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THE PROPER COMBINATION OF LIFT LOADINGS FOR LEAST DRAG
ON A SUPERSONIC WING!*

By FPrepericK C. GRANT

SUMMARY

Lagrange’s method of undetermined multipliers is applied to
the problem of properly combining lift loadings for the least
drag at a given lift on supersonic wings. The method shows
the interference drag between the optimum loading and any
loading at the same lift coefficient to be constant. This ts an
integral form of the criterion established by Robert T. Jones for
optimum loadings.

The best combination of four loadings on a delta wing with
subsonic leading edges s calculated as a numerical example.
The loadings considered have finite pressures everywhere on the
plan form. Through the sweepback range the optimum com-
bination of the four nonsingular loadings has aboul the same
drag coefficient as a flat plate with leading-edge thrust.

INTRODUCTION

The problem of minimizing the supersonic drag for a given
lift on a fixed plan form has been approached in different
ways. Jones, in references 1 and 2, makes use of reverse-
flow theorems to derive several simple properties of the
optimum load distribution and to present as well the optimum
distribution for elliptic plan forms. Graham, in reference 3,
shows how the proper use of orthogonal loadings can reduce
the drag at fixed lift. Orthogonal loadings are loadings of
zero interference drag. The interference drag between two
loadings is the total drag of each in the downwash field of the
other. In reference 4, theorems concerning orthogonality
and reverse flow are developed, whereas in references 5 and 6
numerical examples of drag reduction by use of orthogonal
loadings are given. For delta wings with conical camber the
optimum shapes are derived by Ritz’s method in reference 7.

In this report Lagrange’s method of undetermined multi-
pliers is applied to the problem of properly combining load-
ings for the least drag at a given lift. By use of this method
o simply expressed property of the optimum loading is found
which is an integral form of a property established by Jones
in reference 1 for reversible flows. Jones’ property of the
optimum loading is that the downwash on the plan form is
constant in the combined forward- and reverse-flow fields.
The best combination of four types of nonsingular loading on
a delta wing is calculated as & numerical example of the use
of the method.

1 Bupersedes NACA Technical Note 3533 by Frederick C. Qrant, 1855

SYMBOLS
A loading strength parameter
b span
¢ local chord
Co drag coefficient
Ch,q drag coefficient of 7th loading
Cb,iy drag coefficient of interference between 7th and 7th

component loadings
G lift coefficient
Cr, lift coefficient of ith loading
C, lifting pressure coefficient
M Mach number
m tangent of semiapex angle
N number of loadings
n=pm sweepback-speed parameter
R functions of § and » (see appendix)
S wing area
X’, Y’ arbitrary Cartesian coordinates
l loading on an arbitrary line, fC’, ax’
8t integers
z,y, 2 Cartesian coordinates of lifting surface (see fig. 2)
o local angle of attack of lifting surface
B=+M*—1
€ small positive number
=Y
mz

S Lagrange’s multiplier
T plan form
1—p root: chord of arrow wing
Subseripts:
1,7 ith, sth loading component
M minimum among all loadings
0 minimum among NV loadings
X arbitrary loading

ANALYSIS

THEORY

Consider a superposition of N loadings of the form

Op =A10p,l+A20P;2+A30P:3+ . . -+ANC’P:.\T (1)
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where A is the strength parameter and C, is the resultant
lifting pressure coefficient at a point on the plan form. The
corresponding local angle of attack may be written as

a=A1a,-|-A3a2+A3a3+. - ~+ANaN (2)

The local drag coefficient C,a is a quadratic in .A which
may be integrated over the plan form r to give the drag
coefficient of the wing. Thrust-loaded singularities at the
leading edge are therefore excluded from the drag. This
exclusion is merely for convenience and is not necessary. A

formula for the drag coefficient is
1 N N
o=z f O dS=5 23 2 On. udsd 3)
where

Coi=Co,s—5 [ (Crstr G )dS

The average lifting pressure coefficient on the plan form
is the lift coefficient, which is

N
OL=% J; C’p dS—':g;, CL_ 1At (4)

The problem is to find the set of A’s which yields the
minimum value of Cp subject to the condition that O is
constant. Because of the quadratic nature of Cp and the
linear form of Cy, Lagrange’s method of undetermined mul-
tipliers is particularly suitable for the solution as it leads to
a set of linear algebraic equations.

