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THEORIWICAL SPAN LOAD DISTRIBUTIONS
AND ROLLING MOMENTS FOR SIDESLIPPING WINGS OF ARBITRARY

PLAN FORM IN INCOMPRESSIBLE FLOW 1

By M. J. @rEIJO

——

SUMMARY

A method of compuii~ span loadx and the resulting rolling
momeni8 for 8i&.81ippi~ wing8 of arbitrary plun jorm in in-
cornpremilh &w is deriwd. The method reqwimx that the
span 14ad a? awo 8i&xlip be known jor the wing under eon-
8ideration. Because thh information ix available jor a vatity
oj wing8, .!.hk ?Y@4i?%?n8ntsh.ow?d nOt Seriou$ly n%v!rict the
application oj tlw preseni method. The basic method derived
hrein requir.ex a mechuniud di$erentiuiion and int~.atbn to
obtuin the rolling moment jor the genera.+?wing in &lip.
For wing8 huwing 8trai.ght leading and trailing edgtx over each
sembpan, the rolling moment due to sidalip ti given by a simple
quztion in term oj plan-jonn paramekm & the lateral
cenikr oj prwmure qf the lijt dwe to angle oj attack.

The mechanical di@rentiution and integration required to
obtain the rolling moment jor the general wing cam be avoided
by we oj a step-load method which h &o derived. Churtx are
pre.sem!.edjrom which the rolling-moment parametir C~CL

can be obtaind jor wing8 having straight leading d trailing
edg.m over each semispan.

Calmdu{ed 8pan loads and rolling-moment parametem are
compared with experimental vidw-e8. The compadon indi-
ca.ka good agreement between calda.tti and available ezpm”-
men.tal data.

INTRODUCTION

The span load distributions and rolling moments of a wing
in sidedip are important in considering the structural and
dynamic lateral-stability requirements of an aircraft and,
hence, have been the subject of numerous experimental and
theoretical studies. Most of the studies have been limited
to the determination of the rolling moment due to sideslip
O,fl; however, a fow studies have been concerned with the

span load distributions for wings in sidealip. (See refs. 1,
2, and 3, for example.) References 1 and 2 are theoretical
studies: reference 1, for unswept wings; and reference 2, for
sweptback wings. Comparisons between experimental and
theoretical span loads for unswept wings showed good
agreement (ref. 1). The few comparisons in reference 2
between theoretical and experimental span loads for swept
wings indicated fair agreement over most of the. semispan
but poor agreement mmr the wing tip where the theory
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indicated a rapid decrease in load and experiments indicated
a rapid increase. The method of reference 1 does predict
the rapid tip-load change with sideslip which has also been
observed for unswept wings. Examination of reference 1
indicated that the basic concepts employed therein could be
used in the calculation of span loads and rolling moments
for swept wings in sideslip, provided sweep effects could be
taken into account.

The purpose of the present report is to derive a method,
using the basic concepts of reference 1 and introducing a
means to account for sweep effects, which permits the calcu-
lation of the span load distribution and rolling moment for
any wing in side-slip. The method requires that the span
load distribution at zero sideslip angle be known. Since
this information is available for a large variety of wings
(see refs. 4 to 7, for example), this restriction is not believed
to be serious.

The basic concepts used herein permit the determination
of the span load and the resulting rolling-moment coefficient
of a wing in sideslip by use of either an integration method
and a continuous spanwise circulation distribution or a series
summation in combination with a stepped circulation distri-
bution. Both methods are developed herein.

SYMBOLS

A aspect ratio, b2/S
b span
c. wingliftcoefficient due to angle of attack,

Wing lift due to a

; pv2i3

c, wing rolling-moment coefficient,
WmQ rollim moment

“1”
~ pVWb

C,B=Z

c chord, parallel to plane of symmetry

eq a?
‘~&=hB t)cL

E average chord, S/b
Cf chord at inboard end of a vortex
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sectionlift coefficient, “”ion”
; pvzc

