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STABILITY OF THIN-WALLED TUBES UNDER TORSION

By L. H. DoNNELL

SUMMARY

In this paper a theoretical solution is developed for the
torsion on a round thin-walled tube for which the walls
become unstable. The results of this theory are given by
a few simple formulas and curves which cover all cases.
The differential equations of equilibrium are derived in a
simpler form than previously found, it being shown that
many ems can be neglected. The solution obtwined is
‘““exact” for the two extreme cases when the diameter-
length ratio is zero and infinite, and is a good approxi-
mation for intermediate cases. The theory is compared
with all available experiments, including about 50 tests
made by the author. The experimental-failure torque is
always smaller than the theoretical-buckling torque, aver-
aging about 76 percent of i, with @ minimum of 60 per-
cent. As the form of the deflection checks closely with
that predicted by theory and the experiments cover a great
range of shapes and materials, this discrepancy can rea-
sonably be ascribed largely to initial eccentricities in
actual tubes.

SYMBOLS

l,t, r, d, length, thickness of wall, and mean radius and
diameter of the tube, respectively.

E, p, Young’s modulus, and Poisson’s ratio (0.3 for
engineering metals).

S, critical shear stress (equals the critical torque times

2

)

n, number of circumferenfial waves in buckling de-
formation.

6, angle of waves with the axis, measured near the mid-
dle of the tube.

z, 8, longitudinal and ecircumferential coordinates,
measured axially from the normal section at the
middle of the tube, and circumferentially from some
genetrix, figure 13.

u, v, w, longitudinal, circumferential, and radial com-
ponents of the displacement during buckling, taken
as positive in the z, s, and outward directions,
figure 13.

€xy €5y €xsy Kzy Ky Kzgy linear strains in the 2 and s directions
and the shearing strain, and the changes in curva-
ture in the z and s directions and the unit twist, all’
due to the buckling displacement.

T Ty Te Ty, N,y N, Gy, G, G, G/, resultant
normal and shear forces, and resultant bending and
twisting moments, due to the buckling displacement,
all reckoned per unit length of section, as shown in
figure 14.

A1, M,—Ap, numbers relating to the axial length of
buckling waves.

M=a+bd, M=a—b, Ny=—a+i, \y\=—a—1c, where
a, b, ¢ are real numbers.

Uny Vi, Wa are real numbers used in the expressions
(13) for u, v, and w.

2 2
Ve =ba—x” +ba?’ v* signifies application of v* twice, etc.

2
A=-p» 5L B= =5 !

o1 Pt 1

H:,J]_——#’ﬁr J= (—1_#2$} k—na
All equations given in the paper are dimensionally
correct, so any consistent units of distance and force

may be used.
RESULTS

According to the theory developed in this paper, the
torsional shear stress at which buckling occurs in short
and moderately long tubes is given by the full lines in
figure 1, or is very nearly expressed by the formulas

A=4.6++7.8+1.67TH" (clamped edges, J<7.8) )

A=2.84+/2.6+1.40H°7 (hinged edges, J<5.5)
It is assumed that all components of displacement are
prevented at end cross sections of the tube, and that
““clamped” edges are held perpendicular to these cross
sections while ‘“hinged’” edges are free to change their
angle with the cross sections. It is found to be imma-
terial whether or not the ends of the tube are free to
move as & whole.

For very long slender tubes the number of circum-
ferential waves, n, is small, and there is a slight devia-
tion from the above laws, as the number of waves
changes from one whole number to the next. In figure
2 the straight lines de represent the above laws, while
the irregular lines represent the more exactlaw. When
J exceeds a certain value, 7 remains always 2 (at least
for any tubes of practical proportions). For large
values of J the critical stress for both end conditions
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is given very nearly by the straight line eef, whose
equation is
B=0.77+/J @)
For practical purposes equation (1) may be used
when J is less than 7.8 for clamped edges, or 5.5 for
hinged edges, as indicated in (1), while (2) is used when
J exceeds these values.
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If buckling takes place all around the tube, n must
naturally be a whole number, and its value may be
taken as the whole number nearest to the value found
from figure 3. In many tests, especially when n is
large, buckling takes place over only part of the tube.
In such a case 7 is taken as the circumference divided
by the average width of the waves, and it therefore
need not be a whole number.
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FI1GURE 4.—The angle of the waves with respeot to the cylinder axis for short and medinm length tubes.

The buckling deformation consists of & number of
circumferential waves which spiral around the tube
from one end to the other, as shown by the photo-
graphs of actual specimens (fig. 6). The theoretical
number of circumferential waves, 7, is indicated in
figure 2 for long slender tubes. For short or moder-
ately long tubes the theoretical value of n is given by
the curves of figure 3.

The theoretical angle of the waves with the axial
direction, near the middle of the tube, 6, is given in
figure 4 for short and moderately long tubes. For long
slender tubes it may be taken as

6=%§ (clamped edges_)
Bn%é (hinged edges)

in degrees, where 7 is as given in figure 2.

3)
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To check the above theoretical results, the author
has made more than 50 tests; in addition, the results
of many other experiments have been published by
the N.A.C.A. (reference 1) and others. .All the avail-
able test results have been plotted on figures 1, 2, 3,
and 4. All the tests were made with clamped edges.
Comparing the experimental results with the theoreti-
cal curves for clamped edges, it will be seen that all
tests give values for the failure stress somewhat lower
than the values for critical stress predicted by theory.
The experimental values average about 75 percent of
the theoretical, with & minimum for metal tubes of
about 60 percent of the theoretical.

These relations hold over an enormous range of
sizes, proportions, and materials. The form of the
buckling deflection, as measured by the number and
angle of the waves, checks closely with that predicted
by theory. It is therefore reasonable to suppose that
-the discrepancy between the theoretical and experi-
mental values of failure stress is due chiefly to unavoid-
able defects in actual tubes. Some of the discrepancy
is undoubtedly due to the fact that a true clamped
edge is impossible to attain in practice. But it is
probable that most of it can be ascribed to initial
eccentricities; that is, departures from & true cylindri-
cal form, always present in actual tubes. Among the
tests made on long flat strips in shear (which is con-
sidered the limiting case of a tube under torsion when
H=0), those made by Bollenrath (reference 2) record
the stress at which wrinkling began, and these stresses
average less than half the theoretical, as shown in
figure 1. Similar results were obtained by Gough and
Cox (reference 3), but these experimenters took meas-
urements of the buckling deflections at various loads
and with this data were able to calculate, by a method
developed by Southwell (reference 4), the probable
load at which the strips would have buckled if there
had been no eccentricities. These calculated values
check the theoretical values very well, as shown in fig-
ure 1. Itseems likely that most of the discrepancies in
the tests on tubes could be explained in the same
manner if similar data were available.

By multiplying the right-hand sides of equations (1)
and (2) by the factor 0.75 or 0.60, we obtain, respec-
tively, expressions for the average and minimum
resistance to buckling to be expected from an actual
tube. The following equations are obtained by multi-
plying the right-hand sides of equations (1) by 0.60
and taking p=0.3:

S= E(—%)I?;O + / 3.51.68 (TZ)_*] (clamped edges)
4

@)
S= EG—)IIS + \/ 1.2+4.57 (Tl;?] (hinged edges)

These formulas cover all present-day applications and
are recommended for design purposes. Being based on

the minimum results from all available tests on metal
tubes, more than 120 tests, they should give values
which are always on the safe side. They are repre-
sented graphically by the broken lines in figure 1.

The case of hinged edges has an application, for
example, in the case of a circular monocoque fuselage,
without longitudinal stiffeners and with circumferential
stiffeners or rings of an open cross section, with small
stiffness against twist. The portions of the covering
between rings are very nearly in the condition of tubes
with hinged edges, as the rings, while stiff against linear
movements, give little resistance to rotation of the
edges. In such a case there is little interference
between adjacent sections of the covering in buckling,
as where one section buckles outward the next section
can buckle in.

HISTORY OF PROBLEM

In 1883 Greenhill obtained a solution for the sta-
bility under torsion of & long solid shaft (reference 10).
This solution applies also to hollow shafts or tubes,
representing a solution for the case n=1. It will be
shown later that this solution can be obtained in a
much simpler way, and that it actually has little prac-
tical importance.

The first paper on thin walled tubes under torsion
seems to have been written by Schwerin (reference 5)
in 1924. He develops the following formula for the
critical stress of tubes in torsion

A% i
Se= 0.248E<7-,> <1 + 0.45;)

The values found in experiments are mostly much
higher than those given by this formula. For the
shorter tubes the test results are 30, or more, times the
formula value; for longer tubes the diserepancy de-
creases. The value in the final parenthesis in the
above formula is practically unity, as with available
materials {/r must be very small if failure by buckling
occurs before failure of the material. If this value is
taken as unity, Schwerin’s equation checks equation
(2), except for a difference of about 16 percent in the
coefficient, as shown in figure 2. Schwerin obtained
his result from a solution of differential equations of
equilibrium, by neglecting all end constraints and
assuming that n=2. Equation (2) is also for the case
n=2, and as it holds for both clamped and hinged
edges, it is evident that end conditions are unimportant
in the range to which it applies. From this check and
from the check with experiments, it is evident that
Schwerin’s equation is an at least approximately cor-
rect solution for rery long slender tubes, that is, for
the range, say, when J>6.

