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STABILITY OF TETN-WALLED TUBES

. By L. H. DONNELL

SUMMARY

In this paper a theoreticalsolution is developaifor tlw
tomion on a round thWwaL?edtube for which the wa.li%
becomeundable. The reeuhk of this theq are given by
a jew timplaformu.hmand cunwawhich cover all UWM.
The differtmtiulequutiom of equilibrium are derivedin a
eimplerform tluznpreviously found, ii being shown that
m5ny itenw can be neglected. The soluiion obtaind ti
“&” for the two exireme cmee when the diumeter-
Lmgthratw h zero and injiniie, and ie a good approxi-
mationfor itiermedide casee. The theory h compared
wiih al-laoaiiizbb experimeti, including aboui 60 tea%
made by tlw wdhor. Tlk experi&aLfadure torgue h
alway8 swd?er tkan the i%eoretiixd%ucklingtorque, aver-
@W ab~ 76 percent of it, with a minimum of 60 per-
Ce?lt. A8 the jOiWl of thedq’%%tionckcck8 d08d~ with
thai predicted by theory and thaexperimerd8cover a great
range of 8hapee and ma#&, this di.wrepanq can rea-
8ona.bly be aecribed largely to initial ecceniricitia in
acid tubel?.

SYMBOLS

1,t, r, d, length, thickness of wall, and mean radius and
diameter of the tube, respectively.

E, p, Young’s modulus, and Poisson’s ratio (0.3 for
engineering metals).

S, critical shear stress (equals the critical torque times

s )
n, number of circumferential waves in buckling de-

formation.
/3,angle of waves with the axis, measured near the mid-

dle of the tube.
z, 8, longitudinal and circumferential eoordimtea,

meaaured axially horn the normal section at the
middle of the tube, and circumferentkdly from some
genetrix, figure 13.

u, v, w, longitudinal, circumferential, and radial com-
ponents of the displacement during buckling, taken. . .
as posltwe m the x, 8, and outward directions,
figure 13.

e., E,,%, G, K,, k, linear strainsin the x ands directions
and the shearing strain, and the changes in curva-
ture in the z and 8 directions and the unit twist,”idl-
due to the buckling dispkmement.

UNDER TORSION

T., T,, T=,, T’=’, N=, N,, Q., Q., G.,, G=:, rcm.dtant
normal and shear forces, and resultant bending and
twisting moments, due to the buckling displacement,
all reckoned per unit length of section, as shown in
figure 14.

Xl, x,, – Am,numbers relating to the axial length of
buckling w-avcs.

Xl=a+b, Az=a–b, b= –a+ic, h= –a–ti, where
a, b, c are real numbers.

U=, V=, W= are real numbers used in the e.spressions
(13) for u, o, and w.

Vz= $ +~f P significaapplication of @ twice, eto.

All equations given in the paper are dimensionally
correct, so any consistent units of distance and force
may be used.

RESULTS

According to the theory developed in this paper, the
torsional shear stress at which buckling occurs in short
and moderately long tubes is given by the full lines in
figure 1, or is very nearly expressed by the formulas

A=4.6 + ~7.8 + 1.671Pfi (clamped edges, J<7.8) ~1)
A=2.8 + 42.6 + 1.40@D (hinged edges, J< 5.5)

It is sasumed that all components of displacement are
prevented at end cross motions of the tube, and that
“clamped” edgca are held perpendicular to these cross
sections while “hinged” edges are free to change their
angle with the cross sections. It is found to be imma-
terial whether or not the ends of the tube are free to
move aa a whole.

For very long slender tubes the number of circum-
ferential waves, n, is small, and there is a slight devia-
tion from the above laws, as the number of waves
changes from one whole number to the next. In @e
2 the straight lines de represent the above laws, while
the irregular lines represent the more exact law-: When
J exceeds a certain value, n remains always 2 (at least
for any tubes of practical proportions). For large
values of J the critical stress for both end conditions

95



REPORTNATIONALADVD30-RYco ~“

(

/;2
0“

/“ , t I t I 1

fl=~~
FxfvmL-Chitkdtordonshzssforahortandmdfmle@htuhn

& , 1

I # t I t , 1
.?3 45610

— Exoct the’or

[
d-–––~ Equofim (1
e-— -- “ (2

03Aufhor’sfesfs,
clmped edge
sfeelfubesj
numbers are
the observed
values ofn.

