
REPORT 1368
/

SYSTEMATIC TWO-DIMENSIONAL CASCADE TESTS OF NACA 65-SERIES COMPRESSOR
BLADES AT LOW SPEEDS 1

By JAWISC. EMERY,L. JOSEPHHEREW JOENR. ERWIN,and A. RICHARDFEUK .

SUMMARY

The performanm of iVACA 66-series comprw80r blade
eections in CU8eudeha-s been ino.%tigated8y8tematieullyin a
low-speed cascade tunnel. Porous Lxt-seaion eide waU8and,
for high-pre+wure-ri.secondiiiom, porwflexible end wails were
employed to e8tabli8hcond?%%n.sclo8ely simulali~ two-dimen-
Sionrdjblo. Blua% 8eetwm of design lift coe~enfa from
O to ,$2,’7were tested over the w.mbleangle-ofa range for
various comblnu-tionsof inlet-jlow angle /31of 30°, J/6°,60°,
and 70°, and solidity u of 0.60, 0.76, 1.00, 1.%5, and 1.60.
Design points were cho8en on the bti of optimum high+peed
opermtian. A 8@icient number of eombinatimw were tated
to permit interpolation and eirirapolti”on of the data to all
conditiorwm“thinthe usuu.Jrange of application.

The re9uLtxoj i%ti inve3ti.gatiOnindicate a cmtinuowx caria-
twn oj bkde-8ection performance w Lb mujor ca$eadeparam-
ett?r8,bladecamber,inlet angle, and 8oI?iddywere variedover the
iixt range. Summary curve-soj the reaub have been prepared
to enable compressordesign@8 to 8e/.ectthe proper bludeuwn.ber
and angle oj attuck whm the compressor veibciiy dizgram and
desiredsolidity ?uwebeen dei!ermind.

At afew test &itwwj an upper limit to the dewjn lifi co-
e~ent that could provide sattijado~ perjorm.mw w jound.
The8e resui%sprovide information w to the maximum mlu.e oj
the loadi~ parameter, exprtxsed m the product of solidity and
section lift coej%ient bmxl on the vectormean veloeity, that cum
be used eJeetweJyin mmpr@80rdaign. Anulyti oj the tr&
indicaikd that the wmmon practice of emplO@W a conhnt
maximum mlue oj the loading parameter jor all inlet angl.ea
and 8ohk?itie8jaiii? to dejine i%? ob8mvedpqformance oj the
campremorbiizdesddied in this invest@tion.

An indtzcthath positwe and negaiwe bimi%of uq?d angle-
oj-ati!ud!range occurredwh-cnthe 8eu%n drag eo@i.%mt reached
twice the minimum value WU.Swed to edmate the operati~
range oj the camprt%80rblizdesections 8tudi.ed. A broad oper-
ating ran#efor these8ectti WXZ.Sob8erved,exzeptfor eondi%ma
oj h@h+xtpressure rise acro88the ca.scude~esponding to high
cambersat high inld angkm. These conditimware not typical
oj u.suuldes@n pmctice and no di@dty shOWUordinarily be

enmunt.wedin empibying the-sebhuie8ectww. In general, the
ob8ervedpenjormunceof A?ACA 66-serks wmpres80r blad~ in
ewcade ix cowidered to be very 8atisjwtirg.

INTRODUCTION

The design of an axial-flow compressor of high perform-
ance involves three-dimensiomd high-speed flow of com-
pressible viscous gases through successive rows of cIosely
spaced blades. No adequate theoretical solution for this
complete problam has yet appeared nor, horn consideration
of the compltity of the problem, does it seem likely that
complete relationships will be established for some time.
Various aspects of the problem have been treated theoreti-
cally, and the results of those studies are quite useful in
dwign calculations. All such studies, however, have been
based on idealized flow, with effects of one or more such
physical realities as compressibility, tite blade spacing,
and viscosity neglected. Consideration of viscosity effects
has been particularly diilicult. It appears, therefore, that
in spite of advanoes in theoretical methods, theory must
be supplemented by experimental data for some time to
oome.

Some of the information required oan be obtained only
by experiment in singkwtage and multistage compressors.
Much of the information, however, can be obtained more
easily by isolating the effects of each parameter for detailed
measurement. The eilects of inlet angle, blade shape,
angle of attack, and solidity on the turning angle and drag
produced can be studied by tests of compressor blades in
two-dimensional cascade tunnels. Cascade tests oan pro-
vide many basic data concerning the performance of com-
pressors under widaly varying conditions of operation with
relative-ease, rapidi~, and low cost. A number of success-
ful high-speed axial-flow compressors have been designed
by using low-speed ossoade data directly. A more reheal
procedure, how-ever, would use cascade data, not as the
final answer, but as a broad base from whioh to work out
the three-dimensional relations.

Data horn a large number of two-dimensional cascado
tests have been available in this and other. countries for
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some years. Although the cascade cdigurations used in
these investigations were geometrically two dimensional, in
no c&e except that of the porous-wall cascade of reference 1
was the flow believed to be two dimensional. This situa-
tion is ordinarily accepted on the grounds that the flow in
the compressor is also subject to, three-dimensional end
effects. That similar end conditions would exist in sta-
tionary cascad~ and rotating blade rows seems unlikely.
As discussed in reference 1, there is evidence, however,
that the flow through typical axial compressor bladw is more
nearly like that in aerodynamically two-dimensional cas-
cades than like that in cascades which are only geodeti-
cally two dimensional. Excellent correlation between
porous-wall cascade and rotor-blade pressure-distribution
and turning-angle vrdues is shoivn for the design conditions
of the compressor investigation reported in reference .2.
The proper basic approach to the Compr=or design prob-
lem, therefore, would seem to be to sepaxate the two-
dimensional effects from the three-dimensional. This ap-
proach should also aid in the evaluation of the separate
effects of tip clearance and secondary flow in axial com-
pressors. Therefore, a systematic series of low--speed
cascade teats of the NACA 65-series compressor blade
sections were made by means of the porous-wall technique
to insure two dimensionality of the flow. These results
and an analysis of the data are presented, as well as sum-
marized data in the form of carpet plots for use in specfic
d@n problems.

SYMBOLS

mean-line loading de&nation
blade height or span, feet
blade chord, feet
section drag coefficient
resultankforce coefficient
section lift coe5cient
camber, expressed as - design lift coei%cient of

isolated airfoil
.

section normal-force coefficient
section normal-force coefficient obtained by cal-

culation of momentum and pressure changes
across blade row

section normal-force coefficient obtained ~by
integration of blade-surface pressure distribution

wake momentum ditTerencecoeilicient
force on blades, pounds
force on blades due to momentum change through

blade row, pounds
force on blades due to pressure change through

blade row, pounds
force on blades due to momentum dillerence in

-wake,pounds
tangential spacing between blades, feet
ratio of section lift to section drag
Mach, number
total presmre, pounds per square foot
static presare, pounds per square foot
static pressure rise across cascade, pounds tier

square foot

dynamic pressure, pounda per square foote
nondimensional static-premure-rise paramter
Reynolds number based on blade chord

()