The above equation is the only part of Schwerin’s
paper which is commonly quoted. However Schwerin
also discussed in this paper the cases where n has
other values than 2. He checked Greenhill’s result
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for the case n=1, and showed how individual results
could be obtained with other values of », and with a
consideration of end conditions. He calculated the
relation between the buckling stress and r/l for several
values of n and for several values of ¢/r, with the end
conditions z= +1f2: w=0. These calculations give
good checks with the theory and experiments found
by the author for more specific-end conditions. How-
ever Schwerin failed to develop any way of simplifying
his results, except for the case discussed above, and he
did not carry them far enough to be of practical value
to users-of short or moderately long thin-walled tubes.

In the same year (1924) a solution was published
by Southwell and Skan (rveference 6) for the critical
shearing stress on a flat strip of infinite length. This
case may be considered to be the limiting case for a
tube under torsion, when the ratio of length to diam-
eter becomes zero. As the theory of the present paper
is ““exact’’ for this extreme case, it concides with the
Southwell and Skan theory when I/d is set equal to
zero. The existence of this solution for a limiting
case was naturally of great help to the author in
developing o general theory of torsional stability, and
many valuable suggestions were taken from the in-
genious methods of solution used by these writers.

In 1931 a paper on the buckling of tubes under tor-
sion was published by Sezawa and Kubo (reference 7).
In this o general theory is developed and worked out
for 2 number of cases, and nine very complete tests on
rubber models are reported. The results of this theory
are not in agreement with experimental results. The
experiments on rubber models cited in the paper hap-
pen to be in a range where the discrepancy is not so
great, the ratio between the critical stress found by
experiment and that predicted by the theory being
from 0.5 to 3. However, for most of the available
experiments on metal cylinders, this ratio is much
higher—as much as 50 or more in many cases. The
differential equations of equilibrium on which the so-
lution is based seem to be incorrect, the very important
term 7%/a (using the paper’s symbols) having appar-
ently been omitted from the third equation.

The results of the experiments described by Sezawa
and Kubo are reasonably consistent with the results
of other experiments and the theory of the present
report (see fig. 1), and certainly as consistent as could
be expected when it is considered that a material was
used which many experimenters consider unsuitable
for quantitative work. The check is excellent in re-
spect to n and 8, which do not depend on E (figs. 3
and 4). In reference 7 very complete data are given
on the shape taken by the specimens at all stages of
the loading, from the unloaded condition to the
critical load. This data affords a very interesting
picture of the way in which the deflection, starting
from the initial unevenesses, changes to the final
buckling form. A method of studying this question

theoretically has been suggested by the present author
(reference 8), and applied to the case of simple struts.
This question is doubtless more of academic than of
practical interest. B

In 1932, the National Advisory Committee for
Aeronautics published the results of an extensive series
of tests by Lundquist (reference 1) on the strength in
torgion of thin-walled duralumin tubes. No theoreti-
cal analysis was attempted. These tests, together
with the tests made by the author, constitute the bulk
of the experimental evidence cited in the present paper.

In 1932, also, a theoretical paper was published by
Sanden and Tolke (reference 11) on the stability of
thin cylinders, the case of torsion being considered
among others. These authors used very complete and
therefore complex equations of equilibrium, but they
carried their work on torsion no farther than Schwerin.
It is very interesting to note that their equation 130b,
for the case n=2, is exactly the same as equation (2)
of the present paper, which was obtained independ-
ently with very much simplified equilibrium equations.

The experimental results of Bollenrath (reference 2),
published in 1929, and of Gough and Cox (reference 3),
published in 1932, on narrow flat strips in shear, have
already been discussed.

THE TESTS AND DESCRIPTION OF SPECIAL TESTING
APPARATUS

The author’s tests were performed at the Guggen-
heim Aeronautical Laboratory of the California In-
stitute of Technology. With one exception the speci-
mens were of small size, from ¥, inch to 6 inches diam-
eter, and made of steel and brass ‘“shim stock? from
0.002 inch to 0.006 inch thick. Such sizes were se-
lected because of the great ease and cheapness of con-
struction and testing. The exception mentioned was
very much larger (27 inch diameter); all the N.A.C.A.
tests (reference 1) were on specimens 15 inches and 30
inches in diameter. Comparison of the results indi-
cates that there is no great disadvantage or danger in
using such small specimens. In all tests the propor-
tions were such that the stresses were always well be-
low the elastic limit.

The material was carefully rolled around rods of
proper diameter to give it approximately the desired
curvature, the longitudinal seams were soldered, and
the tubes were then soldered to heavy end pieces.
Jigs were used to hold the material in & true cylindrical
form and prevent local waving while these soldering
operations were performed. The specimens having
the smallest ¢/d ratios showed some initial waves, due
chiefly to lack of flatness in the stock from which they
were made; but in the specimens with larger ¢/d ratio
no departure from true cylindrical form could be de-
tected by the eye or fingers.

The longitudinal seams were lapped about ¥s inch
and were formed with as little solder as possible.
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There is no theoretical reason why such a seam should
have an appreciable effect in this type of loading.
Buckling deflections seemed to occur across seams as
freely as anywhere, so the stiffening effect of the double
thickness at the seam was probably negligible in all
cases except possibly for the few tubes which were only
%s inch In diameter. For these tubes an attempt was
made to correct as much as possible for this stiffening
effect by taking the thickness as the total cross-section-
al ares of the tube wall divided by the circumference.
The end conditions of the tubes were as shown in
figure 5. The medium length tubes (6 to 30 inches
long) were soldered to heavy end plates as shown at
(a). Heat was applied only to the end plates and care

-Loose ¥Fitting ring

(b)

End plafe of
fesf/ng machine

F1GURE 5.—Edge conditions of test specimens.

was taken to heat them symmetrically to avoid produc-
ing initial strains in the tube. The loose ring shown in
the figure fitted the tube just closely enough to keep
the tube cylindrical during the soldering. As there
was always & certain amount of clearance between the
ring and the tube wall and buckling deflections were
not appreciable at a distance from the end many times
the width of the ring (see fig. 6), the effect of the ring

on the end conditions was neglected and the distance

between the end plates was taken as the length of the
tubes.

Several extremely short specimens were made, to
test the theory at small values of H. As both theory
and common sense indicate the greater importance of
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end conditions for such a case, great care was taken to
obtain definite end conditions. One side of a strip of
material ¥ inch wider than the desired tube length was
tinned on one side with & very thin coating of solder.
The mechanical properties of similar sheet material
were measured after tinning and found to be the same
as before tinning, as nearly as could be determined.
Two disks were turned the size of the desired tube,
their edges were thinly tinned, the tinned strip was
tightly clamped around them as shown in figure 5 (b),
and the whole heated so as to sweat the tube to the
disks. Examination after testing showed a perfect
joint between the tube and the disks right up to the
edges of the disks.

The ¥s-inch-diameter tubes were merely sweated
over the end of a steel rod as shown in figure 5 (c).
The 27-inch tube had bolted joints, and its ends were
embedded in concrete, held between steel hoops, as
shown at (d). The hoops were clamped to the heavy
end plates of the testing machine, and the length of
the tube was measured as shown.

The medium and very short specimens were tested
on the special testing machine shown in figure 6.

Spemm en
d e }|---v-..

f
FiGURE 7.—Diagrammatio top view of torston-bending-compression testing machine,

This machine is capable of testing specimens in torsion,
uniform or varying bending, and axial compression,
separately or in any combination. The three types of
load are applied by three conveniently located cranks,
and the load application is extremely smooth, The
load is read directly in inch-pounds and pounds, on
three dial gages. These dial gages measure the de-
flections of cantilever springs which are designed in
such & way as to eliminate practically all hysteresis
and are artificially aged. Provision is made for adjust-
ing the position of the dial gages lengthwise of the
springs so that, in calibrating, a position can be found
at which they read the loads directly.

The principle of the machine is shown by the dia-
grammatic top view (fig. 7). The specimen is attached
to two L-shaped members abc and def which are
balanced on practically frictionless universal joints at
b and e. The ends of the specimen are therefore free
to rotate in any direction. When axial loads are used
they are applied through these universal joints and
this insures a definite line of action of the load. The
specimen is subjected to bending by applying down-
ward forces at d and c; these forces are applied through
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wires which extend down to a cross bar dc under the
specimen. A crank is used to press down on a ful-
cerum mounted on the bar dc; the crank and fulecrum
are movable along the length of dc, and in this way
the ratio between the forces at d and ¢, and therefore
the bending moments at the two ends of the specimen,
can be varied at will. Torsion is applied to the speci-
men by pulling down on f through a wire, by means of
a crank; the point a is prevented from vertical (but
not from horizontal) motion by vertical wires. Axial
load is applied by moving point b to the left with a
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joint takes loads in two directions, allows rotation in
any direction with almost no friction, and is extremely
cheap and satisfactory. The whole testing machine
is built of structural shapes, assembled largely by
welding, with a minimum of machining. It cost very
little to build and has proved very satisfactory and
convenient to use.