As shown in reference 8, a function of the A coefficients
F=Cp+AC, is formed, where )\ is Lagrange’s multiplier.
The minimum value of F as determined by the N linear

algebraic equations g =0 plus condition (4) is Lagrange’s

1

solution. In matrix form these equations are:
[2Cp,1 Oz Co Coww Coa|TAT TO7]
OD, 12 201), 2 OD, 23 OD, N OL. 2 A, 0
GD, 13 OD, 23 2 CD. 3 C.,D. 3w C’L. 3 A3 0
=| - ( 5)
CD, 1IN OD, N OD. N .. 2 CD, N OL N AN 0
1 Ci Ch. Cps Cr.n 0 1lLA _I | Cr |
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The equations may be written more simply if first the
interference drag between the optimum loading and the ith
component of the loading is computed. From equations (1)
and (2), the following expressions may be written:

0p,0a1=A10p,lai+A20p,2a{+A30ﬂ.3ai+ A

A{Op_iai‘I‘ N +A)v0,,,)va¢
(6
Oy, i =A10C, 1+ A0y 1+ As3Cy i+ .. . +
A@Cy it . . . +AwanC,.,

Adding equations (6) and integrating over the plan form
gives

Co.o=, [ (Cot-euCy. 8= 4,Co, k- Ao,
ACp st .. . +24,0p 4 . .. +AxCho,n
N
=;§IJ ACp, 11 @)

This expression for Cpy, is & ﬁart of the left-hand side of
the 7th equation of the linear set which is now written as

CD. M+)\OL\, {=0 (8)

" A simple property of the optimum load distribution may
now be derived. First Cpis rewritten by use of equation (7):

1N
OD, 0=§ 1?_,1 AtOp,M (9)
or using equations (8) and (4)
1
OD_ 0— "“é‘ )\CL (10)
Substituting equation (10) into equation (8) gives

Cb,o
Co

Cp_m=2 01,'{ (11)

Since equation (11) holds for any number of loadings, let
the number of components increase without limit to include
all possible loadings. For an arbitrary loading X and the
absolute minimum M, equation (11) may be written as

OD, A

OD,ux=2 —TL- OL,X (1 2)
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The meaning of equation (12) may be simply expressed as
follows: The interference drag between the optimum loading
and any loading at the same lift coefficient is constant. If
the reversibility theorem is applicable, equation (12) is an
integral equivalent of a condition established by Jones in
reference 1. Jones’ condition states that for the optimum
loading the downwash on the plan form is constant in the
combined forward- and reverse-flow fields. Barred variables
will represent the reverse flow which has the same lift load-
ing on the plan form but, in general, a different surface
shape. Then, by reversibility,

f 0, oy dS= f T, ot dS= f a0,z dS  (13)
By definition, Cp arx is
GD.AH:% j: (Cy, atx+ouc 0 x)dS

Therefore, equation (12) may be written as

05;” f . dS (14)

fr Op,x(alf—i_'&ﬂ)dS:z

Since C,.x is arbitrary, as-+ax must be constant. Hence,

cprBag—2 Og,-L” (15)

This is the condition derived by Jones in reference 1. Equa-
tion (12) is then an equivalent integral form of this condition.

Equation (12) shows the orthogonality of the optimum
loading to, and only to, zero lift loadings. This resalt,
which was stated by Graham in reference 3, is seen to be a
special case of a more general interference drag property
given by equation (12).

COMPARISON WITH THE METHOD OF ORTHOGONAL LOADINGS

If two loadings are to be combined, it may be shown that
Graham’s method of orthogonal loadings (ref. 3) and the
present mothod are equivalent. If the resultant combina-
tion of two loadings is combined by the method of reference 3
with a third loading, the lift ratio of the first two loadings is
unchanged in the best combination of the three. If n>>2
loadings are successively combined in the manner of refer-
ence 3, the first 2—1 loadings are not allowed to adjust their
relative strengths upon addition of the nth. In the present
Lagrangian method every loading has equal freedom to
adjust. For this reason, the Lagrangian method should
be more rapidly convergent.

430875—bT——37
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NUMERICAL EXAMPLE

Tucker in reference 9 presents formulas for the surface
coordinates of delta and arrow wings which support four
types of pressure distribution. The formulas are given for
subsonic leading edges and supersonic trailing edges. In
the notation of this report (fig. 1) a combination of the four
loadings may be written:

Oy Ar+-Agp+-4, !ml'-}-A‘i (16)

m2

Formulas for the Cp,;; quantities may be derived from equa-
tion (16) and the surface formulas given in reference 9, by
integrations over the plan form. Details are given in the
appendix.