P–p,
pressure coefficient ~

rotor-blade rotational speed, feet per second
flob- velocity, feet per second
flow velocity relative to blades, feet per second
chordwise distance from blade leading edge, feet
scaled value substituted for 0, 0+ 50(cr,0—0.4)
perpendicular distance from blade chord line, feet
angle between flow direction and blade chord,

degrees
angle between flow direction and a perpendicular

to the cascade axis, degrees
flow turning angle, degrees @-&)
angle between resultant-force direction and tan-

gential direction, degrees
mass density of flow, slugs per cubic foot
solidi~, c/g

Subscripts : ‘
a“ component in axial direction
d design value, except in drag coe%icient
1 local
‘m referred to vector-mean velocity, W~
8 flow outside wake
u’ component in tangential direction
1 upstrem.nof blade row
2 downstream of blade row

APPARATUS,TEST PROGRAM,AND PROCEDURE
DWCRIPTION,OFTEST EQUIPMENT

The test facility used in this investigation was the Langley
5-inch low-speed, porous-wall cascade tunnel described in
reference 1 and shown in figures 1 rmd2. During the course
of this program some further improvements were required to
establish prop’er testing conditions at higher pressure rise
conditions. In particular, th~ boundary-loyer buildup
behind the slot on the convex flexible end wall with high
pressure rise cascad~ was sufficient to cause separation and
destroy sindation of the infinite cascade even though the
blade flow w% not sepaxa%ed. This condition was corrected
by replacing the end wall with a porous flexible wall and
suction chamber. In addition the large ditlerence in flow
length from the entrance cone to the side-wall slots between
the tunnel ends at the high6r inlet rdr angles gave quito
ditferent botidary-layer thickness along the length of tho
side-wall slots and made uniform flow entering the test
section difficult to obtain. This condition was improved
by making the changeable side plates porous and drawing
a small amount of air through them. The concww flexible
end wall was made porous to provide a further control of
flow conditions through the test section.

The porous material found to be most satisfactory is com-
mercial woven monel iilter cloth. This cloth is availablo
in various meshes in widths up to 36 inches and can be
calendered at the factory to reduce porosity and improve
mrface smoothness. The combination found most suitable
for the present work was a Dutch twill double weave of 30
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by 250 mesh with warp wire diameter of 0.010 inch and fill
wire diameter of 0.008 inch. TIM origimd thickness of
about 0.020 inch was reduced to 0.018 inch by calendering.
The resulting materkd has the porosity characteristics shown
in figure 3. The primary advantages of this material over
others tried previously are its uniformi~, fladility, strength,
surface smoothness, and relatively low cost.

DESCRIPTIONOFAIRPOJLS

The blade family used in this investigation is formed by
combining a basic thickness form with cambered mean
lines. The basic thickness form used is the NACA 65(216)-
010 thiclmess form with the ordinates increased by 0.0015
times the chordwise stations to provide slightly increased
thickness toward the trailing edge. This thiclmess form
has been designated the 65-010 blower blade section in
references 3 and 4. It was not derived for 10-percent
thickness but wns scaled down from the NACA 65,2-016
airfoil given in reference 5. As discussed in reference 5, the
scaliig procedure gives the best results when it is resticted
to maximum thickness changes of a few percent. Subsequent
to the cascade studies of reference 3, in which the NACA
65-010 blower blade was fit introduced, the basic thickness
form for the NACA 65-010 airfoil section was derived and
included in reference 5. The ordinates for the basic thick-
ness form of the blower blade in reference 3 difler slightly
from the airfoil ordinates in reference 5 but are considered
interchangeable within the accuracy of the results reported
herein. Ordinates for both the scaled thickness form (ref.
3) and derived thickness form (ref. 5) are given in table I.

TABLE I

ORDINATES FOR NACA 65-010 BASIC THICKNESS

[Stationsandordinateainperaentchord]

Station, z

o
.5

i u
25

n
10

;:
2s
30

::
45
50
65
60

%
75
80
85
90

l%
L. E. radius

M(&l16)-O;O

bined dti’
~=o.oo15Z

o
.752
.890

1.124
1.571
2.222
2.709
3.111
3.746
4.218
4570
4.824
& ;:;

5:029
4870
4.570
4.151
3.627
3.038
2.451
L 847
1.251
.749
.354
.150
.666

Derived
65-010
airfoil

o
.772

i %
1.574
2177
2647
3,040
3.666
4143
4503
& 760
4924
& 996
4.963
4.812
4530
.4, 146
3.682
3.156
2684
L 987
L 386
.810
.306

0
.687

FORMS

The basic mean line used is the a=l.O mean line given on
page 97 of reference 5., The amount of camber is expressed
in reference 5 as design lift tieflicient Ck.for the isolated air-
foil, and that system has been retained. ordinates and slopes
for the a=l.O mean line are given in table If for CAO=l.O.
Both ordinates and slopes are scaled directly to obtain
other cambers. Cambered blade sections are obtained by
applying the thickness perpendicular to the mean line at
stations laid out along the chord line. The blade sections
tested are shown in figure 4. In the designation the camber
cl,. is given by the first number after the dash in tenths.
For example, the NACA 65-810 and NACA 65-(12)10
blade sections are cambered for cl,O=O.8 and CI,.=1 .2,
respectively.

TRSTPIIOQRAMANDPROORDURE

Test program.-The test program was planned to provide
sufficient information to satisfy any conventioneJ vector
diagram of the type shown in figure 5. Tests of seven-
blade cascades were run with various combination” of inlet
air angle & of 30°, 45°, 60°, and 70°, solidity u of 0.50, 0.75,
1.00, 1.25, and 1.50, and cambers from CJ,Oof O to 2.7 over
the useful angle-of-attack range. The most complete test
series were run at solidifies of 1.00 and 1.50; sufhcient tests
were made at the other solidifies to guide interpolation and
extrapolation. The combinations of P,, u, and blade sec-
tion which were tested are tabulated in table IJI. The
camber range covered at solidifies of 1.00 and 1.50 was
determined by one of two limitations. At the higher inlet
angles progr-ively higher cambers were used until the
limit loading had been reached, that is, until the design
condition coincided with stall; at lower inlet angles, how-
ever, deliign turning angle exceeded inlet angle before the
limit loading had been reached and the tests were terminated

TABLE II

ORDINATES FOR THE NACA a= 1.0 MEAN LINE, Cr,.= 1.0

[Stationsand ordinak in percent chord]

Station,x

o
.5
.75

L 26
25
5.0
7.6

10

H
25
30

%
45
50
56
60
65

%
80
86
90

1::

Ordinate,y

o

:a
.536

i ~%
2120
2585
3.365
3.980
4.475
4.860
& 150
h 366
5.475
5.615
6.475
6.355
s. 150
4860
4475
3.980
3.365
2585
1.680
0

-------
0.42120
.38876
.34770

:%%
.19995
.17486
.13806
.11030
.08745
.06745
.04925
.03225
.01596

0
–. 01595
–. 03226
–. 04926
–. 06745
–. 08745
–. 11030
–. 13805
–. 17486
–. 23430
-------



-. .-— .— -—.. ..——. . ..-—..—— . . ..-. —— —.— . .