The 27-inch diameter specimen was tested on g
special testing machine similar to the one just described
but much larger (fig. 9). No provision for axial loading
is made on this machine, and the loads are measured

crank; e is mounted on one of the cantilever springs
and thus the axial load is measured. The arms bc and
ab are in themselves cantilever springs and their de-
flection measures the bending and torsion moments
respectively. The dial gages which measure the de-
flections of the springs are mounted on unstressed arms.

The universal joints at b and e are of the type shown
in figure 8a, consisting only of a spherical cup, a central
ball and six loose balls (the weight of the member abc
or def is sufficient to keep the balls in position). This

FIGURE 0.—Small torsfon-bending-compression testing machlne, and medinm and short specimens after failure.

by the lateral deflection of tension members that are
initially bent, which permits the measurement of very
large forces with a light measuring device. This ma-
chine takes specimens up to 3 feet in diameter and 15
feet in length, and has a capacity of 500,000 inch-
pounds in bending and in torsion.

The ¥s-inch diameter specimens, used to test the
theory for long slender tubes, were loaded as shown in
figure 10. T-shaped pieces were attached to the ends
of the specimen. These were balanced on a knife-edge



102

at one end and on a loose vertical strip at the other, so
that the ends of the specimen were free to rotate in
any direction or to approach each other (as was also the
case with the testing machines previously described).
The long arm of the T at one end was held down with
a string, while weights were applied to the other until
buckling occurred, as shown in the figure.

The wall thickness of the specimens being so small,
it was necessary to measure it with much more than
common accuracy. The instrument shown in figure 11

Centrol ball

Loose balls
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which surrounds the anvil. Such provisions are neces.
sary to measure the thickness of thin material accu-
rately. The sheet must also be very clean, as particles
of dust or films of dirt causes appreciable errors; it -was
found advisable to wet the sheet with alcohol during
the measuring. In spite of such precautions, the
errors in the measurement of ¢ and in the variation in
the thickness at different parts of the sheet undoubt-
edly cause a large part of the scatter in the final results.
The variation in thickness over a tubs was usually

(b)

F1GURE 9.—Corner of seronautical-structures laboratory at California Institute of Technology, showing 500,000 in.-1b. torslon-bending testing machine,

was therefore constructed; it is 10 times as sensitive
as an ordinary micrometer and proved to be much
more accurate and convenient. It consists of a verti-
cally mounted dial gage reading in 0.01 mm (.00039 in.)
and having an extra strong spring and a very -mooth
contact point, so that a sheet can be moved under it
smoothly. Directly under the contact point of the
gage an adjustable rounded anvil projects slightly
above the flat bedplate of the machine. The sheet is
pressed down on this anvil by a spring-actuated ring

about 5 percent. As torsion failure occurs over most
of the tube at once, the average thickness was recorded.

The modulus of elasticity of the material of the tubes
was measured by the special testing machines shown
in figure 12. The one shown at (a) is a tensile machine
with a eapacity of 130 pounds. The force is measured
by the calibrated spring at the top, the dial reading
directly in tenths of a pound. The specimens used
are plain straight strips 1 inch wide. They are clamped
in ordinary straight jaws lined with emery cloth; such
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thin materials are easily held by friction alone. As
the machine is frequently used to determine elastic
limits, provision is made to insure perfectly central
loading. The extensometer shown involves a detach-
able Huggenberger instrument mounted on a special
frame, with provisions for clamping to thin sheet and
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It was feared that the physical properties of such
thin, highly cold-worked material might vary along
the thickness. In order to test this, the machine shown
in figure 12 (b) was designed to test strips of the ma-
terial in bending. The strips are first coiled somewhat
like a watch spring and tested in this form; this feature

|

F1GURE 11.—Thickness tester.

for preventing all motions but the desired one; it is
balanced to prevent bending the specimen, and its
weight is allowed for by the proper initial setting of the
load dial. It reads directly in 1/100,000 unit strain
and can be read consistently to one tenth of this value-

501—35——S8

is necessary to insure straight cross sections. The ma-
chine exerts a pure couple on the coil, bending it uni-
formly through' its length, and measures the total
angle of bending. Very consistent results can be
obtained. As the width of the strip is several hundred
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times the thickness, this machine of course measures
Ef(1—u*, while the tension machine measures E.
Assuming p=0.3 the values of E obtained from the
two machines are found to check within 1 or 2 percent,
and are very consistent for each type of material.
Data for all the tests are given in table I. In all
cases the torque given is the maximum torque that
the tube will take. In most cases, this ultimate torque
was very sharply defined and occurred when the buck-
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the circumference divided by the average width of the
circumferential waves. The value of § was estimated
roughly by eye, with the aid of a transparent protrac-
tor, from the appearance of the top or outermost part
of the wave. The angle of the top and bottom of the

wave must be the same when buckling starts but, as
buckling increases, the angle at the bottom of the
wave becomes greatly distorted, while the angle at the
top seems to remain nearly constant.

F10URE 12—Tensile and bending material testing apparatas.

ling deflection was comparatively small. In the case
of the few extremely short tubes, however, the torque
increased gradually for a long time after buckling
started, the maximum value being reached when the
buckling deflections were very deep. This seems to
indicate that for such extremely short tubes, while the
present theory presumably gives a correct value for
the torque at which buckling would start if there were
no eccentricities, the uliimate torque which the tube
will take is probably to some extent a function of the
elastic limit or yield point of the material. In the
specimens tested, the strengthening effect of large de-
flections evidently counterbalanced to a great extent
the weakening effect of initial eccentricities.

In many tests, buckling occurred only part way
around the tube, and in these cases n was taken as

In plotting the experimental results, u is assumed
to be 0.3 for metal tubes, 0.36 for celluloid, and 0.5 for
rubber models.

DERIVATION OF THE EQUATIONS OF EQUILIBRIUM
OF A CYLINDER WALL

The equations of equilibrium of elements of the
cylindrical wall of the tube have been obtained in a
new and simplified form; consequently it will be neces-
sary to give a derivation. Figure 13 shows the coordi-
nates and the components of displacement of the middle
surface of the wall during buckling. A circumferen-
tial coordinate s is used in preference to an angular one,
because it results in simpler expressions and mekes the
connection between a curved plate and the limiting
case of a flat plate more readily seen. It will be shown
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that, to the order of approximation which we need, it
makes no difference whether the component of dis-
placement v is considered to be measured cn‘cumfer—
entially or thngentially. -

well known, but the corresponding equations for the
case of a curved plate are by no means so clearly
established. In the case of a flat plate, in some prob-
lems only extensional strains or stresses—tension,
compression, or shear in the plane of the plate—need
be considered, while in other problems only flexure—
bending or twisting—is of any importance. Extension
and flexure may be considered separately, even in the
case of a complex problem involving both; an excep-
tion to this is the case where large deflections occur
to 2 non-developable surface. In the case of a curved
plate, extension and flexure are, in general, intercon-
nected even when the lateral deflections are of infi-
nitesimal order. If no simplifications were made the
conditions of equilibrium would be too complex to be

P (displaced position)

FiaurE 13.—Coordinates and components of displacement.

of much practical use. Much confusion seems to exist
a8 to what simplifications can be made, and the con-
ditions under which they can be made. One author
congiders items which another rejects as negligible,
and vice versa. An attempt is made, in the following
discussion, to clarify this question and to obtain the
greatest simplification possible, under the conditions
of the present problem; the results are applicable to a
large class of problems.

The usual assumptions are made, that the material
is perfectly elastic, that the tube is exactly cylindrical,
that the wall thickness is small compared to the radius,
and thet the deflections are small compared to the
thickness. The usual assumption is also made that
straight lines in the cylinder wall, perpendicular to the
middle surface, remain straight and perpendicular to
the middle surface; that is, we neglect the distortion
due to transverse shear. We could easily justify this
assumption by taking the magnitude of the transverse
shear, obtained on this assumption, as a first approxi-

1056

mation and calculating a correction. The correction
will be found to be negligible.
If lines perpendicular to the middle surface remain

| so durmg distortiori’ then the dlsplacement of all
The equations of equilibrium for a flat plate are'

points in the cylinder wall can be found from the
displacements of the middle surface u, », and w. The
equations of equilibrium can then be derived in terms
of u, v, and w by considering: first, the purely geo-
metrical relationship between these displacements and
the strains in all parts of the wall; next, the relation-
ship between the strains and the stresses, given by
Hooke’s and Poisson’s relations; and last, the rela-
tionship between all the stresses on an element of the
wall, given by the laws of equilibrium. There is no
essential difficulty in doing this. However, as the
contention to be made is that most writers consider
more items than necessary, it will be sufficient to take
their results and show what can be neglected.

