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SUMJI.ARY

This paper dewlops a new method-for dekrmining the buckling
strews qf cylindm”cal shells u na’er ramks loading conditions.
For conr~nience qf e.rposition, it is Arided into tzco parts.

In part I, the equation jor the equilibrium of cylindrical
shells introduced by Donnell in ATAC!!4 Report ~Vo. 479 to find
the critical stresses of cylinders in ~orsion is applied to jind
critkal stresses-for cylinders with simply supported edges u rider
other loading conditiww. It is shown that by this rnelhod solu-
tions may be obtained rery easily and lhe results in each case may
be expressed in terms qf two nondimensional pararnekm, one
dependen~ on the crifical stress and the other es~entially det.sr-
wbined by the geometry of the cylinder. The in$u.wce oj boundary
coruiif ions related to edge displacernen h in the shell median.

.w.uface is discussed. The accuracy oj the solutions f’ound is
established by comparing them with gnwtious theoretical solutions
and with test results. The solutions to a number of problems
concerned v,<th buc~ling Oj cylind~rs IM2h simply supported
edges on the basis of a uni~ed rieu-yoint are presaded in a
convenient form jor practical use.

In part II, a rnodi~ed form oj .Donnell’s equation for the
equilibrium of thin cylindrical shells is dericed w%ich is eqwh-
alent ~oDorm en’s equation but has certain advantages in physical
intwpretation and in ease oj solution, particularly in the case
@ shells baring claroped edges. The solution of ffLiS modt~ed
eguation by m~ans of trigonometric series and its application to
a. liumber of probkms concawd u%% the shear buckling stresses
gf cylindrical shells are discussed. The question of implicit
boundary conditions also is considered.

INTRODUCTION

The recent emphasis on aircraft designed for very high
speecl has resulted in a trend toward thicker skin amI fewer
stiffening elements. As a result. of this trend, a larger fraction
of the load is being carried by the skin and thus ability to
predict accurately the behavior of the skin under load has
become more importzmt. Accordingly, it. was considered
desirable to provide the designer -with more information orI
the buckling of cumed sheet than has been a-railable in the
past. In carrying out z theoretical research program for this
purpose, a method of analysis was de-reloped -which is be-
lieved to be simpler to apply than those genert-dl~ appearing
in the lite~ature. The specitic problems solved as a part of
this research program are treated in detail in other papers.
The purpose of this paper, which is discussed in t~o parts,
is to present the methocl of anal-j-sis that was de~eloped to
solve these probIems.

~s;;()~~—fifi-~fl

In part 1, the stability of a stressed cylindrical shell is
analyzed in terms of Donnell’s equation, a partial differential
equation for the radial clisplacement w, which takes into
account the effects of the a.sial displacement. u and the cir-
cumferential clisplacement c. Part I shows the manner in
which this equation can be used to obtain rdatively easy
solutions to a number of problems concerning the stability of
cylindrical shells with simply supported edges. The results
of the solution of this equatio~ are show-u to take on a simple
form by the use of the parameter k (similar to the buckling-
stress coefficients for flat plates) to represent the state of
stress in the shell and the parameter Z to represent the
dimensions of the shelI, -where Z is defined by the follow-ing
equations:
For a cyhnder of letigth L

and for a cur-red panel of mid th b

z=: yh —pz

where
r raclius of curvature
t thickness of shelI
and
Y Poisson.s ratio for material
The accuracy of DormeU’s ec~uation is estabkhed by compari-
sons of the results found by its use with the results found by
other methods and by experiment.

In the simplest method that has been found for solving
Donnell’s equation, the radial displacement w is represented
by a trigonometric series expansion. This method can be used
to great ad-i-antage for cylinders or curved panels -with simply
supported edges but leads to incorrect results -when applied
uncritically to cylinders or panek tith clamped edges.

In part II, an equation is derivecl which is equimdent. tO
DonneH’s equation but is adaptecl to solution for cknped as
well as simply supported eclges by means of trigonometric
series. TLis modified equation retains the ad~antages of
DonneWs equation in ease of solution ancl simplicity of re-
sults. The solution of the modifiecl equation by means of the
Galerkin method is explained, and the results obtainecl b~
this approach in a number of problems concerned with the
shear buckling stresses of cylin&lcal sheIIs are given in
graphical form ancl discussed briefly. Bounclary conditions
implied by the method of soIution of the modtiecl equation
me also discussed.
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SYMBOLS

length of curved panel (longer dimension)
wiclth of curved paneI (shorter dimension)
cliamet er of cylincler

integers

IateraI pressure, positive inward
raclius of cylindrical shell
thickness of cylindrical shell
displacement in axial (z-) direction of point_ orL

shell meclian surface
displacement in circumferential (y-) direction of

point on shell median surface
displacement iu raclial clirection of point on shell

median surface; positive outward
axial coordinate
circumf erentiaI coordinate

>

h,

/+,

k,

(2,

100

D

E
F

L

(TtL2
shear-stress coefficient ~, for cylinder or ~ for

curved panel or infinitely long curved strip
)

axial compressive-stress coefficient
(

vztL2
— -for
DK2

~ztbz
cylinder or ~ for cur~ecl panel or infinitely

long curved strip
)

circumferential compressive-stress coefficient

(

~vtb2
$# for c.yIincler or ~ for curved panel or in-

finitely long curyed strip
)

()

prL2
hydrostatic-pressure coefficient =7

amplitude of deflection function

(
Et3

pl~te flexural stiffness per unit length
>12(1—/.P))

Young’s modulus
Airy’s stress function for the median-surface

stresses produced by the buckle deformation

(3’F - b2F
— ~stress in axial direction; — ~ stress inay’ *F

b2F
ctLnlferential ‘irect’iO1l; – bxby’ ‘hear ‘tress )

Iength of cyIinder

cir-

Q,(L,G m~t~~ematical Operators

z
L2 —

curvature parameter (4~ 1—,uz for cylinder or

b’ —
~ ~1’1—l.Lzfor curved panel or infinitely long

curved strip
)

b .L/h for cylinder or bjh for infinitely long curved
strip

A half wave length of buckIes; measured circumfer-
entiaIIy in cylinders and axiaHy in infinitely long
curved strips

dimensionless axial coordinate (x/b)
dimensionless circumferenticd coordina~e (y/b)
Poisson’s ratio
applied shear stress
criticaI shear stress
appliecl axial stress, positive for compression
applied circumferential stress, positive for compres-

sion
shear-stress ratio; ratio of shear stress present to

critical shear stress when no o tkr stress is acting
axial-compressive-s~ rcss ratio; ratio of.dircc~ ~x.ial

stress present Lo critical compressive stress when
no other stress is acting

op’ra’”r((~+gy=~+’zfi?
“erator((%+%)’)
oper’tor((~+w
‘Perator(($+a’)
inverse operator defined by equation

(V-yvy) =’?’(v-y) =f)

1. DONNELL’S EQUATION

THEORETICAL BACKGROUND

In most theoretical treatments of the buckling of cylin-
dricaJ sheik. (see references 1 to 3j three sim~lltantwus par(ial
clifferentiaI equations have been usecl to express the relation-
ship be~ween the components of shelI mcxlian-sul’fam dis-
pktcernen~ u, o, and w in ihe axial, circumfcmntid, ancl
raclial directions, respectively. hTo general agr~emrn~ has
been reached, however, on just what these cquat ions shouId
be. h. 1934 Donnell (reference 4) poinkcl out tha~. ~hc
differences in the various sets of equations arose from the
inclusion or omissio~ of a number of rclat i~ely unirnporl.an (,
terms [referred to in the present. paper as high(ir-order
terms), and proposed the use of simpler equations in wKLch
only the. most essential terms (first-order tcrmsj were.
retainecI. The omitted terms were showm t-o be small, and
thus the simplified e.cluations to be ~tpp]icnblc, if the cyliudcrs
ha~-e thin walk and if the square of thti number of circum-
ferential waves is large comparecl with unity. Dc)nncII
further showed tha i the three simplified cquat ions can bo
tiansformecl into a single eighth-order partial difl cren tial
equation in 10 (see appendix A of the present paper) in which
the effccts of the displacement t.s u and o arc properly ttdfeu
into account; this equation will hereinafter be referred to as
DonneUs equation.

When higher-order terms me incIuded in the three pm’tia]
differential equations previously mentioned, the resulting
theoretical buckling stresses are usually very complicated
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fuDctions of the qlincler dimensions and the elastic proper-
ties of the materiaI. .4 family of curves is ordinariI’y drawn
giving the critical stress as a function of the length-diameter
ratio for specified _ralues of the racIius-thickness ratio and
for given elastic properties (references 2, 3, and 5). Ti%en
the higher-order terms are omitted from the equations arid
the requirements of an integral nwmber of circumferential
waves k removed, ne~ parameters can be introduced ~hich
combine the cylinder dime~~ions and material properties in
such a wa<ythat the resuIts can be given in terms of a single
cur-w. These parameters have been usecI, with slight. nria-
t ions in det ad, by DormeLI, Klromm, Legget t, and Redshaw-
(.references 4 and 6 to 91. The omission of the higher-order
terms also greatIy simplifies the. calculations, and the calcula-
tions are simplest if Donnell’s equation, rather than tbe set,
of three simultaneous equations, is ernployecI. DonneH’s
equation, or an equivalent equation, may therefore be
presumed to be the most promising for use in solving hitherto
unsolved probIems in the st abiJit.y of cylincIricaI shells.

