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THE PROPER COMBINATION OF LII?T LOADINGS FOR LEAST DRAG

ON A SUPERSONIC WING 1

By IbDDDRICK C. GRANT

SUMMARY

Lugrange’s method of wndetemniwi multiplied h applied to
th problem of properly combining lift Lxzdinggfor the LxMt
drag a4 a given lift on supermnic wings. Zh.emethod dwws
the intqfereme drag between the optimum loading and any
loading ai the game lift coejkient to be cww!ant. This h an
integralform of the criterion Wablidied by Robert T. Jm for
optimum 14xuiing8.

The bat combin.a$ionof fowr loadings on a &-?#awing with
subsonic leading edgm ti cakulated as a numerical euzmp.k.
The loadings consideredbe jinite prmurea evaywhere on the
plan form. Throught.?wwvcepbatkrangethe optimum eum-
binutiort of h four n.mwingukzrLmdingeb about the same
drag weji.c+mt a-9aj?at plaik with l.euding-edgetkut.

INTRODUCTION

The problem of minimhhg the supersonic drag for& given
lift on CLbed plan form has been approached in diilerent
ways. Jones, in references 1 and 2, makea use of reverse
flow theorems to derive several simple properties of the
optimum load distribution and to present as well the optimum
distribution for elliptic plan forms. Graham, in reference 3,
shows how the proper nse of orthogonal loadings ean reduce
the drag at fked lift. Orthogonal loadings are loadings of
zero interference drag. The interference drag between two
loadings is the total drag of each in the dowmvaah field of the
other. In reference 4, theorems concerning orthogonality
and reveme flow me developed, whereas in references 5 and 6
numerical examplea of drag reduction by use of ordogonal
loadings are given. For delta wings with conical camber the
optimum ahapes are derived by Ritz’s method in reference 7.

In this report Lagrange’s method of undetermined multi-
pliers is applied to the problem of properly combining load-
ings for the least drag at a given lift. By use of this method
a s.hnply expressed property of the optimum loading is found
which is an integral form of a property established by Jones
in reference 1 for reversible flows. Jones’ property of the
optimum loading is that the dowmvash on the plan form is
constant in the combined forward- and reverse-flow fields.
The best combination of four types of nonsinguhm loading on
a delta wing is calculated as a numerieal example of the use
of the method.
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SYMBOLS

loading strength parameter
span
IOCd chord
drag coefficient
drag coefficient of ii% loading
drag coefficient of interference between ith and jth

component loadings
lift coefficient
lift coefficient of ith loading
lifting pressure coefficient
Mach number
tangent of semiapex angle
number ~f loadings
sweepback-speed parameter
functions of o and n (see appendix)
wing area
arbitrary Cartesian coordinates

J
loading on an arbitrwy line, C, dX’

r
integers

Cartesian coordinate of lifting snrfaee (see fig. 2)
local angle of attack of lifting surface

p=@’p~ -
E small positive number

O=$z

h Lagmmge’s multiplier
T plan form
l—w root ohord of arrow wing
Subscripts :

ij j ith, jth loading component
M minimum among dl loadings
o minimum among N loadings
x arbitrary loading

ANALYSIS

TEU30EY

Consider a superposition of N loadings of the form

C, =AlCP,l+A2CP,2+AsC,,a+ . . .+AXLv (1)
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where A is the strength parameter and C= is the resultant
lifting pressure coefficient-at a point on the- plan form. The
corresponding local angle of attack may be written as

C2=4Y,+A4ww+143cI,+. . .+&XN (2)

The local drag coetlkient Cpa is a quadratic in A which

may be integrated over the plan form 7 to give the drag
coefficient of the wing. Thrust-loaded singularities at the
leading edge are therefore excluded from the drag. This
exclusion is merely for convenience and is not necessary. A
formula for the drag coefficient is

(3)

where

CD,{j= CD, ji=; J(Giaj+c,.fi)dsr
The average lifting pressure coefficient on the plan form

is the lift coefficient, which is

(4)

The problem is to iind the set of A’s which yields the
minimumvalue of CD subject to the condition that CL is
constrmt. Because of the quadratic nature of CD and the
linear form of C., Lagrange’s method of undetamnined mul-
tipliers is particularly suitable for the solution as it leads to
a set of liiear algebraic equations.

