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THEORETICAL STUDY OF AIR FORCES ON AN OSCILLATING OR STEADY THIN WING
IN A SUPERSONIC MAIN STREAM

By I. E. Garrick and S. I. RuBinow

SUMMARY

A theoretical study, based on the linearized equations of
motion for small disturbances, is made of the air forces on
wings of general plan forms moving forward af o constant
supersonie speed. The boundary problem 1is set up for both
the harmonically oscillating and the steady conditions. Two
types of boundary conditions are distinguished, which are
designated “purely supersonic’ and ““mired supersonic.”” The
purely supersonic case involres independence of action of the
upper and lower surfaces of the airfoil and the present analysis
18 mainly concerned with this case. A discussion 1is first
given of the fundamental or elementary solution corresponding
to a moring source. The solutions for the velocity potential
are then synthesized by means of integration of the fundamental
solution for the moring source. The method is illustrated by
applications to a number of examples for both the steady and
the oscillating cases and for rvarious plan forms, including
swept wings and rectangular and triangular plan forms.
The special results of a number of authors are shown fo be
included in the analysis.

INTRODUCTION

This paper constitutes a theoretical study of the aero-
dynamic forces on an oscillating or steady wing of finite
span moving forward at a uniform supersonic speed. The
treatment is based on the linearized theory obtained by
considering only small disturbances in an ideal fluid. The
wing is therefore considered to be 2 nearly flat thin surface
at a small angle of attack and the flow is considered non-
viscous and free of strong shocks. The theory in this case is
equivalent to finding certain solutions of the wave equation in
three dimensions with respect to 2 moving coordinate system.

For the case of steady motion there esist a number of
interesting solutions and methods. Among these may be
mentioned the Von Kdérmén and Moore linearized treat-
ment of slender bodies of revolution (reference 1), the Prandtl
acceleration-potential method employed by Schlichting
(references 2 and 3), the Busemann method of “linearized
conical flows” (reference 4), studies of Jones, Puckett,
Stewart, Brown, and Gurevich (references 5 to 9); and a
method of Von Kdrmdn employing Fourier integral solutions
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of the two-dimensional wave equation and described by

him as ‘“acoustic oscillator method” (Wright Brothers

Memorial lecture, Dec. 17, 1946).

The corresponding unsteady or nonstationary problem for
two-dimensional flow (infinite aspect ratio} may be con-
sidered to be solved. In this connection there may be
mentioned the work of Possio, Von Borbely, Temple and
Jahn, and the present authors (references 10 to 13). Of
interest also are two wartime German papers by Schwarz
and Hénl (references 14 and 15). The corresponding steady
plane case to which the nonstationary problem may be
reduced is that treated by Ackeret. )

Results for the nonstationary or oscillating case are of
great interest in the investigation of aircraft instability.
The two-dimensional results have been applied to a study of
flutter at supersonic speeds in references 12 and 13. Of
more direct interest for this application are the three-
dimensional results, especially for wings of swept plan form.

The method used in the present study is to build up solu-

tions of the equation satisfied by the veloeity potential by
superposition of the fundamental wave-potential solution
for a spherical source. These solutions are also made to
satisfy certain required boundary conditions on the airfoil
surface. In the two-dimensional supersonic nonstationary
case, which appears herein as a special limiting ecase, it can
be proved that the procedure leads to a solution that is the
unique solution of the given boundary problem. (For the
problem of subsonie flow past a thin wing, reference may be
made to the general treatment and method of Kiissner

(reference 16) which also involves solutions of the wave
equation.)

Some qualitative features of the nature of the boundary
problem may be mentioned here. Further remarks may be
found in reference 17 and in Von Kdrmdn’s Wright Brothers
Memorial lecture. In the case of subsonic flow past an air-
foil the whole field is influenced by the body. The concept
of circulation has proved to be very useful and the Kutta
condition has been used to specify the eirculation by requir-
ing smooth flow leaving the trailing edge.
aileron in subsonic flow influences the flow pattern over the
whole wing even more importantly than over the aileron itself
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Thus, a deflected
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In the case of supersonic flow the influence of the body is
limited to only certain parts of the field of flow and generally
the wake does not influence the upstream flow. The bound-
ary problem for a three-dimensional surface moving at a
supersonic speed can be classified into two' types referred to
berein as ‘“purely supersonic” and ‘“‘mixed supersonic.”
The definition of these terms is given in the analysis accord-
ing to the parts of the field influenced by the airfoil, the
purely supersonic case involving independence of actioh of
the top and bottom surfaces and no reflecting surfaces in the
field. Thus, in the purely supersonic case, a deflection of
the aileron would produce only a local effect near the aileron;
in the mixed supersonic case, it may have a decided influence
on the part of the wing adjacent to the aileron or on other
parts of the wing. For a given wing both types of problems
may be involved. ;

The treatment used for the purely supersonic cases, involv-
ing source and sink distributions to account for the action
of the body, is believed to be exact within the framework of
the linearized theory. The upper and lower surfaces of the
airfoil are regarded as acting independently, each surface
being ‘“unaware’” of the presence of the other. The treat-
ment is thus analogous to that of sound in a moving medium
generated by the motion of pistons imbedded in an infinite
plane. This flow picture is obviously incomplete in the
mixed case and more complicated distributions (doublets)
are also required. For some purposes, however, the simpler
treatment may still be used in conjunction with appropriate
correction factors.
airfoil at zero lift, the simpler treatment can be employed
for study of the wave drag.