716 REPORT 136%NATIONAL ADVISORY COMMITTEEFOR AERONAUTICS

TABLE ti

CASCADE COJIBINATIONS TESTED

NACA tlilfOfi
c

(3’=30” (3,=45” B,=oo” l%=io”

65+10 65-410
0.60

[1
65- 12 10

u
66- 12 10

66- 18 10 6E- 18 10

65-410 65410 ‘
.75

[1
65-12 10

[1
65- 12 10

65- 18 10 66- 18 10

66-010 6S-010 66-010 6S-010 ,
66-+10 66-410 65-410 66-410
65-610 66-810 65-S10 66-810

11

66- 12 10

[~ I

65- 12 10
1.00

66-12 10
[

65- 12 10
65- 15 10 65- 15 10 [165- 15 10 s 66- 1S 10
65-18 10 65- 18 10 65- 18 10

65-21 10 [65-21 10
65-24 10
65-27 10

66-410 65-410 65-410 65-410
1.25

[1
65- 12 10

[1
6S- 12 10

[1
6S- 12 10 65-810

Ofi- 18 10 65- 1S 10 6> 18 10 65-(12 10
165-(15 10

65-010 66-010 65-010 65-010
66-410 66-410 65-410 65-410
6s-810 66-810 65-810 66-810

lW %#){ q# g$j ~~w

* N70designpoint m obtained for this combination.

there. Ltit cor&ions were attained at /3,=70°, u=l .00,
1.25, and 1.50, and at /31=60°, 0-=1.00 and 1.50.

Test procedure.—It was shown in reference 1 that two-
dimensional flow can be achieved by controlling the removal
of boundary-layer air through porous test-section side walls
so that the downstream static pressure equals the ideal
value, corresponding to the turning angle, corrected for the
blocking effect of the wake. This criterion waq accordingly
used in these tests. In addition, the fletible end-wall shapes
and suction-flow quantities were adjusted to obtain uniform
upstream flow direction and wall static pressures, criteria
of two-dimensional flow simulating an infinite cascade.
This procedure necessitated an approximate measurement
of turning angle and wake size and an estimate of the correct
pressure rise before the iinal settings could be made.
Initially, this system required some cut-and-try procedure
but after the initial tests at each combination of 191and u a
chart similar to figure 5 of reference 1 could-be drawn to
assist in estimating the pressure rise. An experienced
operator could make the required estimates and settings
very quickly by this procedure. Spot calculations of the
correct pressure rises were made after completion of tests
to check the accuracy of the values used.

Tests were made at each cascade combination shown in
table III over a rrmge of angles of attack at intervals of 2°
to 3°. In general, the tests covered the interval from nega-
tive to positive stall, where stall was determined by a kirge
increase in wake size. The principal exceptions occurred for
low cambered blades where negative stall would have

occurred at negative turning. It was found that the small
wall boundary-layer buildup for negative turning angles and
hence negative pressure rises would have required a less
porous material than that normally used, to avoid excess uir
removal while maintaining sticient suction pressure cliffer-
ential to avoid local reverse flow through the porous material.
It was not deemed worthwhile to change the porous materinl
to obtain data in thisrelatively uninterestingrange. For tho
NACA 65-010 section at 19,=30°, however, the difhmlty
persisted well above 0° turning, and this combination wm
tested with both porous and solid walls.

The tests were entirely within a speed range considered
incompressible. The lhlk of the tests at solidifies of 1.00
and 1.50 were run at an entering velocity of 95 feet per
second. For the usual 5-inch blade chord, the Reynolds
number was 245,ooo. Some information near the clmign
point was obtained at higher effective Reynolds number for
most cascade combinations by adding roughness to the blaclo
leading edges in the form of %-inch-wide strips of, masking
tape draped around the leading edges from wall to wall.
In addition, some tests near design conditions were run at a
speed of 135 feet per second and a Reynolds number of
346,000 with and without roughness. Two cmcade com-
binations were tested at design conditions over a rimgo of
Reynolds numbers from 160,000 to 470,000 to assist in esti-
mating performance at Reynolds numbers other than the
usual test value. In order to provide further information on
scale effects, two cascade combinations wero tested through
the a range with leading-edge roughness at the standard
Reynolds number and in the smooth conditions at a Reynolds
number of 445,000. For solidifies of 0.50 and 0.7s the tunnel
could not accommodate seven blades of 5-inch chord; the
blade chord was reduced to 2.5 inches and the Reynolds num-
ber to approximately 200,000 for those tests. Tests with
roughness were made near the design point for solklities
below 1.00, but Reynolds numbers higher than 200,000
could not be obtained with the existing equipment.

Test measurements .—The blade pressure distribution was
measured at the midspan position of the central airfoil at
each angle of attack. In addition, surveys of wako totnl-
pressureloss and turning angle were made downstream of the
caacade. The total-pressure surveys were mnde with u non-
integrating rnultitube rake approsinmtely 1 chord down-
stream of the blade trailing edges. ‘ Turning anglo surveys
were made by the ~(nullmethod” with a claw-type yaw bend;
since the yaw device was mounted on a track at the rear of
the tunnel the distance from the blndes variecl from about
1 to 3 chords in the flow direction depending upon the inlet-
and turning-aagle combhmtion. Flow discharge anglo
readings were taken at a number of points downstream of
several blade passages along the tunnel center line. These
readings were averaged to obtain the final value. Since the
angle readings in the wake deviated several degrees from the
average reading, and the direction of the deviation varied
consistently with the direction of the total pressuregradient,
the accuracy of readings in the wake was questioned. There-
fore, the values obtained when the wake readings were
included and excluded in the averaging process were com-
pared for a number of tests. The resulting turning-nngle
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curves compared very well, but scatter was considerably less
when only the redi&s outside the wake were used to obtain
the turning-angle value. This latter procedure has been
ndopted as the standard method of measuring the flow dis-
charge direction. Static pressure and upstream flow angles
were measured hppro.simately 1 chord upstream of the
blade row. Total pressure was measured in the settling
chamber. Pressures were obtained by oriiices with pressure
leads to manometer boards. Angles of flow were again
obtained by use of a claw-type yaw head by the null method.

Calmdations.-Pressure distribution and wake-survey data
wero recorded and force values calculated nondimensionally
as coefficients based numerically on the upstream dynamic
pressureql. This choice was dictated partly for convenience
in reducing the drLta (standardization of ql permits use of
manometer scales which give nondimensional values directly)
rmd partly because information based on entering flow was
considered most convenient for design use, particularly when
critical speed is important.

All forces due to pressure and momentum changes across
the blndc row were summed to obtain the resultant blade
force coefficient cr,1. In this process the wake total-pressure
deficit was converted to an integrated momentum difference
by the method given for the drag calculation in the appendix
of reference 5. This wake momentum difference, expressed
nondimensionally, is designated the wake coefficient c%1; it
represents the momentum difference between the wake and
the stream outside the wake, and is based on ql numerically.
The wake coefficient is not considered to be a true drag
coefficient, but is used merely for convenience @ asseasing
the.contribution of the wake in the summation of forces.