section lift coefficient due to angle of attack
section lift coeihcient due to aideslip
section lift coefficient at zero sideslip angle
chord at outboard end of a vortex
section lift (lift per unit span)
rolling moment due to one horseshoe vortex
number of horseshoe vortices representing wing
index which indicates a specific horseshoe vortex
wing area
semispan of a horseshoe vorti
free-stream veloci~
spanwise distance from plane of symmetry
spanwise position of center of pressure due to

angle+f-attack load on one semispan
distance along quarter-chord line, measured from

plane of symmetry
geometric angle of attack, radians
induced angle of attack, radians
sideslip angle, radians
vortex strength in spanwise direction
vortex strength r~for wing at zero sideslip angle
vortex strength along quarter+hord line
section load parameter for total load on section,

ccl
T

c

section load parameter due to angle of attack
section load parameter due to sideslip
section load parameter at zero sideslip angle
section load parameter due to twist
local angle of attack due
factor from reference 1
sweep of quarter-chord

sweepback)

Tip chord
taper ratio, Root chord

mass density of air

Supermxipt:
* denotes that factor has

totwist,radians

line, deg (positive for

been made nondimen-

sional by dividing by b/2; for example, c*=*

ANALYSLS

In making span-load calculations, the wing is generally
represented by a system of vortices. For the case of zero
sidealip, the unswept wing can be represented by a system
of spanwise and chordwise vortices as shown in figure 1 (a).
For wings of high aspect ratio, the spamvise vortices are
generally replaced by a single vortex, and the resulting

system (fig. 1 (b)) is the common lifting-line-theory repre-
sentation of a wing at zero sideslip angle.

Various systems of vortices have been considered for the
reprwentation of unswept wings in sideslip. One system is
a modification of the lifting-line-theory representation and
consists of a single spanwise vortex and a sheet of trailing
vortices which are parallel to the free airstresm (fig. 1 (c)).
This system waa used by Blenk (ref. 8); however, his calcu-
lated rolling moments due to sidedip were opposite in sign
from them obtained experirrmntally.

The vortex system used by Weissiiger for the unswept
wing in side&p is shown in &me 1 (d), and this system is
also a modification of the lifting-line-theory representation
at zero sideslip. The theoretical argumenta for the system
are given in reference 1 and, therefore, will not be repeated
here. However, it should be noted here that the span load
distributions and values of CIBLowukd by Weissiiger for

unswept wings are generally in very good agreement with
experiment.

As stated in the introduction, the besic concepts used
herein are the same as those of reference 1 and are applied
directly to the swept wing. The swept wing in sideslip is
represented by a system of vortices, as indicated in fiw~
2 (a), which comists of a vortex located along the wing
quarter-chord line and a sheet of vortices emanating from this
vortex. The vortices of the sheet are parallel to the wing
plane of symmetry from the quarter-chord line to the trailing
edgq and then they slant so as to be parallel to the relative
wind direction. In the present report, the portion of tho
vortex sheet paraUel to the plane of symmetry is referred to
as being made up of chordwise-bound vortices, whereas
the rest of the vortex sheet is considered to be made up of
trailing-free vortices.

Iv

Inn
(b)

Iwnvb Voflsx

V/9” i’Bv

(c)

(d)
(a) General arrangemmt for zero (b) Lifting-line-theory arrmge

sid~lip. ment for zero .ddaslip.

(o) Blenk’s arrangement (ref. 8) (d) ~eksinger’s arrangement(ref.
for sid’eshp. 1) for sidedp.

FIGUREl.—Vortox systems used for representing unswept wings.
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The lift produced by a unit length of vortex is given by
the Kutta-Joukowski equation

1= pv,r

whera I’ is the vortex strength (or circulation) and VP is
the velocity component perpendicular to the vortex. As
may be seen from figure 2 (a), the free-stream velocity has
components perpendicular to the quarter-chord-line vortex
and the chordwise-bound vortices and, hence, these vortices
will produce lift in accordance with the Kutta-Joukowdri
equation. The trailing-free vortices are parallel to the rela-
tive wind and hence produce no lift. The strength of the
chordwise-bound vortices is determined by the strength
distribution of the quarter-chord-line vortex; therefore, the
lift distribution of the wing in sideslip can be determined,
provided the distribution of the strength of the quarter-
chord-line vortex for the wing in sideslip is known.