The object of the present paper is to develop the expres-
sion for the velocity potential in the purely supersonic case,
based on the elementary solution for the sound source
moving uniformly at a supersonic speed, and to indicate
its application by a number of special examples,

SYMBOLS

¢ disturbance-velocity potential

oy, 2 rectangular coordinates for fixed system

2,0, 2 rectangular coordinates attached to source mov-
ing in negative z-direction; also represents
field point being influenced

.9, rectangular coordinates used to represent space
coordinates in fixed system

E&n ¢ rectangular coordinates used to represent space
location at source distribution A(g, 9, {)

t, T, ' time :

v velocity of main stream

€ velocity of sound

M Mach number (z/c)

r distance defined by equation (8)

i, T2 time function defined in equation (7a)

f=yIr—1 - T

g function defining airfoil surface (y=g(z, 2, 1))

Also, for steady flow past a symmetrical
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limits defined in equation (10)
variable used instead of { defined by relation
preceding equation (15a)

fo,?l; .(2: El
6

P pressure

Po reference pressure

p density

@ - angle of attack

o time derivative of «

@ angular frequency

w(z, z,t) vertical velocity factored in equation (14) as a

space function W(z,2z) and time function w(®)
A angle of sweep
h vertical displacement
k time derivative of &

ANALYSIS
WAVE EQUATION AND SOURCE SOLUTIONS

In the linearized theory based on small disturbances the
equation satisfled by the velocity potential for the propa-
gation of sound waves of small amplitude is the wave equation

1 0% 0% 0% , OF
s A 0

The fluid medium is considered at rest at infinity.

In the treatment of linear partial differential equations the
so-called elementary or fundamental solution is of great
importance since general solutions can be built up by dis-
tributions of elementary solutions. From a physical point of
view the elementary solution may correspond to & source. A
discussion of the nature of elementary solutions for hyperbolic
differential equations of a general type has been given by
Hadamard (reference 18),who makes the cardinal statement
that “every result of the theory can be and has to be deduced
from the consideration of the elementary solution only.”

A fundamental solution of equation (1) from which general
solutions may be formed is that of a source of sound fixed
in the medium

o=2r 7 (v=5) 2)

where

N e N A Ok

In equation (2) the fixed source is located al the point
(¢, n', '), the strength of the source is A&, v/, ),
and the minus sign indicates that the spherical waves are
diverging from the center of the disturbance.

Another closely related solution of equation (1) is that of
a fixed point source for which the spherical waves are con-
verging onto the source

a2 1 (14+5) @)

The wave potential in equation (2) is often designated
“retarded’” and that in equation (3), “advanced.”



THEORETICAL STUDY OF AIR FORCES ON AN OSCILLATING THIN WING IN A SUPERSONIC STREAM

It is intended to consider thin lifting surfaces of small
curvature which are moving forward at a constant supersonic
velocity ¢ and which may be performing small oscillations
normal to the direction of #. The direction of » will be that
of the negative r-axis and the surface will be replaced by a
distribution of moving sources in the zz-plane (fig. 1).

¥
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FioTrE 1.—The coordinate system used. Thin lifting surface in rz-plane moving at &
constant supersonie velocity # in the negative ¢-direction.

Consider a source moving in the negative z-direction with
uniform velocity 2 and a rectangular coordinate system
attached to the moving source.  If the new coordinates are
designated by =, ¥, 2, {, where r=2x"+2t/, y=vy', z=2, i=t',
the equation satisfied by the potential is

1 L OV, 0% 0%, 0%
¢ (&—}—t dz) ¢ ozt ! byQTb (4)
or
10% 20 0% <’¢2 % 0% '
Eor et drdt " T dyt o

This equation is satisfied by the potential of sources of sound
in motion through the medium with uniform velocity » in
the negative z-direction. It is also the equation satisfied by
the disturbance velocity potential for a fixed body creating
small perturbations from an oncoming main stream of
velocity v in the r-direction. A brief derivation from hydro-
dynamical prineciples is given in appendix A.

It is known from the classical study of the wave equation
(reference 16) and can be verified by direet substitution that
a solution of equation (1) is transformed to a solution of
eqguation {4) by means of the following substitutions, corre-
sponding to & combination of the Lorentz transformation
and a Galilean transformation:

P
Nowye
x3L
=f~f1—N12
V=t 1 — M —— "_—A—Z

where M, the Mach number of the main fow, is v/c.
For the purpose of studying the supersonic case (A4 >1),
it is more convenient to employ modifications of transforma-
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tion (5) obtained by multiplying the right-hand SIde by the
constant 1 /—\/ i—Afz or

o xr
Y=o
Y :
Y= L
i (52)

s i

o M

= =am

The particular solution of equation (4) that corresponds
to a moving source will be seen in the following discussion
to be analogous to a solution of equation (1) given by the
sum of potentials in equations (2) and (3), namely, to

Bl D] o

The desired solution of equation (4) corresponding to equa-~
tion (6) is obtained with the aid of the substitutions (5a) as

A [ D (i)

¢ M1
where
re 1 NGO DG F =01 ®

(The term \/I—JIZ In equations (5a) causes no difficulty
since only the squares of the space coordinates are needed.)
This solution for ¢, may be expressed in the form

b= (=) =] (7a)

where

A z—E | r
= ir—ite

and where r is defined as in equation (8). The constant
A(gn,¢) could of course have been included in the functional
symbol f but has been separated for convenience. It may
be considered to represent the space variation of the source
strength as distinguished from the time variation of strength.
For a moving source of constant strength the time funetion
may be considered equal to unity and the potential expressed
as (reference 2):

