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SU31MM2Y

A theoretical study, ba~ed on the linearized equations of
mofiion for small disturbances, is made of the air jorces on,
wings oj general plan f orrns rowing jom.card at CLcons~ant
.wpemonic speed. The boundary problem is set up for both
the harmonically owillating and the steady conditions. Two
types oj boundaq conditions are distinguished, which are
dewjnated “purely wpemonie” and “mixed supers onic.” The
purely supersonic case inrolres independence of action of the
upper and lower swrfaces of the airfoil and the present analysis
is rtzainly concerned with. this case. A dkwwion i~ jirst
giwn of the fundamen~al or elementary solution corresponding
to a moring source. The solutions for the relocdy potential
are then synthe~<zed by means of integration of thefundamental
solution for the 7nouz.ngsowce. The method is illua~rated by
applications to a number of examples for both. the Neady and
the oscillating cases and for carious plan form~, including
wept uings and rec~angular and triangular plan forms.
The special result% of a. number of authors are shown. to be
included in the analysis.

IIXTRODUCTION-

This paper constitutes a thwreticzd study of the aero-
dynamic forces ori an oscil.latiqg or steady wing of finite
span moving forward at a uniform supersonic speed. The
treatment is bused on the linearized theory obtained by
considering only small disturbances in an ideal fluid. The
wing is therefore considered to be a nearIy flat thin surface
at a smalI angle of zttack and the flow is considered non-
viscous and free of strong shocks. ‘I’he theory in this case is
equivalent to finding certain solutions of the wave equation in
three climensions with respect to a mo-t-ing coordinate system.

For the case of steady motion there exist. a number of
interesting soIutiom and methods. Among these may be
mentioned the Von K6rm6n and Moore linearized treat-
ment of slender bodies of re-rolut.ion (reference I), the Prandtl
acceleration-potential method employed by Schlichting
(references 2 and 3), the Busemann method of “hnearized
conical flows” (reference 4), studies of Jones, Pucket t,
Stewart, Brown, and Gurevich (references 5 to 9); and a
method of VoD Kdrmdn empIoying Fourier integral solutions

of the t-rro-d.imensional ~a-re equation
him as “acoustic oscillator method”
Memorial lecture, Dec. 17, 1946).

and described by
(Wright Brothers

The corresponc&g unsteacly or nonstationary problem for
two-dimensional flow- (Mnite aspect ratio) may be cow
sidered to be soI~ed. In this connection there may be
mentioned the work of Possio, Yon Borbely, Temple and
Jahn, md the present authors (references 10 to 13). Of
interest aIso are tw-o wartime German papers by Schwarz
and Honl (references 14 and 15). The corresponding steady
pIane case to -which the nonstationary problem may be
reduced is that. treaterl b-y ..ekeret.

Results for the nonstationary or oscillating case are of
great interest. in the investigation of aircraft. instab~ity.
The two-dimensional results haw been applied to a stucly of
ffut ter at. supersonic speeds in references 12 and 13. Of
more direct. interest for this application are the three-
dimensional results, especially for wings of swept plan form.

The method used in the present study k to build up SOIU-
tions of the equation satisfied by the -reIocity potential by
superposition of the fundamenkl -wave-pote~tial solution
for a spherical source. These so]utions are also made to
satisfy certain required bounclary conditions on the airfoif
surface. In the two-dimensional supersonic nonstationary
case, -which appears herein as a special limiting case, it can
be proved that the procedure leads to a solution that is the
unique solution of the gi-rert boundary problem. (For the
probIem of subsonic flow- past a thin wing, reference may be
made to the generaI treatment, a.ncI method of Kussner
(reference 16) -which also in-i-ol~es solutions of the wave
equation. )

Some qualitative features of the nature of the boundary
probIem may be mentioned here. Further remarks may be
found in reference 17 ancl in Yon lQirm6n’s Wright Brothers ___
Memorial lecture. In the case of subsonic fiow past an air-
foil the w-hole field is influenced by the body. The concept
of circulation has proved to be very useful and the Kutta
condition has been used to sp~cify the circuktion by requir-
ing smooth flow leaving the trailing edge. Thusj a de~egted
aileron in subsonic flow influences the fIow pattern over the
whole wing e-ren more importantly than o-rer the aileron itself
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In the case of supersonic flow the influence of the body is
limited to only certitin parts of the field of flow and generally
the wake does not influence the.upstream flow. The bound-
ary problem for a three-dirnensional surface moving at a
supersonic speecl can be classified into two’ types referred to
herein as “purely supersonic” and “mixed supersonic.”
The definition of these terms is given in the analysis accord-
ing to the parks of the field influenced by the airfoil, @e
purely supersonic case in~olving independence of actiofi. of
the top and bottom surfaces ancl no reflecting surfaces in the
field. Thus, in the purely supersonic case, a deflection of
the aileron would produce only a local effect near the aileron;
in the mixed supersonic case, it may have a decided influence
on the part of the wing acljscent to the aile.ron or on other
parts of the wing. For a given wing both types of problems
may be involved.

