ——a ap sin ¢o+ —vﬁo cos ¢1— —bﬁoP sin ¢1]

—boyp cos «po—?/l—c’vﬁosin ¢1+;‘bﬂopo cos ¢
The mean value of wpS? with respect to time is

L [ rosras =3

This expression becomes, after a considerable number of terms cancel,

. - wpSt=mpbp*(@rhe*+ aacrs? + s fe? 2 ctoho +2as Boho 2500 60) (26)
where
a1=F’+G2

sl -G
wmsloms e (B + () o+

+ _2T10"‘ 1 02+T4T11 +Q<T41110J_T11 V 1_ }
ok 27 N = ' 2

ai=b{(+ ) 1 sin (pa— ) +(30) 008 (eumr) | o8 ()5 sin (u—e)

=t @ ~L2 in (o) + 52 c08 (am) [ 5] VI sin (o + 08 (e |
+ T2 s (prg) Lo sin (ea—e) |

aa=bz[(F=+G'l) T‘°+21r )]cos (—e0+H (3 ) Tl sin (oi— qoo))
+9 :2—‘/,;*—‘—”’+%(§—a)+§—;] sin (¢1—¢O>+[2‘/ 1;“’ (E—a)+ﬁ;—T‘°},; 08 (p1—g0)
-J—c’I

sin (o1— %)—E cos (p1— ‘Po)}

We proceed to calculate the average values of the[Also o
terms P and BP; in (13) by employing equations (7), BPg=mpbp*(caB®+2¢5Boh0+20sx00) (28)
(8), and (11). There results where '
0P =mpbp*(bacts®+2bsctoho+2bsx0 B CD| &= _L_1-¢_ F T me_I_GT lle:l

where o =k k 277

bz—b"[ ——k,+ a)—G] 05—{( g;r-i-T”g) cos (tpz—sox)+—39—sin (wz—qox):l

. T, T F
b4=—l:<'2‘+g) cos (‘Pz—%)‘l‘jcm (4’2—%)] 03_2 _1‘.‘9"?2'01:—2 )G:I cos (e1— o)
T— (11— — 1
b= (~ L E L - DO ALt adI=? cz"%@‘“)F
+(—g+F T"+G’T‘° sin (=) | T G sin (oi—ew)
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Finally from (13) the average propulsive force is

P —rpbP”[axho’—l- (ae—l-ba) ag*+ (%"I‘Osg Bo*
42 (ay+bs) agho+-2 (as+-cs) Boho
42 (ag+bs4-cs) ool (29)

In order that equations (24) and (29) agree we must
have that
Ai=a,

Az=ay+0b;
As=as+-c,
A=a,+b,
As=as+cs
As=0as+bst-cs

Each of these relations may be reduced to an identity,
e. g., consider .4; and a;. From (15), (23), and (26)

30)

4=B—C=F——>
u=F4G
In order that 4,=ga; the following relation must hold
F=F+@+—1> (31)

To show that this is true note that

pi i+ Yo+ Vi (¥ — Jo)_J1’+Y1’+J1Yo —Jod1
(1Yo '+ (X1 —oo)?

P -@P=F+i@) (F—zG)-——'Ll_—Yl

(cf. reference 5, p. 8) and from a well-known property
of the Bessel functions,

1Y,

Hence equation (31) follows.

By the use of the relation (31) and the definitions of
the various I”s given in the appendix, it can be veri-
fied that the remaining relations in (30) are also iden-
tities.

It may be of interest to consider the special cases of
one degree of freedom. Let the motion of the wing
consist only of the vertical motion 4 at right angles to
the direction of flight, i. e., flapping motion. The pro-
pelling force is then ©

P.=mpbp*h (F*+ @)
Consider in this case the ratio

—J°Y1=11%;7

(32)

P,v __energy of propulsion
"W total energy

Pi+a
==7F (33)
This function, shown in figure 3, represents the theo-
retical efficiency of the flapping motion (unity=100 per-
¢ This result agrees with the formula of von Kfirmén and Burgers (refarence 2, p.
306). The expressions of reference 2 denoted by

bym14-A,—N A1 (Q—8)+ N 42 (P—O)
by=A3—\ A3 (Q—8)—\ 4, (P—O)
reducs In our notation aslmply to 2F and 2@, respectively.
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cent). It is observed that a propelling force exists in
the entire range of 1/k, the efficiency being 50 percent
for infinitely rapid oscillations and 100 percent for
infinitely slow flapping.

1.00

.80

0 6

vk

F1GURE 3.—The mtlo_or energy of propulsion to the energy required to maintain the
osnﬂlatlons?(%':—) as a function of 1/k for the cass of pure flapping.