It will be recognized that the solution, equation (7a), is
valid in a conical region, the so-called “Mach cone,” opening
aft of the moving source. Qutside of this conical region,
defined by the equation r=0, the flow is undisturbed.
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The result expressed by equation (7) may be considered
physically from two points of view. In one, as considered
by Prandtl (reference 2), a source of variable strength
moving along a certain path is replaced by a continuous
succession of fixed source pulses distributed along its path
acting consecutively one after the other. Each pulse, con-
sidered fixed in an absolute coordinate system, emifs &
spherical wave traveling at sound speed and the coordinates
of the center of the spherical surface are £-+uf, 9, §. The
radius. vector R of a point (z, ¥, 2) with respect to this
center is

R= o= G+a) P+ —n+ (e—)F

The time at which the spherical wave passes the point (z,y, 2)
is

Eliminating R between the preceding two relations results in
P (= f—rt)— (y—n)'— (2—§)*=0

The roots of this quadratic equation in ¢ are precisely the
quantities 7 and 7, defined in equation (7a); that is, the
field point (z, ¥, 2) is influenced at time ¢ by two waves which
originated at times 7, and r, earlier. It is of interest to
observe that, in the supersonic flow, both roots are real and
positive and have physical significance; whereas, in the
subsonic flow, only one root is positive and of physical sig-
nificance. In the supersonie case the fleld of influence of 2
source is the particular Mach cone with vertex at the source,
‘and through each point in this region at instant ¢, there pass
two spherical surfaces representing the waves originating at
times 7; and 7, earlier (fig. 2).

Y,

F16GURE 2.~—TField of influence of spherical source moving at a2 constant supersonic velocity.
Point (z, ¥, 2) is affected at time ¢ by two pulses originating at times =y and 3 earlier.

From the other point of view of the result (equation (7)),
a single diverging spherical wave-pulse is considered. Let

this wave originate at the point (¢, 4, {) at a time T (fig. 3)

and consider its effect at a point (z, y, 2) (within the Mach
cone whose vertex is at point (£, 4, {)) moving with a velocity
greater than that of sound. Clearly at a later time 7+r
the moving point penetrates the wave front and at a still
later time 77, it emerges from the wave front. The
potential at point (2, ¥, 2) changes only on entering and on
leaving the wave front and the two terms in equation (7)
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Ficure 3.—Influence of single spherical wave pulse. Spherical wave originating af polnts
(%, £ at time T influences point (z, ¥, 2 fixed relative to (£, », {) and meving at a con-
stant supersonic speed, at times 71 and 71 later.

corresponid to these two effects. The factor 2 appearing in
the potential for a constant source moving at a supersonic
speed also has its origin in this physical fact, in contrast to
that for a source moving at a subsonic speed, where the field
point penetrates the wave front but never emerges and where
the corresponding factor is unity. The {wo-dimensional
supersonic case involves cylindrical waves and the potential
of the point (z, %) is continuously changing from the
time the point enters to the time it emerges from the
wave (reference 13). Observe the interesting geometrical
property of r (equation (8)); namely 2r is the difference of
the radii of the spherical wave at time 7, and at time 7, that

is, r=% (ro—71). (Observe also that the potential swhich for-

mally appears in equation (6) as the sum of potentials, hall-
advanced and half-retarded, transforms in the moving
coordinates to a sum of retarded potentials in which the
original retarded part is associated with the diverging
spherical concave wave from which the point is emerging
and the original advanced part is associated with a diverging
convex wave into which the point is penetrating.) Recent
papers of interest in connection with moving acoustical
sources are references 19 and 20,

SURFACE DISTRIBUTION OF SOURCES

Sources and sinks of the type ¢, will now be distributed to
represent _the upper and lower surfaces of a thin airfoil.
The procedure to be followed is that used in the {wo-
dimensional case (references 10 to 13) where the upper and
lower surfaces are considered separately. Also the total effect
may be separated into an effect of the mean-camber surface
and an additive effect due to thickness alone. In most of
the applications, unless stated to the contrary, the mean-~
camber surface is considered. .

Let a_continuous distribution of sources be given over the
mean-camber surface. The airfoil is considered so thin and
flat that the source distribution may be treated in the
zz-plane (fig. 1). The airfoil surface may be econsidered
moving at & constant speed » in the negative z-direction (or
fixed in a stream moving in the z-direction). The effect at
a point (z, ¥, 2) at time ¢ of a distribution of sources of posi-
tion magnitude A(¢, 0, ¢ is given by an appropriate
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integration over a region of the £f-plane of the form
o(z, Y, 2, ) =SS o di dE (9)

where ¢, represents the function given in equation (7) with
a=0.