1 I , I 1 , 1 1

Im

FIOUEE2.-Crftfcdtordonstressforlongslendertake%



STABJLITY OF THR?-WAH.J3D TUBFISUNDER TORSION 97

is given very nearly by the straight line eef, whose
equation is

B=o.77@ (2)

For practical purposes equation (1) may be used
when J is less than 7.8 for clamped edges, or 5.5 for
hinged edges, m indicated in (l), while (2) is used w-lien
J exceeds these values.

If buckling takea place all around the tube, n must
naturally be a whole number, and its value may be
taken as the whole number nearest to the value found
from figure 3. In many tests, especially when n is
large, buckling takea place over only part of the tube.
In such a case n is taken as the circumference ditided
by the average width of the waves, and it therefore
need not be a whole number.

~G- 3.-Thonmdor of&mdmntM vmvmforahoitandmdhuulen@ tubw.

H.- ~

FmmtE L–The @@eoftheV7BV& wfthrcsfmttotheoylfnderds forshortandmodinmkuth tub

The buckling deformation consists of a number of
circumferential waves which spiral around the tube
from one end to the other, as shown by the photo-
graphs of actual specimens (ilg. 6). The theoretiwil
number of circumferential wavea, n, is indicated in
be 2 for long slender tubes. For short or moder-
atdy long tubes the theoretical value of n is given by
the curves of figure 3.

I
I

The theoretioil angle of the waves with the axial
direction, near the middle of the tube, d, is given in
figure 4 for short and moderately long tubes. For long
slender tubes it may be taken as

!zKid
6== (clamped edges)

o.~d (hinged edges)

I in degrees, where n is as given in figure 2.

(3)
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To check the above theoretical results, the author
has made more than 50 tests; “in addition, the results
of many other experiments have been published by
the N.A.C~. (reference 1) and others. .All the avail-
able test results have been plotted on iigures 1, 2, 3,
and 4. All the tests were made with clamped edges.
Comparing the expetiental results w-iththe theoreti-
cal curves for clamped edges, it will be seen that all
tests give values for the failure stress somewhat lower
than the values for critical stress predicted by theory.
The experimental values average about 75 percent of
the theoretical, with a minimum for metal tubes of
about 60 percent of the theoretical.

These relations hold over an enormous range of
sizes, proportions, and materials. The form of the
buckling deflection, as measured by the number and
angle of the waves, checks closely with that predicted
by theory. It is therefore reasonable to suppose that
“the discrepancy between the theoretical and experi-
mental values of failure stressis due chiefly to unavoid-
able defects in actual tubes. Some of the discrepancy
is undoubtedly due to the fact that n true clamped
edge is impossible to attain in practice. But it is
probable that most of it can be ascribed to initial
eccentricities; that is, departures from a true cylindri-
cal form, always present in actual tubes. Among the
teds made on long fit strips in shear (which is con-
sidered the limiting case of a tube under torsion when
H-O), those made by Bollenrath (reference 2) record
the stress at -whichwrinklhg began, and these strwses
average less than half the theoretical, as shown in
figure 1. Similar remdts were obtained by Gough and
C!QX(reference 3), but these experimenters took meas-
urements of the buckl@ deflections at various loads
and with this data were able to calculate, by a method
deyeloped by Southwell (reference 4), the probable
load at which the strips would have buckled if there
had been no eccentricitiw. These calculated values
check the theoretical values very well, as shown in fig-
ure 1. It seemslikely that most of the discrepancies in
the tests on tubes cmdd be explained in the same
mrmnerif similar data were available.

By multiplying the right-hand sides of equations (1)
and (2) by the factor 0.75 or 0.60, we obtain, respec-
tivelj~ e.spressions for the amnzge and minimum
resistance to buckling to be expected horn an actual
tube. The following equations are obtained by multi-
plying the right-hand sides of equations (1) by 0.60

These formulas cover all present-day
are recommended for design purposes.