In spite of the fact that it was introduced some time ago,
DonneII’s equatiou has not achieved the wide acceptance
for use in the stability anaIysis of cybdrical shells which
it. appears to merit. Some in-restigators have continued to
use simultaneous diflerentiaI equations in which l@her-
orcler terms appear, presumably on the assumption that the
emors arising from neglect of these terms might be undesir-
aMy large. Othersha~e droppecl second-order terms but have

/

! I 1 1111

con tinued to empIoy simultaneous equations, probably in
order to specify directIy edge-restraint conditions having to
do -with displacements in the axkd and circumferential
directions, which cannot be done with Donnell’s equation.

The purposes of part 1 are to establish the accuracy of the
equation by comparing the restits found by the use of
Dormell’s equation with the results found by other met]ods
and -with experimental results and to investigate the question
of boundary conditions on u and u. The additional purpose
is achieved of presenting the solutions of a munber of
probIems concerned with buckling of cylinders with simpIy
supported ec{ges on the basis of a unified view-point. and in EL
convenient form for practical use.

BUCKLING STRESSES OF CYLINDERS WITH SIMPLY
SUPPORTED EDGES

Lateral pressure,-The theory for the lateral pressure
(uniform external pressure applied to walk only) ah which
a cyIinder WW buckle is gi-ren in appendix B in which it is
assumed that the lateral pressure causes the buc~~ by
produc&~ a circumferential stress u. and that it dfec@ the
buckling in no other way. The results are shown in a
Logarithmic plot in figure 1. The ordinate in this figure&
the stress coeficienf k, which appears in the flat-plate
buckling equation (see, for exampk, reference 3, p. 339)

v,?) r 11r
/0’ 6

FIGURE I.—Critical circumferentisI&rrs cmf6cients for cxlinders with si?npIy SUPDWM edges.
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(The discussion given in the section of the presmt paper
entitled “Pararneiers Appearing in Buckling Clmves” shows
the relationship between a cylinder of Iengtb L and an
infinitely long flat plate of width b= L.) The abscissa

may be regarded either as a measure of the curvature., or,
for any given ratio of radius to thickness, as a measure of the
hmgth-raclius ratio of the cylinder. I?igure 1 shows tha~
for small curvature k, approaches tbe value 4, which applies
in tbe case of simply supported long fiat plates in ]ongituclina]
compression (reference 3, p. 327). As the curvature param-
eter Z increases, the stress coefficient ku also increases.
For large vaIues of Z, the curve approaches a straight line of
slope 1/2, This straight line is expressed by the formula

kv=l.04Z1[2

As the length-radius ratio increases, for a given value of
r/t, the number of circumferential wav.~s .n diminishes. AI-
though n must be an integer, the curves of figure I were
obtained on the assumption that n is free to vary continu-
ously. Only small conservative errors are involved in this
sissumption. Because n= 1.correspomis mereIy to a Iateral
dispIacementi of the entire circular cross section, the minimum

/03 }

o Test results &furm)

value of n is 2, which corresponds to deformn t.iol~ of ~he
section i~to an eIIipse. This limitation on n red w in
splitting the curve of figure I into a number of_curves for
difTerent vaIues- of r/t when Z becomes Iarge. A cylinder

having a value of ~= 20 buckles into an ellipse when L/r is

about 10, and the value of L/r at which such buckling occurs
increases with increasing r/t.

In figure 2 the curve of figure I is compared with results
baseci on more complicated calculations gi-reu in rcfcrcmcc 3
ancl in reference 5. At fairly large values of Z tbv results
given in reference 3 ant] in reference 5 are in good agrcemenl
with the. results of the present paper. At small wdues of Z
the curve basecl on reference 3 (Timoshenko) is defirlitely 100
low, because k, should approach the flat-plate value of 4 as Z
approaches zero. An interesting feature of the comparison
is that one calculation gives results belo~r, and the otbcr
calculation results above, those given herein. The test d&tti,
taken from reference 5, are in rcasouable agreement witl~
and show more scatter than the theoretical curves.

In tbe case of cylinders so Iong tb~t n= 2, tbe requirement
for the ~alidity of Donnell’s equation that n}>>1 is no
Ionger satisfied and appreciable error is to be expcci.MI.
Indeed it may be shown tl~at for very long cylinders wl~eu
n=2 Donnell’s equation gives 4D/r3 as the critical value of
the applied lateral pressure, whereas tbe accepted th~’orrtictd

/02

>.y k
~1~

}

,,
k’ /“

/’
,’

.“’

/[? /

Present solution...

-J.-r-
/ ‘ “%m..henko

/
/

/
/

/
/

[ $ I 1}1 1 II 1 1 1 I 1I1I ! I I 1 I III
/ /0 102 [1

I I I ! II1Ly 5

FIGURE 2.—C!omparison of prw+nt solution for critics] circumferential-stress coef%cients for simply supported cylinders with o ther lhroretieal solutiom and with test re?jults.
(Timoshenl:o’s soIution is from refereuce 3 and Sturm’s data and solution arefrom reference 5.)
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resu~t. is 3D/@ (by ~<e of the formula given on p. 4HI of
reference 3). ‘Me cur-res for n=2 will probably not. often

be needed, howe~er, since they apply only Then (;f>(:)?

which in the case of thin cylinders corresponds to a ~er.y
Iarge length-radius ratio, and if needed, the curves for
n=2 can be apphed in conjunction with ci correction factor
0.75.

Axial compression.—The theory for the axial stress at
which a cylinder w-ilI buckle is given in appendix B, and the
results are shown in figure 3. The ordinate is analogous to,
tincl the abscissa identical with, the corresponding coordinates
used in figure 1. Figure 3 shows that for small values of
Z, k, approaches the wdue I, -which applies in the case of
Irmg flat pI~tes in transverse compression with Iong edges
simply support ed (reference 3). For large values of Z, the
curve becomes a straight Iine of slope 1. This straight line
is expressed by the formula

For any fixed vaIue of rjt some due of Z always exists
above -which L/r is so large that the cylinder faik as an
Euler strut rather than by buckling of the cylinder -waks.
Tin-ended Euler buckhng of cytinders k indicated in figure 3
by means of dashed cur-res.

The resuIt just gi~en for the criticaI-stress coefficient for a
cyIinder in axial compression leack to the foIIow-ing expression
for the critical stress:

Et
a<= ,

@(;=,u2) T-
(1)

L“ J Wclfrtx.ckbilg
——-Sirut bucfo$nq[@7en&~

1 !t!itl rt, ,,, ,, ,, !!,,,, r,, ,,, ,,

la ~oz ~a3 fod

.z=p-g;-
FIIi CEE 3.–CritieaI axial-stress caefEcients for cyIindem with simply supported edges.

The vaIue given in equation (1) for the critical stress of a
moderately long cylinder in atial compression by use of
DonnelI’s equation is identical with the ~alue found by a
number of investigators using other equatio~s as starting
points (references 1 to 3). In the case of cylinders under
a.xiaI compression the errors in~oI~ed in dropping the second-
order terms are therefore concIuded to be smalI.

The buckling stresses given by equation (1) are ne-rerthe~
Iess in serious disagreement. with the buclding stre~s.es
obtained by experiment (reference 10). For a cIiscussion of
the degree of correlation that can be found between theory
and experiment for cyhnders uncler a.xiaI compression see
reference I 1.

Hydrostatic pressure on cIosed cyIinders.-TThen closed
cylinders are subjected to externaI pressure, both axial and
circumferential stress are present. The theory for buckling
~der these combined loacls is given in appendix B. The
results are shown in figure 4. The orchuate ~p used in this
figure is a nondimensiomd measure of the pressure p de-
fied as follows:

~P=P@
&D

The coefficient P, can be diiect.ly reIatecI to the corresponding
stress coefficients k= and Ii”. By definition

and: according to the hoop-stress formula,

pr~g=—
t

It follows from the three preceding equations that C, is
numerically equal to kr. Similarly C. can he shown to be
nume~icdly equal to 2kZ.

At low values of Z, (JP approaches the vaIue 2, which
impIies that, L== 1 and l-y= 2. That these values of k rep-
resent a criticaI combination of stresses for an intki tely
Iong fiat plate w-as shown in reference 12. .4t large values
of Z, the cur-re approaches the cur~e given in figure I for
buckhng under latemd pressure alone and, like that curve,
has branches representing buckling in~o two circumferential
m-aves.

In figure .5 the computecl values of the pressure coefficient.
C, at which the cyIincIer would buckle if onIy the axial pres-
sure -irere acting and if only lateral pressure Tere acting are
compared -with the results w-hen both are acting because of
hydrostatic pressure. .At Iarge values of Z the circumferen-
tial stress at mhch buckling occurs uncler hydrostatic pres-
sure is substantially the same m it would be if no axial stress
were present, as in the case of lateral pressure. The reason
that the circuderentiaI stress appears as the main factor in
buckhg at high ~alues of Z presumably is that at these
values of Z the axiaI stress requirecl to produce buckling is
many times the circumferential stress required, whereas
under hydrostatic pressure the axiaI stress actually present is
ordy one-half the circumferential stress.
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~IGURE4.—Theoreticrd soIution forhydrostatic pressure under which simpIy supported cylinders buckle.
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pressure alone.