The resultanhforce coefficient was resolved into compo-
nents perpendicular and parallel to the vector mean velocity
W. (see fig. 5) to obtain the lift coefficient c,,, and the drag
coefficient c~,l, respectively. The mean velocity was cal-
culated as the vector average of the velocities far upstream
and far downstream. The velocity far downstream was
obtained from measurements just behind the blades by using
a momentum-weighted average of the velocity just behind
the blades. This rather detailed method was found neces-
sary to give consistent drag values. Since the resultant
force is very nearly perpendicular to the mean veloci~, the
value of the component parallel to the mean velocity is quite
sensitive to mean-velocity direction. Attempts at using the
downstream velocity outside the wake for avera.@g rather
than the momentum-average velocity gave very erratic drag
results and indicated that mean velocity directions obtained
in that manner were not reliable. In addition to the lift and
drag, the section normal-force coefficient c~x,l was obtained
by computing the component of the resultant-force coefficiaut
perpendicular to the blade chord line. This normal-force
coefficient was compared with the normal-force coeiiicient
cN,p,1obtained by integration of the blade surface pressure
distribution as a check on the accuracy of individual tests.
A detailed derivation of the method of calculating the force
coefficients is given in appendix A.

Aoouracy of results,—In general the turning-angle valuea
meamred are believed to be accurate within + 0.5° near the
design values. The correlation procedure used is believed

to have improved further the accuracy of the design values
in the final results. For tests far from design, that is, near
positive or negative stall, the accuracy was reduced some-
what. In addition, at an inlet angle of 70° with sections of
zero camber, satisfactory measurements were very diflicult
to obtain and the accuracy was reduced.

As noted in the section describing calculation methods, the
blade normal-force coefficient c~wJ calculated from pressure-
rise and momentum considerations was compared with the
normal-force coefhcient cN~,l obtained from the pressure
distribution as a check on the overall accuracy of individual
tests. Since these values would be aflected by error in
tu.rn@-a@e, surface pressure or wake-survey readings, or
by failure to achieve two dimensionality of the flow, this
comparison is a check on the overall acceptability of the
results. A difference of 5 percent between the two normal-
force coefficients was set as the outside limit for acceptance
of individual tests for lift coefficients above 0.2; below lift
coefficients of 0.2 a direct numerical comparison was made
using a limit of +0.01. The agreement was well within
the 5-percent limit for most of the tests as originally run, and
only a few conditions had to be repeated. The accuracy of
the liit coei%cients is directly comparable to that of the
normal-force coefficients. The accuracy of wake-coefficient
and drng-coefficient values will be discussed later under
Reynolds number effects.

PRESENTATIONOF RESULTS

Detailed blade-performance data for all cascade combina-
tions tested are presented in the form of surface-pressure
distributions and blade-section-characteristic plots in figures
6 to 84. The representative pressure dish-ibutions presented
have been selected to illustrate the variation through the
angle-of-attack range for each combination. The section
characteristics presented through the angle-of-attack range
are turning angle 8, lift coeillcient Cl,l, wake coefficient cm,l,
drag coefficient c~,,, and lift-drag ratio Z/d. The effects of
changes in Reynolds number and blade-surface condition on
section characteristics are given in figure 85.

Trends of section operating rmge, in terms of angle-of-
attack range, with camber for the four inlet angles of the
tests are presented in figure 86. Variation of idetil and
actual dynamic-pressure ratio across the cascade with
_ fmgle and inlet angle is presented in figure 87.
Figure 88 gives the relation between inlet dynamic pressure
and mean dynamic pressure for convwiience in converting
~efiicients from one reference velocity to the other. Limit
loading information is summarized in figure 89. Comparison
of the present porous-wall-cascade turning-angle data with
those of the solid-wall cascade of reference 3 is made in
figure 90 for a typical inlet angle and solidlty combmatiom

The information which is most useful for choosing the
blade sections to W compressor design vector diagrams
is summmized in figures 91 to 111. The variation of turning
angle with amgle of attack for the blade sections tested is
presented for one combination of inlet angle and solidi@- in
each of the figures 91 to 106. Trends of the slopes of the
curves of turning ansgleagainst angle of attack near design
are given in figure 107. Figures 108 to 111 are design and
correlation uharts; the variation of design turning angle and
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design angle of attack with the parameters, camber, inlet
angle, and solidity, is presented for several combinations of
the parametem so that interpolation to the conditions of a
design velocity diagram is relatively easy.

The selection of the blade section and the blade setting
required to fulfill a given velocity diagram at design condi-
tions requires several interpolations and cross plots of the
data presented in figures 6 to S4. In order to facilitate these
interpolations, a carpet plotting technique described in
reference 6 has been used to cmrelate the data. This
technique, for which details are explained in appendix B,
permits a function of several variables to be presented on a
single graph and such a graph lends itself readiiy to interpola-
tions for intermediate values of the variables plotted.
Carpet plots summarizing the present data are presented in
figures 112 to 116, and an example illustrating their use is
included in appendix B.

DISCUSSION

D~GN CONDITIONS

The values and shape of the blade-surface pressuredistribu-
tion are important criteria ‘for predicting the conditions of
best operation at high Mach numbem. Velocity peaks oc-
curring on either surface in low-speed tests would be ac-
centuated at high speeds, and supersonic velocities with at-
tendant shock losses would occur at relatively low entering
Mach numbers. The selection of the angle of attack dwig-
nated as “design” for each combination of inlet angle,
solidity, nnd camber is based on the premise that the blade
section will be required to operate at Mach numbers near the
critical value. The trend of pressure-distribution shape over
the angle-of-attack range w-as examined for each cascade
combination, and the angle for which no veloci~ peaks
occurred on either surface -was selected as being optimum
from the atandpoint of high-speed usage. In general, the
design angle so selected is near the middle of the low-drag
range thus indicating efficient section operation for angles
a few degreeshigher or lower than the design condition. The
choices of design angle of attack are indicated by an arrow
on the blade-section-characteristic plots of figures 6 to 84.
The design angles are also shown by crossbars on the turning-
angle summq curves in figures 91 to 106.

Correlation of the design angles of attack and design turn-
ing angles over the range of camber, solidity, and inlet angle
is given by figures 108 to 111 in a manner convenient for
design use. The correlation is excellent; smooth curves re-
suR when any two of the three parameters are used as inde-
pendent variables.

The section~haracteristic curves of figures 6 to S4 indicate
that, in general, the design points chosen do not give msxi-
mum lift-drag ratios for low- and mediumqeed operation.
For desibmswhich will not operate near critical speed, there-
fore, kgher efficiency could be obtained by using angles of
attack several degrees higher than the design points pre-
sented. This procedure must be used with caution, however,
at the higher camber and inlet-angle combinations since the
section operating range becomes quite narrow for combina-
~ions of highest camber and inlet angle corresponding to

the highest values of Ap/ql. It is recmnrnended that the
individual pressure distributions and section-characteristic
curves be examined before departure from the spec~ed dwign
points is made.

REYNOIDSNUMBEREFFECTS

Pressure distribution and boundary layers,—For many of
the tests at angles of attack near and below design, there is
evidence that a region of laminar separation of the boundary-
Iayer flow occurred on the convex blade surface; this sepa-
rated boundary layer then became turbulent and reattaclmd
to the blade surface as a relatively thick turbulent boundary
layer. The mechanism of such a flow sequence is described
for the isolated airfoil in reference 7. The laminar separation
is indicated by a relatively flat region in the pressure distri-
bution on the convex surface and the turbulent reattachment
is characterized by a rapid pressurerecovery just downstream
of the sepaxatedregion. This flow pattern can be seen clearly
in many of the iigures but is particularly evident in figures
42 (a), 42 (c), 56 (b) to 56 (d), and 66 (a) to 66 (e). For
some tests, laminar separation appeared to occur on tlm
concave surfaceaswell. This is noticeable in figures 42 (b),
42 (d), 42 (e), 66 (c), and 66 (d).