The treatment used for the purely supersonic cases, involv-
ing source and sink distributions to account for the action
of the body, is believed to be exact within the framework of
the linearized theory. The upper and lower surfaces of the
airfoil are regarded as acting inclependentlyj each surface
being “unaware” of the presence of the other. The treat-
ment is thus analogous to that of sound in a moving medium
generated by the motion of pistons imbedded in an infinite
plane. This flow picture is obviously incomplete in the
mixed case ancl more complicated distributions (cloublets)
are also required. For some purposes, however, the simpler
treatment may still be usecl in conjunction with appropriate
correction factors. Also, for steady flow past a symmetrical
airfoil at zero lif+ the simpler treatment can be employed
for stucly of the wave drag.

The object of the present paper is to cleve]op the expres-
sion for the velocity potential in the purely supersonic case,
based on the elementary solution for the sound source
moving uniformly at a supersonic speed, and to indicate
its application by a number of special examples.

SYMBOLS

disturbance-velocity potential
rectangular coordinates for fixed system
rectangular coordinates attached to source mov-

ing in negative x-direction; also represent-s
field point being influenced

rectangular coordinates used to represent space
coordinates in fixed system

rectangular coordinates used to represent space
location at source distribution A(.f, q, f)

time
velocity of main stream
velocity of sound
Mach number (o/c)
distance defined by equation (8)
time function defined in equation (7a)

flmction defining airfoii surface (y=g(x, z, t))

~o,tl, ~,, .$, limits defined in equation (10)
e variable used instead of ~ defined by relation

prec@ng equation (15a)

P pressure

Po reference pressure

P density
a angle of attack
& time derivative of a
a angukir frequency
W(Z,2, t) vertical velocity factored in equation (14) as a

space function W(x,z) ancl time function w(t)
A angle of sweep
h vertical displacement,
h time derivative of h

ANALYSIS
WAVEEQUATIONAND SOURCE SOLUTIONS

In the linearized theory based on small disturbances the
equation satisfied by the velocity potential for the propa-
gation of sound waves of srmdl amplitude is the wave equation

(1)

The fluid medium is considered at rest at infinity.
In the treatment of linear partial differential equations the

so-callecl elementary or fundamental solution is of great
importance since general solutions can be built up by clis-
tributions of elemen~ary solutions. From a physical point Of

view the elementary solution may correspond t.o a source. A
discussicm of the nature of elementary solutions for hyperbolic
differential equations of a general type lms been given by
HaclamarcI (reference 18), who makes the carclinal statement
that” every result of the theory can he and has to he deduced
from the consideration of the elementary solution only.’)

A fundarnenta] solution of equation (1) from which gel~c’ral
solutions may be formed is thai of a source of sound fixed
in the medium

()
~o=; f p_;

where

?“= J(z’-g’)2+ (y’—q’)z+(z’-)~)~

In eauation (2) the fixecl source is locatecl ~t

($’, n;,f’), t~e’strw~h of ~~~ so~ce is -W, v’, F)AO,
and the minus sign indicates that the spherical waves mm
diverging from the center of the clisturbancc.

Another closely related solution of equation (1) is thaL of
a fixed point source for which the spherical waves are con-
verging onto the source

()
4’0=$ f t’+: (3)

The wave potential in equation (2) is often designated
“retarded” and that in equation (3), “advanced,”
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It is intended to consider thin lifting surfaces of smd.1
curvature which are moving for-ward at a constant supersonic
velocity t) and which may be performing small osciUatiorw
normal to the directiori of o. The direction of “vw-ill be that.
of the negative ~-a.xis and the surface -will be replaced by a
distribution of motig sources in the zz-plane (fig. 1).

Y

z
v

FLGCEE 1.—The wrdinate system used. TM IMing .wface in zz-pla.rte moving at a

constant su~ersonic vebcicy n kr the negatire cdirection.

Consider a source moving in the negative z-directiori with
uniform velocity u and a rectangular coordinate system
attached to the moving source. If the new coordinates are
designated by x, y, 2, f, where z=x’+-zV, y=y’, z=z’, t=t’,

the equation satisfied by the potential is

(4)

This equation is satisfied by the potential of sources of sound
in motion through the medium with uniform -velocity u in
the negative xdirection. It is also the equation satisfied by
the disturbance velocity potential for a fhml body creating
small perturbations from an oncoming main stream of
velocity u in the r-direction. A brief deri~at ion from_hycLro-
dynamical principles is gi-ren in appendix A.

