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THE THEORY OF PROPELLERS

IV—THRUST, ENERGY, AND EFFICIENCY FORMULAS FOR SINGLE-
AND DUAL-ROTATING PROPELLERS WITH IDEAL
CIRCULATION DISTRIBUTION

SUMMARY

Simple and exact expressions are given for the efficiency of
single- and dual-rotating propellers with ideal circulation dis-
iribution as qiven by the Goldstein functions for single-rotating
propellers and by the new functions for dual-rotating propellers
from part I of the present series. The efficiency is shown to
depend primarily on a defined load factor and, to a very small
extent, on an axial loss factor. Tables and graphs are included
Jor practical use of the results. The present paper 18 the fourth
in a series on the theory of propellers.

INTRODUCTION

The thrust, the energy loss, and the efficiency of a pro-
peller are given completely and uniquely by the condition
of the wake far behind the propeller. Detailed knowledge
of the propeller required to create the particular wake
pattern is not needed; in fact, the propeller is not uniquely
determined by the wake pattern. An element of lift may
be transposed in a direction tangent to the vortex surface in
such a manner as to maintain the identical vortex pattern
far behind the propeller.

Several equivalent propellers may thus exist—all with the
same vortex surface far behind the propeller. Such quanti-
ties as the diameter, the pitch, and the rate of advance of
the surface of discontinuity far behind the propeller are
therefore of 8 more fundamental significance in many re-
spects than the similar quantities referring to the propeller.
At any rate, it has been found convenient for the present
theorotical treatment to consider all quantities as referring
to the conditions of the ultimate wake. Only in the final
stage of the actual design of the propeller are the interrela-
tions of the propeller and the ultimate wake of concern.
Tor the present investigation only knowledge of the ultimate
wake is required. The thrust, the various energy losses,
and the efficiency are dependent only on the ultimate wake.

The present paper is the fourth in a series on the theory
of propellers. The first of the series (reference 1) deals
with a set of new functions for the thrust distribution of
dual-rotating propellers. The second (reference 2) con-
cerns the axial interference velocity, and the third (refer-
ence 3) treats of the contraction of the propeller wake.

§ <E BN NR S

K(x)

K(z, 0)

NeS SR e Dy

€r
€

By THEODORE THEODORSEN

SYMBOLS .

angular coordinate on vortex sheet

tip radius of propeller

nondimensional radius in terms of tip radius

axial coordinate

number o1 blades of propeller; also, pressure

circulation at radius z

angular velocity of propeller

advance velocity of propeller

rearward displacement velocity of helical vortex
surface (at infinity)

advance ratio (%Q—D

circulation function for single rotation

( plo
27(V4+w)w

circulation function for dual rotation
mass coefficient

(2f01 K@)z da or - ﬁ ' f’ Rz, 6)x do dx)

projected area of helix (at infinity)
control surface (at infinity)
volume of wake region

density of fluid

interference velocity

axial interference velocity

radial interference velocity
tangential interference velocity
veloeity potential

thrust

pitch of wake helix <2WV+w

@

axial energy-loss factor
radial energy-loss factor
tangential energy-loss factor
energy loss in wake

. TV
efficiency (TV'—_——I— E)
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Cs specific loading factor referred to wake at
P 2T
infinity (F__V‘zp

a apparent induced displacement velocity at pro-
peller disk

MASS COEFFICIENT

In reference 1 the concept of a mass coefficient « was
introduced. By definition

k=2 ﬁ K@) do
where
_ ZZP“’
K(x)—2z'(V-|—w)'lD
and z is the nondimensional radius of the wake. In more

general terms to include also dual-rotating propellers, « may
be defined by

1
=7 f K(, 0dS

where K(z, 6) is a function of both the radius z and the
angle @ or the time {. The coefficient x is thus the mean
value of the circulation factor K(z, ) over the area of the
wake cross section.

It is shown in the following discussion that the momentum

pfv do

contained in the space ¢ enclosed between two infinite planes
perpendicular to the axis at a distance between them equal
to the distance between successive surfaces of discontinuity
is equal to

el

The designation “mass coefficient” originates from this rela-
tion. The mass of air set in motion with a velocity w is of
the cross section «F or, if the column F is considered to be in
motion, it will attain the mean velocity »w; hence the term
“mass coefficient’’ is used for x. Reference 1 gives the cir-
culation function K(z) or K(z, §) and the mass coefficient «
for all significant cases of single- and dual-rotating propellers.
It may be seen later that the mass coefficient x times w is not

exactly identical with the thrust coefficient %c, because «
refers to a certain momentum and not to the thrust.