0 2 4 & 8 2 4 B 20

For the special case of angular oscillations about a
alone (=0, §=0) the horizontal force is

?==7rpbp’b’aoz[(F’+G’)l:~El,+ i )’]

)G

5 /
IU 4
p o} \\y .
3 4 1 1A
E =l o
- 4 L~
.W‘.; ‘LL/ / // -~ g_" -
4 / L
/ 1|
// //j77 Range of drog- |
[ p—1—=p e e “—"—/( —-———F—{t—-t-1F
%// ) ange of pf'opu N
— i
aso | | | l I
o / e 3 4
/k

F1GUBE 4.—The ratfo of the energy dissipated In the wake to the energy required to
maintain the oscillations (E/TW) as a function of 1{k for the cass of pure angular
oscillations about r=a.

In figure 4 there is shown the ratio Z/W, in this case
for several positions of the axis of rotation. These
curves give the ratio of the energy per unit time released
in the wake to the work per unit time required to
maintain the oscillations. In the range of values
0<E/W<1, P, is positive and denotes a thrust or
propelling force; for other values it is negative and
denotes a drag force.

LancLEy MEMORIAL AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS,
Lancrey Fievp, Va., May 4, 1936.



APPENDIX I

NOTATION
a, angle of altack (fig. 1). ‘

B, aileron angle (fig. 1).
h, vertical distance (fig. 1).

. de .. de.
a—-a—t: a—a'ﬁ: ete.

oy, Bo, hO: Po; L1, P ampIitUdes and Phase a.ngles
of the oscillations (equation (7)).

b, balf chord, used as reference length.

z, coordinate in direction of airfoil chord.

t, time.

v, velocity of the general motion in direction of
2 axis.

P, 2z times the frequency of the oscillations.

k, reduced frequency (equation (2)). The wave
length between successive waves in the vortex
wake is 2xb/k.

a, coordinate of axis of rotation (fig. 1).

¢, coordinate of aileron hinge (fig. 1).

i, imaginary unit /—1.

e, base of natural logarithms.

p, mass density of air.

P, lift force on airfoil (-+downward in fig. 1).
M,., moment on airfoil about ¢ (4clockwise in fig. 1).
Mj, moment on aileron about ¢ (+-clockwise in
fig. 1).
Pg, lift force on aileron (+downward in fig. 1).
Ck), F, G, Jo, J1, Yo, Y1, J, K, D, Bessel functions of
the argument k. (Cf. equations (6) and
(19), fig. 2, and table 1.)
W, average work done in unit time in maintaining
the oscillations.
E, average increase of kinetic energy in the wake
in unit time.
P., average force in the direction of the z axis
(+4-propulsion, —drag).
Al...Au,Bl...Bo,O;[...Ou, ay,...dg, bg, b{, ba, Cz, Cs, Cg,COOﬁCiGntE.
Q, defined by equation (18).
A, B, defined by equation (20).
Ag, B,, defined by equation (21).
M, N, defined by equation (25).
U, distribution of vorticity in the wake in complex
form (equation (16)).
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Uget?, coefficient of U, given in equation (19).
v, imaginary part of U.
S, defined by equation (13); see also appendix II,
T, circulation about the airfoil, defined by equa-
tion (17).

DEFINITIONS OF THE 7’s
1
= —§(2+c2)1/1—c’+c coslc

Ty=c(1—c®)— (1+c%)+/1—¢* cos™! c4-c(cos™! c)?
[T=Ti(Tu+T1)]

To= —%(1 —c% (5c*+4) +%c (T+2¢)+V1—c cos? ¢
—(3+¢*)(cos 01

Tiy=c+/1—c—cos™¢
Ty=—(1—¢%)+2¢c/1—® cos c—(cos™ ¢)?

Te=T5

Ty = ge(7+26) T2 —(g+¢") cos
7—8c(—l—c’) — 8+ cos™l¢

Ti= —-%(1+2c’)1/ltc—’—l—c cos™! c=—%(l-—c’)’—-cT4

TF{%a—e)iﬂLaﬂ]

Tyo=+/1—c*}cos™ ¢

Ty=(2—c)\1—c+(1—2¢) cos' ¢

Tie=(2+c)4/1—c*—(142¢) cos™' ¢
[Tm_Tn=2T4]

Tyy=~3 (T c—a)T})

Tu:%'l‘%‘ac

T15=T4+T]0= (1 +c)'v 1—-¢
1

Te=T1—Ts— (C_G)T4+§Tu

1 1
[T15+T17=— 5 >T4+—2‘T11:|
T17=—2T9—T1+<a—%>T4
Tw=T6—T4Tzo
Tw=T4Tu
w=—n/1—c*+cos! ¢