The extent of laminar boundary-layer flow which occurs on
an airfoil surface is affected by Reynolds number, stream
turbulence level, airfoil surface condition, and surface pres-
sure gradient. Increases in Reynolds number, stream turbu-
lence, and surface roughness would promote earliertransition.
Qualitatively a gradient of decreasing surface pressurewould
be required to maintain laminar flow if the Reynolds number,
stream turbulence, surface roughness, or the combination of
these, which might be referred to as “effective Reynolds
number,” were high enough to favor transition. At the
turbulence level of the 5-inch cascade tunnel, however,
lam.inarflow and laminar separation on the convex surface
persisted to Reynolds numbers up to 246,000 even when the
surface pressure gradient was slightly unfavorable. The
addition of leading-edge roughness, as described in the section
“Test Procedure” reduced the extent of the lnm.imr sepMa-
tion region, but did not eliminate it in some cases. In view
of the thick boundary Kyer which results from Iaminm
separation and reattachment, it appears that the minimum
iinal boundary-layer thickness and section drag coefficient
would result if the Reynolds number and turbulence values
were such as to cause transition before lamhmr separation
occurred. Use of leading-edge roughness to reduce an ex-
tended laminax separation region. would probably result in a
thinner &al boundary layer than that for the smooth bl~do
at the same Reynolds number but would probably result in a
thicker boundary layer than that for the smooth blnde at
high Reynolds number. A thick turbtient boundary layer
would be expected to promote turbulent separation near the
trailing edge of compressor blades which produce a significant
pres&ure rise.

Wake ooefflcient and drag ooeffloient,-As noted pre-
viously, the wake coeiiicient Cw,l expresses the momentum
difference between the wake flow and the downstream flow
outside the wake in a manner convenient for use in summing
blade forces. The wake coefficient is, of couraej directly
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dependent upon boundary-layer thickness and shape, and
changes in the bounclmy layer with changes in effective
Reynolds number are reflected in the wake-coefficient values.
Furthermore, if the effective Reynolds number is near the
condition where laminar separation may or may not occur,
the change in surface pressure gradient with change in angle
of attack would control the presence and extent of laminar
separation on either blade surface. Obviously erratic varia-
tions in the value of the wake coefficients would result under
those circumstances. The blade-section-characteristic curves
of iigures 6 to 84 show that in most cases the wake-coefficient
values were irregular as the angle of attack was varied in
the region near design at the usual test Reynolds number of
245,000. With either higher Reynolds number or leading-
cdge roughnees, or both, the rapid local pressure recove~
associated with boundary-layer reattachment was less evi-
dent in the surface pressure distributions and the wake
coefficient usually was reduced. For a few cases, notably
those of figures 34 (g), 35 (g), 68 (g), and 84 (g), leading-edge
roughness increased the wake coefficient, however; in those
cases the roughness apparently produqed a more severe
turbulent boundary layer than laminar separation and re-
dtachment did.

The trend of drag coefficient C4,, defined as the component
of resultant force parallel to the mean velooity, was similar
to that of wake coefficient. The drag curves were quite
irregularnear design angle of attack and the values measured
varied as much m 30 percent with Reynolds number and
roughness. Obviously the values of both drag coefficient and
lift-drag ratio near design are not sufficiently reliable to use
directly in a design analysis. These values should be of
some use for comparison purposes, however. The large
drag rise associated with positive and negative stall shouId
be relatively insensitive to Reynolds number effects, because
the pressure gradients on the critical surfaces are then un-
favortible to laminar flow and therefore should be useful for
determining effective operating range.

The trend of drag coefficient with Reynolds number near
the design condition for the NACA 65-(12)10 blade section
at I%of 60°, u of 1.00, and B1of 45°, u of 1.50 shown in iigure
85 (a) serves to indicate the magnitude of the Reynolds
number effect. Increasing the stream turbulence by the use
of a }&inch-meshscreen upstream of the test section lowered
the drag coefficients at low Reynolds number, and reduced
the Reynolds number at which the drag coefficients become
essentially constant with Reynolds number. The compari-
son of c~,l values through the angle-of-attack range for the
same cascade combinations at two Reynolds numbers in
figures 85 (b) and 85 (c) gives some further indication of
Reynolds number effect. For R of 445,000, the drag coefE-
cients me lower and the curves are smoother than for R of
245,000. The addition of leading-edge roughness in figure
85 (b) smoothed the drag curve but did not give the same
decrease in drag that the high R did. There appeam to be
somo effect on the angle of attack at which the drag rises
rapidly in figure 86 (c) but since the effect was not the same
in figure 85 (b) no conclusions can be drawn.

Turning angle and lift,—Figure 85 (a) shows that the
effect of Reynolds number on turning angle near design al is

G~@-jo7_fl~~

almost insignificant for R between 220,000 imd 470,000.
This is borne out by the fact that throughout iignres 6 to 84
changes in o with Reynolds number and roughness were~in
general, within the limits of measuring accuracy. Below R
of 220,000 a decrease of design turning angle can be expected.
Reynolds number appears to have some effect on turning
angle near stall in figure 85 (c), but again the effect has not
been definitely established. It can be concluded that the
design turning angles presented are correct for R above
220,000, but that the effect of R near stall is unknown.

Laminar sepmation had no appreciable effect on the
measured lift. The lift-coefficient values for a given test
agreed well at low and high Reynolds numbers and with
and without roughness. The normal-force coefficients ob-
tained by integration of the pressure distributions also
changed very little with changes in Reynolds number and
ronghmw.

OPERATINGEANGE

In order to estimate the useful operating angle-of-attack
range of the various sections at the several solidity and inlet
angle conditions tested, Howell’s index of twice “the mini-
mum drag (ref. 8) was used to select the upper and lower
limits of angle of attack. As discussed previously in the
section concmming Reynolds number effects, the accuracy
of the measured values of drag coefficient near design angle
of attack sutlered due to laminar-flow separation. The
minimum value of drag coefficient could not be determined
exactly and an approximate value was used to determine the
operating range. For most of the test configurations, the
drag coefficient changed rapidly with angle of attack near
the ends of the useful range, so an error in the value of mini-
mum drag used would have only a small effect on the operat-
ing range value. Some scatter in the results was evident,
however.

No significant effect of solidity was observed. Most values
at constant camber and inlet angle fell within the scatter of
the points. A tendency’ for the range to increase slightiy as
the solidity was increased was detectable at fl,=45°, but this
was not evident for other inlet angles. The results plotted
in figure 86 indicate that the major determi.mmtof the oper-
ating range is inlet angle. h the inlet angle is increased,
the usable range of angle of attack is decreased, with greater
changes indicated for angles above design than for angles
below- design. The camber of the section affects the oper-
ating range in the following reamer for angles of attack
above design: at an inlet angle of 30°, the range increased
with increasing camber; at inlet angles of 45°, 60°, and 70°,
the opposite tiend occurred. For values of al less than
design, little change in range with camber was indicated for
P1=30°; at higher inlet angles, the range decreased as the
section camber increased.