Let us consider first the items that all authorities
agree cannot be neglected. The extensional and flex-
ural strains in the middle surface are

o ov W ou , Op
=32 o5 r " 3s oz
(5)
o*w O*w ow

=T T o T ox0s

These expressions are the same as the well-known

expressions for the case of a flat plate, with the addi-

tion of w/r to the expression for ¢,, This term is due

to the change in circumferential dimensions with

change in the radius, which produces the strain:
r+w w

—1==

r r

The resultant forces and moments per unit length
of wall section, obtained by summing up the stresses
over the thickness, are taken as shown in figure 14.
The relation between these and the strains of the
middle surface will be taken the same as in the case
of a flat plate:

Tz=1—%—2‘7 (es+ pes), Tt“%ﬁ (& + per),

_ ik Ee
Tﬂ = T”l =2(1—-|_‘L)-Ex" G==m (Kz+ﬂ.x3), (6)
Es R Ee
G‘=12(1—E (et piec), Cre= G TR +p

We will now set up the conditions for equilibrium of
an element such as shown in figure 14. Before doing
this we must remember that we have taken u, v, and w
as the displacements occurring during buckling, and
hence the above quantities T, @, etc., represent only
the changes in the internal forces during buckling. The
total internal forces at any instant are the internal
forces present before buckling, plus these changes.
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In the particular problem that we are considering, the
tube is subjected to torsion and, if the tube is per-
fectly cylindricel and uniform, the stress distribution
and the distortion will be, before buckling begins, the
same as assumed in elementary mechanics. There will
be & shearing stress S on normal and longitudinal
sections, which can be taken as uniform throughout
the entire tube, since i/r is small. There will be a
simple distortion in the circumferential direction,
which leaves the tube still cylindrical and is of no
interest to us. To obtain the total internal forces we
must add to those shown in figure 14, the forces per
unit length St, which will be considered to be in the
opposite sense to T, and 1%, .

In setting up the conditions of equilibrium of the
element we must take into consideration the changes
in the angles of its faces due to its distortion, as this
will obviously affect the components of the ‘forces in
the different equilibrium equations. However, if the
displacements are small this effect will be small, and
its effect on T, @, etc., is of a second order of small-
ness compared to other items. But its effect on St

FI1GURE 14.—Forces and moments on element of wall.

may be of the same order of magnitude as these other
items, because St is an order of magnitude larger than
T,, G, etc.; the latter forces are proportional to the
buckling displacements and when these displacements
are small, T, G., etc., must be small compared to St,
which had a finite value when the buckling started.

The terms which we will consider in the equations
of equilibrium give, after simplification

o1 , oT.)’

27,=2%2, 20 g
27, =% O
EF,ma-a—]%+b§Z’+%+2St%=O 7

20, =02 81y

2= 35 08y —g

There is no use in writing the equation of moments
about the radial direction, as it would merely state
what we have already assumed—that T.,=T%,.
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The term 7,/r in the third equation comes from the
resultant of the force 7I',dz and the similar force on
the opposite face of the element, due to the angle
ds/r between them; this is the only term we will con-
gider due to this angle, that is, due to the curvature
of the element; all the other terms in (7) are the

same as for a flat plate. The term 2S¢ % is the

only term considered due to the distortion of the ele-
ment; this is the resultant of forces Stdz or Stds on all
four sides of the element, due to the angle of twist
between opposite sides, %0 o dz or %%Ps ds. The rest
of the terms in (7) are due to changes in T}, G., etc.,
over the distances dz or ds, and to obvious moments
due to N, and N,, the same as for a flat plate.

Using the last two equations to eliminate N, and
N, from the third, replacing 7', G., etc., by their
values in (6), and then e,, «,, otc., by their values in
(5), we obtain three equations involving: derivatives
of u, v, and w with respect to z and s, the unknown S,
and the physical constants of the tube

O 1—pud*w 14p 0% , pow
2T 3 oet 2 ozosTroz 0

O 1—pd% 144 d%w , 10w

2T 2 22T 2 om0 T ros 0 8
4 100, du, w\, 2(1—u)S dw
12V‘w+r(as+"a+? T E T om0 0

2 2
where v? =§_r’+§§-“' and v* signifies that this opera-

tor is to be applied twice.
Equations (8) can be simplified as follows: Apply-
2 2
ing first b%" and then %, to the first equation, solving

in each case for the term involving », and substituting
these expressions in the equation obtained by applying
2

ab& to the second equation, we obtain an equation
from which » has been eliminated. Similarly, apply-
2 2
ing ba—a:’ and_a%—, to the second equation, solving for the
term involving u, and substituting in the first equa-
2
tion, after applying 6279 to it, we obtain an equation

from which % has been eliminated. These equations
are, after simplification:

%w ., O'w
VS~ B 5E o
*w d'w ®)

V== @ H) 5 o

Now, applying Eb—z to the first of these equations and

E')b—s to the second, and substituting in the equation

obtained by applying v* to the third equation of (8),
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we obtain an equation from which both % and v have
been eliminated:

Ef Bt o'w L[ Ot
A= VT 5 T2 5555

Equation (10) is the same as the corresponding
equation for a flat plate, with the exception of the
second term; this is evident if we set » infinite in (10).
The contention being made is that this term repre-
sents the principal effect of the curvature in a large
class of problems of which the present problem is one.
For most problems, equation (10) represents the com-
plete equilibrium condition. However, if it is desired
to include constraints against « and » displacements in
the boundary conditions (as will be done here), rela-
tions (9) must be used for this purpose; this, of course,
constitutes another effect of the curvature, but it will
be a very small effect in most cages.

In using these simplified results for other problems,
it is only necessary to remember that the last term
of equation (10) represents the radial force on the
cylinder wall due to the loading, per unit area of the
wall, to which the operator v* is applied. Thus for
the problem of the buckling of a cylinder wall under
axial compressive stresses, S, (due to an axial load or
due to bending), equations (9) and (10) will be as
above except that the last term of (10) will be iv*

2,

(S., %?w - For a tube under a varying external pressure
p, this last term will be v*p (but if p is constant with
respect to 8, or varies very gradually, then the above
equations may be no longer applicable, as will be ex-
plained later). For studying lateral vibrations of the
cylinder wall, the last term of (10) will be my*w, wherem
is the mass per unit area and 4 is the second derivative
of w with respect to time.

It is necessary now to justify the neglect, in deriving
(9) and (10), of many items which are commonly con-
sidered. In the relations between strains and dis-
placements (5), we neglected, in the expression for

=0 (10)

Ks, & term 713 w, due to change of curvature with change

of radius. If v is measured tangentially the expres-
sion for «, should logically include also the term

11, gg if v is measured circumferentially this is unneces-

sary, but «,, should have an additional term = 1 gz
As for expressions (6) for the internal forces and
moments in terms of the strains of the middle surface,
we have obviously neglected the effect of the varia-
tion in the length of circumferential fibers along the
thickness. Love (reference 9) gives a second approxi-
mation for the internal forces, in which the expressions
for @, G, G.,, and G, are the same as in (6), but the
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expressions for T, T,, T.., and T.,’ contain a number
of additional terms involving the flexural strains
Xz, k5, and x;,. In these expressions 7., and T,
are no longer equal, but have values satisfying a more
exact statement of the equation of equilibrium of
moments on an element, about the radial direction.

In setting up the equilibrium conditions (7), many
terms were neglected. It has been noted that the
term T,/r in the third equation comes from the re-
sultant of the T, forces on opposite faces of the ele-
ment, due to the angle ds/r between these faces. By
the same reasoning, there should logically be a term
N,/r in the second equation, and a term @.,’/rin the
equation of equilibrium of moments about the radial
direction, as noted in the last paragraph. The term
25t ab %Us in the third equation represents the radial
components of St forces on opposite faces of the ele-
ment, due to the angle aa;;ﬁ; dz or baazquvs ds between
them. There are other small angles between the St
forces on the opposite faces, produced by distortion of

~the element, and these give resultants in the z and s

directions; these are considered by Schwerin (reference
5) in his solution of the torsion problem.

The justification for neglecting all these items lies in
the following: If any, or all, of them are included, we
obtain finally an equatlon correspondmg to (10), which
includes all the terms in (10) and numerous additional
terms. Now suppose we take w as a harmonic funec-
tion of 8, such as the expression (13), given later, for
which n represents the number of circumferential
waves of the displacement, and substitute it in this
equation. If we compare the two types of terms which
we obtain—those which we would get with (10) and the
additional terms—we find that each of the additional
terms is equal to & term we get with (10) multiplied
by (t/r)? or 1/n?, and with some numerical factor of
the order of unity. Those involving (¢/r)? can be im-
mediately thrown out, for any “thin-walled ”” cylinder.
Those involving 1/n® can evidently be neglected when
n is large. This means that (10) is applicable in all
thin-wall problems in which the deformation consists
of a large number of waves in the circumferential
direction, or in which it changes rapidly in this direc-
tion.