The vortex strength would be made up of the circulation
due to the basic-type loading (camber and/or twist), angle-
of-attack loading, and some modification to the sum of these
loadings as a result of sidedip. In general, the circulation
at zero sideslip can be obtained from published reports (refs.
4, 5, and 6, for example), and the remaining unknown is the
modification due to sideslip. An approximate method of
evaluating this effect is as follows: with reference to figure
2 (b), which pertains to the right, or leading wing semispan,
the lift per unit length of the quarter-chord-line vortex of a
swept wing in sideslip is given by

1,= pv Cos (A–p) r.

uorter-chord-
Iine vortex

Cho&v#e-

vortex
=.Z

T
Trailing-free

‘----- vortex

(o)

Iv
Y

Kr= ,--- Quorter-chord-line vortex
,’

A

(b) \ z

(a) Overall representation.
(b) Detafls of an element of the quarter-chord-line vortex.

F1aum 2.—Representation of a wing by the vortex systarn used in
analysis.

and also by

so that the circulation I?t is

rz=~”VCCt=(CI-C+

Similarly, for the wing at zero sideslip, the circulation is
given by

(rz)fl.o=~ Vwz= (a–4~.0

Thus the circulation at a sidedip angle is related to the circu-
lation at zero sideslip by

‘z=(rz)~-’(a:-j.o
It appears, therefore, that the local circulation of the quarter-
chord-line vortex of a wing at a given angle of attack will be
changed by sideslip only if slideslip changes the induced
angle of attack. For infinite aspect ratio, the induced angle
of attack is zero and, hence, r.isexactly equal to (l’JP.O
For large aspect ratios, w-hen a~is small relativo to a, a modi-
fication to a, due to sidesdip probably will have a negligible
effect on the local circulation. Even for small aspect ratios,
when ai can be large relative to a, it does not appear that a
small sideslip angle should tiect ai enough to change the
local circulation appreciably. This argument is substan-
tiated to some extent by calculations of the circulation dis-
tribution of unswept wings in sideslip made by Weissinger
(ref. 1). These results showed that for unswept wings the
change in circulation due to sideslip was wall and resulted
in an increment in Cl@/CL that was independent (for practical

purposes) of aspect ratio and taper ratio for a fairly wide
range of both parameters.

Because of the tiort involved in actually computing the
circulation distribution for wings in sideslip and because of
the arguments given in the preceding paragraph, the analysis
of the present report is based on the assumption that the
circulation distribution for the wing in sidedip is the same
as for the wing at zero sidedip. Span load distributions for
the wing in sideslip oan then be obtained by the methods
derived in the appendix. The rolling moment due to side-
slip can be obtained for any wing by integration of the span
load due to sidwlip, and this method is referred to herein
as the integration method. For the most general cam, the
integration involved in this method cannot be made con-
wmiently. In such instances a second method, wherein the
~ is represented by a number of horseshoe vortices (see
figs. 3 and 4), can be used. This method also is derived
herein. The resulting values of the rolling-moment param-
eter OIB are obtained and a small correction to account for

effects of slideslip on the circulation distribution (ss deta-
mined in ref. 1 for unswept -wings) is applied. Although this
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fial correction may not be strictly applicable to swept wings,
it is a small quantity and should be of the right order of
magnitude even for swept wings.

RESULTS AND DISCUSSION

GZNEEAL REMARKS

The general equations derived in the appendix can be
used to obtain span lords and rolling moments for side-
slipping wings of arbitrary plan form and twist in incompres-
sible flow, The general equations have been wed to deter-
mine equations which apply specifically to wings ha-
straight leading and trailing edges and for wings of elliptic

plan forrm Equations for specfic types of wings not treated
herein (for example, M, W, or cranked wings) can be obtained
from the general equations with little di.fliculty. The span
loads and rolling moments for wings in sidcdip can be
obtained by the methods presented herein, however, only if
the span load at zero sideelip angle is known. This is not a
serious restriction since such information is available for a
large variety of wings. However, wings of odd plan form
present an additional problem in that it will generally be
necwary to compute the span load at zero sideslip before
proceeding to the sidedip csse. In such instances, the span
load at zero sideslip can be computed by using a method
such as that of references 7, 9, and 10.