The total effect at the point (z, y, 2) is the sum of the
effects of all disturbances having their origin within the
Mach cone with vertex at point (z, ¥, z) and opening in the
upstream direction. This conical region need not extend
into the undisturbed part of the flow; that is, it need not
extend beyond the most forward surface envelope of the
Mach cones of influence of the body. There are essentially
two types of boundary conditions that need to be dis-
tinguished, designated by the terms “purely supersonic”
and “mixed supersonic.” A point of the boundary belongs
to a purely supersonic case if the upstream facing Mach cone
contains, in the part of the xz-plane not considered occupied
by the body, no disturbed fluid having a component normal
to this surface. Otherwise, the point belongs to the mixed
supersonic case. A sufficient (but not necessary) criterion
for the purely supersonic case is that the component of the
main stream normal to any edge or contour of the plan form
in the rz-plane (contained within the upstream facing Mach
cone of the given point) shall be supersonic. There is no
downwash ahead of the body, no holes are in the body, no
spilling of fluid occurs around edges, and no reflecting surfaces
are in the flow field. In this case the upper and lower sur-
faces of the airfoil are considered to act independently of
each other; a disturbance created on one side does not affect
the opposite side. The flow can be considered to arise from
the appropriate movement of small pisions acting at the
regulating or generating surface. This condition is in con-
trast to that of the mixed supersonic case, for which the
effect of the disturbance spills over the edges or sides, and
a disturbed fluid region (downwash) may exist ahead of the
body. Thus, points of a triangular surface, moving vertex
foremost and completely outside of the Mach cone associated
with the vertex, belong to the purely supersonic case. If
the triangular surface is inside the Mach cone associated
with the vertex, the points belong to the mixed supersonic
case. Of course, for a given surface, both cases may be
involved. A few examples are shown in figure 4.

In the purely supersonic case the circulation concept plays
no particular role and the drag associated with lift or thick~
ness may properly be denoted as wave drag. In the mixed
case the flow retains subsonic features and the drag associated
with the lift is sometimes denoted as induced drag.

Although the treatment given for the purely supersonic
case is believed exaet within the limitations of the linearized
theory, an exact treatment of the mixed supersonic ease is
not available. These problems involve greater difficulties
in the boundary conditions, for the flow to a certain extent
acquires features of a subsonic flow in that the fluid field
“senses” the approach of the body. Thus, in certain cases,
conditions at the leading edge, at the trailing edge, and in the
wake must be specially taken into account. For some pur-
poses and in certain problems, however, it may be useful to
treat the mixed supersonic case in the same manner as the

I
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FicTRE 4.—Ilustrations of plan forms with “mixed supersonic” regions (unshaded) and
[ “purely supersonic’ regions {shaded}. Mach lines are shown dashed.

purely supersonic case and to introduce appropriate correc-
tion factors.

The region of integration in equation (9) is the part of the
body (in the &¢-plane) cut out by the upsiream opening
Mach cone with vertex at point (z, ¥, 2). This region in
general depends on the plan form of the body as well as on
the point (x, , 2). With the understanding that the leading
point of the body is at £=0, the integration may be written

s,z 0= [ [ ends as (10
where
f1=2—5
fa=z+%
(z—8)°

o= Mi—1 —y*
ti=z—y~A*—1

The limits of integration {; and {, in equation (10) may be
recognized as the distances from the £-axis to the near and

far sides, respectively, of the hyperbola defined by the inter- ___ .

section of the cone r=0 and the plane n=0. Thus, from

equation (8), with 4=0, {; and {; are recognized as the roots

of the equation »
1 S —
(r)”=°=\/TTi VE—) &= =0 1D
The limit & in equation (10) represents the £-coordinate of
the vertex of the hyperbola and is defined by the condition
f1=200, that is, by £=0. The point (&, z) is the farthermost
downstream point which can affect the point (z, ¥, 2)
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BOUNDARY CONDITION

The strength of the distribution of singularities in equa-
tion (10) will now be determined by the boundary condition
of tangential flow along the airfoil surface. The boundary
condition may be expressed as '

9¢

oy y=0=w(x7 z,1)

__ 09,9
a‘l‘a (12)

where the airfoil shape is defined by y=g(z, 2, £} and where

the two terms represent the normal velocity induced by the

airfoil shape and by its own proper motion. It is shown in
appendix B and can also be made clear by physical reasoning
that as y approaches zero from the positive side (y—-+0)

0 or(Mr—

5 DA, 0,2)1 )

or, briefly,

A, 2)] (O = =gy P 2 D) (13

As y approaches zero in the negative half plane, an equal
and opposite result is obtained. Equal source distributions
on the upper and lower surfaces therefore result in a discon-
tinuous vertical-velocity distribution near the. plane y=0
and may be used to represent symmetrical thickness distri-
butions. The source distribution representing a thin body
with arbitrary thickmess—distribution s in general unequal
on the two surfaces.
a separate section. A representation of the mean-camber
surface alone may be obtained by placing equal and opposite
sources on the under surface in proximity to the sources on
the upper surface. The potential ¢ is to be understood in
the subsequent analysis to be prefixed by a = sign, plus for
the upper surface and minus for the lower surface. The
vertical velocity will in general be measured positive upward.

It is convenient to express the ver tical velocity in equa-
tion (13) in separated form

w(z,z,ty=Wx,2)w(t) (14)
where )
Wz, z)=—2r(M*—1)Alx,2)

w(t)=f(t)
SURFACE POTENTIAL

The total potential for y=0 may now be expressed by
means of equations (10). and (14) as

z $3 :
<xr~:t)_~£a {{1 ¢0 dg‘ d&' ]
—r)tw(t—r)

“‘ﬁﬁff @’f)/ E= 6D o dt (15)

The effect of thicknessis discussed in.
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where, for y=0 (see equations (7a), (10}, and (11)},

. _Me—pH_ ~vC=(&—0
1 Cﬂ2 c['g
"” e e lro—ey
= ﬂf(gg? E)+\(§ 5';{)3(?2, )
fi=2—"%o
fe=2+&
§0=9:_E‘§ -
B=AIr—1

and where it is understood that W(&, {)=0 at any point off
the body or where the integrand is not real.