It is an interesting fact that a simple test exists for
differentiating between items which can be neglected
on the above basis and those which cannot be, in the
expressions for e, «,, eote., for T4, @, etc., or in the
equi]ibrium equations. If we make the substitution

tr ', v=1ftfrv’, z=fir ', s=/ir ¢’ and divide
all the items by the proper factor, we find that items
which can be neglected are left with a factor #/r, while
the other items are free from such a factor. For
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example, suppose we wish to compare the items in the
expression '
Ow 1 100

=38 TP 5
Making the above substitution, we find

1 /0% 1 t Oy’
= ’m—,,+;w+;a—y)

The meaning of this is probably that, for the class of
problems to which (10) applies, # and » are of the

order of magnitude of \/g w.

One more question requiring discussion is that of
how large n must be in order for (10) to give a reason-
ably accurate result. In the present problem the
results obtained from (10) give an excellent check with
experiments when 7 is only 2. (See fig. 2.) More-
over, the results seem to check reasonably with those
of Schwerin, who used & number of the items neglected
in (10), indicating that these items were of minor
importance even when n=2, On the other hand,
the results obtained from (10) give an entirely dis-
torted result when n=1. There seems to be a rather
critical change between =1 and n=2, for our par-
ticular problem at least.

It is no inconvenience to us that (10) is inapplicable
when n=1, because for this case the cross section of
the tube is entirely undistorted, merely undergoing a
general displacement. The elementary theory of
bending of a tube evidently applies in such a case, and
there would hardly be any advantage in having a
complex solution for a case to which elementary theory
applies. However, borderline problems doubtless exist
for which neither (10) nor an elementary treatment
would be accurate. It cannot be concluded, however,
that the equations of equilibrium commonly used,
which take into consideration some of the items neg-
lected in (10) but not all of them, will necessarily be
more accurate in such a case than (10). TUnless the
equations of equilibrium take all such items into con-
sideration they may quite possibly be less accurate
than (10), rather than more accurate.

THE BOUNDARY CONDITIONS

There are only two boundary lines to a tube (the
two ends), instead of the four which we have in rec-
tangular plate problems. The boundary conditions
which we would have for the lateral sides of a plate or for
the edges of the split in the case of a split tube are
replaced in the case of a complete tube by the condi-
tion that the displacements must be cyclical functions
of s, with the cycle length =d.

We will consider two edge conditions at the ends.
For the case of clamped edges we will assume all com-
ponents of displacement, and the slope of the surface
in the axial direction, to be zero. There must, of
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course, be a uniform circumferential displacement for
at least one end while the torsion is being applied and
before buckling takes place. However, we are con-
sidering only what takes place during buckling. We
will find that our equations can be satisfied with S a
constant, which means that S, and therefore the torque
on the tube, remains constant during the buckling.
There is therefore no reason for any relative circum-
ferential displacement of the ends while buckling takes
place, and the conditions for fixed edges are
z=:!:é: u=v=w=%—xw=0 (11)
Similarly, the condition for hinged edges at the ends
is that the components of displacement and the mo-
ment @; are zero:

Ll W, dw
:l:—:EE.' U=p=w W+#W=’o

(12)

Both of the above end conditions evidently require,
not only that the edges of the tube shall be clamped
or hinged, say to some rigid end piece, but that the ends
as a whole shall have no linear or angular motion relative
to each other. However, if we take the final results
obtained, and calculate the resultant of all the forces

on the end of the tube due to buckling, (thu.t is, the
resultant of T;, T%,, N, G, and G, when x=% or

we find this resultant to be zero. This means

that no constraints are required to prevent motion of
the ends of the tube as & whole; that is, it makes no
difference whether or not they are free to move as a
whole (this does not apply to the case n=1, which is
discussed later).

__1
r="3

THE SOLUTION

The equations of equilibrium and the boundary con-
ditions are satisfied if ¥=v=w=0—an obvious solu-
tion of no interest to us. Buckling displacements are
other types of displacement which satisfy these condi-
tions. There are many such displacements and each
one requires & certain definite value of S. Our prob-
lem is to find the lowest of such values of S for each
given tube; buckling will certainly take place as soon
as S exceeds this value. In the present problem the
equilibrium and boundary conditions can be satisfied
if §is a constant with respect to the displacements,
and the displacements are the following functions of
z and s:

-3 : 3 z
% mU,,,sm 2 (nd+)‘"7>
v=§ Ve sin 2 (n%+)\,,.—:lg> (13)

w= ng cos 2 <n§+ )\,,,%)
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where Upn, Va, Wa, and n are real numbers, n being
an integer, and A, may be complex. Substituting
these values in (9) and (10), we obtain

Wara 17 “{k)

TR T

1+(2+,;)QC)
SREECHI|

kﬂ[l + (%)’]ﬁ 3 [@} Ami—6AEN,=0 (15)

The summation signs have been dropped. If these
equations are satisfied without the summation signs,
they will certainly be satisfied with them.

If we now substitute (13) and (14) in the eight
boundary conditions (11) or (12), and eliminate s
from these equations in a similar manner to that used
later, we obtain eight linear equations in W;, W,, W;,
etc. As there are no terms not containing W, it will
take eight values of W,, which means eight terms in
the summations of (13), as well as a determinantal rela-
tion, to satisfy them. This determinantal equation
involves the eight values of X,. As (15) is of eighth
degree in A, for a given set of values of k, H, and A4,
A\m may have in general eight different values. It can
easily be shown that under these conditions the determi-
nantal equation and (15) together determine arelation
between k, H, and A. The problem is to determine
this relationship; it is not impossible to do it, but the
algebraic complexities of the problem render it im-
practicable.

‘We will therefore make certain minor approximations
that will make the problem more tractable. The re-
sults of experiments give the clue for doing this. It
is evident from (13) that )‘—? %" is the tangent of the
angle of deflection waves with the axial direction.
From the theory of Southwell and Skan (reference 6)
and from experiments, we know that the angle 6 starts
at about 45° for infinitely short cylinders and rapidly
decreases as the length increases, being about 15° when
the length equals the diameter, and evidently approach-
ing zero at very large length/diameter ratios (of course,
we will show that 6 is & function of H, rather than of
l/d, but the foregoing statement is justified by the fact
that dft has o practical lower limit determined by the
elastic limit of available materials).

This indicates that, for all except very short tubes,
Mo/l is small compared to 1. Of course, the actual
deformation is a superposition of eight deformations,

(14)
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each with a different value of An/k; some of the values
of An/k may not be small, but experiments as well as
the following theory show that the important values of
Mn/k are certainly small, except when I/d is small.
We are also quite safe in assuming that M\,/k approaches
zero for large values of [/d, as this assumption certainly
gives a good first approximation, and this first approxi-
mation vertifies the assumption.

These facts are the basis for the approximations
which we will use. Starting with (14), if we neglect

(—) in comparison to 1, we obtain

_Wm)‘m
Un=7"%

Wa

n

(16)

The error introduced by this approximation is zero at
both extremes, when I/d is infinite, and also when
l/{d=0—Dbecause both U, and V, are then zero any-
way, since n becomes infinite. The error is small for
any intermediate case because when An/k is not small
compared to 1, n is large and U,, and V, are of little
importance. For example, when I/d=1, teking
Aaf/lk=tan 15°, the error in V,, is about 3 percent, and
in U, (which is much less important than V,, as it
contains the factor A,/k) about 14 percent. Moreover,
investigation of the final results shows that U,, is never
of any particular importance, and even V, is not
important here, only becoming of importance when [
is large compared to d.