It is known from the classical study of the wave equation
(reference 16) and can be verified by direct substitution that
a solution of equation (1) is transformed to a solution of
equation (4) by means of the following substitutions, corre-
sponding to a combination of the Lorentz transformation
and a Galilean transformation:

(5)

where M, the Mach number of the main ffow, is o/c=.
For the purpose of studying the supersonic case (M>l),

it is more convenient. to employ modifications of transforma-

tion (5) obtained by multiplying the right-hand sicle by the

constant l/Jl —M 2, or

(5a)

The particular solution of equation (4) that corresponds
to a motig source will be seen in the following discussion
to be analogous to a solution of equation (1) give~ by ‘the
sum of potentials in equations (2) and (3), namely, to

(6)

The desired solution of equation (4) correspomling to equa-
tion (6) is obtained with the aid of the substitutions (5a) as

(The term ~11–M’ in equations (5a) causes no di&uILy
since only the squares of the space coorciinates we needed.)

This solution for +0 may be upressed in the form

M x–g r.—— —..
‘l— c .1l~—1 c

and where r is defined as in equation (8). The constant
A(f,~,{) conId of course lza-re been included in the functional
symbol j but has been separated for cormenience. It may
be considered to represent the space variation of the source
strength as distinguished from the time variation of strength.
For a motig source of constant strength the time function
may be considered equaI to unity and the potential expressed
as (reference 2]:

4=2+

It w-U be recognized that the solution, equation (7a), is
-ralid in a. conical region, the so-called “Mach cone, ” opening
af~ of the motig source. Outside of this conical region,
defined by the equation r=O, the flow is undisturbed.
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The result expressed by equation (7) maybe considered
physically from two points of view. In one, as considered
by Prandtl (reference 2), a source of variable strength
moving along a certain path is replaced by a continuous
succession of fixecl source pulses distributed along its path
acting consecutively one after the other. Each pulse., con-
sidered fixed in an absolute coordinate system, emits a
spherical wave traveling at sound speed ancl the coordinates
of the center of the spherical surface are ~+ot, q, ~. The
radius vector R of a point (z, y, z) with respect
center is

R= ~~[z– (&+@]2+ (y–~)’+ (z-&

The time at which the spherical wave passes the point
is

t=:

to this

(z, y, 2)

Eliminating R between the preceding two relations results in

C’t’– (.–,+tt)’- (’y-q)’– (2–{)’=0

The roots of this quadratic equation in t are. precisely the
quantities rl and 72 defined in equation (7a); that is, the
field point (r, y, z) is influenced at time tby two waveswhich
originated at times T’ and ~1 ear]ier. It is of interest to
observe that, in the supersonic flow, both roots are real and
positive and have physical significance; whereas, in the
subsonic. flow, ordy one root is positive ant] of physical sig-
nificance. In the supersonic case the field of influence of a
source is the particular Mach cone with vertex at the source,
and through each point in Lhis region at instant f, there pass
two spherical surfaces representing the waves originating at
times rl and T’ earlier (fig. 2).

FTGUEE 2.—FieId of iufluence of spherical source moving at a constant supersonic relocity.

Point (z, y, z) is affected attime t by two pulses origirwting at times TI and n earlier.

From the other point of view of the result (equation (7)),
a single diverging spherical wave-pulse is considered. Let
this wave originate at the point (f, q, f) at a time T (fig: 3)
and consider its eflect at a point (z, y, z) (within the Mach
cone whose vertex is at point ($, ti, {)) moving with a velocity
greater than tha.fi of sound. Clearly at a later time T+ rl
the moving point penetrates the wave front and at a still
later time T+,, it emerges from the wave front. The
potential at point (z, y, z) changes only on entering and on
leaving the wave front and the two terms in equation (7)

FIGURE3.—Influence of siuglt? spherical wave pulse. Spheric&l wave originat hrg at pokrts

(:, V, ~) at the ~ kfluenew pOint (z, u, Z) fixed rel~fi~e tO (Z, m ~) and mov~g at a 00D.
stant supersonic speed, at times T1 and TSIater.

correspond to these two cffec.ts. The factor 2 appearing in
the potential for a constant source moving at a supmsonic
speed also has its origin in this physical fact, in contrast to
that for a source moving at a subsonic. speed, whine the Ml
point penetrates the wave front but never emergcw am] where.
the corresponding ftictor is unity. The tivo-cli~}l(’l]sional
supersonic case involves cylindrical waves and the potcn{ ial
of the ..point (z, y) is continuously changing from [hc
time the point enters to the time it emerges from t.hc
wave (reference 13). Observe the interesting gcornetricd
property of r (equation (8)); namely 2r is the difl’crcnec of
the radii of the spherical wTzve at time n and at time rl, thut

is, r=; (r,–~,]. (Observe ako that the potcntirtl ~vhich for-

mally appears in equation (6) as the sum of potcntiak, llalf-
advancecl ancl half-retarciecl, transforms in the moving
coordinates to a sum of retarded potenticds in which tho
original ret.ardecl part is associated wiLh tho clivcrging
spherical concave wave from -which ihe point is emerging
and the original aclvance.d part is associated with a diverging
con vex wave into which the point is penetrating.) IleccnL
papers of interest in connection with moving acoustical
sources are references 19 and 20,

SURFACE DISTRIBUTION OF SOURCES

Sources and sinks of the type ch will now be distributed to
represent== the upper and lower surfaces of ri thin airff}il.
The procedure to be folIowed is that used in the L\Yo-
dimensional case (references 10 to 13) where the upper and
lower surfaces are considered separately. Also the total eflecL
may be separated into an effect of the mean-cmmbvr surf~cc
and an additive effect clue to thickness alone. In mosL of
the applications, unless stated to the contrary, the mcan-
camber surface is consider~cl.