Equation (15) may be put into a simpler form by substi-
tution of a new variable ¢ instead of ¢, which is obtained
from the relation (see appendix B)

2¢={({>—¢1) cos 8+ Fat
§={o cos 8-tz

or

The surface potential (equation (15)) may then be writien as

8o, % =g | | Wl cONm—r) +ult—r] dods
{15a)
where

n=xégf (M—sin )

n="; ﬁQ (.1[ +sin 6)

Equation (15) represents the central result of the analysis
and within the limitations already discussed may be applied
to wings of any plan form in steady motion or performing
small oscillations. In the stationary or steady case, ¢ docs
not depend on time and the function w(f) is to be replaced
by unity. Then, in equation (15), w(t—r)-+w({f—rs) is to
be replaced by 2

PRESSURE RELATIONS

For the sake of reference, relations for the pressure and
the lift and drag forces are given here. The disturbance
pressure (local static pressure minus the pressure in the
undisturbed stream) may be written as

d
pmmp 2

——p (B4 ) (16)
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The pressure difference (positive if acting downward) at any
point (z, z) may be expressed as

Ap=Dr—01

where the subscripts U and L refer to the upper and lower

surfaces. For the mean-camber surface p,=—py and
pe—9, (221,29
ap=—2p(55+v 57 (17)

The total forces on the airfoil in the y-direction and
z-direction are given by

Y=Lift=/fp dr dz
X=Drag=—ffp dy dz

where the integration is to be taken over the complete airfoil
surface. Expressed as integrations over the plan form

7= [ [ i—poidedz

e T30, ()

It is often convenient to separate the slope terms as follows:

where « is the conventional direction of the main stream with
respect to a reference chord, and oy and oz, are the local slopes
of the airfoil surfaces measured with respect to the reference
chord and positive in the same sense as a.

(18)

APPLICATIONS
WING OF INFINITE SPAN AND ZERO SWEEP
For the first application of equation (15) the results for
both the oscillating and steady two-dimensional case will be
derived. For the harmonically oscillating wing having

identical motion in every chordwise section, the vertical
velocity can be written in the complex form

wiz, {) =W (x)e™
Then '
W(E—r) +w(t—ra) =t (een g miem)

T
=ei\ 2 ® cos 02T
2
Equation (15a) becomes

tat *r . _imM'(a:—é) = — .
b (z, t)=—6:;5ﬁ Wee ™ & ﬁ cos <%§ % sin 9) deds
(19)

where 8= A7?—1.
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The integration with respect to 8 may be readily performed
with the aid of the relation

%Lr cos (A sin 6)do=JJ,(\)

Finally o

8@ )=—"5 | WOIE D (20)
where : i car

O ) (21)

This result for the velocity potential is identical with equa-
tion (11) of reference 13 and is used therein as a basis for
celculation of the nonstationary two-dimensional ecase.

In the steady case, w=0 and I(§, z)=1. The expression
for the velocity potential is

s@=—5 [ Wa (22)

where W (§)=v g—i This formula or the pressure relation

__ % _ r*dy
P="0P5,—P g dx

applied to both the upper and lower surfaces of the airfoil
leads to all the results of the Ackeret theory.

WING OF INFINITE SPAN WITH ANGLE OF SWEEP

Consider an infinite wing with angle of swweep A (fig. 5), and
assume that all sections in the flicht direction are identical
in shape and that the wing is undergoing harmonic motion.
In general, the vertical velocity w ean be written in the com-
plex form

'w(x,‘ z2,0)= W(r, z)e't

§ - A
R §=¢
\ ¢
\ - 9 1
a8
f»zfé 8=
$=¢ cot A =0 %
(%z2)
L 4

§

F1GTRE 5.—8ketch for wing of infinite span with angle of sweep showing reglon of
integration (shaded).
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If each section normal to the leading edge is performing the
same motion, the form of Wi(x, 2} is W(z—=z tan A). If the
wing is assumed to perform pure vertical motion alone, then
Wz, 2) is a constant. If the wing is assumed to rotate about
an axis z=Constant, then W(z, 2) is of the form W(z).

The potential is of the form (fig. 5)

(2, 2, 1) = ffmedg—ffmedg (23)

where
F,9, t)“——~ W(E, £(6)) [+ ghat=r)]
and where
33—2,5
b= 1—pB cot A
__z+e2B
g“‘lﬂa cot A
8,=cos™! EC(;:’__‘;;Z 3)

The values of the limits & and £, are found by solving for &
in the relations {;=¢# cot A and {,=¢ cot A which represent
the intersections of the Mach lines through z with the lead-
ing edge. The limit 8=6, corresponds to {=¢ cot A, the
leading-edge line.

When W(E, z) is a constant or a function of & only, the
velocity potential can be expressed as

1 (Fwere va—{ wer d
6@, 2 == | [ W@ 9~ [ WLE 2, 28]
(24)
where I(¢, x) is as defined previously and

M

I (¢, z)=l o5 —fexcos<—r sin 6) dg  (25)

Observe that the integral involved in equation. (25) for I
reduces to the Bessel function of zero order when 8,=r as
in equation (19). This interesting integral mafy therefore
be called an “incomplete” Bessel function of zero order.
Systematic investigation of its properties would appear to
be desirable.