As shown in reference 8, a function of the A coefficients
I’_ CD+XC~ is formed, where x is Lagrange’s multiplier.
The minimum value of F as determined by the N linear

algebraic equations
Z)F
— =0 plus condition (4) is Lagrange’s
aA*

solution. In matti form these equations are:
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The equations may be written more simply if first the
interference drag between the optimum loading and the ith
component of the loading is computed. From equations (1)
and (2), the following expressions may be written:

Cp,fi=AICp.lq+AaCp,,a f+AaCp,~i+ . . . +

AiCv,~,+ . . . +AMp,~i

1

(6)
qCD,i= AplCp, i+ AfiCp, i+ AG3Cp,i+ . . . +

A~Cp, i+ . . . +-ANaNQp, i

Adding equations (6) and integrating over the plnn form
gives

JcD, O,=; ~ (czi,o%+%c.,i)ds=A1cD,,{+-A2cD, 2,+

A3cD,8f+ . . . +@~D, f+ . . . +-A.NcD,N(

‘$ AjcD, j, (7)

This expression for CD4t is a part of the left-hand sido of
the ith equation of the linear set which is now writkm as

6’Qof+~C~4=0 (8)

. A simple property of the optimum load distribution may
now be derived. First CDDis rew-ritten by use of equation (7):

lN

CD’0=5z ‘iC”’of

or using equations (8) and (4)

CD,0=+ AC=

Substituting equation (10) into equation

(9)

(lo)

(8) @W?S

(11)

Siim equation (11) holds for any number of loadings, let
the number of components increase without limit to includo
all possible loadings. For an arbitrary loading X nnd the
absoluta minimum M, equation (11) may be written as

cD,Jfl=2% cL,x (12)
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The moaning of equation (12) maybe simply

LD?T LOADINGS

expressed as

follows: The ~terfe;ence drag between the optimum loading
and any loading at the same lift coefficient is constant. If
the reversibility theorem is applkble, equation (12) is an
integral equivalent of a condition established by Jones in
reference 1. Jones’ condition states that for the optimum
loading the downwmh on the plan form is constant in the
combined forward- and reverse-flow fields. Barred variables
will represent the reverse flow which has the same lift load-
ing on the plan form but, in general, a different surface
shape. Then, by reversibility,

J J JCP,uaxdS’= ~, uax d~= ZuCp,x ds (13)
r r r

By definition, ~DwY h -

JCD,U=;,(C’,, APX+”3X2,XW

Therefore, equation (12) may be fit~n w

J
cD ~

J
cnx(wI-GW3=2 ~ ~cp,x ds (14)r

Since CP.T is arbitrary, %f+~M mwt be co~tant. Hen@,

~+~M=~~ (15)

This is the condition derived by Jones in reference 1. Equa-
tion (12) is then an equivalent integral form of this condition.

Equation (12) shows the orthogonality of the optimum
]Oatig q and only to, zero lift loadings. This result,

which was stated by Graham in reference 3, is seen to be a
special case of a more general interference drag property
given by equation (12).

COMPAIUSONWITH THE METHOD OF OBTHOGONffi LOADINGS

If two loadings are to be combined, it maybe shown that
Graham’s method of orthogonal loadings (ref. 3) and the
present method are equivalent. If the re=suhkmt combtia-
tion of two loadings is combined by the method of reference 3
with a third loading, the lift ratio of the fit two loadings is
unchanged in the best combination of the three. If n>2
loadings are successively combined in the manner of refer-
ence 3, the first n— 1 loadings are not allowed to adjust their
relative strengths upon addition of the nth. In the present
Lagrangian method every loading has equal freedom to
adjust. I?or this renson, the Lagrangian method should
be more rapidly convergent.
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NUMERICAL EXAMPLE

Tucker in reference 9 presents formulas for the snrface
coordinate of delta and arrow wings which support four
types of pressure distribution. The formulas are given for
subsonic leading edges and supersonic traiIing edges. In
the notation of this report (fig. 1) a combination of the four
loadings may be written:

1?/1&gC,=A,+Atx+Aa ---+ ~, (16)

Form.das for the C~,ti quantities maybe derived from equn-
tion (16) and the surface for.n.mk given in reference 9, by
integrations over the plan form. Details are given in the
appendix.

The optirnumdrag results are presented in figure 2 along
with the corresponding drag values for a flat delta wing
with and without leading-edge thrust (ref. 10). The drag
vah.m for the four component loadingstaken alone are also
shown. In addition, the drag of the conically cambered
optimum delta wing (ref. 7) and Jones’ absolute minimum
for narrow wings (ref. 1) are plotted. The optimum A
values are tabulated in the appendix.