In the foIlowing sections, some of the equations derived
in the appendix are repeated and results obtained are
discussed.

SPANLOm DISTFUSUTTONIN SIDZSLIP

The span load distribution of a wing in sideslip can be
determined horn the following general equation:

d(-f)p.o
‘Y=(Y),s.o (1+/9tan A)+ @o*~

The load due to sideslip is given by

(1)

(2)

Wherever a choice of signs is indicated, a plus sign applies to
tbe right or leading wing semispan, and a minus sign applks
to the left or trailing wing semispan.

A study of equation (2) shows that, if a portion of the total
wing load is symmetric over the wing span at zero sideslip,
the change in that portion of the load due to sideslip will be
antisyrmnetric (and, hence, will produce a resultant rolling
moment). On the other hand, if a portion of the total wing
load is antisymmetic over the wing span at zero sideslip, the
change in that portion of the load due to sideelip is symmetric
(and, hence, will produce no resultant rolling moment).

In order to illustrate the effects of sidcalip on span loads,

~ has been computed for several rigidthe parameter CC4

wings of aspect ratio 4.5. This parameter can be obtnined
readily by expanding equation (2); thus,

Inasmuch ss the term (Y)d is independent of CL due to W@

of attack for rigid wings, differentiating with respect to f? and
C. yields the dwired parameter

d ()(XJ

ccl

()
C(?L.

.—= ~ .(+ tanA)+ ; (3)
ccl

For elliptic wings, equation (3) reduces to

(4)

Computed VSJU= of ~ me sho~ iII figure 5 for several

wings. The span load due to sideslip is, of course, nnti-
symmefxic and, hence, results are presented only for the
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right semispan. In each case the contributions of the
quarter-chord-line vortex and chordwise-bound vortices are
presented individually and are also combined. The results
show that, for the true elliptic wing (unswept midchord line),
the chordwise-bound vortices account for threequarters of
the local load coefficient and the local load coefficient varies
linearly with spanwise position.

The results for the unswept wing are in qualitative agree-
ment with the results given for unswept wings in reference 1
nnd indicate an inilnite load coefficient at the wing tips.
The effects of sweep can be seen by comparing figures 5 (b)
and 6 (c). The local load due to sideslip associated with
the quarter-chord-line vortex is, of course, a consequence of
sweep and can contribute greatly to the load in sideslip.

time comparisons between calculated and experimental
span loads due to sideslip are shown in figure 6 for an un-
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Fmum 5.—Conoluded.

tapered 45° sweptba.ck wing of aspect ratio 5.16. The loads
due to sideslip were computed from equation (2) and ex-
perimental value9 of (7)8.0. In general, the computed and
experimental span loads due to sidwlip are in very good
agreement at low anglea of attack.

ROLLINGMOMENTDUETO SWESLIP

Integration method,-A general equation for the rolling
moment due to sidealip is given in the append& as
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FIQURE6.—Comparison of aen~l and ~c~ated wan Ioa& due
to sidedip.

If the wing under consideration has symmetrical twist,
equation (5) can be written as

J{c,+ ~1 [(’Y)AAI tan A–

The rate of change of C*Bwith CL for rigid wings is given by

which, for wings having straight leading and trailing edges
over each semispan, reduces to

I?or elliptic wings (having unswept midchord lines), the
parameter C,B/C~ is given by

clB

~=–$A+o.05 (9)

Equation (8) has been used to evaluate the parameter
Clfl/C~ for rigid wings covering a wide range of aspect ratio,
taper ratio, and sweep, and having straight leading and
trailing edges over each semispan. The values of V* used
in equation (8) were obtained from references 4, 5, and 6.
The results are given in iigure 7.