A SLIIPLIFIED METHOD OF ELASTIC-STABILITY ANALYSIS FOR THIN CYLJXDRIC.KL SHELLS 291

Ln figure 6 the curve of figure 4 is compared with cur~es
representing Sturm’s theoretical results (reference 5) and
with a cur-re based on the following formula de~eIoped at
the ~nitecl States E.xperimentaI ilodel Basin (reference 13,
equation (9)):

()
‘t 512

~.~9E 2

This formuIa is an appro.simation based on theoretimd results
obtained by Ton 31ises (reference .3, p. 479) which are iden-
tical with the restdts in the present paper for buckling under
hydrostatic pressure. Figme 6 shows that ~t~’s theoret.

id results (reference 5) are in reasoriabIe agreement. with
those of the present paper and that the formula from the
tlnited States Experimental Slodel Basin practically coincides
with the present results except at. ~ery low -ralues of Z.

Test resuIts from references 5 and 13 are included in fig-
ure6. The test data areingood agreementtith the theoretical
results except at. low vaIues of the cur-rature parameter Z
at which the theoretical results are appreciably above those
obtained experimentally. A possibIe explanation of the
discrepancy between the theoretical and experimental results
at low cur-rature is suggested by the reIative importance of
axial and circumferential stress in causing buckling. The
ax~al stress becomes important. only at Iow ~alues of the
ewmature parameter Z. It is know-n e.xperhnentally that
buckhng under axial stresses may occur far below the theo-
retical value of the critical stress. At low values of Z

I(T
Tesf results

Q Wih&nLwrg ffna’Trillkq
u Sfwm

I

[0
I

U .2Experimentalbibdel
,Z%.snformulu

;/

o

‘.Presen? sabfim

cylinders under h~drostatic pressure ma-y therefore be
expected to buckle weIl beIow the theoretical critical load
just as cylinders do under axial compression.

Torsion.—The probIem of the determination of the buck-
LUg stresses of cylinders in torsion was solrecl by DonnelI
(reference 4] who gave an approximate solution of the equa-
tion of equilibrium. A somewhat more accurate solution of
this equation is given in reference 14. The essential results ._
are show-n in figure 7 taken from reference 14. At low
-raIues of Z the buclding-stress coefficient. k, approaches the
_raIue 5.34 appropriate to fitely Iong flat. plates loaded in
shear (reference 15). At higher values of Z the cur-re
approaches a straight line given by

k*=o.85z3~~

At -i-cry high ~ahes of the curvature parameter the cur-re
splits up into a number of other curves, depending on the
-raIue of rjt. The cur-res for various r/t vaIues at high
values of Z represent budding into two circumferential
w-a-res. k mentioned before, Donnell’s equation is not.

(
reliable for the case %=2 a case which occurs for cylinders in

torsion~h+)>’”+)
.4 solution for this case gi~en

by Schwerin and discussed in reference 4 results in critical
stresses about 20 percent. below those of the present paper.
Because Schwerin’s solution does not satisfy the condition
w= (1at the end of the cylinder, howe~er, it. is probable tba~
the error in the present. soIution for n=2 is Iess than 20
percent.

I
~

1 I 1 ltlrl I I t! I I!I
/0? /,.>

/

D

r ! 1 f f r I [
4 I

FIGITW&-Compsrkwn of present solution for buckling of simply supported cylinders under hydrostatic pressure witlr other tWrAicsLsohItIorIssndtestresrdts (S~urm’srestits
nrofrom refererm=e5 snd Windenburg and TriMg% resst.s are from refereuce 13.)
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FIGURE 7.—Critical-shear-str’ess coefficients for cyIinde~3in tomion. (I?ig. 1 of reference 14.)

In experimental in\7estigations of cy]inders in torsion the
m~ximurn rather than” the critical loads have usuaIly been
reported. Because these ma~timum loads usually exceed the
critical loads by only a small margin, it is common practice to
check theoretical buckIing stresses by comparison with the
average stresses at maximum load. Such a comparison is
proviclecf in figure 8 which incorporates test data from refer-
ences 4, 10, 16, and 17 For this figure the test results
average about 15 percent below those given by theory.

D1SCUSS1ON

Parameters appearing in buckling curves.—The fact that
the buckling of a cylinder under axial compression, lateral
pressure, hydrostatic pressure, or torsion involves sub-
stantially the same parameters is nob a mere coincidence but
is a direct consequence of the cliffc.rcnt,ial equ%tion. The
cliffcrentid equation implies that when the requirement of
an integral number of circumf erentia~ waves is removed the
six variables L, P, t, E, p, and Lhe load may be combined into
two nondimensional parameters, one (k., ku, k,, or Oz)

describing the stress condition, and the ot.ller (Z) essentially
determinwl by the geometry. (See appmdis (2.) It. is also
shown in appendix C thai the buckling of a curved rec-
tangular plate of any given lengtll-~vidth ratio may be
represented in terms of these parameters. TIN critical
stress of .a cylinder m a curved pIah~ of given lcngWwidth
ratio may therefore be given by a single cur~c relating LIW
two parameters provide.cl that the nurnbcr of circurnfcrcntial
vra~es mtiy be regarded as continuously variable. This
restriction becomes important at very Iargc values of Z, for
which the curves may spli b into a numl.wr of curves for
cylinders of different vaIues of r/tbuck]ing into t,]~o circum-
ferential waves.

Except for hydrostatic pressure, each type of loading cou~
sidered results in a single uniform stress in the cylinder, cm]
the nondimensional parameter k describing this stress is dc-
finecl as follows in analogy to the pmameier used in de-
scribing the buckling of a flat pIatc:

~= r($~)

~
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FIC 1T.E S- Cornparisan of theoretical solution for eritkal shear stress of simply supported cylinders-in torsio~ with e~periment aI uItfmate stresses. (Lundqnist’s data are frmn
refwnce 10, Domelf’s dak are from refwerwe 1, Moore an~i Wescrat’s data are from reference 16, and Bridget, Jerome, and Vosselfer’s data are from referetme 17.)

.& the radius of the cylinder increases toward infinity (the
other dimensions remaining com.t ant j, the c~-linder approaches

~tin infinitely long flat pIate of tl.M same thickness as the
cylinder, hating a width 6 equaI to the Iengtb -L of the
cylincler. .&ccordingIy, as the radius approaches infinity,
the erit ical-stress coeflkient k for the cylinder approaches the
-ralue of the corresponding stress coefficient for an fiiely
long flat plate under the appropriate loading condition.

The other nonchnensional parameter Z is defined by the

I

If the smalI correction due to Poisson’s ratio is negIected, a \
direct physical si@cance can be assigned to Z-when its
mabdtude is srnaJ_I. The maximum distance from a slightly
curved arc of length ~ and radius r to its chord can be shown
to be given by the expression Z2/8r, which is caIled the” bulge”
by some w-riters (see references 8 and 9). .Lccordingly, in
the case of a cur-red strip of length -L in the circumferential

direction, L2/8rt is the bulge ditided by the thickness ancl is
thus a nondimensional measure of the de-riat ion from flatness -
of the strip. .<s appliec{ to ci short eylincler, L2/&-t is the
detiation from flatness of a sclua.re panel of the cylinder,
each side of which is equal to the length of the cylinder. For
cylinders ha~ing a length greater than a few- tenths of ~he
diameter, the parameter Z loses this simple physical signifi-
cance ancl is perhaps best regarded as a nondimensional meas-
ure of the length of the cylinder. Some indication of the
variety of cyhnder shapes corresponding to a fired value of
Z is given in figure 9.

Boundary conditiorus—~llen probIems in the stability of
cylindrical shells are solved by the use of Donnell’s equation,
boundary conditions on u ancl c cannot be imposed directly
because ody w appears in the equation. The method of
solution, howe-rer, may in some cases imply boundary condi-
tions on u or c. In appendix D it is shown that for simply
supported cylinders the method used in the present paper (a
soIut ion using one or more terms of a Fourier series ssttisfying
the boundary conditions on w term by term] implies that %i”
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FIGURE 9.—Representative cylinders comepondim to the same Mue of -z (z about MU).

bokh ends of the cylinder the circumferential displacement ti
is zero, but that, the cyIinder edges are free to Warp in the
axial direction (u # 0). For a simply supported rectangular
curvecl panel, the present method implies (with regard to
dispI=aeements within the pane] median surface) zero displace-
ment along the four edges of the panel and free Warping nor-
mal to the edges. These edge conditions orI u and v are
appropriate to cylinders or panels bounded by light bulk-
heads or deep stiffeners which are stifl in Lheir own planes
but may be readiIy warped out of their pIaries.