Noteworthy in figure 2 is tbe closeness with which all the
optimum drags agree with each other and with the drag of a
flat delta wing which has a thrust-loaded leading edge. The
close approach of the present optimum of four loadings to
Jones’ absolute minimum for narrow wings is also evident.
The data indicate that the relatively low drag of the flat

n

FIGURE I.—Arrow plan form.
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hXIJ3E 2.—~RI~tiVe drags on 8 delta pkm form.

delta wing with leading-edge thrust can be equalled by prop-
erly combining a few loadings having bite prossuros cnwry-
where on the plan form. A plausible speculation suggested
by the data is that it is possible to como very close to tho
minimum drag on a delta wing with but a few steps in a series
approximation. Perhaps, too, a restricted minimum, such as
the one for conical camber, gives a close appro.xinmtion to
the absolute minimum drag if the restriction is not too
unnatural.

Since the vortex drag of a wing at any Mach number
depends only on the spanwise loading, a departure from tho
elliptic spanwise loading is a measure of the vortex drag in
excess of the least possible drag. In fiome 3 the spanwiso
loading of the optimum combination is shown at the ex-
tremes of the sweepback range. There is good agreement
with the elliptic loading especially for the cme of extreme
sweepback (n= O). Because for extreme sweepback t,ho
wave drag vanishes, a direct comparison of the vortex drag
of the optimum combination and the elliptic spamviso load-
ing is given by figure 2 at n=O. The elliptic spanwise load-

.
ing has the drag parameter value ~

It is shown in reference 2 that the wave drag due 10 lift

Jdepends on all the lift loadings l(Y’) where 1= Cpd.x’ and

X’ is an arbitrary direction inclined to the fr;e stream at
more than the Mach angle. The coordinate Y’ is porpen-
dkn.dar to X’. A sufficient condition for minimum wave
drag is shown to be that l(Y’) is an ellipse. In figure 4 the
loading of lines perpendicular to the free stream, or chord-
wise loading, is shown for the optimum combination with a
sonic leading edge (n= 1). Agreement with the elliptical
loading is poor. For the case of crxtreme sweepback (n=O)
no chordwise loading for the optimum combination is shown
in figure 4 because it is partially arbitrary. (See appendix)
The allowable variations of the optimum loading at n= O
correspond to changes in the oblique loadings that do not
change the spanwise loading. This result emphasizes the
vanishing of the wave drag with extreme sweopback.

1.01 I I I

---

1 .5 .

;:~ _—— —_ ——-—
fl=l —-—

0 .5
Y’

I .0

Fmmm 3.—The loading of lines parallel to the free stream for the
optimum combination. m- CL= 1.
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Y’

Fmmm 4.—The loading of lines perpendicular to the free stream for
the optimum combination. m= CL= 1.

, CONCLUDING REMARKS

LOgrange’s method of undetermined multipliers is applied
to the problem of properly combining lift loadings for the
least drag at a given lift on supersonic wings.

The method shows the interference drag between the
optimum loading and any loading at. the same lift coefficim t
to be constant. This is an integral form of the criterion
established by Robert T. Jones for optimum loadings.

The best combination of four loadings on a delta wing
with subsonic leading edges is calculated as a numerical
example. The loadings considered have finit.a pressures
everywhere on the plan form. At each Mach number the
optimum combination of these four nonsingular loadings has
nearly the same drag coefficient as a flat plate with leading-
edge thrust.

LANGLEY hRONAUTICAL LABORATORY,

~ATIONAL &wn30Ry CoafafI’rrEE FOR

)&iGLEY hlLD, VA., J~y W, 1965.

AERONAUmCS,



APPENDIX

OF NUMERICAL EXAMPLEDETAILS

INTERFWENCE DEtAG FOEBIIJLAS

Inasmuch as the pressure coefficient C. and corresponding
angle of attack a are given by

(Al)
a= AlCYL+A.%+A,a,+&a~ ~

then the local drag coefficient may be written as

. (!!a’+a’)+
Cpa=A12(aJ+AlA~ (zal+4+AlA~

‘JA’($al+”’)+A’’’-)+A’A3(9~+m3)+

A44~+m’)+A’(:’++
( ! ) ‘($”’)AA $ ff3+---- a4 +& (A2)