Substituting (13) and (16) in (11) or (12), and
dividing through by common factors, we find, for

-

p=0: W, sin n%ix,,>=0

w=0: ZW,, cos (n-f::i:)\,,>=0 c(c?lggllltfgfse)
u=0: SWaknsin n%ix,,>-=0  (17)
%00 BWahn sin n%:l:k,,.) 0 (d‘ji?elg‘;d
@.=0: ZWaka?cos (n% + k,,) =0 (hinged edges)

We will neglect the third condition for hinged edges,
that 4u=0. This is by far the least important of the
four conditions, owing to the relative insignificance of
U, as mentioned before. Neglecting this condition,
and using the trigonometric formulas for the sines and
cosines of the sum of two numbers, we obtain
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sin n% (W, cos Ay)

£ cos n§ (EW., sin Ay) =0
(both edge conditions)
sin n§ (EWo sin An)

% cos n% CWa cos An)=0

sin n% EWaka cos ;)
s (clamped edges)
Ecos n (CWankn sin A,) =0

sin 7.2 (SWoahn? sin A,) :
s (hinged edges)
+ cos ny CEWarn?cos A, =0

All these conditions will be satisfied if

ZW., sin A,=0
ZWa cos Ag=0
EWakm €08 Apy=0
EWakm SN Ap=0

SW.. 80 A,=0
EWacos Ay=0
SWalAn? COS A,=0
SWalesin A,=0

(clamped edges)
(18)

(hinged edges)

These four equations for each end condition can be
satisfied by four values of W.,, that is four terms to
the summations of (13), and a determinantal relation-
ship involving the A,s. The conditions (18) are the
same as the boundary conditions found by Southwell
and Skan (reference 6) for the case I/d=0.. These
writers show that the determinantal relationships
between the An.s, implied by (18), can be put in the
following forms:

M=) (A=) sin M—N)
sin Re—= A= — M=)
sin (Al_)‘ﬂ) sin =N
(P — A (W — ) sin (A
- >\3) sin ()\2_ )\4) = ()\12
= A) (= AP sin (A
=) sin (\5— )

We will next use the fact that \,/k is small compared
to 1 (except for small values of //d) to reduce the equi-
librium equation (15) to one of the fourth degree in
Am. This can be done in several ways. ;I‘he most
accurate is to merely consider H /I:l +<2‘E”"> ]=H " as

a quantity independent of A,, until we obtain a so-
lution. This gives

(clamped edges)

(19)
(hinged edges)

(B +3H )N+ 28502 — 64K\, + 2=0  (20)

The error introduced is zero for the extreme cases, when
l/[d= o (since M\,/k=0), and when I/d=0, since H=0
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for this case. For intermediate cases, a fair first
approximation for the value of 4, and therefore of S,
could be expected even if we neglected A,/k altogether
in the above quantity, taking H’=H, because when
the error in neglecting An/k is large, H is small and the
whole second term in (15) is of small importance in
determining A; when this term is important \,/k is
small compared to one, and the error is small.

A second approximation for the relation between S
and H is obtained by taking

m-7/(1+3%)

where \,? is taken as a weighted average of the four
values found in the first approximation. In figure 1
the relation between A and H, for clamped edges,
obtained from the first approximation, is shown by the
dotted line, while the second approximation is shown
in full line. The difference between the values of 4
or S found from the first and from the second approx-
imation is never more than about 20 percent (and is
much less than this in the range of greatest practical
importance). Hence, if general experience is & safe
guide, the maximum error in the second approximation
is probably not more than a few percent. This is
borne out by the tests, as the average ratio of experi-
mental to theoretical results is about the same in the
range where the theory is most uncertain, as it isin the
more certain range.

A further simplification of (15) can be obtained by
completely neglecting (A./k)? in comparison to one in
both the first and second terms. Equation (15) then
reduces to

@1

3Nd— 615 B I\ g+ 082 =0 (22)

This would give a very poor approximation for very
short tubes, but it is an excellent approximation for
long. tubes for which Ap/k is small, and the error
becomes zero when [/d= ., Due to the absence of a
term in A2 this equation is much easier to work with
than (20), and we can obtain most of our results from
it, using (20) only to fill in the theory for very short
tubes. The results obtained from (22) are shown in
figure 2, and also give the straight upper portions of the
curves in figure 1. Equation (20) yields the lower
portions of these curves, which approach asymptoti-
cally the straight lines given by (22).

As (20) and (22) are of fourth degree in'\,,, they are
in general satisfied by four values of A, that is, four
roots of the equation, for any given set of values of
k, H, and A or n, J, and B. But these four values of
Am must also satisfy the boundary condition (19), and
in general this can only be done if certain relations
exist between k, H, and A or n, J, and B. The prob-
lem is to find these relations; when we have them we
still have the task of selecting the values of n or k which
give the lowest S for any given tube, as buckling can
occur when this S is reached.
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As the term in A,;? is absent in both (20) and (22) we
know that A+ X+ X+ A=0. From the results of
Southwell and Skan (reference 6) we know that for the
case I/d=0, two of these roots are real, and the other
two complex with the real part negative. Trial shows
this to be true for all values of I/d. We can therefore
express the roots as follows:

A=a+b, a=a—b, = —a+ic, N\=—a—1% (23)
where a, b, and ¢ are positive real numbers. The equa-
tion of which these are the roots is
Da—@+d)]An—@—)IAn—(—a+i) | An—(—a—1i0)]=

At — 202+ B2 — N2 — 20 P+ A+ (E - (@ + H=0

Equating the coefficients in this equation to those
in (20) we find the following conditions which raust be
satisfied:

2k°

200+ b~ = — 3 pm
3AR®
o+ = pramn @4)
i
(@—b9) (a*+c®) = ey s
or if (22) is used
2a*+b*—c*=0

a(d*+¢®) =nSBJ (25)

3(a®—b%) (a*+ %) =n’J?

These three equations from the equilibrium con-
dition (24) or (25), must be solved with a fourth given
by the boundary conditions. This is obtained by
substituting (23) in (19); the results can be put in the
following form:

_ 2be (clamped
402 =~ "+ Fan o8 edges) - (
0*+¢%? . 26)
4a*= — e (hinged
¢ T Ntan 2b edges)
where N = tzﬁg 42; =1, Trial shows that 2¢
1

“cos 2b cosh 2¢

. . 7
is never less than 6, and 2b varies between 7 and il

for clamped edges, and between = and %’n’, for hinged

edges, for the lowest range of real solutions for S (real
solutions can also be obtained with values of 2b around
27, 3w, etc., but these solutions give much higher
values of S). For such & range of values, we can take
N=1 without any appreciable error.

Consider now solutions obtained with (25) (which
will apply to all but short tubes). Eliminating @
between (26) and the first equation of (25), and as-
suming values for b between the limits mentioned
above, we solve for the corresponding values of ¢. This
can be done directly in the case of clamped edges,
as we have a simple quadratic equation in ¢ to work
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with; in the case of hinged edges, the values of ¢ were
found by a simple graphical method. The value of a
can next be found from the first equation of (25), and
then the values of n?J® and 7*BJ from the last two
equations. Table IT shows various sets of values of all
these quantities, thus obtained.

From the sets of values of #%J? and »°BJ we can cal-
culate, for any given value of n (2, 3, 4, etc.) sets of
corresponding values of o/, and then B. In this way
were plotted the families of curves, showing the relation
between B and J for n=2, n=3, etc., in figure 2.
Obviousgly, only the portion of each curve which is
below the other curves, that is, the portion between
intersections with the adjacent curves, has practical
significance, as buckling will occur at the lowest stress
at which equilibrium in a buckled state can exist.
Hence, the relation between B and J (and therefore
between S and the properties of the tube), when buck-
ling occurs, is given by the jagged lines shown in the
figure, made up of the lower portions of the curves for
n=2, n=3, ete. Asindicated on the figure, the inter-
sections of the curves give the values of  at which the
number of cireumferential waves will change from one
integer to the next. Thus a clamped edge tube for
which J>1.45 should buckle in two waves; and for
1.45>J>0.35 it should buckle in three waves, etc.
It will be noted that test results are quite consistent
with the theory in this respect.

The relation between n°BJ and n%J% can be very
nearly expressed, for the range of values of actual
significance, by the formulas: n°BJ is equal to

0.385 (nfJ®1+.94 (n*J*)¥+18. 3 (clamped edges)
0.385 (n8J*)3+ (nBJ*)¥+6.5 (hinged edges)
The values obtained from these expressions are shown

in table I1, in the column next to n°BJ. These rela-
tions can be simplified to

Jen

0.94 A 18.3
B=O.38§ nJi+ Rt T (clamped edges)

(28)
B=0.385 M+E§]j*+% (hinged edges)

These are the equations of the individual curves in
figure 2. For very large values of J, n=2 and only
the first terms of (28) are important, giving us equa-
tion (2). This is the equation of the line eef in figure
2, which the curves for n=2 approach asymptotically.
By equating the right-hand side of (28) to the same
expression with n replaced by n+1, we obtain an
equation for determining the value of J for which the
number of circumferential waves changes from 7 to
n+1.