Let a continuous distribution of sources be given over the
mean-camber surface. The airfoil is considcrccl so thin and
flat that the source clistribution may be treated in the
z2-plane (fig. 1). The airfoil surface may lx consiclwcd
moving at a constant- speed Uin the negative r-direction (or
fixed in a s~ream moving in the z-direction). The effect at
a point (m,y, z) at time t of a,distribution of sources of pcEi-

tion magnitucIe A(&, 0, ~) is given by an appropria~e
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iutegmtion over a region of the &-plane of the form

where @Orepresents the function given in equation (7) with
q=o.

The totaI effect at the point (z, y, z) is the sum of the
effects of W disturbances ha-ring their origin within the
Mach cone with vertex at point (z, y, z) ancl opening in the
upstream direction. This conical region need not extend
into the undisturbed part of the flow; that. is, it need not
extend beyond the most forward surface envelope of the
Xfach cones of infhence of the body. There are esse~tially
two types of boundary conditions that need to be dis-
tinguished, designated by the terms “purely supersonic”
and “mixed supersonic. ” J4 point of the boundary belongs
to a purely supersonic case if the upstream facing ]Iach cone
coQtains} in the part of the x:-plane not considered occupied
by the body, no disturbed fluid having a component normal
to this surface. Otherwise, the point belongs to the mixed
supersonic case. ~ sufhcient (but not necessary) criterion
for the purely supersonic case is that the component of the
main stream normal to any edge or coDtour of the plan form
in the xz-pla.ne (contained within the upstream facing Mach
cone of the given point) shalI be supersonic. There is no
downwash ahead of the body, no holes are in the body, no
spilling of fluid occurs around edges, and no reflecting surfaces
are in the How field. In this case the upper and lower sur-
faces of the airfoil are considered to act independently of
each other; a disturbance created on one side does not affect
the opposite side. The flow can be considered to arise from
the. appropriate movement of smaH pistons acting at the
regulating or generating surface. This condition is in con-
trast to that. of the mixed supersonic case, for which the.
effect of the disturbance spills over the edges or sides, and
a disturbed fluid region (do-w-n-m-ash)may exis~ a-head of the
body. Thus, points of a tria.nguhr surface, moving vertex
foremost and completely outside of the Mach cone associated
with the vertex, belong to the purely supersonic ease. If
the triangular surface is inside the Mach cone associated
with the vertex, the points belong to the inked supersonic
case. Of course, for a given surface, both cases may be
involved. .4 few examples are shown in figure 4.

ln the purely supersonic case the circulation concept plays
no particular role and the cirag associated with lift or thick-
ness may properly be denoted as wave drag. In the inked
case the flow retains subsonic features and the drag associated
with the lifh is sometimes denoted as induced drag.

Mthough the treatment given for the purely supersonic
case is believed exact wi[hin the limitations of the linearized
theory, an exact treatment of the inked supersonic case is
not available. These problems involve greater diflhdties
in the boundary conditions, for the flow to a certain extentt
acquires features of a subsonic flow in that the fluid field
“senses” the approach of the body. Thus, in certain cases,
conditions at the leading edge, at the trailing edge, and in the
wake must be specia.~y taken into account. For some pur-
poses and in certain problems, however, it may be useful to
treat the mixed supersonic case in the same mtmner as the
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FIGCRE 4.–llIustrations of pkm forms with “mixed .wperwnic” regions (unshxded) &nd

j; “purely supersonic” regioms (~h~ded).Mzch~es areshe= d=hed.

purely supersonic case and to introduce appropriate correc-
tion factors.

The region of integration in equation (9) is the part of the
body @ the t~-plane) cut out by the upstream opening
llach cone with vertex at point. (z, y, z). This region in
general depends on the plan form of the body as well as on
the point. (x, y, z). With the understanding that the leacling
poini of the body is at g= O, the integration may be writ te~

The limits of integration ~, and c, in equation (10) may be
recognized as the distances from the t-axis to the near and
far sides, respectively, of the hyperbola defined by the inter- .._.
section of the cone r= O and the plane q= O. Thus, from
equation (8), -with q= 0, fl and ~z are recognized as the..roots. ____
of the equation

(?l!=a=-&J(i-–rl}Q-,-J-)=0 (11)

The limit :1 in equation (10) represents the &coordin~te of
the vertex of the hyperbola and is defined by the condition
~1=~,, that is, by fo=O. The point ($1, z) is the furthermost.
downstream point which can affect the point (z, y, z)
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BOUNDARY CONDITION