GENERAL CONSIDERATIONS OF PROPELLER WITH IDEAL
CIRCULATION DISTRIBUTION

Expressions will be given for the thrust and energy loss
for both single- and dual-rotating propellers. The dis-
cussion is restricted to the case of the ideal circulation dis-
tribution. In this case, the surface of discontinuity moves
backward as a rigid surface at a constant rate of motion w.
The equation of motion may be written in the form

1 o}
p—po-tgprt+p =0
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where the subscript 0 refers to the condition at infinity with
the medium at rest. Because of the stipulation that the
entire field moves backward as a rigid body, the relation

¢=f(z—'wt, z, )

exists and, consequently,

26__ 08

ot Yoz
Since %—Z=v,, it follows that

bd:___

i

and the equation of motion for this type of rigid-pattern dis-
placement flow is, in general,

p—Pot-gprt=pun, 1)

CALCULATION OF THRUST

In calculating the thrust of the propeller, it is convenient
to employ an imaginary control surface, which encloses the
propeller but is infinitely distant from it. The control sur-
face may be chosen as a cube with infinitely long sides and
with the propeller at the center and the wake directed per-
pendicular to one wall S, crossing it in the middle and ex-
tending infinitely far beyond or outside the econtrol surface.
Let the center of the wake be the z-axis. By methods of
classical mechanics, the instantaneous thrust is obtained as

T= [ lo—pot o(V-+0)0dS
Introducing equation (1) transforms this integral to
7=, | [(V+w)v,+v,’—%v’] ds

Since the thrust may vary with time as is the case for the
ideal dual-rotating propeller, an integration must also be
performed with respect to time. This integration results in
the expression

!
r=1, ﬁ f ) [(V-}-w)v,-i—v,’—--%v’] ds dt

Since ¢ and therefore the velocities v and v, are Tunctions of
z—art, this integral may be obtained as a volume integral
taken over a volume of an infinite cross section S and a
length along the axis z equal to the distance between suc-
cessive vortex sheets. This distance is’

H V4w
'_=27T"_‘—'
¥4 wp

where p is the number of blades. The integral thus becomes

T=1p f |:(V+w)v,~%v’+v,’:| do
g Je
7

J;v,da=fp¢ d.S=fFI‘ ds
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where the surface integral is taken over one turn of the
vortex surface with dS as the projection on the surface S
perpendicular to the axis z. With

27 (V4-w)

r="m YR (z, 6)

the following relation is obtained:

Tl—fv,da=w f Kz, 6)dS
'?TH o P

This relation may be transformed by the infroduction of
the mass coefficient « (see reference 1), which is defined as
the mean value of K(x, 6) over the projected wake area

1

= f K, 0d8
Then
Tl— f vdo=xwF
ZFYe

4
Tor the second integral occurring in the expression for the
thrust, a similar treatment yields

= f vdo=rxurF

P
Finally, by definition of a quantity ¢, which may be recog-
nized as the axial energy-loss factor, the third integral is

& f vido—ew'F
P
This integral is obviously the expression for twice the axial

energy loss contained in the volume ¢ between successive
vortex sheets. Since v,°<¢?, it is evident that «<x and

“<L.
By use of these three expressions, the thrust may be writ-
ten in the simple form

T—Fp I:(V+'w)xw+ew’—%xwz:|

—pFaw [V+w (%+ f)] )

CALCULATION OF ENERGY LOSS IN WAKE

By methods of classical mechanics, it can be shown that
the expression for the instantaneous energy loss in the wake
is

1 1
E=fs|: P—Po+§p17’>ﬂz+§P172 V:I ds
By use of relation (1) this expression becomes

B=p [ (swt3v)ds

843110—50——8
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By integrating over time and transferring to a volume in-
tegral as was done for the thrust, the expression is changed to

E=p- f (v,zw—l-%v’V) do
Lo
P

Replacing the int.egralsf v.do andf v’do as before gives

finally
E=pFeu Su+17) @)

EFFICIENCY

With the thrust and the energy loss known from equations
(2) and (3), the efficiency defined as 3= TT% is given by

pliva | Vbw (3+7) |V

" P [V—l—w (1 ):I Vit pFiw? <;w+%v>

o]y

(Vo) (Vo)

With the introduction of a nondimensional quantity
— w .
B=1, the efficiency becomes finally

ok

1+ (1+3)

7= 4@

which is the exact expression for the ideal efficiency of the
heavily loaded single- or dual-rotating propeller. The
efficiency is a function of the velocity ratio w/V infinitely
far behind the propeller and is dependent on only one other
parameter e/x, which is the ratio of the axial loss to the total
loss.

By introducing the specific loading factor ¢, in equa-
tion (2), the following expression is obtained:

st 03]

Substituting the quantity ¢, in equation (4) gives

ra)a+s)

A i)

L les (1, ¢
2_ ’
A=7t35 2*)

This formula shows the efficiency as a function primarily of
the parameter c,/x with a slight dependence on e/k. The
efficiencies from the formulas given are plotted as functions
of w and ¢,/x in figures 1 and 2, respectively; numerical
values of the efficiencies are listed in tables I and II.

where
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TABLE I
PROPELLER EFFICIENCY

1 4+5)
7= =
(1+n7)i 14w )

T
w el 0 1/100 110 1/5 2/3 3/5 1
0 10000 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
.05 .o782 L9762 L9760 . 9769 9757 9754 9751
.10 9545 . 0545 L8541 . 9537 .9528 . 9620 . 9504
15 8348 347 . 6338 9320 .11 L9294 . 9263
.20 9167 .9165 L9150 L9135 . 9105 9077 9028
TABLE 1I