(clamped edges)

(4)

(hinged edges)

applications and
Being based on

the minjmurn results from all available tests on metal
tubes, more than 120 tests, they should give values
which are always on the safe side. They me repre-
sented graphically by the broken lines in figure 1.

The case of hinged edges has an application, for
example, in the case of a circular monocoque fuselage,
without longitudinal stiffenersand with circumferential
stiflenem or rings of an open cross section, with small
stiilness against twist. The portions of the covering
between rings are very nearly in the condition of tubes
with hinged edges, as the rings, while stiff against linear
movements, give little resistance to rotation of the
edges. In such a case there is little interference
between adjacent sections of the covering in buckling,
as where one section buckles outward the next section
mm buckle in.

HISTORYOF PROBLEM

In 1883 Greenhill obtained a solution for the sta-
bility under torsion of a long solid shaft (reference 10).
This solution applies also to hollow shafts or tubes,
representing a solution for the case n= 1. It will be
shown later that this solution can be obtained in a
much simpler way, and that it actually has little prac-
tical importsmce.

The first paper on thin walled tubes under torsion
seems to have been written by Schwerin (reference 6)
in 1924. He develops the following formula for the
critical stress of tubes in torsion

The values found in experiments me mostly much
higher than those given by this formula. For the
shorter tubes the test results are 30, or more, times the
formula value; for longer tubes the discrepancy de-
creases. The value in the iinsl parenthesis in the
above formula is practically unity, as with available
materials t/rmust be very small if failure by buckling
Dccursbefore failure of the material. If this value is
taken as unity, Schwerin’s equation checks equation
(2), except for a difference of about 16 percent in the
inefficient, as shown in figure 2. Schwerin obtained
his result from a solution of differential equations of
aquilibrinm, by neglecting all end constraints and
Msnming that n =2. Equation (2) is also for the case
R-2, and as it holds for both clamped and hinged
xlges, it is evident that end conditions are unimportant
in the range to which it applies. From this check and
horn the check with experiments, it is evident that
3chwerin’s equation is an at least approximately cor-
:ect solution for my k?ng 8kn&r tubes, that is, for
\herange, say, when J> 6.

The above equation is the only part of Schwerin’s
paper which is commonly quoted. However Schwerin
dso discussed in this paper the cases where n has
)ther values than 2. He checked Greenhill’s result
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for the caae n= 1, and showed ho-w individual results
could be obtained with other values of n, and with a
consideration of end conditions. He calculated the
relation between the buckling stress and r/Zfor several
values of n and for several values of t/r,with the end
conditions x= +1/2: w = O. These calculations give
good checks with the theory and experiments found
by the author for more speciik end conditions. How-
ever Schwerin failed to develop any way of simplifying
his rcsuh%jexcept for the case discussed above, and he
did not carry them far enough to be of practical value
to users-of short or moderately long thin-walled tubes.

In the mme year (1924) a solution was published
by Southwell and Skan (reference 6) for the critical
ahearing stress on a flat strip of infhite length. This
case may be considered to be the limiting case for a
tube under torsion, when the ratio of length to diam-
eter becomes zero. Aa the theory of the present paper
is ‘{exact” for this extreme caOe,it concides with the
Southwell and Slum theory when J/d is set equal to
zero. The existence of this solution for a limiting
case was naturally of great help to the author in
developing a general theory of torsional stability, and
many valuable suggestions were taken from the in-
genious methods of solution used by these writers.

In 1931 a paper on the buckling of tubes under tor-
sion was published by Sezawa and Kubo (reference 7).
In this a general theory is developed and worked out
for a number of cases, and nine very complete tests on
rubber models are reported. The results of this Lheory
are not in agreement with experimental results. The
experiments on rubber models cited in the paper hap-
pen to be in a range where the discrepancy is not so
great, the rntio betwean the criticril strew found by
experiment and that predicted by the theory being
from 0.5 to 3. However, for most of the available
experiments on metal cylindem, this ratio is much
higher-as much as 50 or more in many cases. The
differential equations of equilibrium on which the so-
lution is based seem to be incorrect, the very important
term T~a (using the paper’s symbols) having appar-
ently been omitted from the third equation.