TVlthhigh entering velocities, the section operating range
would be reduced because of a more rapid increase of drag
at angles of attack well above or below design. Further,
the comparison between sections of different camber, at
constant inlet angle and solidi~, would be altered as t~e
flow velocities relative to the blade surfaces exceed the local
velocity of sound.
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PRESSURERISE

The ideal, nondimensional presw.rerise Ap/gl across a tm-
dimensional cascade is specfied ~hen the inlet angle and
turning angle am known, since the ratio of the flow areas
determines the pressure rise. Since the mass flow is con-
stant, the actual pressure rise is less than the ideal because
of the “blocking” effsot of the wake on the downstream flow
area. For given inlet and turning angles, the blocking effect
would be more severe for higher solidity, since the untiected
flow mea is reduced. For incompremible flow the nondi-
mensional pressure rise is equ$ to one minus the dynamic-

AP ~_&.pressure ratio, that is, —= The actual dynamic-
!?1 !71

pressure ratio becomes higher than the ideal because of the
wake blocking effect. The ideal dynamic-pressure ratios,
and the actual ratios at design turning angles for two solid-
ifies, are summarized in figure 87 for the range of inlet and
turning angles of the tests. The dynamic-pressure ratios for
individual tests are given by the short bars at the 100-
percent points of the pressure-distribution plots in figures 6
to 84. Wake blocking effects would be changed by the same
Reynolds number and roughness factors which change the
wake coefficient; however, the percentage change in dynamic-
pressure ratio would be small.

LIMITLOADING

Information on the maximum loading which can be
achieved in a compressor blade row is important in the
design of high performance axial-flow compressor. ‘Asnoted
previously, the high pressure rise associated with large turn-
ing at high inlet angles promotes turbulent separation so
that at inlet angles of 60° and 70° the stall angle of attack
moved progressively closer to the design value with increas-
ing section camber. !I’he limit turning is reached when the
maximum turning angle is no greater than design turning
angle. The practical limit would be somewhat lower to
give a reasonable operating range.

Approximate hit turning was reached at ~1 of 60°, . of
1.00 and 1.50, and at 13,of 70°, u of 1.00, 1.25, and 1.50.
Information from those tests is given in terms of a commonly
used loading parameter, Uckm,in figure 89. Both the actual
test values of the parameter, and the ideal values calculated
using the test inlet and turning angles are presented. ATote
that the lift coefficient is here based, numerically, on the
mean velocity, to conform to the usual form of the parameter.

&%itrmily chosen constant values of Uckmhave often been
used as maximum allowable values in design analyses. The
fallacy of using any constant value as a limit is clearly shown
in figure 89; the true limiting value increases with increasing
solidity and decreases with increasing inlet angle. Since no
limits were reached for inlet angles of 45° and 30°, it is clear
that the limitation has ~ery little significance there except,
perhaps, at very low solidifies. The phenomenon is not yet
well enough understood to permit the choice of a parameter
which could define the overtill limitation as a single value.

COMPARISONWITHSOLJD-WALL CASCADE DATA

The comparison between pressure-distribution and turn-
ing-angle data for a solid-wall cascade tunnel and for tho
present porous-wall cascade tunnel is given in reference 1 for
the FJACA 65-(12)10 blade section at ~1of 60° and a of 1.00.
The comparison has been extended in figure 90 to includo
turning-angle data for all the cambers reported for PIof 60°
and u of 1.00 in reference 3. The turning-angle curves com-
pare fairly well for cambers up to cl,. of 0.8, but for tho
airfoils of higher camber the data of reference 3 deviate
significantly from the present results. Comparisons ~t other
conditions would show similar trends.

RELATIONSmPSB13TWEENTURNINGANGLEANDANGLEOFATTACK

Summaries of the relationships between turning angle and
angle of attack through the camber range are given for each
inlet angle and solidity in figures 91 to 106. The variations
are quite consistent for most of the range. Some inconsist-
ency in the shape of the curves at stall is a result of reduced
accuracy of measurement there. For combinations giving
moderate pressure rises straight-line relationships are indi-
cated for considerable portions of the curves. For the high-
est pressure rises, however, no defite straight-lino relation-
ships esist. The variation of the slopes near design is given
in figure 107 to assistin estimating relationships at conditions
other than those tested. These slopes are average slopes for
the camber range, and do not apply for the highest cambem.
They must be used with particular caution for inlet angles
neax 70°, since very narrow straight-line regions are prevalent
there.

CARPETPLOTS

The usual procedure in blade-section selection is to cleter-
mine the camber cI,O,which is required for a given design
veloci@ diagram at a selected solidity. Figure 112 gives
carpet plots of--the data at five solidity conditions. Tho
carpet plots indicate the variation of camber cl,., at design
angle of attack al,d with required values of inlet-air anglo p,
and design turning angle tl~. Each carpet plot is spacc~ from
the next by a number of grid units proportional to the clifler-
ence in solidifies. Since design angle of attack is independent
of inle&air angle, it is possible to present a carpet plot (fig.
113) showing design angle of attack ald as a function of
camber CZ,Oand solidity u.

The testswere made at tied inlet-air angles with the m@e-
of-attack variation produced by changing the blade setting.
Although data of this type facilitated the determination of
design conditions for the various combinations of inlet.nir
angle, solidity, and camber, it does not lend itself easily, ns
presented, to obtaining off-design performance of a blade
section as regards operation of this section in a compressor
in which blade setting is &ied and the angle of attack varied
by changing the inlet-air angle. However, if the data are
plotted as an off-design carpet, it is a simple matter to draw
in curves of constant blade setting and thus to predict the

,,
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vari~tion in turning angle with rmgle of attack for all inter-
mediate conditions of solidity, camber, and blade setting.
Such off-design carpet plots showing turning angle as a fnnei
tion of solidity, inlet-air angle, angle of attack, and camber
am presented in figure 114. Off-design data are presented
for the following sections:

~ACA 65–(4)10
NACA 65-(8)10
NACA 65-(12)10

.

NACA 65-(15)10
NACA 66-(18)10

Pressure rise as a percentage of inlet dynamic pressure
Ap/gl, called pressure-rise coefficient, has been used as a
cascade loading-limit parameter. It is known that cascade
losses increase rapidly above certain limiting values of
Ap/q,. However, in view of the physical meaning of the
pressure-rise coefficient, particularly in reference to the inner
and outer casings, it is considered to be a useful parameter.
lf the inlet-air angle, the turning angle, and the entering
llach number am known, calculations of an isentropic
pressure-rise coefficient is possible, provided some relation-
ship is assumed between the entering and leaving stream-
tube areas. Therefore, two carpet plots were made in order
to show the variation of the pressure-rise coefficient with
inlet-air angle p,, turning angle O,and entering Mach number
ill,. The first of these plots @g. 116 (a)) was calculated by
m.suming constant stream-tube area; the second (fig. 116 (b))
was calculated by assuming thnt the stream-tube area varied
so that constant axial velocity would be produced across
the blade passage. Pressure-rise coefficients obtained from

these two plots very often bracket the value associated with
the actual three-dimensional condition being emunined.