PROPELLER EFFICIENCY (IN SERIES FORM)

[ ()45 (B) R [3+-(D) T -]

7
efx
ede 0 1/100 1/10 1/5 2/5 3/5 1
0 1.0000 1.0000 1. 0000 1.0000 1.0000 1. 0000 1.0000
1 - 9767 . 9767 . 9767 . 9787 . 9767 . 9766 . 9768
2 . 9363 0562 9561 . 9560 . 9559 . 8558 . 9857
3 . 9377 . 9376 .9373 . 9370 . 9366 .0363 . 9360
4 . 9200 .9199 L9192 .9188 . 9174 . 9166 . 9160
5 L0023 . 9022 . 9009 . 8995 .8073 . 8958 .8M5

It is of some interest to give the exact expression for j
us & function of w and of ¢,/x in the form of infinite power
series. These series are

=1 —w+1<1 )w— (1——6—52)1'5-4 ®)

5245 (8) s Grei-2) &)+ - - @

The very small dependence of 5 on ¢/, particularly in equa-
tion (7), is evident.

and

INDUCED VELOCITY AT PROPELLER

If the efficiency is written in the form

1
T 1¥a
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the quantity e gives the apparent induced displacement
velocity at the propeller disk. From equation (4)

+i

o)
or, 1n power series in w,

G LI L

or, in terms of ¢,/x,

=123 @) R GE)EDE - w

FINAL REMARKS

‘°ér

(8)

a=

Exact formulas for the ideal efficiencies have been de-
veloped. The efficiency is given simply as

"7=f 1(’17’; 7:)
=1 (c_.’ f)

It has been shown by series developments and graphs that
the dependence of 5 on the parameter e/x, which is the
axial loss in terms of the total loss, is very small, particularly
in the second formula. For this reason the numerical value
of ¢/x need not be known to a high degree of accuracy. It
can be shown that ¢/x is approximately equal to x and, for
most practical purposes, this approximation is sufficient.
On the other hand, the formulas are exact and the value of ¢
must be obtained to the degree of exactness actually desired.
Values of ¢ for single-rotating two-blade propellers are given
as an example in the appendix.

or

LaNGLEY MEMORIAL AERONAUTICAL LABORATORY,
NarioNalL Apvigory COMMITTEE FOR ABRONAUTICS,
LanGLEY FieLD, Va., Oclober 18, 1944.
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APPENDIX
DETERMINATION OF AXIAL LOSS FACTOR e

It is seen from the efficiency formulas that the axial loss
ratio ¢/ enters as a parameter. Since the dependence is
very small, it is sufficient to know an approximate value of e/x.
It is concluded from the following discussion that the loss
ratio ¢/« is only slightly greater than the numerical value of
the mass coefficient , since this relation holds for the known
case of an infinite number of blades and shows reasonable
agreement also in the case of a two-blade propeller for

1

=5 Until the loss ratio has been obtained by direct cal-

culation, the practice of putting f=x is considered satisfac-
tory for all purposes.

Axial, tangential, and radial loss factors are defined for
single-rotating propellers by

1

=77

2
pycy Sv,dS

23

1
“=wF ) g

1 2
e,—w,Ffsv,dS

respectively. Further, the total loss factor is given as

v2dS

and

et et e=x

de de de, .
In figure 3, e d(z;)’ and a6 e plotted against a2 for

the case of a two-blade propeller with )\=-21~ These plots

were made by using the functions and constants given by
Goldstein for the velocities v,, v, and v,. The curves, upon
integration, yield the values

¢=0.0925
,=0.0768
¢,=0.0932
The sum of these three,
x=¢+¢,+€6=0.2625

is very nearly equal to the value of x obtained from figure 3
in part I (reference 1). It is noted that the radial loss,
which has been neglected in all previous discussions of this
subject, is the largest of the three losses.

In the case of an infinite number of blades, the formulas

de de, . .. .
for i@ and a@) o0 be integrated explicitly to give

A2 R 1
e=1+m—2)\ log <1+’i§>
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Fiaure 3.—Dlistribution of axial, banEBntlal, and radlal energy losses for two-blade propollor
1
with Am 3

1S 1
€= —-m+ A’ ].Og (1 "I—'X!)

and
=0

The total energy loss is then

r=e}e,=1—27%log (1 -|—T1,>

Lo

2
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FI1GURE 4.—Loss funetions for an infinite number of blades.

The functions ¢, ¢, and « are plotted against N in figure 4.
A plot of the function ¢/x is also shown in figure 4. The
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value of ¢/ for a two-blade propeller with >\=%y which

is obtained from the given data,isshown by a point in figure 4.
It is noted that, for the case of an infinite number of
blades, ¢/k is slightly greater than «; whereas, for the two-

blade propeller with )\=%: S~0.35 and x=0.2625. The

K
quantity e/x may therefore be tentatively estimated as some-

IV—THRUST, ENERGY, AND EFFICIENCY FORMULAS

what greater than «.
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