The required C=,v functions am the averages over the plan
form (fig. 1) of the quantities in parentheses in equation (A2).
Rather than a, itself, reference 9 gives the surface ordinate
Z{ which is the chord-wise mbegrated value of af:

z,=— r q dx (A3)
J

The vahms given for Zf are

Zl=; RI

&R,
‘2=%

9 R,Z.3=Z

@z,=% R,

(A4)

The valuea of Ri are functions of d=~~z tabulated in reference

9 for diiferent values of n. The equations for I?f are

[
Rl=;x 21~&2 cosh-’ ; +

e(l+e) c’1sh-1 - +

=(1–0) cosh-’ ~ ] (A5a)

{
R,=–& ~~i–202 OOSh-l : +

1

–[ 1
n2(l—tF)~0+0*Cosh-l 1+n20

,11–n2 2 — +n(l+O)

1

[

nz(l —02)

1
1—n20

,11=2 2
—e+e* Cosh-1—

n(l —dj }
(A6b)

[
R3= —&z ~ 311—n202—

( )
1+3 f32-~n292cosh-’ $ +

(1 +@2+2(l-n2)(0+02) co9h_, l+n20

2311—n~ n(l +0) ‘F

(1–0)2–2(1–n?)(O-@) cosh_l l–n20 .

2- n(l —8)II (A6c)

R =l_ (1–n202)~ 12–107L2 n2@,J~2_602 cosll_, ~ +

{4 % 3(1–n2) ‘3n2(l–n2) nO

(1 –:’)% [
6–9jY2n’ ~o,+n ~2;3n2 (o_p)–

: (l+tP)]cosh-l = + 1 ~–gn;+2n’(02–@)–
n(l +0) (1—n2)~ ~

2~2 (0–03)-$ (1–02)] cosh-l ~,
1}

(A6d)

For terms in equation (A2) of the type (~/m)’af, a spanwk

integration of Z{ gives the following average on tlm phm

form :

J( )

1’ 21

[

R, (1)—— ——
B , : aidS=l–pm 8+t+l

(l_py+t+l J
‘ o’Ri(e) ~

1 (A6)
o (1—#Oy+~+~

For terms of the type ~ai an additional integration by
parts in the x direction is required to maintain the I?{ func-
tions intact under the integral signs. The result for this
case is

1

J [
2 1 Ri(l) ~_ ~,+z 1 Ri(0) ~+~ w dS=G ~ — –( ~ Jo (1–/.@~+a

r t+2

(l–py+*

J 1
1 R,(O) @ (A7)

t+2 0(1 —-gey+l

570
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In formulas (A6) and (A7) the value of t for each i is as
follows :

R?
f t

1
: 2
3
4 ;

By applying formulas (A6) and (A7) to the integration of
(A2), the following equations for CD,,, are derived:

2mCD,~=~p 1 RI(o) ~L?l(l)-4(1-P)J0 (~_p@3 (A8a)

J~ [R1(l)+R2(l)]+2 (l;~)2 1= dd–mG,1z=3(1_K)
1)(1 —J@

J
1RI(o)

2(1 –JLy o~ f.i9-2(1-JL)’ J;&, a%(A8b)

J–A [.R1(l)+R3(l)]-2 (1-p)2 :(% d=‘n% 13—.3(1 _p)

J
1R3@) ~

2(1–/.L)’ — (A8C)
o (l —#e)’

JA [&(l) +Z?4(l)]–2(1–,U)3 ol ~~~ dO–‘CD, 14=2(~_p)

J
1B,(e)~

2(1–p)3 — (A8d)
o (1—/.@6

2mCD,,=~-4(1-p)3~(* C149+(1-p)3~*4&9— — —

(A8e)

z(l~,) [&(l)+RS(l)]–2(1–JL~~ ~f~$;, ~–mQD,Qa=—

s

1 R3(e)
2(1–p)3 ‘= o% (A8f)— d+;w~o (1–we)’

o (1 —p.0)6

mcD,24 =*, [R,(l) +l?4(l)]-2(1-y)’J~ *6 dt?–

J
1R4(L9) ~g (1—JJ)4

2(1—J’
o (1 —pey [SF

(A8g)

2mCD,3=~)-4(1-W)3~ &@&d (A8h)— —

mCD,~= & [R3(l)+R4(l)]–2 (1–P)’S~ H dO–

s‘oR4(L9) do2(1—py
o (1—pey

(A8i)

2m(?D,4= & R4(l)–4(1–P~S~ &, dO (A8j)

The required CL,i functions are simple intwrals over the

plan form which yield

C.,l=l

c.,,=%

1CGs=~

CL,l=;