SUMMARYOF RESULTS

The systematic investigation of ~ACA 65-seriescompr=or
blade sections in a low-speed cascade tunnel has provided
design data for all conditions within the usual range of
application. The resuhs of this investigation indicate a
continuous variation of blade-section performance as the
importmt eaacade parameters blade camber, inlet angle,
and solidity are varied ovex the useful range. Summary
curves have been prepared to facilitate selection of blade
sections and settings for compr-or-design veloci~ diagrams
for optimum high-speed operation.

Upper limits for the loac@ parameter Uch have been
established for some conditions, and the i.mdidity of using
a constmt value of the parameter has been shown.

The variation of the usefuI section operating range with
camber, inlet angle, and solidity has been shown. The
opemtirig range was found to be broad except for the highest
pressure-riseconditions.

Compressor-blade cascade data have been presented in
the form of design carpet plots, which greatly facilitate the
selection of compressor blade sections required to fulfdl.
velocity diagrams. Plots of this type also are shown to
increase greatly the usefulness of ttvailable cascade data by
providing a simple method of obtaining the off-design variw
tion in turning angle with angle of attack.
LANGLEYAERONA~CAL LABORATORY,

IfATIONM ADVISORYCoanmrrEE FOR AERONAUTICS,
LANGLEY FIELD, VA., Ja:nuaq 3111968.
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APPENDIX A

CALCULATION OF BLADEFORCECOEFFICIENTS

The twodimensional resultant force on a blade in cascade
is the vector sum of all the pressure and momentum forces
exerted by the fluid. At any appreciable distance behind
the blade row the static pressure is constant along a line
parallel to the blade row, since any prior pressure gradients
would have been converted to momentum changes. On the
assumption that a pressureforce acting in the upstream direc-
tion is positive,

F,= @,–pJz)g (1)

sum the momentum forces in the axial and tangential direc-
tions. Assume that the axial momentum forces are positive
if the force on the blade is in the upstieam direction and
that the tangential momentum forces are positive if the
tangential velocity change is in the usual direction shown in
figure 5. The axial momentum force then is

F’3r,a=
J

~Va3,,(V=3,rV.,Jb dg - (2)
o

and the tangential momentum force is

J
FM,.= ~,V=2,,(Wx,1–TVJb dg (3)

o

Since momentum values in the wake can be obtained most
easily as differences between the wake values and the down-
stream value outside the wake, it is convenient to rewrite
equations (2) and (3)

FM,.= PlT7a,1(TT.Z,,
J

—V.,l)bg+ fiva,~,~(va>,l –Va~,,)b dg :(4)
o

J
FM,u=plT~=,l(Wu,l–TT’aJ,Jbg+ ~T~a2,,(W=2.–TV~2,,)b dg

v
(5)

However, the wake momentum force, as calculated from
wake surveys, is

F~=
s

p,Va2w,,,–W,,Jb dg (6)
o

If, now, the flow direction in the wake can be assumed to
be the same as the average downstream flow direction, the
wake force can be resolved into components in the axial
and tangential directions. Using the same sign convention
as before

F.,a=–Fm COS /&=
J

P2V=3,1(V=3,Z- TToJb dg (7)
o

s
F.,U=F. sin A= ~17.2,JTT.~,t-TV.2, t)b dg (8)

o

These are the integral terms in equations (4) and (5). Sub-
stituting equation (7) in equation (4) and equation (8) in
equation (5) yields the axial and tangential force components,
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as follows:

F.=i’+’p+l’ar,a= (PZ-PI) 69+PIV.,1 (v.a~,s-v.,l)b~-F. cogB2
F.= FN,==PIVa,l~u,l— Wu,2,,)bg+Fw sin &

For convenience coefficients based on q, are used and

F.
[

_: Ag+2v& ~(V.,2,,—v.,,)
%.‘@=+plwl,tc–-a !7?1 W,2 1

—Cw,lCos &

F. 1 2V=,*(W.,,-W”2,,)+Cw ,~b ~,
CF.ul=”-=;

[ W12 1

The resultant-force coefficient is given by

cj?,,=~CR,&I’+I?F, w 12

If y is used to denote the angle between the resultant forco
and the tangential direction

I CF.a,1-y=t,an-—
CF,~,1

The lift coefficient c,,, and drag coefficient cd,~ am the
components of cF,~perpendicular and parallel, respectively,
to the vector mean velocity W-, where W. is the vector
average of the velocities far upstream and far downstream,
The upstream velocity can be easily measured. The velocity
far downstream is obtained by proper averaging of the
velocitia just behind the blades. Since the axial area con-
trols the axial velocity, conservation of mass determines the
axial component of the velocity far downstream. Inasmuch
as there are no physical boundaries in the tangential direction
to support pressure gradients, conservation of momentum
controls the tangential component far downstream, The
discussion up to this point applies to compressible M well m
incompressible flow.

For compr~sible flow the effect of wake mixing on pros-
sures and densities makes accurate determination of the
axial velocity far downstream rather tedious. In tho in-
compressible, two-dimensional case the downstream axial
component is V=,l, and the downstream tangential com-
ponent is the momentum-weighted average of WU;2, This
tangential component can be obtained by adding to tho
tangential momentum of the discharge free stream tho
integrated tangential momentum of the wake. Tho intr+
grated tangential momentum of the wake can be determined
from the tangential component of the wake coe50ient.
Having the correct velocity far downstream, the vector
mean-velocity direction W. can be easily obtained. Tho
direction of W= should be determined accurately since CF,*
is very nearly perpendicular to W., and the value of tho drag
component C6,~is sensitive to small changes in the direction
of wm.



APPENDIi B

~AltPET-PLOTTINGTECHNIQUE

CONSTRUCTION

Since the.carpet-plotting technique is not too well known,
a description of this technique will be helpful. Examine
first tigure 114 (a). It will be noted that this figure is
composed of five similar and separate plots. Each of them
plots shows the variation of the turning angle d with the
angle of attack al and the inlet-air angle PI for a given solidity
u and a camber CL. of 0.40. It might be here pointed out
that the tests wero made at four inlet-air angles, 30°, 45°,
60°, and 70°. The leftmost plot, which represents a solidity
of 1.50, is constructed by plotting turning angle 6 as ordinate
against angle of attack al as abscissa for 131=30°. Then,
for a PI of 45°, the al scnle is shifted to the right a number of
grid units proportional to the 15° increment in I?I &nd the
turning angles are plotted as before. This procedure of
shifting the al seale is followed until the range of 131values
for which test data are available has been completed.
Curves of constant angle of attack may then be drawn
between the several curves of a against 0, so that the removal
of the al abscissa scales is possible. At this point, curves
of al against Omay be tilled in at 5° intervals of PIby using
the proper abscissa increment. The plot thus constructed
is called a O,a@l carpet.

A O,a,,plcarpet is constructed for the next solidity of 1.25
by shifting the angle-of-attack scales to the right a number
of grid units proportional to the solidity increment of 0.25
and sufficient to keep any overlapping of the O,aljfl carpets
to a minimum. This procedure previously described in
constructing the first e,al,~l carpet is then repeated. The
full range of solidifies for which test data are available
(0.50 to 1.50) maybe presented by spacing and constructing
the ~,al,~l carpets on this plot called a O,a@l,a carpet plot.
%nihir O,al,@,,ucarpet plots are then made for eaoh of the
other cambem, nam,ely, c[,O=O.8, 1.2, 1.5, and 1.8 shown in
figures 114 (b), 114 (c), 114 (d), and 114 (e), respectively.