The results of the experiments described by Sezawa
and Kubo are reasonably consistent with the results
of other experiments and the theory of the present
report (see @g. 1), and certninly as consistent as could
be expected when it is considered that a material was
used which many experimenters consider unsuitable
for quantitative work. The check is excellent in re-
spect to n and O,which do not depend on lZ (iigs. 3
rmd 4). In reference 7 very complete data are given
on the shape taken by the specimens at all stages of
the loading, from the unloaded condition to the
critical load. This data affords a very interesting
picture of the way in which the deflection, etmting
from the initial unevenesses, changes to the &al
buckling form. A method of studying this question

theoretically has been suggeded by the present author .
(reference 8), and applied to the case of simple struts.
This question is doubtless more of academic than of
practical interest. .

In 1932, the National Advisory Committee for
Aeronautics published the results of an extensive series
of tests by Lundquist (reference 1) on the strength in
torsion of thin-walled duralumin tubes. No theoreti-
cal analysis was attempted. These tests, together

with the tests made by the author, constitute the bulk
of the experimental evidence cited in the present paper.

In 1932, also, a theoretkd paper was published by
Sanden and T61ke (reference 11) on the stability of
thin cylinders, the case of tomion bebg considered
among others. These authom used very complete and
therefore complex equations of equilibrium, but they
carried their work on torsion no farther than Schwerin.
It is very interesting to note that theh equation 130b,
for the ca9e n= 2, is exactly the same as equation (2)
of the present paper, which was obtained independ-
ently with very much simplified equilibrium equations.

The experimental results of Bollenrath (reference 2),
published in 1929, and of Gough and Cox (reference 3),
published in 1932, on narrow flat strips in shear, have -
already been discussed.

THE TESTSAND DESCRIPTIONOF SPECIALTESTING
APPARATUS

The author’s tests were performed at the Guggen-
heim Aeronautical Laborato~ of the California In-
stitute of Technology. With one exception the speti-
mens were of small size, from %8inch to 6 inches diam-
eter, and made of steel and brass ‘(shim stock” from
0.002 tich tO 0.006 tich thick. Such &SS were s&
Iected because of the great ease and cheapness of con-
struction and testing. The exception mentioned was
very much larger (27 inch diameter); all the N’.A.C.A.
tests (reference 1) were on specimens 15 inches and 30
inches in diameter. Comparison of the results indi-
cates that there is no great disadvantage or danger in
@ such WI-Id SPSCimWM.k w tests the propor-
tions were such that the stresseswere always well be-
low the elaatic limit.

The material was carefully rolled around rods of
proper diameter to give it approximately the desired
curvature, the longitudinal seams were soldered, and
the tubes were then soldered to heavy end pieces
J@ were used to hold the material in i true cylindrical
form and prevent local waving while these soldering
operations were performed. The specimens haVcing
the smallest -&/dratios showed some initial waves, due
chiefly to lack of flatness in the stock from which they
were made; but in the specimens with larger t/dratio
no departure from true cylindrical form could be de-
tected by the eye or iingem.

The longitudinal seams were lapped about jf~ inch
and were formed with as little solder as possible.
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There is no theoretical reason why such a seam should
have an appreciable ei%t in this type of loading.
Buckling deflections seemed to occur across seams as
freely as anphere, so the stiilming effect of the double
thickness at the seam was probably negligible in all
cases except possibly for the few tubes which were only
jf~inch in diameter. For these tubes an attempt was
made to correct as much as possible for this stiilening
effect by taking the thiclmcss as the total cross-section-
al area of the tube wall divided by the circumference.

The end conditions of the tubes were as shown in
fie-e 5. The medium length tubes (6 to 30 inches
long) were soldered to heavy end plates as shown at
(a). Heat was applied only to the end platea and care

fee’
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testingmachine
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FIGURE5.-Edm condltioruoftestmen%

was taken to heat them symmetrically to avoid produc-
ing initial strains in the tube. The loose ring shown in
the figure fitted the tube just closely enough to keep
the tube cylindrical during the soldering. As there
was always a certain amount of clearance between the
ring and the tube wall and buckling deflections were
not appreciable at a distance from the end many times
the width of the ring (see fig. 6), the effect of the ring
on the end conditions was neglected and the distance.
between the end plates was taken as the length of the
tubes.