Relatively few calculations. of the stability of a cylincler
take into account the boundary condifiions on u and v. A
calculation for the case of torsion, how-ever, ~\7as recently
made by Leggett (reference 18). The results of this calcu-
lation, computed for u=v=O at the edges of the cylinder, are
given only for 2<50. Throughout the range for which they
are given, however, they agree very closely -with the results

found by the method employed in the present paper, which
implies that at the edge of the cylinder 0=0 and u# O.
Restraining the ends of the cylinder from warping in the
axial direction may therefore be assumed to have a, negligible
effect upon the buckling stress. This assumption receives
added support from the form of the equation of equilibrium
(appendix A) for the case of constant pressure

In this equation, az, u,, and ~ are the stresses present just

before buckling and ~ is the circumferential stress produced

by the buckling itself. The equation indicates that the only
difference between the buckling behavior of a cylindrical
sheet and that of a flat plate (found by omitting the, last
term in the foregoing equation) is due to the effect of the
circumf erentiaI stresses caused by the buckling deformations.

Because the restraint agains~ warping in tho axial direction
requires the applic~tion of axiaI rather than circumforenlial
stresses, this restraint might be expected t.o have only small
effects on buckling stresses. Circumferential stresses Would.
have to be applied to the straight sides of a curved strip ~u
prevent warping normal to these edges during buckling.
Because the circumferential stress due LObuckling appears
explicitly in the equation of cquiIibrium, the imposition of
the. rest~aint o= O to the straigh~ sides of a panel should have
an appreciable effect on the buckling stress (except }vhen the
straight sid-es of the pane] are short. compared with tho curved
sides). ._

Theoretical results on the buckling of curved strips
in.finiteIy long in the axial direction arc availallo to tesL h
foregoing conclusion. IrI figure 10 the critical axial compres-
sive stress for an infinitely loug curved strip with u and t;
both zero along the edges (reference 8) is compared with the
critical axial compressive stress when u is zero along tho
edges, an-d the edges are free to warp in the circurnfcrcntial ... .
direction. (See appendix B for solution.) The critical axial
stress is appreciably increased by the constraint v= O in a
certain range of smaIl curvature. In figure 11 the critical
shear stresses are compared under the same sets of edge
conditions (references 6 and 7). The critical shear stress is
conspicuously increased by the constraint v=0 cxccp~ near
the limiting case of flat plates<

It appears from the foregoing discussion that the effect on
the buckling stresses of preventing free warping normal LO
the curved edges of a cylinder or panel is very small hu~
that the effect on the buckling stresses of a similar rcstmint
on the straight edges of a panel may be quite important.

/03

r

I

,, ! I r 11 L
[[

FIGURE lft.-Cornparison of the prewnt solution for the buckling utifk a~lal @mDrmslon
of a cur-red strip in6nitively long in tha axial direction, with solution found by Leggctt
(reference 8).
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~KL_EE 11.—ComptiwrI of Leggett>s solutior@with present solutions for critical-shear-stress

rmefficients of a long cumed strip. (Fig. 2 of reference 20.)
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Simplicity of resuIts,-The theoretical resuIts based on
DonneI1’s equation for the critical stresses of cylinders under
a given loading condition appear particularly simple when
presented as a logarithmic plot of buclding coefficien~ k
against the cur-rature parameter Z. .&s r approaches
infinity, and therefore as Z approaches zero, k approaches
the -due appropriate to a fiat plate. -#d large vaIues of Z
the curve approached a straight Iine in each of the cases
in~estigated. These straight lines had slopes 0.5,0.75, and 1
and are given approsirnately by the foIlotig equations
which ha-re already been given in the present paper and are
reassembled here and provided with upper and Iow-er Iimits
for easy reference:

12,=1.04V
( ‘oo<z< ‘G)’’-””)

k8=o.85Z3”4
( 50<2<10(3(’-”20

k==0.702Z (3 < Z <6 ~~(1–+

These equations can also be written (when p is taken to be 0.316)

us= O.6Q8:

IL filODIFIED 13QtJAT10N

THEORY

DE121~AnO~OF MODKFIED EQUATIOX

The equation of equilibrium for a flat pIate may be w-ritixm

where p is lateral pressure. (This equation is equivalent to
equation (197) of reference 3.)

For a cyhdrically curved plate having a radius of curva-
ture r, the following pair of simultaneous equations of equi-
librium mfiy be written (as a ge~eraliza.tion of equations (11)
find (10) of reference 7):

‘-%$+”,)=0‘3’
.._,F , E Nw_o

*rW
(4)

where P is .&h&s stress function for the median-surface
stresses produced by the buckIe deformation (reference 19].
Equation (3) ~ers from equation (2) only in the addition

‘(” )
of the term —~ ~ti + m~ , which expresses the effect of the

(3:-++
cumature. Equation (4) show-s that, unlike flat plates,
cylindrical shells experience stretching of the median surface
when originality straight lines in the surface are bent slightly.
Elimination of F between equations (3) and (4) by suitable
differentiations and additions gi-res the following single
equation in w for the equilibrium of cylindrical sheJ.ls:

Equation (5), -which was first derived by DonnelI (reference 4),
-w-astreated in park 1.

b alternative method for obtaining a singIe equation in w
for the equilibrium of a cyblrical shell is to soI~e equa-
tion (4) for .F and substitute the resuIt into equation (3). This
procedure can readiIy be carried out in the folIowing manner.
Differentiation of equation (4) h-ice with respect. to x gives

The symbolic soIution of equation (6) for a~$ is

(6)
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Substitution of this result into equation (3) gives

&w Uv)“ a3–7- ‘P=o (7)
Equation (7) is simply equtitiou (5) modified by multiplica-
Lion by the operator V-4. In the present paper, equations (5)
and (7)arc referred to as Donnell’s equation and the modified
equation, respectively.

ADVANTAGES OF MODIFIED EQUATION

OnP of thd quickest and most convenient methods for ob-
taining solutions of flat-plate buckling probIems to any
desired degree of approximation uses a Fourier series type of
expcmsion for the deflection surface w. Both Dom]ell’s
equation and the modified equation can be solved by this
method in the CCLSCof buckling problems invoIving cur-red
pIates having simply supported edges.

As mentioned in the “Introduction,” however, Donnell’s
equation is not well adapted to solution by Fourier series of
problems involving the stability of shells with clfimped edges.
The cause of the trouble appears to be that the calculation
of some of the high-order derivatives found in Donnell’s
equation somct.imes leads to divergent trigonometric series
when the eclges are clamped. The modified equation, how-
eveu, is applicable to clamped-edge probIems as well as to
probIems involving simply supported edges because lower-
order clerivatives are involved.

Besides its advantages in the solution of problems involving
shells with clamped edges, equation (7) has the additional
advantage that each term has a definite physical sigriificanee:
The first term gives the restoring force per unit area of the
deflected surface clue to bencling and twisting stif?inessm;
the second term gives the restoring force per unit area due
to stretching stiffness; and the, remaining terms give the
deflecting or restoring forces per unit area due to appIied loacls.
Because of these advantages, the modifiect equation was
aclopted for general use iu references 11, 14, and 20 to 23.

Both Dormdl’s equation and the modified equation result
in the same critical stresses for simply supported cylindrical
shells,, and the two me.thocls require essentially equivalent
mathematical processes. (See appendix E.) The charac-
teristics of solutions by means of Donnell’s equation in the
case of simply supported shells-namely, the theoretical
cylinder parameters, the simplicity of calculations and re-
sults, and the implied boundary conditions on u ancl ti-are
characteristics, also, of solutions by means of the modified
equation. The same characteristics, except for a change in
the impIied boundary conditions on u and v, also appIy to
solutions of clamped-edge shell problems by means of the
modified equation. This change is discussed in the section
entitIed ‘tBoundary conditions.”

SOLUTIONOFMODIFIEDEQUATIONBYG.4LERKINMET-HOD

An approximate method of solving vibration ancl buckling
problems closely paralleling that of Ritz was introduced in
1915 by (lalerkin, (See, for example, references 24 and 25,)
The main distinction between the Ritz ancl GaIerkin methods

is that the Ritz method begins with an energy expression,
whereas the GaIerkin method begins with an equation of
equilibrium. The GaIerkin method is reaclily adapttiblc to
the solution of equation (7) and is now described briefly.

Let thi. equation of equilibrium be written

Q(w)=o (s)

where ~ is some operator in x and y which for the purpmes
of this paper is taken to be linear. According to the (lulerlcin
method, the equation may be soIved by mptmd ing the un-
known function w in terms of a suitable sei of functions
jt(z)gl(y)~ each of which satislles the boundary condi~ions
but not in general the equation of equilibrium:

w= x ~ (2~f’i(z)gf(y) (’3)
ij’

Substitution of this expression for w into equation (8)
gives the followi~g equation:

Because the functions fi(x)gi(g) were chosen to satisfy
fihe boundary couclitions rather than the equation of equi-
librium, equation (10) cannot,, in general, be sfit,isficd identi-
cally by any choice of the coefficients CZ{j. Thww coeflkien ts
can be chosen} howrever, to assure the vanishing of ceriain
weighted_ averages of the left-hand side of equation (10),
The weigkting functions used in the Galerkin method are
the original expansion functions, so that the follo~ring
simultaneous equations for determining the cocff~cients a ~J
are obtained:

~~&,a,j=O (m=l,2,3, . . .;n=l ,2,3, . . .) (1])

The simultaneous set of linear algebraic equations in the
unknown coefficient u{j (equation (11)), oh t.ained by using
the ori~_nal expansion functions as wcight&g fu net ions, is
ordinarily the same set w-hich would be found by th~ Ritz
method, if the same series expansion for w were used, A
solution of any desired clegree of accuracy may t.1.wrcforc be
obtained. by the GaIerliin method.