Some comparisons of values of CIJC~ computed from the

equations presented herein with those of other theories are
ShOWJl in figures 8, 9, and 10. The variation of Cl~C~

with aspect ratio for elliptic wings w-as computed by using
equation (9) and is shown in figure 8. The computed values
are somewhat greater than those given in equation (4) of

reference 1 with K= 1.5. The Drim~ reason for the differ-
ence in the curves ia that the”effeck- of the quart er-chorcl-
liue vortm were not considered in reference 1. Omission
of these effects in the present analysis yields a curve of
CJfi/G %tist aspect ratio which is in close agreement with
Weissinger’s curve. The remaining diilerence between tho
two curves (when the quarter-chord-line vortex is neg-
lected) is present because, for elliptic wings, referenco 1
evaluated the increment in Cl~CL due to the small change

in vortex strength associated with sideslip by an macL
exp&ssion which is slightly different from the value of 0.06
used herein.

Values of CIJCL computed from equation (8) nre com-

pared in figure 9 with those from reference 1 for unswept
wings having straight leading and trailing edges. In refer-
ence 1, Weisskger derives the following equation for this
type of wing:

ClB
K 0.71x+ 0.2g+o.05

C=–z l+A
(lo)

The reference also states that the exact theory fixes the
value of K at 1.5, but that, from comparison with experi-
ment, a more practical value is K = 1.0. The practice in
the past therefore has been to use this equation with K = 1.0

for uriswept wings; and, in instances where sweep has bem
considered, the same equation generally has been used and
an incxement due to sweep then added. (See ref. 11, for
example.) Tests of present-day wings generally have shown
more negative values of Ci~CL than those predicted by

equation (10) with K = 1.0, but these values are in good
agreement with calculated values if K = 1.5 is used. It
appears likely that the value of K considered practical by
Weissiiger was based on tests of wings which were in USG
at the time the investigation was made. These wings gen-
erally had rounded tips, which would tend to reduce tho tip
loading and, hence, also reduce Cl~C..

Figure 9 pr~~ti & mmpmison of vdu~ of Cldch from

figure 7 (computed from eq. (8)) with theoretical values
from reference 1 (computed from eq. (10)). AgreemenL
between the values is good when K = 1.5 is used in equaLion
(10);in fact, with K = 1.5, equations (8) and (10) ma
identical for a taper ratio of 1.0 and zero sweep.

Values of C,fl/C~ computed from equation (8) for untapmod

45° sweptback wings are compared in figure 10 with values
from reference 11. The values from reference 11 am some-
what lower than those of the present report. Most of the
difference is associated with the fact that the values of refer-
ence 11 are in part made up of the value for unswept wings
determined by Weisinger’s equation, equation (10), with
K=l.(). The remaining difference is associated with the con-
tribution to Clb due to sweep. A comparison of equation

(17) of referenca 11 and equation (8) of the present report
shows that the remaining difference is due to an induction
factirA+200S A

A+4 COSA
used in reference 11 to account for induced

efleots because of the antis~etric load duo to sideslip. No
such induction factor appears in the present report becaum
it has been argued that the circulation remains symmetric
even when the wing is sideslipping.
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c% As2.61; A=45°.
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Some comparisons of expwirnental and calculated low-
speed values of CJ@/CLare shown in figures 11 and 12. The

present theory correctly predicts effects of sweep, aspect
ratio, und taper ratio, and the calculated values also gen-
erally agree quantitatively with experimental data from
references 12 to 15.

Step-load method .—As stated previously, the advantage
of using the step-load method instead of the integration
method is that aPy integration or differentiation ~ avoided
and, hence, the method is convenient to use for wings having
the following characteristics: (1) chords which are not
simple functions of spamvise position and (2) loads whirk are
nssocinted with twist.

The general equation for the rolling moment is derived in
the appendix and is

01===-$~:~;{ (2n+l)(l-13 tan A)–

}
: pil@%*-(n+l)ci”] [(7)& ol”-

}
; @V[nZo*-(n-l)c,*] [(7)#.ol.+o.0513cL (11)

If the wing is symmetric, the rolling moment due to sideslip is

C,B=–+,“g:‘{ (2n–1) tan A+

}
; N[nco”-(n-l)c,”] [(’Y).8.0].+0.06CL(12)

If in addition to being symme’tic, the wing is also rigid, then
the rate of change of Gfl ~th CL ~ given by

Ctfl 1 “~ {(%-l) tan A+
~-–Tg ..1

; N[nco”–(n–l)c,”]
}[(%)1+0005 ’13)

(a) Elliptic wings.