Several axtremely short specimens were made, to
test the theo~ at small valuea of H. As both theory
and common sense indicate the greater importance of

end conditions for such a case, great care was taken to
obtain deiinite end conditions. One side of a strip of
material %inch wider than the desired tube length waa
tinned on one side with a very thin cording of solder.
The mechanical properties of similar sheet material
were measured after tinning and found to be the same
as before tinning, aa nearly as could be determined.
Two disks were turned the size of the desired tube,
their edges were thinly tinned, the tinned strip was
tightly clamped around them as shown in figure 6 (b),
and the whole heated so as to sweat the tube to the
disks. Examination after testing showed u perfect
joint between the tube and the disks right up to the
edges of the disks.

The %-inch-diameter tubes were merely sweated
over the end of a steel rod as shown in figure 6 (c).
The 27-inch tube had bolted joints, and its ends were
embedded in concrete, held between steel hoops, as
shown at (d). The hoops were clamped to the heavy
end plates of the testing machine, and the length of
the tube was measured as shown.

The medium and very short specimens were tested
on the special teahg machine shown in figure 6.

+-=

Spec(men

7

d e J-.. o
------- b

f

FmuEE 7.—D&ranunotiotopviewoftordon-kmdlng.cmnpramlontestln&!maoblm,

This machine is capable of twting specimens in torsion,
uniform or varying bending, and axial compression,
separately or in any combination. The three types of
load are applied by three conveniently located crcmks,
and the load application is extremely smooth, The
load is read directly in inch-pounds and pounds, on
three dial gages. These dial gages measure the de-
flections of cantilever springs which are designed in
such a way m to eliminate practically all hysteresis
and are articially aged. Provision is made for adjust-
ing the position of the dial gages lengthwise of the
springs so that, in calibrating, a position can be found
at which they read the loads directly.

The principle of the machine is shown by the dia-
grammatic tip view (&. 7). The specimen is attached
to two L-shaped members abc and def which are
balanced on practically frictiordess universal joints at
b and e. The ends of the specimen are therefore freo
to rotate in any direction. When axial loads are used
they are applied through these universal joints and
this insures a definite line of action of the load. The
specimen is subjected to bending by applying down-
ward forces at d and c; these forces are applied through

1
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wires which extend down to a cross bar dc under the
specimen. A crank is used to press down on a ful-
crum mounted on the bar dc; the crank and fulcrum
are movable along the length of dc, and in this way
the ratio betwwm the forces at d and c, and therefore
the bending momenta at the two ends of the specimen,
can be varied at will. Torsion is applied to the speci-
men by pulling ~wn on f through a wire, by means of
a crank; the po~t a ~ prevented from ~ertic~ (but
not horn horizont@ motion by verticrd wires. Axial
load is applied by moving point b to the left with a

joint takea loads in two directions, allows rotation in
any direction with ahnost no friction, and is tiemely
cheap and satisfactory. The whole testing machine
is built of structured shapes, aasembled largely by
welding, with h minimum of machining. It cost very

little to build and has proved very satisfactory and
convenient to u5e.

The 27-inch diameter specimen was tested on a
special testing machine simikwto the one just described
but muchlmger (fig. 9). No provision for axial loading
is made on this machine, snd the loads are measured

I
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Fmm.eO.-Smalltmslon-imndhgamprdon 18sUngmadnejand mwlhm nndshofi.mdm@nnaftmfe.amw

crank; e is mounted on one of the cantilever springs
and thus the axial load is measured. The arms bc and
ab are in themselves cantilever springs and their de-
flection memurea the bending ~d t&ion moments
respectively. The dial gages which measure the de-
flections of the springs are mounted on unstressed arms.

The universil joints at b and e are of the type shown
in figure 8a, conaiatingonly of a spherical cup, a centrsl
ball and six loose balls (the weight of the member abc
or def is sufficient to keep the balls in position). This

by the lateral deflection of tension members that are
initially bent, which permits the measurement of very
lmge forces with a light measuring device. This ma-
chine takes specimens up to 3 feet in diametar and 15
feet in length, and has a capacity of 500,000 inch-
pounds in bending and in torsion.