In applying the. (lalerkin method to equation (7) by usc
of Fourier series expansion for w, expressions of the type

must b&evaIuatecl. The operator V-4, the inverst of v!,
simply introduces into the denominat.m of each term of l-he
series the expression tha~ comes into the numerator if V4 is
applied, Thusl
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This resuIt may readily be verified by appIying the operator
W to each side of equation (13).

In writing equation (13) the quantity V-?, as defied by
the equation

y%~-y=.f

was tacitly resumed to be unique. The quantity actuaIIy
is not utique; any number of terms which vanish when
operated upon by P could be added to the right-band sicle
of equation (’13). The omission of such terms makes the
present anaIysis parallel to the cudysis using DonneII’s
equation (see part I) and impIies certain boundary conditions
on u and r, -which are discussed in a subsequent section
entit~ed “Boundary Conclitions.’~

DEFLECTION FUXCTIOKS

Simply supported edges,—For simply supported cylindri-
cal shells, the following series expansions for w may be used
to represent the buckle deformation to any desired degree of
accuracy [in these functions, r is the coordinate in the a.xicJ
direction ancl y, the coordinate in the circumferential
direction:

(1) Rectangular curved plate (axial cIimension a and
circumferential dimension 6)

(14)

(2) Cur~ecl strip long in the axial direction (circumferen-
tial width b and axial wave length 2A)

(a) Direct stresses only

0? m7ry
W=sin= ~ am &n—

x m=l b
(15)

(b) Shear stress -with or tithout. acklition of direct stress

(31 Complete cyli.ucler (length L and circumferential ma-i-e
Iength 2x)

[a“] Direct stresses only

(17)

[b“j Shear stress with or without addition of dfi,ect stress

Clamped edgesi—Probably the simplest method of treating
cylindrical sheik tith clamped edges is to employ the
expansions in equations (14) to (18) modfied by substituting
functions of the type

rfi 7r.r . TX 1

s

(m-l)m.r (?7-,+ I)la
qm(.x)= sin — sm~=~ Cos .——

c
.—COS.-— —-

a a 1(19)
‘m’rx

wherever functions of the type sin—
a

appear, with a

simiIar substitution for functions of y (all terms in-rolving
summation subscripts m and n are thus cfiauged; terms

in~olving X: such as sii ~r remain unchanged). The func-

tions Pm(x) form a complete set so that ilnite expansions for
w of the type suggested for sheik with clamped edges as well
M those for shells with simpIy supported edges may be used
to represent the buckle deformation to any clesired degree of
accuracy.

BOm~ARYCOXL?llIOXS

Simply supported edges.—.lppendis D shows that, if the
buckling stress of c+simply supported shell is found by mecms
of the expansions for u’ gi-i-en in the preceding section en-
titled “Deflection Function,” the boundary or edge condi~
tions impIiecI for the median-surface displaceme~ts u and u
are zero clisplacernent aIong each of the edges of a cyIinder
or cur-red panel and free clispIacement normal to each edge.
(.Uthough the proof g-ken used equation (5), the proof
couId equaIIy wel-Iha~e been based on equation (7).)

The bouuclary conditions for simple support. may thus be -
-written, at a curved edge (x= Constant),

@[U_ , ZYF
‘= ax’ —b=zgzo

and, at a straigh~ eclge (y= Constant),

d% d’F
‘C=w=u=w=o (21)

Clamped edges,—Bya method similar to that in appendix D
soIutions using the functions suggested in the preceding
section for the treatment of clamped edges can be shown to
correspond to the bouncla~ conditions zero displacement
normal to an edge and free displacement along a~ edge.

The boundary concIitions for cIamped edges therefore be-
come, at a cur-red edge (z= Constant),

and, at a straight. edge (y= constant),

dw a2F
‘=&j= ’u=w=O

Discussion,—& mentioned in part 1, the boundary con-
ditions implied for u and o in the case of simply supported
edges are appropriate for cyJinders or panels bounded by light
bdkheads or deep stiffeners, -which are st~ b their own
pIanes but may be readily -warped out of their planes.

The boundary conditions o~ u and u appropriate for a
cl~mpecI edge wotdd seem to be zero displacement normal
to the eclge ancI zero, rather than free, cIispIacement along
the edge. Comparison of criticcJ stresses for sheik with
clzmpecl eclges found by the method in the pres-ent paper
-with criticaI stresses found by the methocl in references 7
ancl S, gitig boundary conditions u=r=O, however, indi-
cates that the imposition of the added requirement, of zero
dispIarement. along the edge ordinarily has -rery little effec%
on the critical stresses.

~ less scctisfactory method for soking probIems concerning
sheik ~ith clamped edges in~ol-res the use of functions of t’he
t.ypl?

1 ?--TX 1 Sk (m+- Z)lrx
—sin— —
m a —m+2 a
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instead of those described by equation (19), In this rnethoc],
the functions usecl are those for sirnpIe support taken in
such combinations that the. eclge slope is zero. use of such
functions Ieads to the same boundary conditions on u and
u as were described for simply supported edges; at the edge
y= ~onstant., for example, the boundary conditions become

(24)

The. use of these functions to represent shells with clamped
edges is not recommended, however, for the foIIowing reasons:
The associated boundary conditions seem to be artificial
and unlikely to be reproduced even approximately in actual
construction; the method leads in some cases to solutions tlmt
differ considerably from the solution for ideal clamped-edge
conditions in which u= 0=0; and the solutions obtained
generally converge rather poorly.

APPLICATIONS AND DISCUSSION

Among the more difficult shell-stability problems to treat
theoretically are those which involve shear stresses. ln fact,
until 1934, when Dormell’s paper on critical shear stress of
a cylinder “in torsion w-as publi~hed (reference 4), such prob-
lems were generaIIy regarded as impracticable to solve. II]
order to illustrate the type of solution to be founcl by the
method of analysis iust outlined ancl the effect of boundarv. . .
conditions on critical stresses, the results obtained for a
number of shell-stability problems involving shear stresses
are reproduced and discussed briefly here. The problems
treated are summarized in table I.

Critical shear stress of long curved strip.—The critical
shear stress for a long plate with transverse curvature is given
by the equation

where k, is a dimensionless coefficient, the value of which
depends upon the dimensions of the strip, Poisson’s ratio
for the material, and the type of eclge support. In figure 12
(fig. 1 of reference 20) the shear-stress coefficient k. is given
for_ plates with simply supported cclges and with cIamped
edges. This solution for simpIy supported edges coincides
with that given by Kromm (reference 6).

As indicated in the previous section entitlecl “Boundary
conditions,” the solution corresponding to the boundary
conditions of equation (24) (dashed cur~e of fig. 12) is poorly
convergent and deviates appreciably from the results for
completely fixed edges. Figure 12 shows this poor conver-
gence in the. limiting case of a flat plate, for which tile critic.aI
stress is independent of boundary conditions on u and v.
Even a tenth-orde~ determinant, led to a result that is
7 percent above the true solution; whereas the result using a
fourth-order determinant obtained with the defiecticm
functions recommended for clamped edges is only 1 percent
above.

In figure 11 (fig. 2 of reference 20) the solutions given in
figure 12 are compared with the results given by ~eggett
(reference 7) for simply supported and clamped edges with
u=u=O at each edge. Throughout the range for which

TABLE L-INDEX OF PROBLEMS TREATED

ProbIem

1~1

x

l!.-
Y

—

t~[
-—–
—.

H_—
——

Figure

12

IL

7

13

14

h’ot
shown

15 (a)

15 (b]

Rcferencc Edge condition II

20
..

OL=o,tf#o).
=0).

, ,<0). 1
I

20 .’w%%%:”’ ‘#o)”
(U=o,c#o). I

21 Simply supported.

21 j Simply supported. I

I I

23 Simply supported.
1

2.3 Chmped,

they are given, Leggett’s resuIts for c.hmnpecf edges cliffcr
only slightly from those of the present paper. 011 &! Oth[T

hand, the previously mentioned discrepancy betwum the
results for completely fixed eclge.s (u =v= O) and those for
the boundary conditions of equation (24) (dashed curve.)
may be inferrecl from t,Lis figure to be considerchlc for hwgc
values of Z. A minimum measure of this discrepancy is [he
distance between the clamped-edge curves for v=O mcl for
u= O in figure 11, since ~eggett’s curve must. always lio
above the curve for U= O.

The reason for the marked increase in ?.)Llckling stress of
simply supported curvecl strips when the edges arc restrained
against circumferential displacement during buckling is
discussed in part 1.