The strength of the clistribution of singularities in equa-
Lion (10) will now be determined by the boundary condition
of tangential flow along the airfoil surface. The boundary
condition may bo expressed as

where the airfoil shape is defined by -y=g(x, z, t) and where
the two terms represent the normal velocity induced by the
airfoiI shape and by its own proper motion. It is shown in
appendix B and can also be made elea~by physical reasoning
that as y approaches zero from the positive side

+5
-= -- 2?r(fM’– l)A(Z, 0, Z)j(t)
by

or, briefly,

A(x7 z)f(t)= ‘ZT(f&- 1) W(z, z, t)

(p’+())

(13)

As g approaches zero in the negative half phme, an equal
and opposite result k obtainecl. Equal source distributions
on the upper and lower surfaces therefore resuIt, in a cliscon-
tinuous vertical-velocity distribution. near the.. plane y = O
and may be used to represen~ symmetrical thickness distri-
butions. The source distribution representing a thin bocly
with arbitrary thiclm~m–clistiibution k in general unequal
on the tw70 surfaces, The effect of thickness-is discussed in..
a separate section. A representation of the mean-camber
surface alone may be obt ainecl by placing equal and opposite
sources on the under surface in proximity to the sources on
the upper surface. The potential @is to_bc understood in
the subsequent analysis to be prefixed by a + sign, plus for
the upper surface and rnirnus for the lower surface. The
vertical velocity wiII in general be measured positive upward.

It is com~enient to express the vertical velocity in equa-
tion (13) in sepmated form ‘“

W($,z,t) = H’(z,z’)w(t) (14)
where

W(W) = –27r(M’– l) A(x,z)

w(t) =j(t)

SVRFACE POTENTIAL

The total potential for y=O may now be expressed by
means of equations (10). anti (14) as

where, for y=O (see equations (7a.), (1O), and (11)),

and where it is un~lerstood that IJ’($, f)= O at any point off
the body or where the integra.nd is not real.

Equation (15) m%y be put into a simpler form by substi-
tution of a new variable @instcacl of r, which is obtained
from the relation (see appendix B)

The surface potential (equation (15)) may then-be written as

where
_x—g

— (M-sin 6)
‘1 — (@

Equation (15) represents the central result of the .andysk
and within ihe limitations already discussed may l.Mappliccl
to wings of any plan form in steady motion or performing
small oscillations. In the stationary or steady msc, @does
not depend on timo and the function w(t) is to be replaced
by unity. Then, in equation (15), w(t–n) +w(t–r,) is to
be rephiced by 2.

PRESSURE RELATION’S
.

For the sake of reference, relations for the pressure and
the lift and drag forces are given here. The disturbance
pressure (Iocal static pressure minus the pressure in the
undisturbed stream) may be written as
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The pressure difference (positi~e if acting downward) ctt any
point (x, z) may be e.spressed as

where the subscripts ZI and -L refer to the upper and lower
surfaces. For the mean-camber surface p~= –pu and

“=-’’r$+% (17)

The toted forces on the airfoil in the y-direction and
direction are given by

F= Lift= J J p dx dz

X= Drag= – J Jp dy dz

where the integration is to be taken over the complete airfoil
surface. Expressed as integrations over the pkm form

17= [ [(pL–pu)ftx dz .
I-J J

/‘=ff[’u(~)u-’’(%ldldzdz ’18)

It is often con-renieni to separate the slope terms as follows:

where a is the conventional direction of the main stream vi-ith
respect to a reference chord, and ru and a~ are the local slopes
of the airfoiI surfaces measured with respeci to the reference
chord a~d positive in the same sense as ct.

APPLICATIONS

WfKG OF IXFIMTE SPAX .4>”D ZERO SWEEP

For the firsi application of equation (15) the results for
both the oscillating and steady two-dimensional case will be
derived. For the harmonically oscillating wing having
identicaI motion in e-rery chord-wise section, the vertical
velocity can be written in the compIex form

Equation (15a) becomes

The integration with respect toe may be readily performed
with the aid of the relation

(20)

(21)

This result for the velocity potentiaI is identical w-ith equa-
tion (11) of reference 13 and is used therein as .a basis for
calculation of the nonstationary two-dimensional case.

In the steady case, u= O aucl 1($, z)= 1. The expression
for the velocity potential is

‘g T& formda or the pressure relationwhere T($) = o ~.

P=–pD~_V’ dy–PF7X

applied to both the upper and Iower surfaces of the airfoil
leads to au the resuIts of the .ickeret theory.