FIGURE 13.—Effeot of Non estimated value of ~.
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~Gum 13.—Concluded.

In order to deterniine the compatibility of the integration
and step-load methods, V~UW of Clfl/G for sever~ rigid SP-

metrical wings were computed and the results are presented
in iigge 13. The remdts show that vahms of cZp/cL com-

puted by the step-load method converge rapidly on the

430875-U7-20 .
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values from the integration method as the number of
horseshoe vortices used-in the step-load method is increased.
About 20 horseshoe vortices should be snilicient for a reason-
able representation of a wing.

Equation (12) was used to compute the increment in C%

due to linear twist for a wing having an aspect ratio of 4.o,
a taper ratio of 0.6, 45° sweep of the leading edge, and — 6°
mtium twist at the wing tips. Values of (Y)Oused in the
calculations were obtained by interpolation of the material
in reference 6. The computid value of C,fl due to twist at

a=OO was 0.05, a value which compare9 well with the ex-
perimental value of 0.04 (ref. 16).

CONCLUDING REMARKS

A method of computing span loads and the resulting roll-
ing moments for siddipping wings of arbitrary plan form
in incompressible flow is derived. Tb e method requires that
the span load at zero eideslip be known for the wing under
consideration. Since this information is available for a large
variety of wings, this requirement should not seriously re-
strict the application of the present method. The basic

method dmived herein requires a mechanical differentiation
and integration to obtain the rolling moment for the gencmd
wing in sideslip. I?or wings having straight leading rmd
trailing edges over each semispan, the rolling moment duo
to sideslip is given by a simple equation in terms,of tho plwn-
form parameter and the lateral center of pressure of the lift
due to angle of attack.

The mechanical difhrentiation and integration required
to obtain the rolling moment for the general wing can be
avoided by a step-load method which is also derived heroin.

Charts are presented from which the rolling-moment pti-
rameter C9/CL can be obtained for wings having straight

leading and trailing edges over each semispan.
Calculated span loads and rolling-moment pammetws nre

compared with experimental values. The comparison in-
dicates good agreement between calculations and availnblo
experimental data.

LANGLDY AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTED FOR AERONAUTICS,

LANGLEY FIELD, VA.,October 6, 1966.

APPENDIX
DER13’ATION OF EQUATIONS

GENZRAL EQUATIONSFROMINTEGRATIONMK1’HOD

In the following derivation, all equations refer to the
right or leading wing semispan unless otherwise noted.
The considerations presented in the section entitled “Analy-
sis” permit lift to be obtained from the quarter+hord-line
vortex and from the chordwise-bound vortices. By refer-
ring to figure 2(b), it is seen &at, for the right (leading)
wing semispan, the lift per unit length of the quarter-chord-
Iine vortex of a swept wing in sidedip is given by

.
J,=pv Cos (A–s) r=

or, per unit length of wing span, by

l,=pv Ws (A–/3)r*&A

The lift due to one chordwise-bound vortex is

For small sideslip angles such that sin 13=I? and cos ~=1.0,
the lift component per unit of wing span for the quarter-
cihord-line vortex is

L=~Vr.(l+p a A) (Al)

and for the chordwise-bound vortex,

(A2)

In general, span load or circulation distributions nre
pre5ented in terms of the spanwise circulation strength
r, rather than the strength r.along the quarter-chord line.
The relationship between l?. and I’. can be dotermhxl
readily from consideration of the lift on a wing at zero
sideslip angle. The lift per unit span is given by

(Z)p.o=pVry (A3)
and also by

(%.o=pVr. Cos A &

from which it is seen that r.and r.are equal. Equations
(Al) and (A2) therefore can be written as:

L=p’vrti(l+9 tan A) (A4)
and

(A6)

The vortex strength I’Fisrelated to the section lift at zero
sideslip by equation (A3) or, in coefficient form, by

Substituting equation (A6) into equations (A4) and (A6),
&ding the resulting equations, and nondimensiontizing
yields the following general equation for determining the
span load distribution:

a(7)..9.o
7=(’Y)fl.0(1+19 tan A)-~& —

dg
(A7)
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Similarly, for the left (or hailing) wing semisprm, it can be
shown that

d(’h.o
7’=(7)B.0(1 —/3 tan A) —~l?c* —

df
(As)