The optimum-drag results are presented in figure 2 along
with the corresponding drag values for a flat delta wing
with and without leading-edge thrust (ref. 10). The drag
values for the four component loadings taken alone are also
shown. In addition, the drag of the comically cambered
optimum delta wing (ref. 7) and Jones’ absolute minimum
for narrow wings (ref. 1) are plotted. The optimum A
values are tabulated in the appendix.

Noteworthy in figure 2 is the closeness with which all the
optimum drags agree with each other and with the drag of a
flat delta wing which has a thrust-loaded leading edge. The
close approach of the present optimum of four loadings to
Jones’ absolute minimum for narrow wings is also evident.
The data indicate that the relatively low drag of the flat

Figure 1.—Arrow plan form.



REPORT 1275—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

568
5
[}
Loadings
o Optimum
I © Linear chordwise
v Linear spanwise
9 Parabolic spanwise
a Uniform
4
3 T
INCD
G2 I
h
2 7
Flat NV
| Y ;

’,Flut plote with L.E. thrust

’

—aliS

I
]
)
[
i
1
[
1
v
1]
v

ax

N

Fiaure 2.—Comparative drags on a delta plan form.

Bm

delta wing with leading-edge thrust can be equalled by prop-
erly combining a few loadings having finite pressures every-
where on the plan form. A plausible speculation suggested
by the data is that it is possible to come very close to tho
minimum drag on a delta wing with but a few steps in a series
approximation. Perhaps, too, a restricted minimum, such as
the one for conical camber, gives a close approximation to
the absolute minimum drag if the restriction is not too
unnatural.

Since the vortex drag of a wing at any Mach number
depends only on the spanwise loading, a departure from the
elliptic spanwise loading is & measure of the vortex drag in
excess of the least possible drag. In figure 3 the spanwise
loading of the optimum combination is shown at the ex-
tremes of the sweepback range. There is good agreement
with the elliptic loading especially for the case of extreme
sweepback (n=0). Because for extreme sweepback the
wave drag vanishes, a direct comparison of the vortex drag
of the optimum combination and the elliptic spanwise load-
ing is given by figure 2 at n=0. The elliptic spanwise load-

. 1
ing has the drag parameter value o
It is shown in reference 2 that the wave drag due to lift

depends on all the lift loadings I(Y”) where l=IU, dX’ and

X’ is an arbitrary direction inclined to the free stream at
more than the Mach angle. The coordinate ¥ is perpen-
dicular to X’. A sufficient condition for minimum wave
drag is shown to be that I(Y”) is an ellipse. In figure 4 the
loading of lines perpendicular to the free stream, or chord-
wise loading, is shown for the optimum combination with a
sonic leading edge (n=1). Agreement with the elliptical
loading is poor. For the case of extreme sweepback (n=0)
no chordwise loading for the optimum combination is shown
in figure 4 because it is partially arbitrary. (See appendix.)
The allowable variations of the optimum loading at n=0

_correspond to changes in the oblique loadings that do not

change the spanwise loading. This result emphasizes the
vanishing of the wave drag with extreme sweepback.

1.O I

1.5

0

Fiaure 3.—The loading of lines parallel to the free stream for the
optimum combingtion. m=CpL=1.
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Figure 4.—The loading of lines perpendicular to the free stream for
the optimum combination. m=Cp=1.

CONCLUDING REMARKS

Lagrange’s method of undetermined multipliers is applied
to the problem of properly combining lift loadings for the
least drag at a given lift on supersonic wings.

The method shows the interference drag between the
optimum loading and any loading at_the same lift coefficient
to be constant. This is an integral form of the criterion
established by Robert T. Jones for optimum loadings.

The best combination of four loadings on & delta wing
with subsonic leading edges is calculated as & numerical
example. The loadings considered have finite pressures
everywhere on the plan form. At each Mach number the
optimum combination of these four nonsingular loadings has
nearly the same drag coefficient as a flat plate with leading-
edge thrust.

LangLEY AERONAUTICAL LLABORATORY,
NarroNaL Apvisory CoMMITTEE FOR AERONATUTICS,
Lanerey Fierp, Va., July 27, 1956.



APPENDIX

DETAILS OF NUMERICAL EXAMPLE

INTERFERENCE DERAG FORMULAS

Inasmuch as the pressure coefficient C, and corresponding
angle of attack « are given by

Ot Aty Uy, 1
a=A,0+ A0+ Ayont+ A,

then the local drag coefficient may be written as

(A1)

Oy Art(e) + Arda (et o)+ Aoy (17%1 oo )+
A1A4(Z’2 oyt J A (20 A, 4, (Ll gtz )
Asdy (% ae+:va4>+A32 (11%‘ a3>+
A, (L L e ly . >+AE (ﬁli a4>

The required Cp,i; functions are the averages over the plan
form (fig. 1) of the quantities in parentheses in equation (A2).