For the infinite swept wing in the steady case the frequency
@ may be made equal to zero in equation (23). Consider
as a simple example the case of a thin wing at a small constant

angle of attack «, that is, %_—_»—a. Let the angle of sweep

be less than the complement of the Mach angle, that is,
B cot A>1. {(Otherwise the ecase involves the mixed-
supersonic-flow conditions.) From equation (24) with w=0,

I(¢, z)=1, and I;(¢, , z)-%f e ' e

6 (z,2)=

fdé——ﬁcs“ EcotA ZB)dS]

x cot A—z -

=0 oot A1 - (20)

REPORT NO. §72—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

The local pressure difference is given by

2002 gcot A i
B +Bcot? A—1

p= -(27)

This equation reduces, for A=0, to the Ackeret result

_ 2ptia
Do B

Let the index n refer to quantities measured normal to the
leading edge. Then

a,=a sec A

V=" COS A
M ————Il[ cos A
and
2p0, %0,

P=TMi—1

a result similar in form to the expression for p, and already
stated by Busemann (reference 17) in 1935. (See also
reference 6.)

The harmonically oscillating case with T(x, 2) assumed
to be of the form W (x—z tan A} leads in a similar manner to
a result analogous to equation (20).

RECTANGULAR WING OF FINITE SPAN (ZERO SWEEP)

Consider a harmonically oscillating rectangular wing of
finite span as in figure 6. Region I is described as purely
supersonic and region II as mixed supersonic. The higher
the aspect ratio and the stream Maeh number, the relatively
smaller the region IT becomes.

The potential for region I for identical motion of cach
chordwise section is exactly that given for the infinite wing
in equation (20); however, more general types of motion
involving spanwise variation may also be treated. For
example, let the wing perform harmonic oscillations in
vertical bending and in torsion about a spanwise axis' z=ux,
in certain prescribed spanwise modes. Then, with « and
h used to describe angle of attack and vertical position

(fig- 7),

a=a,(2)as(t) } (28)

h=h,(2)hs(t)
where «;(2) and A;(2) represent spanwise modes and
dz(t) = aoei‘“"

ha(t) =hoet*

and a, and A, are constant complex amplitudes. The verticeal
velocity (w measured positive upward, % positive down-
ward) may be expressed as

w(z, 2, t)=—[pa+li+ (e—z0)&] (29
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Let the potential (equation (15)) be separated into the
form

¢=¢at Prt+ Pa (30)

where the various ¢’s are associated with the corresponding
variables in equation (29).

AIR FORCES ON AN OSCILLATING THIN WING IN A SUPERSONIC STREAM
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TWith the use of equations (15a), these potentials may be
expressed as

Po= la;[" J a1 () cos<usm 9)(1’6(1&

thf .f h(f)cos(llsn1é>d6d£

q&;=% j: o—ia I: (E—ap)es () cos (TQI sin 6‘) d6dt

where

31)

_wlM(x—§)
Te(ME—-1)

and, expressed as a function of 6,
ai(§) =a(z+§o cos 6)

hy(§)=hy(z+ o cos 6)

If the modal functions in equations (31} are a;=Ah,=1, the
potential corresponds to that given by equation (20) for the
two-dimensional caze. (See also equation (14) of reference 13)
It is of interest to consider modal functions for «; and
ki of the type ({/s)® where s is the semispan. For modal
functions of this form the typical integral involved in
equations (31) may be expressed as

a=f?m«mm@um<%gnede (32)
[i} L

With the substitution of g—e for 6, F, may be written as

F,‘=f§ (z-+¢osin 6)* cos <%_,cos 9) dg-+
h] L

j;f {z—Fosin 6)* cos (% cos 8 )db

The further reduction of F, is made with the aid of the fol-
lowing relation (reference 21}:

2(5)
r@+ﬂr@
For example, the case n=0 corresponds to constant modes
and yields for the potential the result already given by

equation (20). The case n=1 corresponds to linear modes
and the function F; becomes

Fl'-'—_ﬁ"ZJo (%)

This relation utilized in the equation for the potential yields
a result that is the two-dimensional-case result multiplied

SN =—— f cos (A cos §) sin®* 6 df
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by the factor z/s. The case n=2 corresponds to parabolic
modes and the function F; becomes .

Fy=n2%J, <%>+7rg (x—8E)J1 <ﬂ%)

When F; is used in equations (31), the J, term yields an
integral of the type given by equation (20). With the use
of the relation Ji(\)=—J,’(\), the J, term also yields an
integral of the same form. This type of reduction to the
form of equation (20) may be made in general for any integral
index n by means of the recurrence formulas for Bessel-func-
tions, and thus use may be made of the numerical procedures
used for equation (30). (See reference 13.) ]

It may be of interest to treat the potential for the mixed
supersonic region IT (fig. 6) as though it were part of a purely
supersonic region. The equations corresponding to equa-
tions (31) are

¢az%ﬁf e“"lfor a({) cos <11% sin 6) dé d&¢—

' &3 8 '
res ﬁ % e L o (¢) cos (z\gz sin e) Qe (33)
and similar equations for ¢; and ¢;. The limit & is found

as the value of £ for which f=s or
L=a—(s—2)B

The limit =0 corresponds to ¢{=¢ and the limit =6,
corresponds to {=s or, from equation (15a),

—cos™! q:f)
f,=cos :r——sﬁ

The last term In equation (33) leads to integrals of the
“Incomplete’” Bessel function type as mentioned for the case
of the infinite wing with angle of sweep.