Critical shear stress of cylinder in torsion. —The. critical
shear stress of a cylincler subjected to torsion is gi-reu by the
equation

T,r=k, ~

In figure 7 (fig, 1 of reference 14) the, vaIues of k, are given
for cylinders with simply supported edges (boundary con-
ditions of equation (2o) ) ancl cylinders with clamped edges
(boundary conditions of equation (22)). At hig]l values
of Z, the values of k~ for tlick cylinders me given by special

curves for various values of ~ 41 —W2,m cliscussed in pari I.

At values of Z greater thau about 100 only a small
increase & buckling stress is caused by clamping tho edges.
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FIGLTM12.–C%iti@+hear.stiess c!oeffieientsfor &Iong curmd strip. (Tig. 1of EfWHICe 20.)

The results indicated in figure 7 are in -rery close agreement conditions on strtaight edges are considered, m-ith figure 7, in
which conditions on cur-red edges are co~~idered, indicates
that a simih.r situation e~ts with respect- to restraint
against edge rotation.

Critical shear stress of curved paneL-The. -raIues of k,
giving the critical shear stresses of simply supported cur-red
rectangular paDeIS are gi~en in figures 13 and 14 (figs-. ~.W@_.._._
~, respecti~ely, of reference QI). The corresponding bo[lnd-

ary conditions on u and %’are zero displacement ptirallel to

with DonneI1’s results for the same probIem, except in the
range 5 <Z< 500 where the somewhat lower curves of the
present paper represent a more accurate solution.

Part 1 sho-ws that boundary conditions imposecl upon u
and r at the cur-red eclges of a paneI or cylinder have an
almost insigficanti effect on the buckling stresses, whereas
conditions imposed on u at the straight edges ma-y be quite
important. Comparison of figure 12, in which boundary

/
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3

FIG mE li.—Criticd-sheu-stm.w meffIeIents of simply snpparid curmd pe.neIs having axifd
dimensions greater than eircumferentkd dime~ion. (Dashed cume estinmkd.) (Ffg. 2
of reference 21.)

FKWEE 13.—Czitice&heer-str- eoefEcien.ts for simply supfwried cumed panek having cir-
cumfwencial dimension greater than axiel dimem+ion. (Tig. I of referenee21.)
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t~l~ edges and free w~rph~ normal to the edges. Figure 13
indicates that,, as the curvature parameter Z increases, the
critical shear stresses of paneIs having a circumferential
dimension greater than the axial dimension approach those
for a cylincler. Figure 14 indicates that, as the curvature
parameter Z increases, the critical sheflr slresses for panels
having an axicd dimension greater than the circumferential
dimension deviate more anc~ more from the criticaI shear
stress for an infinitely long curved pl~te. Reference 2 I
shows that the reason for this cleviation in figure 14 is that
at high curvatures the buckling stresses of these panels, M
well as those of figure 13, approach those of the cylincler
obtained by extending the circunlferentiaI dimensions of the
panels.

The effects of boundary conditions in the limiting cases of
inflnitdy long curved strips (fig. 12) and of complete cylin-
ders (fig. 7) suggest that the curves of figure 13 are sub-
stautially independent of edge restraint at large values of Z
but fihat the curves of figure 14 ~~ould be. considerably
affected by a, change in edge restraint,

Long curved strips under combined shear and direct axial
stress. preference 22 shows that the theoretical interaction
curve for a long curved strip under combined shear stress
and direct. axial stress is approximately parabolic when the
eclges are either simply supported or clamped, regardless of
the vaIue of Z. This paraboIa is given by the formula

R?+R==l __

where R~ and R. are the shear-stress and compressive-stress
rat ios, respectively.

At high values of Z curved strips, like cylinders, buckle at
compressive stresses considerably below the. theoretical crit-
ical stresses. In order to take this condition into account,
certain modifications in the theoretical results are proposed
in reference 22 for use in design.

Cylinders under combined shear and direct axial stress.—
The theoretically determined combinations of shear stress
and direct axial stress which cause a cylinder with simply
supported and clamped eclges to buclde are shown in figure
15 (fig. 1 of reference 23). Consicleralle variation in the
shape of the interaction curves occurs for Iow values of Z.
For high vaIues of Z the interaction curves for either simplcy
supported or chunped edges are similar to the curve for
Z=30.

Because cylinders actually buckle at a, small fraction of
their theoretical critical compressive stress, the theoretical
interaction curves of figure 15 cannot be expectecI to be in
satisfactory agreement with experiment when a very ap-
preciable amount of compression is present. For semi-
empiricaI curves and a check of available test data, see
reference 23.

CONCLUDING REMARKS

The use of DonneII’s equation to find the buckling stresses
of simply supported cylindrical sheHs leads to simpler results
and involves less labor than the use of equations in which
seconcl-order terms are ret.aincd. The buckling stresses
found by use of Donnell’s equation are in reasonable agree-
ment with resuIts based on other theoretical calculations.
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(b)Clamped edges.

URE 15.—Ctitical combinations of shear-stressaud dheet-axiaktrmscncfficicnts [or
cylinders. (Fig. 1 of refmwce 2-3.)

:cept for the case of axial loacling, they arc also in rcason-
Ie agreement wi tb test resuIts. Boundary conditions ha ving
do with axial and circumferential displacements ca nno t
handled directly by usc of DonnellJs equation. This

~adva.ntage is not considered seriousj however, because tl~(~
undary conditions on axicd and circumferential clisplacc-
mt, which are implied by the simpIc SOIULions givenj
‘respond approxima.~ely to those that, are mosi Iilicl~ to

mr in p~actical construction and bwausc in many CMCS

?.buckling stress is not very sensitive t.o these houmlary
lditions. The restriction to simpIy supported edges ill
}nnell’s equation can be removed by the int roduct.ion of
~ew equation which is equivalen L to Donnell’s cqua Lion
t is better aclapted to solution by Fourier series. This
~clified equation can be soIved for the budding stresses of
wed sheet having either simpIy supportc{I or clamped
;es by established methods essentially cquivaIcnt LOthose
use fO1 flat Sheet. This apprOflCh pvl’Inik a simple Mld
aightforwmd solution to be given for a numhcr of prolj-
1s previously considered rather forrniclable.

NGLEY. MEMORIAL AERON~~-TIC~L LABORATORY,

NATIONAL ADVISORY COMMITTEEFOR AERONAUTICS,
LANGLEY FIELD, lr~., March 20, 1947.



APPENDIX A

SIMPLIFIED EQUATIOXS OF EQWLIRRIUM FOR CYLINDRICAL SHELLS

The principal sets of simpliflec{ equations currentIy in use
for the equilibrium of cylinti]cd shells are listed for Con-
venient reference. The various sets of equations me equi-ra-
Ient. The reference papers in which th~ equat ions are cleri~ecl
are aIso Iisted. The equations given are generally not
ide~ticaI with those in the reference papers but. me modified
in certain respects to incIude all the loacling conditions
studied in the present paper or to put them in the notation of
the present paper.

The three fcJIoting sirnultaueous equations in displace-
ments u, z’,and w’(refersnce 3] are derived from the conditions
{If static equilibrium:

~z~ 1–p @~ l+p &o
zx~+ ~ ~y~ +7 —

~~ *=
dray ‘ r ax 0

(Al)

Dv%+r& ($+P ~+;)+

Two simultaneous equations in deflection w and stress func-
tion F (reference 6) are as folIows:

(A4)

p=o (.15)

A singIe equation in deflection w (Dounell’s equation, refer-
ence 4) is

The relationships between u and w and between v End w are
(reference 4)

~3 ‘w ZYw
rT’ti=-P~+_

rv4D=—(2+p) &—$ (As)

3(I1



APPENDIX B

THEORETICAL SOLUTIONS

DonneH’s equation for the
is used to investigate the

equilibrium of cylindrical shells
stability of simply supported

cyIinders subject to lateral pressure, axial compression, ancl
hydrostatic pressure, and of simply supported curved strips
Iong in the axicd direction subject to axial compression.

CYLINDERUNDERLATERALPRESSURE

If bending of the cylinder wctll is neglected, constant
IateraI pressure on a cylinder causes only circumferential
stresses. 130nnelI’s equation (equation (A6) ) then recIuces
to

where

and p is the

equation the

(Bl)

.,=+

pressure applied. (By virtue of the preced~g

terms involving p and ~ appearing in equation

(.A6) cancel in the present case.) Division of equation (Bl)
by D resudts, with proper substitutions, in the following
equation:

(B2)

The boundary conditions corresponding to simply supported
edges (no deflection and no moment a~ong the edges) are

w(O,y) = w(L,y) =0

A solution of equation (B2) satisfying the boundary condi-
tions for simple support is

TV . ‘m~xw=wO sin — sm —
?tL

(B3)

where x is the half wave length in the circumferential direc-
tion. (Jombining equation (B3) and equation (B2) yields
the following equation:

(m’+ b’)’+?– k,@’(m2+f12)2=0 (B4)

The solution of equation (B4) f_o~~Uis
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k,= (m’+~’)z , 12Z2m4
!32 ‘ 7r4p(m’+ /3’)2 (B5)

where

The critical vaIue for kY is found by minimizing the right.-
hand side of equa,t,ion (B5) with respect to m and ~. If the
numerator and clenorninat or of the Iast term in cqua.t ion
(B5) are divided by m4, it becomes evident [Iiai UI-K1{W(IN!
restriction of integral -values of m, kr will be
-ivheu m= 1, Equation (B5) therefore becomes

~v=(l+~’)’~, +
122?