Equations (A7) and (AS) can be used to determine the span
load on a wing in sides.lip, provided that the load at zero
sideslip is known. The load due to sideslip for the right
semispnn is

.
(7)P=(’Y)LI.o B tan A _:pc* 4:-$-0 (A9)

and for the left semispan,

(7)p=–(7)p.0 p tan A–z
d(-t)p.o

3 pc’ ~ (Alo)

The parameter (7)64 is made up of the components (7)6
and (7) a. For rigid wings, only (7)= varies. with Cz, and,
therefore, the rate of change of load due to sideslip with
CL is given by the following equation for the right wing
smnispan:

A second differentiation, with respect to IS, yields the fol-
lowing load parameters:

For the right semispRu,

For the left semispan,

The rolling moment of a wing in sideslip can be determined
by an integration of the span load multiplied by the proper
moment mm. A general form of a rolling-moment equation
is obtained from equations (A7) and (As), to which must
be added the increment determined by Weiminger (ref. 1)
for unswept wings and which is supposed to account for the
small modification in circulation strength I’Y due to sideslip.
Thus, the rolling-moment equation is

where 7 for the left wing semisprm is used in the fit inte-
gral and 7 for the right wing semispan is used in the second
integral. The rolling moment due to sideslip is determined
by substituting equations (A7) and (A8) into equation
(A13) and differentiating with respect to I% The result can
be shown to be, in expanded form,
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The rate of change of C,~ with CL for a rigid wing is gkn b

GB1’7

S[()
()]

d$=
—.—
C.20 E= ‘an ‘–i p d~

@dt#+O.05

Equation (A15) can be reduced by noting that the first
term on the right-hand side can be integrated by inspection;
that is,

so17
oz.

tan A $df=~ tan A (A16)

The second term of equation (A15) can be simplified by
integration by parts, so that equation (Al 5) becomes

(A17)

Equation (A17) can, of course, be further simplified if C* is
a simple function of spanwise position.

The diilerentiation and integration indicated in the
various rolling-moment equations can be avoided by use of
the step-load method which is developed in the following
sect-ion.

GENERALEQUATIONS FROM STEP-LOAD METHOD

The basic wn.unptions of the stap-load method of deter-

mining the span load and rolling moment of a wing in sidealip
are identical to those of the intqyation method. In the
stop-load method the span load distribution at zero sideslip
angle is approximated by a number 1? of equal-span horseshoe
vortices which are oriented and numbered as show-n in figures
3 and 4. By ‘ixmside~~ oao horseshoe vortm with its
center at spanwise position VX (see fig. 4 for details), it is
readily seen that lift is produced by the quarter-chord-line-
vortex segment and the two chordwise-bound vortices of
the horseshoe vortex. The lift due to one horseshoe vortm
on the right wing semispan is

Lift=pv Cm (A–+3) r.
r -:c’)

-J&+pVsin ~ r, ~ CO

or, when small sidealip anglea are awnuned,

Lift=23pvr,(l+f?tan A)~ pVr,@ (c.–c,) (A18)
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The step-load method results in a total load on each
horseshoe vortex made up of a distributed load due to the
quarter-chord-line-vortex segment and two concentrated
loads (concen~ted relative to spantie position) due to
the chordwise-bound vortices. It appears, therefore, that
the step-load method does not lend itself to the determination
of a continuous span load distribution.

The loads given by equation (A18) can, of course, be used
to determine the rolling moment of the wing. The rolling
moment due to each horseshoe vortex is obtained by mul-
tiplying the load on each lift-producing element by its
moment arm; therefore,

l’=–%~vyr~l+p tan A)+ pVr,p[@+~)co-@-@c,]

This equation can be simplified to

r=–Pvyr.{%(l+p tan A)+~I!?[~~)co-(1-~)c,]}

(A19)

Substitution of equation (A6) ido equation (A19) yields

1’=—~ pv2yc(cJf%o
{
2s(1+9tan A)+

The span~e distance to the center of a horseshoe vortex on
the right wing semispan is given by