The foregoing results for the oscillating rectangular wing
will now be specialized to the steady case (w=0, ¢=0,
a(f)=1, a{t)=e, the constant angle of attack). Then,
from equations (31), the velocity potential for region I, is

=t

$a= 5= (34)
For region II, from equation (33),
Jba _vafh (82
somg o5, o (5 0) 2 (35)

The actual integration in equation (35) may be easily per-
formed but is not required for the purpose of obtaining the
local pressure.
The local-pressure difference is directly obtained for
regions I and II from equations (34) and (35) as
_ 2ptfa ‘

o= ;3

R P <s—~z )
Z)u~——6 [_1 - cosTH{ —— I

(36)
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1t may be observed that p is constant along rays from the
. 85— : .
tip Tz =Constant. Along the ray corresponding to the
Mach line from the tip, s_;_z B=1 and p takes on the constant
value p;.  Along the ray corresponding to the tip z=s, half
of this value is obtained. This edge condition is physically
incorrect since the assumption of the independence of the
two surfaces of the airfoil is not correct near the tip.

This particular problem has been treated by Busemann
(reference 4) by his method of conical or perspective sym-
metry. The condition aleng the ray corresponding to the
tip is p=0 and Busemann’s result for region IT is '

_2p0°a 1 _1< _2(s—2) )
Pu="% S Cos 1 —m—lg

The total lift over region II is one-half of that of an equal
area of region I. A comparison of this result and equa-
tions (36) is shown in figure 8. This comparison gives an
indication of the errors involved in the assumption of inde-
pendence of the two surfaces near the rectangular tip and,
conversely, it gives an indication of the appropriate correc-
tion factors required to allow for the tip effect. It appears
that equations (36) overestimate the lift over all of region II

2 .
by a factor 1——or by approximately 36 percent. Actually,

equations (36) apply to the edge of a rectangular wing
adjacent to a straight surface barrier at zero angle of attack.

THICKNESS DISTRIBUTION

It has already been remarked that the treatment em-
ployed in the analysis mainly for the mean-camber surface
can also be applied to obtain the effect of thickness. In
equation (15) the vertical velocity W(§, ¢) may be specified
for both the upper and the lower surface.

As an example, consider a plan form such as that shown in
figure 9 in steady supersonic flow. Let the airfoil section
shape, for convenience chosen symmetrical and independent-
of span, be defined in the center section by y=g(z) (and in
any other section by y=g(z—=z tan A)). Then, for the upper
surface,

Wiz, z)y=va-tvg’
and, for the lower surface,
Wiz, 2)=va—tg’

where ¢’ is the derivative of ¢ with respect to its argument.
The velocity potentials in the various regions in figure 9
are of the form

r (*w & ("0
¢{=ﬁsﬁ) ngdg—f&ﬁ) F do de
. & 6 d £ (01 d
on=gu=(J, [, Fas et || a0 )
0 n e (0
‘f’ﬂ‘:“’l_(ﬁs fﬁ F do de+- j(, ‘L; 7 do dg)J

(87

~
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FiGURE 9.

—3keteh for swept wing for the case A>1 showing regions I, 1T, ITI.

The limits in the foregoing integrals are as follows: the
limits §=6; and =46, correspond, respectively, to the leading-
edge lines ¢=¢ ecot A and ¢{=—% cot A; =0 and 6==
correspond, respectively, to the Mach lines ¢=¢ and
{=1z1; & and & are obtained, respectively, from the relations
fi=fcot A and f;=—E£ cot A; 8=46, corresponds to {=s; & is
obtained from the relation {,=¢; & is obtained from
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f=£ cot A; and & is the value of £ for the leading edge of
the tip. Then , , .

f,=cos™ g__czt_é—z 5)
8,=cos™! —EcobA—z (;cﬁé&_z 3)
f;=cos™? E 8
r—zf
z+z8
=114
¢ _x—z8
1L A
h=c—(s—2)8
&=stan A
A=pf cot A

1f, for example, the distribution function F is a constant K

A zcot A—z
e=K—p—1

3] £
¢u=¢1—§ﬁ 32d§+§£ 6,d&
K o ' £
b= | (r—6)de+ [ (x—0)d

The corresponding local pressures are

K4
LA N cag
KA (Lo LEAB
Pu= B VA—1 —cos A8
K A 1 L1+AC _ I—AC)
Pm‘?{?——l%‘(COS “AFCc TS I—0
_wE A 3 A1
B Ja—i~ \/1—02
where
Azﬁ cot A
_ (=28 )
r—¢ tan A
z
O—Eﬁ

The constant K may be interpreted as re associated with
constant angle of attack. In this case, region II is to be
regarded as & mixed supersonic region and the result given
is not the appropriate solution for this region. If the con-
stant K is interpreted as ¢’=Constant, the results are
applicable to & thin symmetrical wedge of half vertex angle
K and may be employed to yield the wave drag according to
the linearized treatment.
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Jones (reference 5) treats symmetrical airfoils of various
plan forms at zero lift by use of pressure potential. The
use of velocity potential leads to the same results as given
in reference 5. Thus, equations (13) and (14) of reference 5
for a wedge correspond to the preceding results. The
velocity potential in general is more useful to treat pressure
distributions for a given body; whereas, the pressure poten-
tial may be more readily adapted to treat airfoil shapes and
plan forms associated with desired types of distributions
of pressure.