WIXG OF IXFIMTE SPiX *ITH AXGLEOF SWEEP

Consicler an infinite wing with angle of sweep A (fig. 5), and
assume that all sections in the ffigbt direction are identical
in shape ancl that, the wing is uncIergoing harmonic motion.
In generaI, the -rerticaI veIocity w can be written in the com-
plex form

W(Z,z, t)= W(Z, z)e~~f

FIGGRE 5.—Sket &. for wing of Mlnhe span with angle of sweep showir?~ regfon of
integration (shaded).
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If each section normal to the leading edge is performing the
same motion, the form of T4T(x,z) is H’(z- 2 tan A). If the
wing is assumed to perform pure vertical motion alone, then
~~(x, z) is a constant. If the wing is assumed to rotate ibout
an axis z= constant, then MT(x,z) is of the form llT(x).

The potential is of the form (fig, 5)

The values of the limits & and ~, are found by solving for ~
in the relations {1=.$ cot A and fz= $ cot A which represent
the intersections of the Mach lines through z with the Iead-
ing edge, The limit @=6, corresponds to ~=~ cot A, the
leading-edge line.

M%en 1?7(.$,z) is a constant or a function of &only, the
veIocity potentlaI can be expressed as

1 _iu!5 &f 81
L(&e,z)=; e -c P

S(

X—g cd
Cos —~p )

sin t? d(l (25)
o

Observe that the integral involve.cl in equation (25) for 11
reduces to the Bessel function of zero order whm @l=r as
in equation (19). This interesting integral m~y therefore
be called an ‘(incomplete” Bessel function of zero order.
Systematic investigation of its properties wouId appear to
be desirable.

For the infinite swept wing in the steady case the frequency
a may be made eqmd to zero in equation (23). Consider
as a simple example the case of a th;n wing at a smaII constant

dangIe of attack ~, that is, 4!= —~<
dx

Let the angle of sweep

be less than the complement of the Mach angle., that is,
/3 cot A> 1. (Otherwise the case involves the miiied-
supersonic-flow conditions. ) From equation (24) with co= O,

1(~, z)= 1, and ll(f, z, z)=$,
.

‘(x,z)=f[rd’-:f:cos-’(’c::-z’)’~l

x cot A-z-
=Ua (26)

>//32COL2A — 1

The local pressure clifference is given by

2p7h~=T /9 cot A

~@2coL2 A–I ‘-
(27)

This equation recluces, for if= O, to the Ackcret result

2pv’apo.—..—
B

Let the index n refer to quantities mcamred normal to the
leading edge. Then

a~=c2 sec A

Vn=v cos A

il{.=~=ilf Cos A

and

a result similar in form to the expression for p. and nlrc~dy
staked by Busemann (reference 17) in 1935. (See also
reference 6,)

The harmonically oscillating case with T1’(xlz) assumed
to be of the form T1’(x—z tan A) leads in a similar mamwr to
a resuIt analogous to equation (20).

RECTANGULARWINGOFFINITESPAN(ZERO SWEEP)

Consider a harmonically oscillating rectangular wing of
finite span as in figure 6. Region I is described as purely
supersonic and region II as mixed supersonic. The nigher
the aspect ratio and the. stream Mach number, the relatively
smaIIer the region II becomes.

The potential for region I for identicaI motion of cmh
chordwise section is exactly that given for the infinif,c wing
in equation (20); how’evel‘, more general tcypes of motion
involving spanwisc variation may also be tlcateci. For
example, let the wing perform harmonic oscillations in
vertical bending and in torsion about a sptmwisc ~~is’Z=zo
in certain prescribed spanwisc modes. Then, with a and
h used to describe angle of attack and vertical position

(f% 7),
a=al(z)az(t)
h=k,(z)hz(t) }

(28)

where al(z) and hi(z) represent spanwise modes and

az(t) = aoe{~~

A2(t) =hoei”~

and a. and ho are constant complex amplitudes. The vertical
velocity (w measured positive upward, h positive down-
ward) may be expressed as

W(T,z, t)= —pwl+h+(x-zo}d] (29)
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with the use of equations (15a), these potentiak mny be
expressed m

FIGCP.E T.-Sketch fwose~lldirxrectangular wing (h is positire domwwd,
a is posici~e clockwise).

Let the potentird (equation (15)) be separated into the
form

~=@=+&+@& (30)

where the various 4’s are associated -with the corresponding
variables in equation (29).

and, expressed as a function of 0,

al(r) =CTl(z+-ro Cos e)

If the moc{al functions in equations (31) me a,=h, =I, the
potential corresponds to that gi~en by equation (20) for the
tlro-dimensional case. (See also equation (14) of reference 13.)
It is of interest to consider modal functions for al and
hl of the t~pe (~fs)” where s is the semispan. For modaI
functions of this form the typical integral in~olved in
equations (31) may be e-xpressed as

~~=lw-,cose)” ‘4++’ ’32)

With the substitution of ~– 0 for 0, F. may be written as

~~=f(’+fos~’)’’os(fico
J ‘(’-~os~’~z’os(ficos’)d’o

The further reduction of F. k macle with the aid of the fol-
lowing relation (reference 21):

()
2;AZ

CL.(k)=

‘w):(”)
J1’ 0

2cos (k cos 6) Si&k e do

2

For example, the case n=O corresponds to constanb modes
and -yields for the potential the result already given by
equation (20). The case n=l corresponds to linear modes
and the functio~ FL becomes

This reIation utiIized in the equation for the potential yields
a result that is the t~odimensional-case result multiplied
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by the factor 2/s. The case n =2 corresponds to parabolic
modes and the function Fz becomes

When ~, is used in equations (31), the JO term yields an
integral of the type given by equation (20). ITith the use
of the relation JI (x) = —Jo’ (k), the J1 term also yields an
integral of the same form. This type of reduction to the
form of equation (2o) maybe made in general for any integral
index n by means of the recurrence formulas for Bessel: func-
tions, and thus use may be made of the numerical procedures
used for equation (30). (See reference 13.)