The .%-inch dkuneter specim~, used ~ tat the
theory for long slender tubes, were loaded as shown in
figure 10. T-shaped pieces were attached to the ends
of the specimen. These were balanced on a knife-edge
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at one end and on rLloose vertical strip at the otherj so
that the ends of the specimen were free to rotate in
any direction or to approach each other (as was also the
case with the testing machirw previously described).
The long arm of the T at one end was held down with
a string, while weights were applied to the other until
buckling occurred, as shown in the iigure.

The wall tbiclamss of the specimens being so small,
it was necessary to measure it with much more than
common accuracy. The indrum entshowniniigurell

cup I (a)

which surrounds the anvil. Such provisions are neces.
sary to measure the thickness of thin material accu-
rately. The sheet must also be very clean, as particles
of dust or films of dirt causes appreciable errors; it was
found ndvisnble to wet the sheet with alcohol during
the memuring. In spite of such precautions, tho
errors in the measurement of i and in the variation in
the thickness at diflerent parts of the sheet undoubt-
edly cause a lazge part of the scatter in the final results.
The variation in thickness over a tube was usually

‘n

P.... I

(b)
~OUEE S.—Ballunharsdjointsusedinthetestingmacbhm ~ typeUSKIon hge IIM0bh3 fOr vdkd hM& OdY, 1 h. bd& ~rdty 5,@ll lb.)
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Fmua8 9.-C0rnerofaucmautIcnlArmlum9IahratoryatCallfmnhInstituhofTmhnolGzY,abow!ng600JM0k-lb.tornion-kndbutfstlngmaoblrIE.

was therefore constructed; it is 10 times as sensitive
as an ordinary micrometer and proved to be much
more accurate and convenient. It consists of a verti-
cally mounted dial gage reading in 0.01 mm (.00039 in.)
and having an extra strcng spring and a very ~mooth
contact point, so that a sheet can be moved under it
smoothly. Directly under the contact point of the
gage an adjustable rounded anvil projects slightly
above the flat bedplate of the machine. The sheet is
pressed down on this anvil by a spring-actuated ring

about 5 percent. As torsion failure occurs over most
of the tube at once, the averagb thickneeswas recorded.

The modulus of elasticity of the material of the tubes
was measured by the special testing machines shown
in figure 12. The one shown at (a) is a tensilemachine
with a capacity of 130 pounds. The force is memured
by the calibrated spring at the top, the dial reading
directly in tenths of a pound. The specimens used
are plain straight strips 1inch wide. They are clamped
in ordinary straight jaws lined with emery cloth; suoh
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thin materials are easily held by friction alone. As It waa feared that the physical properties of such
the machine is frequently used to determine elastic thin, highly cold-worked material might vary along
limits, provision is made to insure perfectly central the thickness. In order to test this, the machine shown
lording. The extensometer shows iuvolvea a detach- in @e 12 (b) ivaa designed to test strips of the ma-
able Huggenberger instrument mounted on a special terial in bending. The ships are tit coiled somewhat
frrtme,with provisions for clamping to thin sheet and like a watch spring and tested in this form; this feature

I

~GTJEE10.—Mathodof tasthgvery longtabs anddusenpof fnffum.
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~OUEE 11.—TbloknEs-.

for preventing all motions but the desired one; it is
bolanced to prevent bending the specimen, and its
weight is allowed for by the proper initial setting of the
load dial. It reads directly in 1/100,600 unit strain
rmdcan be read consistently to one tenth of this value.

5ol—3~

is necesssry to insure“straightcross sections. The ma-
chine exerts a pure couple on the coil, bending it”uni-
formly thrmigh” its length, and measumk the total
sngle of bending. Very consistent results can be
obtained. As the width of the strip is several hundred
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times the thiclmess, this machine of course measures
17/(1– pg), while the tension machine meamires -?3.
Assuming ~= 0.3 the valuea of ~ obtained from the
two machines are found to check within 1 or 2 percent,
and are very consistent for bath type of material.