(A2)

Rather than «, itself, reference 9 gives the surface ordinate

2, which is the chordwise integrated value of «;:
z,=—-fa, dz (A3)

The values given for z; are

0 (A4)

The values of B, are functions of 0=%; tabulated in reference

9 for different values of n. The equations for R, are
1—4 2+/1—n2—2 cosh™! |- +

— _,|1+n%

(A5a)

S _1|1—n%
+/1—n%(1—6) cosh™! n___(l—O)]
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———{m 202c>osh" I—]—

[uu 6 +a+a{| cosh~ 1|1+”"|+

/1~n* (1-+06)
1 [mQ—e) _
=l —-0+02:| cosh~! n(I 0)'} (Abb)
R3='—Zf 3 /1 —n’ﬂ’—(l +302——% n"ﬂ’) cosh~ ‘I—-I-{—
A+ +2(1—n?)(6+6%) . _,|1+n%
PN cosh |
“‘”’;2(___11_‘7’5)("*"’) cosh-1) |] (A50)
1 1—n20%)¥*  12—10n? 1
=g (3(1—n’)) S ) "0 TP 60* cosh™! 775""
242 2—
(1—na)% [6 O+ 20 (gr-+-67)+ 3“ (6—0%)—

a _i| 1470
&3 ““ﬂ cosh ln(l +e)l+(1—n*)%

23 -2 (1 "’)]”sh_ll(lng)l}

2 4
[6 —9n +2n( 0— %) —

(Abd)

For terms in equation (A2) of the type (y/m)*ay, a spanwise
integration of z; gives the following average on the plan
form:

_ Ra) _
Sf( ) 8= —/.Lm s+t+1
(1—p)r+ett o (fi‘_i%{_o_%ﬁdg] (AB)

For terms of the type za; an additional integration by
parts in the z direction is required to maintain the 2, func-
tions intact under the integral signs. The result for this
case is

B:(1) R,(0)

2 42
sf o e ] e T
A=) (" R(0)
R ﬁ(l—ﬂo)‘“d":l (A7)
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In formulas (A6) and (A7) the value of ¢ for each 7 is as
follows:

G B =
RO

By applying formulas (A6) and (A7) to the integration of
(A2), the following equations for Cp,; are derived:

2m0,,,,=1_2_# Bi(1)—4(1—p) ﬁ 1(1 1(92)3(10 (ASa)
2 1 2Q—pl (RO o
mCD,u—3(1_#) (2, (1) + Ry (1)]4 3 o (1— w)adg
91 —p) ol(lli(g)‘ d—2(1—p)? fo ‘( 13_2%4 do (Ash)
. [ 0B, (0)
mCp, 5= 3(1 )[R1(1)+R3(1)] 2(1—p) o (l— #0)4‘{3
2(1—p)? f (IR’*%@ (ASc)
s [t 62R:(6)
mCp, 1= 2(1 )[R1(1)+R4(1)]_2(1 &) o 0= )5(10'_'
20— [ 20 ao (A8d)
(AS8e)

MO, =gy (Ba()+ Rl =20 [ 222 g

v [ B0 _ Ry(6)
20—wp [ G20 o1 [ D do (ash)
— ) K 210) —
mOD,‘u—'( )[R2(1)+R4(1)] 2(1—p) o I— Fﬂ)edﬂ

(RGO Lt RGO
)f(l oty 1 [ 40

(A8g)

2mChp, 3

— ) f 0R;(6) o

T—wd? (A8h)
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-2 (] — ) 933(0)
[ 6R.0) .
O e (ASD)
2 A L 62R(0) .
2m01>,4—3(T#—) R,(1)—4Q #YL T—ub)’ dH. (48j)

The required Oy, functions are simple integrals over the
plan form which yield

OL, 1=1 h

(A9)

NUMERICAL CALCULATIONS

The integrals in equations (A8) were, in general, evaluated
numerically. However, several of the integrands in equa-
. R\(6) B46)
tions (A8) have the form A=y and =)y These
functions have an infinite discontinuity at §=0. For such
a discontinuity, numerical methods break down. Near
zero the following approximation is integrated analytically:

1 1
R I(G)le(e)+% cosh™! 71%_2—# cosh™! o
0<f<s ekl (A10)

1 1 1 ., 1
Ra(B)zRa(é)—‘i—ﬂ_ cosh 17Te+E cosh ‘;1—0

The integrals for the region 0=6=e¢ can then be ap-
proximated:

E,(6) ~ L -l _—I_(i)
f A=y ©~ f(f)[R‘(e)"'zwcos}l AL
3(0) 1 . (6)
where
(e t(t-l-l) pe
fo= | g1+ u gt DA,
%ftwn_fr] (A12)
and
. cosh™!
Ko— J:, (1_“0;0 26 (A13)
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The integral in equation (A13) may be evaluated by
expanding the denominator by the binomial thecrem and
writing I(e) as an infinite series

I(e) =apiotaiti+asiat-asts+ - . - (A14)
where

=1 (Al5a)

a1=§ o (A15b)

— ’(tjlrl) 2 (A150)

—HEEED) (4150

D). * (tHs=1) , (Al5e)

o= ﬁ " cosh? 22 o (A15)

fz1=f0e 6 cosh~? % 8 (A15g)

- fo ' ¢ cosh Lo (A15h)

= ﬁ ' 0" cosh™? 5 ds (A15i)

The 7, integrals of equations (A15) are evaluated by use
of the relation

do  (A16)

fﬁ‘ cos’.h‘1 dB— i 1 1+ f &
8+1 nf " 8+1 J J1—n6?

EXACT CALCULATIONS

At the extremes of the sweepback range, equations (AS8)
may be evaluated exactly. For the case of extreme sweep-
back (n =0), there results:

Rimge (2-+Hoge gk oz 15 (A178)

Rg——-— (1+a loge 1 +.9+e*1 g o 0) (A17b)
Ry=—2L [5 (14-36%) loge /__2+ 2 logs 10 +9] (A17¢)

R— 4l[-+402+(e+203) log, 1o-+3%log. 7773 | (A17d)

2m CD'1= Og; 2 (A.].S&)
%—I—% log. 2
1nCD_13= pm (Al Sb)
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4 4
§'—§ log, 2
mOD, 13='—4;r—‘— (AISC)
4
'3' ].Oge 2—-6'
mCp, 1= y (A18d)
2m Clp,y— (A180)
™
%—% log, 2
mOD,23=T (A18f)
4 2
5 log, 2—5
mOD,24=—4—ﬂ_— (Ang)
4 4
) 375 l0g, 2
mCp, P (A18h)
At log, 2
mCp, 34—————30 1451 (A18i)
% log, 2—%
ZmOD',;:T (A18j)

Equations (18) provide the interference drag coefficients re-
quired to calculate the vortex drag due to anycombination
of A values.

In the solution for the optimum A values, the parametors
A, A, and A, are found to be linearly related and one of
them may therefore be chosen arbitrarily. Choosing 4,
yields:

A=A, (A100)
A2=3(‘11‘f;11)—2A, (A19b)
Ay=A4, 3((328f;a2)‘z‘1‘:‘$1) (A1)
Aa%‘% (A10d)
0y o B0— D200 —20) (4190

8= 2—3a)(1+a)

where

a,=§ (1—log. 2)

The spanwise loading may be written as

=] (4t )+ (Graa)+rad | a—n >0 4a2)
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when m=Cp=1. Substitution of the A values given in AR A2
equations (A19) shows that I(y) is independent of the vari- G T (4220)
ations in 4;, 4;, and 4,.
1 1 = 7
For the case of a sonic leading edge (n=1), m OD'2‘=1§(—) (A22g)
Rl=‘%r <21,/1—0’—2 cosh™! %) (A21a) .
2m OD' 3=4:_ (A-2 2h)
Bim—p (21/1'—‘0'2—202 cosh~1 %) (A21b)
1, 7 .
mCp, sy=—gt5— (A22i)
11— 5 2> —ll:l 48 " 907
Ry= o (2 4/1—8 (1-{—50 cosh 5 (A21¢) )
1[/2,52 1 2mCo. =355 (A22))
Rk [(§+? 6%) yT—F"—66* cosh™! 5] (A21d)
CALCULATED VALUES OF 4
1
2mUu.1=§ (A22a) The table that follows contains the calculated values of A
for the optimum combination through the sweepback range.
c _1 (A22b) Four significant figures are given, since the tabulated values
MmEp =3 of R have four decimals. Values of Op,, for m=Cy=1 are
11 also shown:
mCp, =g T (A22¢)
- n I 4, 4 4, 4 Coa
mOp, =1 (A22d) %o | Tes | <aae | Tms | Loy | “ome
.4 1.977 —2.571 1. 580 1.244 . 1105
8 | 17l | —Zu7 | 1472 | eses | e
1 vo | Lo |IhE | L3 | cfs | %%
2mCp,s=7 (A22¢) Sl : |- :
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