For intermediate camber conditions, linear interpolations
between 6,a1,&,u carpets could be used or these O,a@l,u
plots could be combined into a single carpet plot to make
possible a“ single graphical interpolation. For example,
figure 114 (a) may be combined with figure 114 (b) by again
shifting the angle+f-attack scales to the right a number of
grid units proportional to the camber increment of 0.40.
Overlapping of the 19,al,p,,acarpets can be avoided by shift-
ing also the o ordinate scale vertically a number of grid units
proportional to the camber increment of 0.40. This com-
bination of a vertical and a horizontal shift is facilitated by
the use of register poirlts labeled “AB’) on both plots 114 (a)
and 114 (b). The AB register points can be superimposed
and the grids alined. In like manner, if all of the register
points are used, figures 114 (a), 114 (b), 114 (c), 114 (d), and

114 (e) may be assembled into a single oarpet plot. Figure
115 was made by combining plots 114 (a), 114 (c), and 114
(e)-representing cambers c,,Oof 0.4,1.2, and 1.8, respectively.
On this carpet, the design angle of attack is indicated by a
dotted line and the approximate occurrence of twice rnini-
murn drag is indicated by a dashed line. Since the origins
of the o scales for cambem of 1.2 and 1.8 are shifted ver-
tically a number of grid units proportional to the camber
increment, the ordinate scale is no longer a true o scale for
these higher cambers and is called ~. When an interpola-
tion is made for any oamber above 0.4, the o value may be
obtained by substituting Tin the following expression:

e= Y–50(cl.o–o.4)

Figures 114 (b) and 114 (d) representing cambers of 0.S and
1.5 were omitted from figure 115 in order to reduce the size
of the plot. It will also be noted that data are available for
cambem of 0.8 and 1.5 at only two solidifies, 1.00 and 1.50.

In view of the necessity for shifting the separate plots to
provide for combinations of the several v-hriables, as illus-
trated in figure 115, the carpet plots assembled in the present
bound copy are useful only as a means of demonstrat~o this
technique.’ For this reason, larger separate plots for use in
compressor design have been prepared and are obtainable
on request from ~ACA Headqusders, Washington, D. C.

ILLUSTRATIVE EXA&lPLE

The use of the carpet plots presented can be shown best
by use of an example. Generally, from a velocity-diagram
calculation, the inlet-air angle, turning angle, and inlet
Mach number are known, and some value of solidi@ has
been decided upon. The problem is to iind the camber cl,o,
the design angle of attack al .d, the pressure-rise coefficient
Ap/gl (one-dimensional flow being assumed), and the off-
design variation in o with al at a constant blade setting.
The following design conditions are assumed:

/31=55”

ed=15°

a=l.10

fkfl=0.65

Figure 112 is used to locate first the intemection of the
curves for &= 55° and %= 15° on each of the four carpets
representing solidifies of 1.25, 1.00, 0.75, and 0.50; then a
smooth curve is drawn connecting these four points which
are labeled “A,” “B,” “C,” and “D.” If the L?Iand 8 values
had fallen between those represented on the curves, these
intermediate values could be located by measuring the in-
crements along the absciwa. Although the design solidity
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of 1.10 falls between points A and B representing solidifies
of 1.25 and 1.00, respectively, points C wd D for soliditi=
of 0.75 and 0.50 are included to define more accurately the
shape of the curve between points A and B. Since the hor-
izontal interval from A to B represents a solidity increment
of 0.25 from 1.25 to 1.00, the point corresponding to a
solidi~ of 1.10 may be obtained by locating on the ABCD’
curve the point E, which has a horizontal distance from
point B equal to a solidity increment of 0.10. Point E thus
located indicates a camber c~,oof 0.87 on the ordinate scale.

~e.ti,, the solidity of 1.10 and the newly found camber
cl,. of 0.87 are used in conjunction with figure 113 to find
the design angle of attack. The point for a camber of 0.87
is located on the u= 1.10 curve between the camber of 0.8
and 0.9 curves by reading the proper horizontal increment
of .0.07. This point indicates on the ordinate scale a design
angle of attack of 10.5°. .

The pressure-rise coefficient Ap/Q, is found from ii.gure
116 (a) by using the values kIl=O.65, f?l=55°, and 0=15°.
In figure 116 (a), the Ap/q, was calculated on a one-dimen-
sional basis, whereas in figure 116 (b) the Ap/gl was calcu-
lated for a constant axial velocity. Since one-dimensiomd
flow was assumed in this example, figure 116 (a) should be
used. Employing the proper horizontal ~, increment of
10° and starting at the PI=45” curve, locate the 13,= 55°
point on the 0=15° curve for each of the carpet plots rep-
resenting Mach numbers of 0.50, 0.60, 0.70, and 0.80. The
four points thus located are designated “F,” “G,” “H,” and
“I” and are connected by Q smooth curve. ~ext, locate on
this curve point J whose horizontal distance from point G
is equal to a Mach number increment of O.O5. Point J
indicates on the or-tide scale a presauwrise coefficient of
0.590.

The last step in this sample problom is the prediction of rm
O@ curve at a constant blade setting. T1.m off-design
carpet (fig. 115) is used to predict this al,e curve for tho
blade section having a camber Cl,eof 0.87, a solidity u of 1.10
and a blade setting of 44.5°. The blade setting is the cliflor-
ence between the inleknir angle and the angle of attack,
or 55°—10.5°=44.50 at the design condition. In figure
115, curves labeled “a” ancl “b” representing this constant
blade setting of 44.5° are drawn on the e,al,~l plots for cl,.
of 0.4 at the solidifies of 1.25 and 1.00, respectively. Curve
c is then interpolated for the solidity of 1.10 by the use of
the correct solidity increment along the aback-en. As can
be seen in the example, this interpolation is aided by drawing
between curves a and b lines of constant angle of attack at
values of 6°, 8°, 10°, 12°, and 14°. A similar interpolation
is then accomplished for a camber of 1.2, which produces
curves d, e, and f. A linear interpolation for the intmmedi-
ate camber of 0.87 is made between curves c and f to obtain
curve g, which shows the variation of 1’ with al for the
design camber and solidity. The Yvalues mmybe convorted
to o values by using the relationship

e= Y–50(C,, .–0.4)

It has been. found that linear interpolations between any
two cambem of figure 115 produce design turning angles
which agree with the design carpet plot within 1.00. If
greater accuracy is desired, a faired curve between the
three cambers should be used. In figure 115, the design
angle of attack is indicated by a short-dashed line and tho
approximate occurrence of twice minimum drag is indicated
by a longdaehed line.
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(o) Variation with R nom desigu angle of attaok.
FIGmm 85.—Conoludod.
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FIf3URE86.—Vmiation of estimated oporating angle+f-attack range
With camber for the inlet angk of the tests.
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FIGURE 112.—Design-camber seleotion ohart for NACA 6E-(cL o)10 aeotion8.
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