It will be noticed that the part of the jagged lines
in figure 2 corresponding to larger values of n approach
closer and closer to the envelaopes of all the curves,
shown by the broken lines de. For values of J below
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6 or 7 this envelope can be used instead of the jagged
line without serious error. We can obtain the equa-
tion of this envelope very simply—merely by treating
n as though it could have any value, fractional as well
as integral. In the last column of table II, values of
n8J% have been raised to the ¥ power and divided into
corresponding values of n°BJ, giving us values of

n°BJ _B
('nBJ”)i Ji
1.8 \
\ /)
\ o Computed points /
/.6
\ ~Llomped edges /
neJs id = ¥
X /
' N noJ? =2236, A
NEZe =] 7
\‘\ 4 e
N Ny e | LT
\\ i //*
.2 = 1
1 Hinged S
| nes2-g2p) | )
B/av4=1182
1.0
100 4000 10,000 103,080

BI
FIGURE 15.—Plot of n3J2 against B/J U

These values have been plotted on figure 15. It will
be seen that the minimum value of Bf/Jt—and there-
fore the minimum value of B for any given value of
J—occurs when n8J?=2236 (clamped edges) or n®J*=
822 (hinged edges), that is when

n=2236%Jt=2.62/J* (clamped edges)} 29)
n=822tJt=231/J* (hinged edges)
These minimum values of B/J* are 1.29 for clamped

edges, and 1.18 for hinged edges. Hence, the mini-
mum B for any given J is

B=1.29 Jt (clamped edges)

B=1.18 J% (hinged edges) }
These are the equations of the envelopes in figure 2.
Equations (29) give the approximate number of cir-
cumferential waves in which a tube will buckle; if
is taken as an integer, these equations give the inter-
sections of the envelope with the corresponding curve.
These equations can be put in a different form by

multiplying (29) by ¥d and (30) by VI—F~:

k=2.62 H? (clamped edges)
k=2.31 H* (hinged edges)
A=1.29 H? (clamped edges)
A=1.18 H? (hinged edges)

In this form, they were used to plot the right hand
end of the curves in figures 1 and 3.

(30)
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‘We have assumed the minimum number of circum-
ferential waves to be two. The case n=0 clearly has
no significance for the torsion problem, but the case
n=1 is not so obvious. This would give a distortion
in which cross sections remain circular but are dis-
placed, the displacement spiralling around the center
line, so that the shape of the tube would become some-~
thing like that of a corkscrew. Such a displacement
can easily be obtained by twisting a long piece of
rubber tubing in the hands; however, no such distor-
tion has been observed in a thin-walled metal tube,
even in the tube shown in figure 10, which had a
length/diameter ratio of nearly 170.

Y > /}%\\\_ _/ 1M @
¥ § \\_eﬁ/ ¥

()

M

{e)

F1GURE 16.—The case n=1.

As previously explained, the equations of equilib-
rium that we have used do not apply to this case, but
the elementary theory of bending of & tube does apply.
Figure 18a shows a tube undergoing this type of dis-
tortion, under the action of a twisting moment M|,
the center line being bent to & spiral and having the
constant angle 6 with the axis of the spiral. If the
couple M, acts about the axis of the spiral, all parts
of the tube will be subjected to the bending moment
M, sin 9. At the same time it can easily be shown
that all parts of the tube are bent to a curvature
sin® /R (where R is the radius of the spiral). This
curvature is in the same plane as the bending moment
M, sin 9. Hence all parts of the tube will be in
equilibrium if

n2
M, sin 0=E7 20
gin §
M =El-p~ (a)

If the end conditions are such that sin /R can have
only one particular value, as in the case discussed in
the next paragraph, then this formula determines a

value of M, at which the tube can buckle in the shape

given.
It was assumed above that the couple A, is applied
at the axis of the spiral. In a practical case it would
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naturally be applied at the end of the tube, as shown
in figure 16b. As the couple has only been moved
parallel to itself this is statically equivalent to the
case of figure 162, and the above reasoning still
applies. But now the couples at the ends of the
tube are not about the line joining the two ends
(shown dotted in the figure). In order to fulfill a
requirement that the end couples be about this line,
the spiral form of the tube must consist of an even
number of full turns. The condition for this is that

sing 2«

B ™1
where m is an integer. Taking m=1, as in figure 16¢,
and substituting this in (a), we find

- 2zET
==

This checks Greenhill’s solution (reference 10) and the
loading conditions correspond to those assumed by
Greenhill. However, many other solutions could be
obtained from (a) for other end conditions, and the
special end conditions assumed by Greenhill are no
closer to most practical cases than the others. In
none of these cases could the loading applied be called
o pure twisting moment, as the applied couple is not
about the axis of the tube at the end, as it is for
instance in the actual experiment shown in figure 10.

It would not be worth while, for most practical
purposes, to try to obtain solutions for other end
conditions such as that in figure 10, because a little
figuring indicates that this type of buckling can never
be of importance with metal tubes. In the last
analysis such & buckling merely amounts to a change
of a component of the twisting moment into bending
moment. The resulting deflections could never be as
great as the bending deflections which would occur
if the whole twisting moment were to be applied as a
bending moment. In the case of a long piece of rubber
tubing, enormous angles of twist can be obtained.
This deformation is not especially apparent, as it
leaves the tube cylindrical as before; if, now, some of
this twisting deformation suddenly goes into bend-
ing deformation, the resulting deformation is very
spectacular, even if the angles of bending are only a
small part of the previous angles of twist. In the
case of the steel tube shown in figure 10, which is
about as extreme as any practical case could be, the
torque at which buckling occurred would only have
caused a deflection of 1 inch in the middle of the
53-inch span, if it had all been applied as a bending
moment. It is evident that the occurrence of a frac-
tion of this deflection due to a spiral deformation would
not even be noticeable.

Returning to the cases where n>1, the shape of
buckling deflection can be found as follows: From the
values of a, b, and ¢ which have been determined, the
values of A, N\, Ny, N are found from (23). Putting

M,
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these in any three of the four equations of (18), we
solve these equations simultaneously for W,, W;, and
W, in terms of W;. Using these values, the value of »
(obtained as elsewhere discussed) and (16), in (13), we
obtain the desired expressions for %, », and w. These
expressions contain an indeterminate factor W;, which
is to be expected, as the absolute magnitude of the
displacement is indeterminate. These calculations can
be made from the results obtained later for short tubes,
as well as from the results already obtained for long
tubes. However, as the work of solving equations (18)
simultaneously is quite laborious, it has been carried
out for only one case, that of long clamped edge tubes;
the result should apply with sufficient accuracy to
most of the experiments and to most practical appli-
cations. Using the values of b, ¢, and a from the
fourth line of table IT, we find, for long clamped edge
tubes

w=TW, l:cos (n §+ 11.54 °Z3>+ 1.301 cos <n §+4.86 5;)
—0.00054 sinh 12.06 % sin <n 2 _8.20 3;)
T
—0.00172 cosh 12.06 5% cos (”—“9—8.20 32)]
r
pe= —% W, I:sin (n §+ 11.54 %)

+1.301 sin (2 §+4.86 %‘) (31)

+0.00054 sinh 12.06 -‘ZE cos (n §—8.20 %)
—0.00172 cosh 12.06 % sin (”—‘9—8.20 %):l
r
d . 8 T
u=-7—b,—l W1 [577 sin (’Tb ;'l' 11.54 'Z'>
+3.16 gin (’lr—s+4.86 %)
+0.0082 ginh 12.06 % cos (’L‘*-—s.zo %)
r

+0.0103 cosh 12.06 ?[ sin ("—f—s.zo 5Z°—>:|

where 7 is given by figure 2 or equation (29).

The results found so far were obtained from (25) and
are not accurate for short tubes. To obtain a solution
from (24) and (26) is much more difficult. Particular
solutions were found as follows: Values of b and ¢ are
assumed, and the value of ¢ found from (26). The
value of k is then found from an equation obtained by
dividing the third by the first equation of (24); H' is
now found from the first and then A from the second
equation of (24).

The value of H is now computed from (21). This
requires the selection of a weighted average value for
As. For this purpose three solutions for the shape of
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the buckling deflection are available, the one above for
the case I/d= < (clamped edges), and solutions for the
case I/d=0 for both edge conditions, given by South-
well and Skan (reference 6). In all these solutions the
first two terms involve A; and A, respectively, and the
last two terms involve A; and Ay. These last two terms
are much smaller than the first two. In figure 17 the

&2,
~
Q

o

&

N

o

Q]

\(«—E =0 (hinged edge)
i | !

.3 T T /
\/—HLO (clamped edge) / /
AN '
./\ E\\<:ioo (clomped edge) // {/ f
N |1 1A
-5 -4 =3 -2 -/ a N 2 3 4 5

Average absolute magnitude of terms containing A&,
Average absolute magnitude of Terms confaining A,
) A

x/1
F1aURE 17.—Chart showing relative unimportance of A3 and M.

ratio of the average absolute magnitudes of the last
two terms, to the average absolute magnitudes of the
first two, is plotted against z/l. It will be seen that
the last two terms are very unimportant compared to
the first two, and hence A; and A, are unimportant
compared to A; and A,. Comparison of the terms con-
taining N and X; shows that these are of the same
order of magnitude for all of these extreme cases.
Equation (21) was therefore taken as

A+ N H,<1+a, +b’>

This is of course rather a rough correction, but it may
be considered to be applied, not to the whole solution
for A or 8, but to the error in the first approximation,
as previously discussed.