TRIANGULAR PLAN FORM

The triangular wing (fig. 10) extending across the Mach

lines from the vertex may serve as a final example. For the
7 7 =4
7 A
// N tar™! 3
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i mo X I s
/1 E‘\
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l ! | |
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Fi6URE 10,—Triangular wing in a supersonic stream and pressure distribution.

z/s

sketched corresponds to A=30°, ﬂ/f=\/§.

Case
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steady case of a vanishingly thin surface at angle of attack a,
the velocity potentials and pressure relations for regions I
and IIT are equivalent to those just discussed in the preceding
section. The lift AL on a strip Az of the triangle located at
abscissa z from the vertex is given by

z cot A
AL=Azx f Ap dz
—z cot A

4pba A—T  4pv’e _jA=1
I ayar Ea \/21+1)]““’

where the two terms correspond to the integrations over
regions I and ITI, respectively, and where 4=8 cot A. Then,

4ot

Al=gr—

—m—Ax Az

The area of the stripis 2z Ax cot A, and hence the lift coefli-
cient is independent of z and equal to

=~
()5

B

Gurevich (reference 9) treats this case, and his relations can
be shown to be eqmvalent to the foregoing onces. The pres-
sure distribution is illustrated in figure 10, where po, the
reference pressure, is 2pt?a/B. Observe that the pressure
area above the unit ordinate cancels the area of pressure
deficiency below the unit ordinate. Also shown in figure 10
is the distribution. of pressure as the half vertex angle of the
triangle approaches the Mach angle.

The triangular wing inside the Mach cone from the vertex
requires a more claborate treatment (references 7 to 9).

LaNxGLEY M EMORIAL AERONAUTICAL LABORATORY,
NaTIONAL Apvisory COMMITTEE FOR AERONAUTICS,
Lancurey Fiewp, Va., June 4, 1947.



APPENDIX A

DIFFERENTIAL EQUATION FOR THE YELOCITY POTENTIAL

A derivation of equation (4} is given briefly here. The
condition for irrotational flow is
curl v=0 (A1)

and this relation implies that a scalar velocity potential ¢
exists, such thaf

v=grad ¢ (A2)
The general equation of continuity
g—§~+ div pv=0
may be written as
% %—.Lv%:o (A3)
where differentiation following the particle is denoted by
D »
175=b—t+ (v-grad)

and V3=div grad is the Laplacian operator.
From Euler'sequations, or from the general Bernoulli

relation,
_J_Z f @,

where a space constant function of time has been included
in ¢, and where it has been assumed that p is a function of

(A4)

p.only. With the use of equation (A4) and the acoustic
relation,
dp
2%V
=7,

where ¢ is the local variable speed of sound, it follows that

and

With the aid of these two relations the first term in equa-

tion (A3) becomes
1Dp
o Dt

1 0% . v? o2
o Top TV-grad 5)

For small perturbations from the main stream of velocity »
in the z-direction, ¢ may be considered equal to the constant
speed of sound in the undisturbed medium and, in compari-
son with », ,=0, v,=0, and ¢,=». Then

le 1
th

Jo
e T2 axaﬁf’ ax~

With this relation used in equation (A3) the equation for
the velocity potential may be put in the form given in equa-
tion (4) of the analysis.

APPENDIX B

EVALUATION OF <a_¢>
0 =0

In order to determine the limit of g—; as y—0, it is conven-

ient to make use of the following substitution:

20=(f2—¢1) cos 8+t &1 B1)

The expression for ¢ (equation (10)) may be written with the
aid of the following relations (see eguation (11)):

?'=% VE=) (=0

_ 15— .
=3 3 sin ¢

& sin 6

35

s=8" f TA(E0,2+ 5 cos O (fibfndeds  (B2)
) ]

where

M(xz—§) , fosin §
ef2 1 eB

M(z—E) ¢osin 6
fimft—r =f (- g S

=fo—m=7(t—

(3]
[o7]
[31]
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By the rule for differentiation of a definite integral,

106 0% My
Sor=t f 24(5,,0, )f(t do-+

[ b Lo+

[ fraggtmasas

Make use of the following relations:

(B3)

24 QA b(z—{—g'o cos 6)
dy  O(z+1, cos 9)
aaij %S;—O cos ¢
olhi+fe) _ Oh a@_ﬁ)_%_ ofe  O(t—r)
oY b(t——rl) oy o(t—ry) Oy

= Ui Gsin

Then, by integration by parts, the next to the last integral in

equation (B3) becomes <W1th cos 8 do=dw, a@f %s;o (fitfo= 'u)

[T £ s sin e] d— :

04 . 1040
Z/f f [(frf‘]'z) 32 sin ~25 70z o (fi—7%») sin 8 cos B:Idedé
where the first term vanishes because sin §=0 at §=0 and
A2
%S0 S G =u),

the last integral in equation (B3) becomes
84 05, D
—‘fo [Eg'a% 5t (fi—fs) cos @

& (‘v 1 aAa
yfo ﬁ) [cB S5 5 (fi—fa) sin 0 cos 6—

L S htf) costs | ded

Similarly (with sin ¢ dé=dv,

G=m.

“de+
1]

where the first term vanishes because fi=#, at 6=0 and §==.

Then, as y approaches zero from the positive side, there
results in the limit a contribution only from the first integral
in equation (B3),

(ay ope 2 (MP—1)A(,0,2)11) (B4)

of

Since yl changes sign as y changes sign, it follows that

as  approaches zero from the negative side an equal and
opposite result is obtained.
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