NU=CAL CALCULA~ONS

(A9]

‘l’he integrals in equations (AS) were, in general, evaluated
numerically. However, several of the integrands in equa-

tions (AS) have the form
R,(e) R3(0)

(1–M)’ ‘d (l_@)t Thwe
— .

functions have an Wte discontinue@ at 0=0. For suoh
a &scontinui@, numerioal methods break down. Near
zero the following approximation is integrated analytically:

&(L9)=ZRl(e)+~ cosh-l +–~ Cdl-l;

}

0<8s eel (AIo)

R@)=R3(e)-: cosh-l ~+~ cosh-’ ;

The integrals for the region OS 8S e can then be ap-
proximated:

where

t(t+l)(t+2) @
3! ~+. . . I (A12)

and

J
,cosh-l ;

I(c)=
1) (1–poy ‘e

(A13)
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The integral in equation (A13) may be evaluated by

expanding the denominator by the binomial theorem and

writing 1(6) as an infinite series

1(6) =aOiO+aA+a&+a&+ . . . (A14)

whore
@=l (A15a,)

~=+ p (A15b)

aa=t(t+l) ~,
~! (A15c).

t(t+l)(t+2) ~3~=
3!

(A15d)

a,=t(f+l) ..- (t+s–1) ~, (A15e)g!

~= J~’Cosh-1 +0 de (A15f)

il= Je8COSh-l : de (A15g)
o

&= J.‘@COSh-l ; do (A15h)
o

J<= ‘&cosh-l ; do (A15i)
0.

Tlm i. integrals of equations (A15) me evaluated by use

of the relation

EXACT CALCULATIONb

At the extremes of the sweepback range,
may be evaluated exactly. For the case of
back @=0), there results:

(R,=; 2+loga
1–0

++8 loge ~
)

(
R9=-;~ 1+0 ]0~, &+e’ loge +,)

equations (A8)
extreme sweep-

(A17a)

(A17b)

R3=
[

1–0

1-$T:+(l+W)loge ,-2+28 1%0 ~ (A17c)

(A18C)

$ loge 2–;
mcD, 14= ~r (A18C1)

1
2mCD,9=~ (A180)

: loge 2–;

m cD, 24= AT (A18g)

:4 loge 2
2mCD, ~= AT (A18h)

&+& loge 2
mcQ W= 4T

(A18i)

(A18j)

Equations (18) provide the int&ference drag coefficimts re-
quired to calculate the vortex drag due to any combination
of A Vftk9.

In the solution for the optimum A values, the pamrnctors

Al, A,, and & are found to be linearly related ancl ono of
them may therefore be chosen arbitrarily. Choosing A,
yields:

AI=A, (A19a)

X~-l)_2A1A,= ~+a (A19b)

_3(38u-26a’-ll)
‘3=A’ (2–3a)(l+a)

(Al%)

30(3a–a’–l)
“=(2-3 a)(l+a)

CD o=~ (4a-1 )(3-2G)(l –2(2)
‘, 8iT (2–3a)(l+a)

(AIM)

(A190)

where

-; (1 —log. 2)

The spanwise loading may be written as

W=[(AI#)+V ($+A3)+YV4)] (I–?/) ?/>0 (AO
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when m = CL= 1. Substitution of the A values given in
equations (A19) shows that l(y) is independent of the vari-
ations in Al, At, and &.

For the caae of a sonic leading edge (n =1),

RI=; (4- )
2 1—02—2 cosh-l ; (A21a)

R2= –; (4- )
2 1—82—2P cosh-l ; (A21b)

2mcD.l=; (A22a)

1
mCQ ls=~ (A22b)

1
77@D,13=&+17 (A22C)

1
moQ 14=—

16
(A22d)

2m CD,S=: (A22e)

7
mcD, 24=~

(Am)

(A22g)

(A22i)

(A22j)

CALCULATED VALUES OF A

The table that follow-s contains the calculated values of A
for the optimum combination through the sweepback range.
Four significant figures are given, since the tabuIated values
of R have four decimals. Values of C& for m = CA= 1 are
&o shown:

n

11

A, 4 4 4 %.
. —

o .. ---- ------ ------
.2 l.wa

Ml&
–26s6 1.436

.4
::E

1.m –2 ml 1.244
1.m

.lllxl
–L 147 ;:R .Ws

::
.1*

1.IMl ❑;:; 1.264 .Wb7
1.0

.1760
l.zm . 1.!259 .140% .!2Z%
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