Tdpz(l + 6’)’

The results founcl by minimizing this expression for k, wi~h
respect to ~ (considerecl continuously variable) are shown in
figure 1 by the curye independent of r/t.

At Iow values of Z, buckling is characterized by a large
number of circumferential waves. As Z increases, the num-
ber of circumferential waves decreases until i~ finally becomes

(.)
two h=fl , corresponding to buckling into an elliptical

2J
cross section. The curves for buclding into two circumferen-
tial waves are shown in figure 1 as the curves for various

values of”~ <l —P2. The equations for these curves are

found by substituting in equation (B5) the last, of the follow-
ing expressions for p:

4fi=;=$=? z
?rT—

-#-p’

CYLINDER IN AXIAL COhlPRESSION

‘When only axial stress is present, equation (A6) becomes

(B7)

Division by D results, with proper substitutions, in the
folIowing equation:

combination of the deflection equatiou (B3) with equation
(B8) yields the following equation:

(m2+@2)4 ~ 12~f14 –kZm2(m2+~2)’= O (B9)
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The solution of equation (B9) for 1. is
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The critical vaIue of k= for a given value of Z may be found
b-y minimizing k. with respect to the parameter

(m’+ p’)’
m~

If no restrictions are placed on the value that this parameter
can take, the minimum -due of k. is found to be

~r=4,17 2=0 ~02z
(B1O)F2

~hich coincides with the results generatiy gi~en for the
buckling of long cylinders.

For values of Z beIow- 2.85, how-ever, the straight-he
formuIz (equation (B1O)) cannot be used, since it, implies
either imaginary values of the circumferential wave length k
or the number of a.xkd half waves m below unity. The
criticaI stress coeftlcient. k, for 2<2.85 is found b-y substitut-
ing the limiting values P= O and m= 1 in equation (B9).
The resuIts are shown in figure 3.

CY13XDERUXDERHYDROSTATICPRESSCTRE

Hydrostatic pressure appLied to a closed cylinder produces
the fo~owing a-xial and circumferential stresses:

pr
r==%

prgv=—
t

The equation of equilibrium (equation (A6)) when both
circumferential and axial stress are present is (since Wp= O)

By use of the definition

equation (B 11) can be written

If the deflection equation (equation (B3)) is combimed with
equstion (B12), the folIom-ing expression resuks for CP:

The critical vaIue of CP is found by minimizing the right-
hand side of equation (B13j with respect to m and ~, with
due regard to the values which m and P may =sume. lt
can be shown that the minimum wdue of CDis found by
taking m equa~ to 1, so that equation (B13) becomes

Equation (B14) is eq@vaIent to an equation

(B14)

derived by
T’on lfises (reference 3, p. 479). The results of minimizing
~, with respect. to .6 are shown i-n figure 4. (The cum-es

gi-ren for -rarious -dues of $ ~~1—P* ha-re the same signif-

icance as in the case of a cylinder buclding under lateral
pressure aIone.)

LOXG CURVED STRIP IX H&U COMPRESS1ON

Because it merely describes equilibrium at a point, equa-
tion (BY) applies to the budding of a long cur-red strip m
weJ.I as to cylinder buckling. b modifying this equation to
obtain nondimensional coefficients as in equation (B8),
howe-rer, it. is con-renient to define l= and Z in terms of the
width of the strip 6 rather than in terms of the axial length
L, -which apptied in the case of the cyJinder. .$ccordi~gly,
equations (B’i) and (BS) for a cylinder in a.tia] compression
may be applied also to the buclding of a cur-red strip, long
in the axial direction, subjected to asial compression,
provided the curved width 6 is everywhere substituted
for the Iength L. Substitution of the deflection

into equation (B2) (modified by substitution of b for -L] gives

~== (+F .m2~ 12.Z73’
fy #(n2+&)2 (B15)

where.

0=;

Equation (B15) is very simiIar to equation (B9) and each
equation yields the same critical value for k= at Iarge values
of Z. At smalI values of Z, the minimum value of k. is
found by taking n=l in equation (B15) and minimiz@
with respect to f?the rew.dt ing expression for k.. The results
are given in figure 10 together vrith results found by Legget t
(reference 8).



APPENDIX C

PARANIETERS

It is shown thai DonneI1’s equation implies that under
certain limitations the buckling coefficient k, familiar from
fist-plate theory, ecm be cxpressecl in terms of the curvature
parmneter Z aIone. in the case of a complete cylinder or a
curved rectfm,guIar paneI of given length-width ratio.

Donnell’s equation (A6) is (when p is constmt or zero)

Let

Y—=
bq

and

Then

‘“2=’’(Z+$J
IvIultiplication of eq u.ation (C 1) by W and substitution of
the dimensionless coordinates ~ and ~ gives

Division by D results in

——
z=; ,11–/P

u tbz
‘z= 5;’

Even without solving this ecluation it is chw that w nlusL,
be a function of the. independent variabIes E and ~, and &O
the parameters Z, Itz, k,, and k,, and h dmivaiivcsof w
wiII be functions of the same variables and parameters.
Thus, if only one type of loading (represented by Lhc b[Ick!iIJg
coefficient k) is present, equation (C2) may be wri~km

where fl, jz, and js are definite, though unImow% fll~mtions.
The variables L ancl ~ may now be eliminatd by integration
of both sides of this equation over the entire uangc of ~ Rnd ~.
IKIthe case of a euivecl panel of circumfermtial dimension a
and axial climension b the’ resulting equation is

a

(J

1 b’

.od~
d~[.j, (g)q,z,k) + 12zy2(&77,z)k) +

o
m2kj,(&q,Z,k)]=0 (W)

The integraIs of the functions fl, .ff, and -fs depend OUIY
upon Z, k, and the value of the ratio ti.~b. Accor(lingly,
equation (C4) implies that a relationship of the following
hype exists:

f, (k>z,;)=0 (C5)

Equation (C?5)indicates that for any gi~en yulue of [Iw panel
aspect raLio a/b, the critical-stress coellicien~ Jc depends only
upon Z.

If a complete cylinder of length L rather than a pane] of
length b is under consideration, ancl the deflection w is
periodic wit h wave hmgth 2A in the circumferential coord-
inate, the integration

Q

JFdq
o

appearing in equation (C4) may be replaced by
m

s

z
dq

o

where &and ~ are now defined as x/L and y/L, respectively,
The result then becomes

f, (kjz, :)=0

or

()k=f, Z, ~,

304
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The actual bucklbg stress is found by minimizing ,$ with
respect to 2hiL.

Theoretically, h must satisfy the equation

where n is the number of circumferential w-a-res and therefore
an in( eger. lllen many circumferential wa_res are present,
how-ever, this restriction does not significantly affect the
buclding stress, and the minimization of k -with respect to

~~ (considered continuously -rariablej leads to the result

k=fi(z)

13quation (C%) indicztes that provicled the number of cir-
cumferential waves is not too small the eriticzd-stress coeffi-
cient for a cylinder depends for practical purposes only upon
the curvature parameter Z.

TThen n is so small that- its integral character must be taken
into account, it appems from equations (C6) and (C7} th~t
1;depends upon both Z and r/L. S’mce, however,

k for small vaIues of n can zdternati~-e~y be expressed in terms

of ~Zand ~ ~’l—.ui, as in figures 1, 4, and 7.
/

By a similar analysis, it can be shown that when the buck-
ling of a cylinder under hydrostatic pressnre is represented
by plotting the pressure coefficient ~p against Z, a single
curve is obtained except where the small number of circum-
ferential mares requires splitting the curve into a series of

cum-es for difierent ~alues of ~ ~~.

M?I?ENDIX D

BOUNDARY CONDITIONS ON EDGE DISPLACEMENTS WITHIN THE SIEDIAN SURFACE

The solution of Donnell’s eighth-order partiaI clifferential
quation for the stability of cylindrical shells is not unique
under the imposition of the ordinary boundary condii ions
for simply supported or cIarnpecl edges. Two more bouncJ-
ary conciitions at each ecige, for exampIe, one condition for
u and one for O, are required to defie completely the phys-
ical problem and are therefore needed to make the solution
unique.. Because ody w appears in the equation, boundary
conditions on u and r carmot be imposed directIy; they may,
hoive~er, be implied by the method of solution. The pur-
pose of this appendix is to show what boundary conditions
on u and v are implied by the method of solution usecl in
the present paper. In order to simplify the discussion, the
anaI~sis will first be made for the case -when only axial
compra<sion is present and NW then be extemlecl to other
cases.

lThen onIy a.tied stress is present, DonneL1’s equation
{equation (.16)) becomes

If the shell clescribed by this equatio~ is a cur-red paneI with
the origin of coordinates in one corner of the panel, a solu-
tion satisfying the usuaI boundary conditions for simpIe
sl.lpport is

rrl%.r, . nq
W= ‘U’nsin — sin —

a b
(Dlj

ivhere rb ancl n are igte~ers. T&s solution k a]so the
soIution to the prob~em of tie buckling of an infinite two-
dimensional array of panels identical to the one under con-
sicleration. (See fig. 16.) When such an array buckles> the
displacements u, L’, anti w as weLI as the stresses, described

by the stress function F, may be presumed to be periodic
o~er the interval 2a in the a.sial clirection and 2b in tbe
circumferential direction.