“y=(2n–1)8

Therefore, equation (A20) can be written as

l’=>
{

~ pv’c(c,)p.,(%t-l)s 2%(1+/?tanA)+

This equation can be simplified further by algebraic manip-
ulation to obtain

J’=–pV’c(cJp.&{(2n–1)(1 +19 tan A)~P[~–(n–1$]}

Similarly it can be shown that, for the left or trailing wing
semispan, the rolIing moment due to one vortex is given by

{
l’=-p~ck,)B.& (%+1)(1–/9 tan A)~~~~– (n+l):]}

The horseshoe-vortex semispan is related to the wing span
by b=2i’?8; hence, the rolling moment per vortex on the
right wing sem.ispan can be written as

1’
b’

= — pv2c(cJ7.0 ~
{
(2n–l)(l+ptan A)+

: B~ [~o*–(~–mi*l }
(ml)

and on the left wing sernispan ns

l’=–pv*c(cJ.LW -J&
{
(2n+l)(l–fltan A)–

: piv[me”–(n+l)c,”]
}

(A22)

The most ~eneral form for the rolling-moment coefficimt k~.
obtained by summing equations (A21) and (A22) over Lho
wing span and adding the correction
singer in reference 1. The result is

dete&ed by Weis-

Ql=+ ~_ND:51 { (%+1)(1-B tan A)—

}
: @V[nCo*-(n+l)c,*][(’Y)&o]n–

: @wG*-(n-l)ci*]
}

[(’YJ9.J.+0.059C’L@23)

If the wing is symmetrical, then it is necessary only to

integrate over one semispan, multiply the result by two, and

add the 0.0w3QL increment. The rolling moment clue to
sideslip for a symmetrical wing is given by

1 n.Nh
G@=-–

N’ .T1{ (%–1) tan A+~iV[nco*-(n-l)cf*]
}

[(7)B-01.+0.05CL (A24)

For rigid wings, the rate of change of ~1~with c’ is given by

~=–&2n~${ (2n-1) tan A+

: N[7wo*-(n-l)c,*]
}[WI”

+0.05 (A25)

The various equations can be simpliiled if COand c< me
simple functions of spanwise position.

EQUATIONSFORSPEOII’IC TYPRS OF WINGS

Elliptic wings-integration method,-Elliptic wings hove
geometric and aerodynamic load characteristics at zero
sideslip which can be de~ed by simple mathematical ex-
pressions; hence, some of their aerodynamic derivatives can
be obtained readily. The following characteristics, which
can be derived with little difEculty, are listed for reference:

(~)==$-lin
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These relationships can be used with equations (A9) and
(AM) to obtain

lm(l

‘3fl 16—= ——
0.

3@A+o.05

(A26)

(A27)

Wings with straight leading and hailing edges—integra-

tion method,—The chord of a wing having stiaight leading

and trailing edges over each semispan is given by

4 [l–(l–x)@]
‘=A(l+k)

(M)

Equation (A28) can be used with equations (A9) and (A17)
to obtain

and

2=-i{*+’fi~A+(R)l}+oo’ ‘A30)
Elliptio fig-step-load method,-The following charac-

teristics of elliptic wingg, when represented by horseshoe
vortices, can be readily derived and are listed for reference.
For the right semispan,

K )1 =~JW–(2n-lj’”
i$=”?w

(CO*)S=T+A4N%7

(ci*)==&r An–4(n-1)’

(tm A)n=+ [Jw–4(m–-l)’-4=il

These relationships can be used with equation (A25) to obtain

$. {* “:$[(4n+l)<iW-4n’–

(4n–5)<N–4(n–1)’J JiW
}

–(2n-1)’ +0.05 (A31)

Wings with straight leading and trailing edges—step-load

method,—The local chord of a wing having straight leading

and trailing edges over each sem.ispan is given by equation

(A2s). The chords can also be expressed as

and
4

[ 1
2n—2

“’*)”=A(l+k) l–(l–X) N

These expressions can be used with equation (A25) to obtain

Czp 3

{[

n-NIZ

Z (4n–2)(l–~)–lJ–~=A(l+x)W n. I

l[(au
(2n–l)(l+x)AtanA

3
+0.05 (A32)
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