It may be of interest to treat the tiotential for the mixecl
supersonic region 11 (fig. 6) as though-it were part of a purely
supersonic region. The equations corresponding to equa-
tions (31) are

and similar equations for dl~ and +a. The limit & is found
as the value of { for which ~z=s or

&=2- (!s–z)@

The limit R= O conesponds to ~= ~f and the limi~ 6=6,
corresponds to f=s or, from equation (15a),

The last term in equation (33) leads to integrals of the
“incomplete” Bessel function type as mentioned for the case
of the infinite wing with angle of sweep.

The foregoing results for tho oscillating rectangular wing
wiIl now be specialized to the steady case (LO=O, q=-0,
w({) = 1, 03(0 =~, the Constant angle of attacli). TIMn,
from equations (31 ), the velocity potential for region 1, is

For region H, from equation (33),

(34)

(35)

The actual integration in equation (35.) may be easily per-
formed but is not requirecl for thti purpose of obtaining the
local pressure.

The Iocal-presstire clifferenc.e is directly obtained for
regions I and II from equations (34-) and (35) as

2p@apr.7
,, P

1 ( )1)

(36)
2pv2a -pll . —

P
1–: Cos-1 y /3 a’

It may be observed that p k constant along rays from the

tip ~= constant. Along the ray corresponding to the

Mach line from the tip, ‘&z P= 1 and p talies on the constant

value p,. Along the my corresponding to the tip 2=s, half
of this value is obtained. This edge condition is physically
incorrect since the assumption of the independence of the
two surfaces of the airfoil is not correct near the tip.

This particular problem has been treated by J3usoma nn
(reference 4) by his method of conical or perspective sym-
metry. ‘I’he condition along the ray corresponding to Lbe
tip is p_= O and Busemann’s result for region, II is

2pv2cY1 _l ~_2(8—z)——
‘“= /3 r ‘Os ( x 8)

The total lift over region II is one-half of that of Ml equal
area of region I. .4 comparison of this result and cq ua-
tions (36) is shown in figure 8, This comparison gives cm
indication of the errors involved in the assumption of inde-
pendence of the two surfaces near the rectangular tip and,
conversely, it gives an indication of thti appropriate comm-
tion factors required to allow for the Lip effect. It tippears
that equations (36) overestimate the lift over all of region 11

n
by a factor l–~ or by approximately 36 percent, iictual]y,

equations (36) apply to the edge of a rectangukw wiug
adjacent to a straight surface barrier at zero angle of attack..

THICKNESS DISTRIBUTION

It has ah-eacly lxwn remarliecl that the treatmcmti em-
ployed in the analysis mainly for Lhe mean-camber surface
can also be applied to obtain the effect. of thickness. In
equation (15) the vertical velocity H’($, t) may be spcr.ificd
for both the upper ancl the lower surface.

As an example, consider a plan form such as that shown in
figure 9 in steady supersonic flow. Let the airfoil section
shape, for convenience chosen symmetrical and inclepdcnt-
of span, be defined in the center section by y=g(z) (find iD
any other section hy y=g(z—z tan ii)).ThcT~,for tho upper
surface,

117(2,Z)=zw+vg’

and, for the Iower surface,

W’(2, 2)= me—’vg’

where g’ is the derivative of g with respcc t to its argument..
The velocity pot m tials in the various regions in figure 9

are of Lhe form
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FIGURE km~ketch for swept wing for the raw A>l showbg regfons I, fI, III.

The limits in the foregoing integrals are as foLIows: the
limits O= t?,and O= t?,correspond, respectively, to the leading-
edge lines {=c cot .4 and f=—g cot .~; e=o and %=T
correspond, respectively, to the Mach lines ~= rz and
{=S 1; $3 and h are obtained, respectively, from the relations
fl=~ cot :i and fl=—& cot A; 6=$2 corresponds to c=.s; & is
obtained from the relation ~z=s; f< is obtained from

{z= ~ COt A; and & k the value of L for the leading edge of
the tip. Then

f,=z–(s–z)f?