[Tzo=Tlo"'2V 1—02]



APPENDIX II

EVALUATION OF S (EQUATION (25))

From reference 5 (p. 7) we have that the condition
for smooth flow at the frailing edge is obtained from the
equation

0 .
55 (et oateiteitopt o). =0 oy

where the ¢’s are as follows (a =+ sign is to be prefixed
to each ¢, + for the upper surface, — for the lower
surface)'

b:c 21rf\/1 Pag— :vdz"

va=vab+/1—2?
(p,',=ibb-\/1—m2

¢;=o’zb’<—;—m—-a By
¢a=%vﬁb[1/1——a:2 cos~'e— (z—c) log N]

¢,§=§1;-1_Bb’[1/ 1—c1—224 (z—2¢)/1—22 cos™'c
—(z—c)* log N]

where

N=1—c;r,—-1,/1—?1/1—a?
T—¢C
Condition (1) leads to the relation (cf. (18))

o [ vrsme (S —a )t Toup

+b 2_71_13=Q @)
The leading-edge vorticity may be written as
o) 28
7% (%+¢a+¢ﬁ+¢;+¢ﬁ+¢ﬁ.)z-—l=m
On substituting for the ¢’s, m use of relation (2)

and of equation XT, reference 5, which is

f e-—lh‘oda:o
Ck)=
a:o+1 -
s L
there results
~32 2000 Q— b 2= ep+ Z0g)
REFERENCES

1. Wagner, Herbert: Uber die Entstehung des dynamischen
Auftriebes von Tragfitigeln. Z. {. a. M. M., Band 5, Heft 1,
Feb. 1925, S. 17-35.

2. von Kdrmén, Th., and Burgers, J. M.: General Aerodynamic
Theory—Perfect Fluids. Aerodynamic Theory, W. F.
Durand, ed., vol. II, Julius Springer (Berlin), 1935.

3. Kiussner, Hans Georg: Schwingungen von Flugzeugfliigeln.
DVI—Jahrbuch 1929, S. 313-334.

4. Glauert, H.: The Force and Moment on an Oscillating Aero-
foil. R. & M. No. 1242, British A. R. C., 1929.

5. Theodorsen, Theodore: General Theory of Aerodynamic In-
stability and the Mechanism of Flutter. T. R. No. 496,
N. A. C. A, 1935.

6. Katzmayr, R.: Effect of Periodic Changes of Angle of Attack
on Behavior of Airfoils. T. M. No. 147, N. A. C. A., 1922.

7. Cicala, Placida: Le Azioni Aerodinamiche sui Profili di Ala
Osecillanti in Presenza di Corrente Uniforme. Roy. Acad.
Sci. Torino, 1935.

8." Pistolesi, Enrico: Aerodinamica. Unione Tipografico—Edit-
rice Torinese, 1932.

TABLE I.—VALUES OF THE BESSEL FUNCTIONS

k & Jo Ji Yo n D F —aq
@ 0 0 0.5000 | 0O
10 o] —0.2450 | 0.0435 0. 0557 0.2490 L2548 | . 5000 .0124
8 .1608 |— 2767 | — 2882 | — 1750 L4251 | L8017 . 0208
4 —. 8971 [—. 0860 | —.0169 . 3079 .6389 | . 5037 .0305
2 14 L2239 | 5787 L5104 | —.1070 L2013 | .5120 . 0577
1 1 L7662 | (4401 . 0383 L7812 6706 | 5304 .1003
.8 1 .8463 | .3688 | —. 0888 .9780 3.4076 | 5841 .11685
.6 1 L9120 | .28687 | —. 8085 | —1.2604 4.7198 | .5788 .1378
.5 2 L0385 | 2423 | —. 4448 | —1.4714 5.8486 | .5970 . 16507
.4 %2 L0604 | .1060 | —.6060 | —1.7808 7.6823 | .6260 .1650
.3 L9776 | L1483 | —.8072 | —2.2029 | 11130 . 6650 .1793
.3 5 .8900 | .0995 | —1.0810 | —3.3236 | 19.570 . 726 . 1888
.1 10 .9975 | .0499 | —1.5343 | —6.460 57.810 . 8320 1723
.05 20 9004 | .0260 | —1.979 [—I12.8 194. 26 9080 .1305
.25 40 L0000 | .0125 | —2.430 [—25.6 718.4 L0545 .0872
.0L | 100 1.000 L0050 | —3.008 |—63.7 41965 L9824 . 0482
0 @ L000 |O j—co —o @ 1.000 0