We now have corresponding values of 4 and H,
satisfying the equations of equilibrium and the bound-
ary conditions. However, the original choice of b and
¢ was purely guesswork, and with different values of b
and ¢ we may obtain higher or lower values of A4, and
therefore of S, for the same value of H. For these
higher or lower values of S there will correspond cer-
tain values of k and therefore of n. We know that the
actual value of n will be that giving the lowest value of
S consistent with equilibrium and boundary conditions.
It is therefore clear that the smallest values we can
find for A in terms of H by the above process will be
the correct values,

2 H'<1+
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If we had to try values of b and ¢ blindly, the work
would be very difficult, as only a small range of values
even result in real values for a, k, A, and H. However,
we already know the values of b and ¢ for the extreme
cases when H=0 and H= , given by Southwell and
Skan, and the previous solution obtained from (25).
These sets of values of b and ¢ are represented by the
points p and ¢, figure 18. The desired values of b and

I
&0 qh\
LA\
o Computed poinfs| H=co
56 N
52 1 NN
b Clam, .
48 ; ped eoges .
) \
[ad 2 \
44 ¥z
H=02
40
Hinged edges
36
32 7
H=0 P
E87736 140 144 164 68 72 176 a0

F1GURE 18.—Values found for b and ¢ from Hw0 to Ho o,

¢, for intermediate values of H, are obviously given by
points on some i ~ connecting p and ¢. By trying a
number of points _istributed over the area between p
and ¢, plotting the results on figure 1, and making use
of cross plotting, we locate with sufficient accuracy the
lines shown in figure 18, which correspond to the lower
part of the curves in figure 1. Points on either sido of
the lines in figure 18 give points above the curves in
ficure 1. Table III gives sets of values of b, ¢, qa, &,
H’, H, and A obtained in this way. Equations (1)
are merely formulas which have been found nearly to
check the relation between A and H given by these
values, as will be seen from the last column of table
II. Corresponding values of ¥ and H have been
plotted in figure 3, forming the left-hand end of the
curves shown, which approach asymptotically the
portions previously found, at the right.

The theoretical value of the angle which the buckling

-1 And

waves make with the axial direction is tan Tl for

each of the four components of the wave, as has been
pointed out previously. As it has been shown that
the components involving A\; and N\ are comparatively
unimportant, and that the other two components are
of nearly the same magnitude, an approximate value
for the angle of the resultant wave is evidently
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>\1+)\2d (ld ’ —-12'

0=t&n_1—2—m=t&n—l7—{z‘= an’ A (32)
A more accurate value for three particular cases can be
found from the three available solutions for the shape
of the buckling deflection. Setting equal to zero the
derivative with respect to s of the expression for w,
we obtain the equation of the line at the top or
bottom of the wave. The desired angle is the tangent
of the slope of this line, or tan~! ds/dz. Itisfound that,
for these extreme cases, the angle is nearly constant
near the middle of the tube, and checks the value
found from (32) within about 10 percent. Hence (32)
is probably sufficiently accurate for a check on the

TABLE I—EXPERIMENTAL DATA

STEEL TUBES
Ultimate

d 4 X100 | EX10-® torque n []
Inches | Inches Inches | LbJjin2 In.-b. °
7.0 85.8 1.5 9 12,800 8.5 8
6. 88 . 460 1,93 3.3 960 4 |
5.88 375 L3 3L3 1,020 L' N
5,88 , 280 1,03 3L3 1,400 50 |-
.310 4,63 1,92 3L3 520 2

.318 7.81 Lo2 3L3 3.30 2

.319 12.4 193 3L3 3.81 2

.319 13,1 Lo2 3L3 3.41 2

.319 15.8 190 3L3 3.19 2

.319 214 L9 3L3 3.01 2

.319 20.5 L93 3L3 3.27 23

. 318 5.5 192 3L3 320 2

6,67 6.0 2.92 3L3 286 18.9 11
5,67 8.0 2,80 31.3 268 18.4 11
3.76 6.0 2.88 3L3 202 10.4 10
3.7 6.0 2,88 3L3 218 1L1 10
L88 6.0 2,92 3L3 ] 6.7 10
5,67 6.0 2.17 3L38 162 154 9
6,67 6.0 217 3L3 148 18.1 1
3.76 a.0 2,13 3L3 84 10 10
3.76 6.0 2,13 3L3 108 12.5 10
L83 6.0 2,05 3L3 46 a.6 11
5,67 12,0 2,68 3L3 208 7 9
3,76 12,0 2,80 3L38 128 8 g
188 12.0 2.80 3L3 684 51 9
5,67 12.0 2,05 3L3 90 10 8
3,76 12.0 2.01 3L3 80 7.9 9
188 12,0 2.01 3L3 32 5 7
188 24.0 2,84 3L3 48 4 12
L83 30.0 2.01 3L3 20 4.7 6

BRASS TUBES
Ultimate

d [ X108 EX10-¢ torque n [
Inches Inches Inches | Lb.Jin.2 In.-lb. °
5,67 8.0 5.87 16.3 912 11 15
5,67 6.0 5.08 16.3 1,048 11 17
3,76 6.0 a.02 16.3 584 8.8 10
3,75 6.0 5,91 16.3 638 87 9
1,88 8.0 5.87 16.3 282 [ 10
5,67 8.0 3.07 16,7 170 7.8 10
5,67 6.0 311 16.7 192 8 11
3,75 8.0 311 16.7 12 10.5 11
L8s8 6.0 2.99 18.7 60 7.1 10
L8 6.0 2.99 18.7 46 7.8 10
5.67 6.0 2,13 15.7 2 15 11
5,67 6.0 2,09 16.7 70 14 13
3.76 6.0 2,09 15.7 50 11.8 11
3,76 6.0 2,13 15,7 48 12.5 12
5,00 12,0 5.95 16.3 764 8.9 9
5,60 12,0 5.90 16.3 Ki(] 9 12
5.69 12.0 5, 90 16.3 710 10 12
3,75 12,0 &.95 16.3 478 6.7 11
188 12,0 5,87 16.3 192 4 9
6,67 12.0 2,00 15,7 44 10 10
3,76 12.0 2.05 15.7 38 9 9
5,67 30.0 59 .| 163 454 7.2 9
3,75 30.0 5.91 16.3 288 5 9
L8s8 30.0 508 16.3 128 3 3
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tests, especially as it is difficult to get a very accurate
value for 6 from experiments. The curves of figure
4 were plotted from (32), using values of a, k, and H
from table ITI. Equation (3) is also obtained from
(82), using the value of @ for H= .

The author wishes to acknowledge the valuable sug-
gestions of Dr. Theodor von Kérmén for interpreting
the application of the simplified equilibrium equations;
the help of Messrs. K. W. Donnell and L. Secretan in
carrying out the experiments; and several helpful criti-
cisms from Dr. S. Timoshenko.

GUGGENHEIM AERONAUTICAL LLABORATORY,
CavrrorNIA INSTITUTE OF TECENOLOGY,
May 5, 1933.

TABLE II
b ¢ a o mBJ E’pm‘@”“ Bt
OLAMPED EDGES
7%3 18| Lss 0 247 ®
L 3.5 218 82.2 34.8 88| 219
LT8| 425| 275 348.3 57.7 57.7| 149
1609 6.03| 410 2,236 160.6 160.5 | 1.293
Ledl| 813! 562 8, 442 387 338 138
1ez| 10.54| 7.38| 25620 830 842 | L47
1606 | 1547 10.80 124,500 2,633 2,645 172
L1588 | 30.40 | 2150 | 1,8127500 20, 000 20,062 | 237
2 @ S © s | sss@unl| o
HINGED EDGES
sfﬁzz 2.27| L31 0 0.04 boeo e o
1 3.38( 2186 185 27.8 21| L2
L9l 474! 32 822 78.8 78.3| Lis2
L44| &557] 381 1,707 125.7 126.4| L20
L9 | 74| 517 6, 046 297 207 129
1500| 140 [ @82 82, 240 1,038 L6 | Lt
1530 249 { 17.60 1,000 | 11,000 1,050 | 215
=2 @ © ® .885(ngnt | . sss(numi ©
TABLE III
/2 Rt. side
b ¢ a k H eq. (1)
CLAMPED EDGES
1804 | 4834 Lom 198 0 7.3 7.39
1796 | 482 | 203 2,18 .67 169 7.73| 7.8
1781 481 | 214 271 2,58 5.30 0.47| o8
17651 | 622 | 247 110 13.0 20.1 17.04| 17.20
17| 58 | 291 6.1 53.8 6.5 3.3 | 359
Lo | Goo | 3% | 1ro |2l (280 | 4 | 4%
Less| 6.08 | 410 | 262H | ® L203H1 | 1203813
HINGED EDGES
1383 | 2077 L4d6 L18 0 4.40| 440
L3%0| 318 | L53 173 152 3.60 2| 633
1305 843 | L70 2.61 6.07 10.38 1006 9.82
1404 | 4.06 | 215 463 831 43.6 2.3 | 229
Ldoi| 448 | 256 7111 181 153 55.3 | 542
L410| 472 | 204 e | 728 83 180 178
L391| 474 | 321 | 231HY © ® 11821 | 118201
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