.$,=s tan ii

If, for example, the distribution function F is a constant K

The corresponding local pressures are

where
A=P cot .1

The constant h’ may be interpreted as m associated with
constant angle of attack. In this case, region II is to be
regarded as a mixed supersonic region and the res@t given
is not the appropriate solution for this region. If the con-
stant K is interpreted as g’ =C?onsfant, the results are
applicable to a thin symmetrical wedge of half vertex angle
K and maybe employed to yield the wave drag according to
the linearized treatment.
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Jones (reference 5) treats symmetrical airfoils of various
plan forms at zero lift by use of pressure potential. The
use of velocity potential leads to the..same results as given
in reference 5. Thus, equations (13) and (14) of refereuce 5
for a wedge correspond to the preceding results. The
velocity po tentitd in general is more useful to ireat pressure
distributions for a given body; whereas, the pressure poten-
tial may be more readily adapted to treat airfoil shapes and
plan forms associated with desired types of distributions
of pressure.

TRIAh”GULAR PLAN FORM

The triangular wing (fig. 10) extending across the Mach
lines from_ the vertex may serve as a final mirnple. For the

I I
I I i I
I I I I

I

I3
1 I I I

o f
z/s

FIGURE 10.—Triangulsr wring iu a supersonic stre&m and prgssure dktributfon. Case

sketchedcorresponds to A=30”, M=~;.

steady case of a vanishingly thin surface at angle of a t tack a,
the velocity pot entials ancl pressure relations for regions I

and 111 are equivalent to those just cliscusscd in the preceding
section. The lif~ A_~on a strip Ax of the trifingh? located at
abscissa z from the vertex is given by

J

x cot A

AL= Ax
-.cotAAp ‘2

where .te two terms correspond to the integrations over
regions I and III, respect.ive]y, and where -A= p cot A. ‘Men,

J&lAx Ax
AL_ 4pv2a

The. area of the strip is 2X Az cot A, and hence the lift cocill-
cient is independent of x and equal to

CL=(b’i:?)
Gurevich (reference 9) treats this case, and his relations can
be shown to be equivalent to the foregoing ones. The pres-
sure distribution is illustrated in figure 10, where YO, thti
reference pressure, is ZpOza/B. Observe t~a~ the Pr:ssuc

area above the unii ordinate cm.cek the area of pressure
deficiency below ~he unit ordinate. Mso showfl in figure 10
is the distribution of pressure as the half vertex anglc of the
triangle approaches the Mach angle.

The triangular wing inside the Mach mm.e from the vertex
require.s..a more elaborate treatment (references 7 to 9).

LANGLEY YIEMORIAL AERONAUTICAL LABORATORY,

~rATIONAL ADVISORY COMMITTEE FOR i!JIRONAUTICS,

LANGLEY FIELD, VA.,June 4, 1947.



APPENDIX A

DIFFERENTIAL EQUA!HOX FOR THE VELOCITY POTENTIAL

~ derivation of equation (4) is given briefly here. The
ccmdition for irrotatio~aI flow is

curl V=o (Al)

and this reIation implies thak a scalar veIocity potential o
e.xisk, such that

v=gracl 4 (A2)

The general equation of continuity

may he written as

: Q&24=o (.43]

-where diilerentiation following the particle is denoted by

&=~+ (v grad)

and V2= div grad is the Lapkian operator.
From Euler’s-equations, or from the general BernodIi

relation,

(.44)

~~ith the aid of these two relations the firs~ term in equa-
tion (.&3) becomes

For small perturbations from the main stream of velocity o
in the z-direction, c may be considered equal to the constan~
speed of sound in the undisturbed medium and, in compari-
son with UzL’r=O, UZ=07 and cX=U. Then

Ti5th this relation used in equation (A3) the equation for
the velocity potential may be pub in the form gi~en in equa-
tion (4) of the anaIysis.

APPENDIX II

&#J()EVALUATION OF —
dy ~+o

In order to determine the Iimit of $ as y~O, it is conven-

ient to make use of the following substitution:

2f= (f~—f~) COS6+fZ+~1 (Bl)

where a space-constant function of time has been included
The expression for @(equation (10)) may be written with the

in @, and where~it has been assumed that p is a function of
~~only. ~lth the use of equation (44) and the acoustic

aid of the folIowing relations (see equation (11)):

1 f2—rl s~ @

where c is the local variable speed of sound, it foIlows that ‘p 2

and

265
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(B3)

Then, by integration by parts, the next to the lash integral in

(
equation (B3) becomes with cos 0do= dv, ~ a? (fl+fz) =u.

)

where the first term vanishes because sin 6= O at 6= O and

O=m. Similarly (with sin 6 d6=do,
.4 b~, a
@ ~ ~ (fl–fz) =U) ,

the last integral in equation (B3) becomes

where the first term vanishes because jl=jz at 0= Oand 0= T.
Then, as y approaches zero from the positive side, there

results in the limit a contribution only from the first integral
in equwtion (B3),

b@l()@?++0
= –27r(M’– l) A(z,o,z)j(t) (B4)

Since ~ changes sign as g changes sign, it follows that

as y approaches zero from the negative side an equal and
opposite result is obtained.
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