Any function u(x, y) that is periodic with a wave length
2a in the r-clirection and tith z wave length 2b in the
y-direc~ion ma-y be expanded as follows (see, for example,
reference 26):

(D2)

FIG7mE 16.—Two-dimensi@ n&i arm+ of identical cured panel.%
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The relationship which must exist between u and w is
(equation (A7))

Wo Ww
rv%=-—pw+w.. ___ ~ .

Substitution into this equation of the expressions for u and w
from equations (D2) and (Ill), respectively, ancI use of the
orthogomdity of the functions in equation (D.z) leads to the
result

.

#(o,g)=o (DII)

~ (a,y)=O (D12)

g! (2-,0)=0 (D13)

gl (%,h)=0 (D14)

‘ L(T) ‘(T) J

Accordingly, the boundary conditions

u(x,oj=o

U(x)b) =0

* (O,y)=o

# (a,y) =0

on u are

(D3)

(D4)

(D5)

(D6)

SimilarIy by use of equwtion (A8) insteacl of equatiori (A7)
it can be shown that thu boundary conditions on u are

U(o,g)=o (D7)

V(a,y) =0 (D8)

b
@j (2,0)=0 (D9)

(DIo)

The boundary conditions of equations (D5), (D6), (D9),
and (D 10) may be combined to give four boundary condi-
tions on the stresses induced by buckIing. These boundary
conditions, which are aIso derivabIe from equation (A4) by
a method analogous to that just usecI to derive the conditions
reIating to u, are

axial and circumferential stresses caused by buckling. The
eight boundary conditions given by equations (D3), (D4),
(D7), @S), and equations (Dll ) to (D14), pIus tl~c cighL
boundary conditions on w for simpIe support of the four p&neI
edges taken together uniqueIy cletermine the buckling stress.

Although the preceding discussion of bou nclary conclit ions
startecf with the assumption of axial stress only} the only use
made of this assumption was in obhiining equation (DI) as
the solution for the buckling deformation. The same defor-
mation, and hence the same arguments, apply when e.ircum-
ferential stress is present. When shear is present., a series of
terms of the type in equation (Dl) must be used to repre;
senb the deflection surf~ce.j and hence series of terns occur
in the expressions for u, 0, arid F. Since the bounc. far.yccmdi-
tions derived in the preceding analysis apply to each 01 Lhe
terms individually, by the principle of superposition they
must also appIy for the sum, so that equations (D11) t.o
(D14) represent the boundary condition no mat Wr NhctL the
applied stresses are.

In summary it may be stated that Lhe substitution of oue
or more terms of a double-sine-series expfinsion for w’ into
Dtinnell’s equation and solution of the resulting equation for
the buckling stress gives the solution corresponding to the
following boundary condi tious:

(1) Each edge of the panel (or cylincler) is simply sup-
ported; that is, the dispIacemeni normnl to the surface of tlie
panel and the appIied moments are zero at the edges.

(2) klotion paralIel to each edge during buckling is
prevented entireIy.

(3) Nlotion normal to each edge in the plane of the shIML
occurs freeIy.



APPENDIX E

COSfPARISOX OF RESULTS OBTAINEll BY USING DONXELL’S EQUATION AN’DTHE MODIFIED

SOLUTION OF DONXELL’S EQU.4T10N

DcmneII’s equation expressing the equilibrium of a cm-red
panel under constant median-surface stresses can be mitten
in genera] form as

w-here z is the asial coorcLinate ancl y the circumferential
coordinate. Ditision of equation (El) by D and the intro-
duction of the dimensionless stress coefficients ii=, k,, and
k,, and the curmture parameter Z results in the foIIoming
equation: .

Equation (E2) can be represented by

Q,(w) =0 (E3)

where QI is defined as the operator

The equation of equilibrium (equation (E3)) is soI-red by
using the Galerkin method as described in the section
entitled “Theor-y.” In applying this methocl the unknowri
deflection w is represented in terms of a set of functions (see
equation (9)); each of which satisfies the bounclary conditions
but not in general the equation of equilibrium. A suitable

SU1’1’4JH,’lWJ CUHYELJPANLLS

sei of functions of this type, which
conditions for simpIe support, is

EQUATION lN THE

satisfies the boundary

(Et)

where the origin is taken at a corner of the pIat e. Substi-
tuting in equations (11) and (12)

f.(z) =Sin y

g. (y)= sin ‘—y

and

Q=Q1

and performing the integration o-rer the whole plate (limits
z=O, a; Y= O,,b) gi-res the set of equations

‘Z”’’$(’n’+n’a-,,nzg(mz+.z$)]+

where m=l, 2, 3, . . . , n=l, 2, 3, . . . , anclp and q take
only those -dues for which m +p and n&q are odd numbers.

Equation (E5) represents an infinite set. of homogeneous
linear equatiom involtig the unknown deflection coeE-
cients afj. In order for the deflection coefficients to have
wdues other than zero, that is, in order for the panel to
buckle, the determinant of the coefficients of the ‘unknonm
deflection coefficients at, must. vanish. This de~erminant can
be factored into two subdetermimmts, one in_roIving the
unknown deflection coefficients aij for which i~j is odd
ancl the other in-rol-ring those coefficients for which i ~j is
even. Buckl&w occurs, therefore, -when either of the two
subdeterminants vanishes. Ordy the buck.hng criterion in-
~oltig the ewn subdeterminant is treated here. This
criterion is

307
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m=l, ‘n=l

m=l, n=3

m,=z, n=z

rfl=o,~=1

m=3, n=3

... . .
where

=0

M.n=
-[(m2+n20+’2%a4- ‘zm2$(m’+n2$J-’”’’’+n2$Yln2$Yl

Division of each column of the determinant in equation (E6) by the proper

(“2+’2$)
gives the simplified equation

a++$)‘4+’$) a“(4+49a“(’+~)a“(’+w~--
o o 0 ..!

o 4
N13 —.

5
=0 o .,,

4 4
-A7Z,

4 36—— ——
F 5 5 i%”””

I 0 0 4—.
A731

5
0 .,.

0 0 36 .:O
%,

.

A733 . . .

. . .

=0 [w)

where I ~eneral form is

[

,,Tmn=__!& -+ ~zz’v”a’, ,-kz?+k,n$ 1 DV&W+;~ P$ r,t @+2rt~y+uwt :$=0 (138)
s

“n’+n’$y “b’(”n’+’t’&) Division of equation (E8) by D and simplification of LIW
result gives the following cquat ion:

The vmishing of this cletmmimmt is the criterion for the 12Z’ a’w ‘ ‘ =2 &w
symmetrical buckIing of the shell. The same.. buckling cri-

T2@,u,
v4w+Tv”4=4-+lt.;; a;+2i<, Q—---l-i<v 5 -—.=0

b-& by b’ dy-
terion results from the use of the modified equation, as is (339)
shown in the following section, Equztion (E9j can be repiesentwl by

(??(W)=0 (Elo)
SOLUTIONOFlIOD1~lEDl?~CATION

where Q2is defined as the opt~rtitor

The modified equation expressing the equilibrium of a
curved panel under constant median-surface stresses in v~+~ v-$;,+ k= :: :;+ 2k, ~’ ?2–

b%dy+]”$~
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By use of the Galerkin method smd by use of the expression
for w gi-i-en in equation (W), the following set of equations
analogous to equations (E5) are obtained

where m=l, 2, 3, . . . ,n=l, 2:3$ . . . , andp andq take
ordy those vaIues such that m *P and n +q are odd numbers.

As in the case of the soIution of DomeII’s equatiorr, the
stability determinant representing equations (E I I) can be
factored into an even arrd an odd subdeterminant. The
even o~e is

Ti=l, m=l

m==l, ?2=3

m=z, n=2,

m=3, n=l

rn=3, n=3

. . . . .

all a13 a= asl a33 . . .

44 4 36——
G 5 ““ –3 g “-.

00–; .LV31 o . . .

Oogo 15733 . . .

. . .

=0 (E12)

The stabfity determinant (e~uation tE12)> obtained from
the modified e~uation is iderit~c~l with the s&pIified stability
determinant (equation (E7)) obtained by use of DonnelI’s
equ~tion. This identity holds for the odd as well as the even
determinants.

AIthough the stability determinants obtsineci by use of
the tmo equations are identical and yield identicaI buctig

loack, the determkmt in equation (E7) consists of the
/ .>.~

(coefficients of a <j i~ + jz ~~) > whereas the determinant in
.

equation (E12) consists of the coefhcients of a~f. Accord-
ingly, aIthough the buckling IoacIs found by the two methods
are the samel the buckle pat t errs are different. Of the two
buckle patterns the one found by the use of the modified
equation is beIieved to be correct. This conclusion has been
verified for the Iimit ing case of a ffat plate (2=0).
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