Data for all the tests are given in table I. In all
cams the torque given is the maximum torque that
the tube will take. In most cases, this ultimate torque
waa very sharply deihed and occurred when the buck-

COMMXPTEW FOR A13RONAUTTCS

the circumference divided by the average width of the
circumferential wavcw The value of 6 was estimated
roughly by eye, with the aid of a transparent protrac-
tor, from the appearance of the top or outermost part
of the wave. The angle of the top and bottom of the
wave must be the same w-hen buckling starts but, aa
buckling increaaes, the angle at the bottom of the
wave becomes greatly distorted, while the angle nt tho
top seems to remain nearly constant.

. . .

A

:

. .

.. -’

FmmE 12-Tamile andbandingmaimialktlng ap~bu

ling deflection was mmparatively small. In the case I k plotting the experimental results, y is aasumod
of the few extremely short tubes, however, the torque
increased gradually for a long time after buckling
started, the maximum value being reached when the
buckling deflections were very deep. This seems to
indicate that for such extremely short tubes, while the
present theory presumably gives a correct value for
the torque at which buckling’ would startif there were
no eccentricities, the tiimaie torque which the tube
will take is probably to some extent a function of the
elastic limit or yield point of the material. Ih the
specimens tested, the strengthtig eilect of large de-
flections evidently counterbalanced to a great extent
the weakening effect of initial eccentricities.

k many tests, bu&ling occurred only part ivay
around the tube, aid in these cases n was taken as

to be 0.3 for metal tubes, 0.36 for celluloid, and 0.6 for
rubber models.

DERIVATIONOF THE EQUATIONSOF EQUILIBRIUM
OF A CYLINDERlVALL

The equations of equilibrium of elements of the
cylindrical wall of the tube have been obtained in a
new and simplified form; consequently it will be neces-
sary to give a derivation. Figure 13 shows the coordi-
nates and the components of displacement of the middle
surface of the wall during buckling. A circumferen-
tial coordinates is used in preference to an angular one,
because it res~t% in simpler expressions rmdmukea the
c&mection between a curved plate and the limiting
case of a flat plate more readily seen, It will be shown
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that, to the order of approximation which we need, it
mukes no di.fhmmce whether the component of dis-
placement o is considered to be meaaured circumfer-
entidly or tangentially. . - ., ,,, ,

The equations of equilibrium for ‘a flat plate tie
well known, but the corresponding equations for the
case of a curved plate are by no means so clearly
ehblished. In the case of a flat plate, in some prob-
lems only extensiomd strains or stresses-tension,
compression, or shear in the plane of the plate-need
be considered, while in other problems only flexure-
bending or tw%ting-is of any importance. Extension
and flexure may be considered separately, even in the
case of a complex prcblem involving both; an excep-
tion to this is the case where large deflections occur
to a nondevelopable surface. In the case of a curved
plate, extension and flexure are, in general, intercon-
nected even when the lateral deflections are of inii-
nitesimal order. If no simplifications were made the
conditions of equilibrium would be too complex to be
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of much practical use. Much confudon seems to exist
as to what simplifications can be made, and the con-
ditions under which they can be made. One author
considers items which another rejeci% as negligible,
and vice versa. An attempt is made, in the following
discussion, to clarify this question and to obtain the
greateat simplification possible, under the conditions
of the present problem; the results are applicable to a
large class of problems.

The usual assumptions are made, that the materiil
is perfectly elastic, that the tube is exactly cylindrical,
that the wall thiclmess is small compared to the radius,
and that the deflections are small compared to the
thickness. The usual assumption is also made that
straight lines in the cylinder wall, perpendicular to the
mid~e surface, remain straight and perpendicular to
the middle surface; that is, we neglect the distortion
due to transveme shear. We cculd easily justify this
assumption by taking the magnitude of the traneveme
shear, obtained on this assumption, as a first approxi-

mation and calculating a correction. The correction
will be found to be negligible.

If lines perpendicular to the middle surface remain
so during distortiori’ then the ‘displacement of aU
points in the cylinder wall can b6 found from the
displacements of the middle surface u, v, and w. The
equations of equilibrium can then be derived in terms
of u, v, and w by considering: &t, the purely geo-
metrical relationship between these displacements and
the strains in all parts of the wall; next, the relation-
ship between the strains and the stresses, given by
Hooke’s and Poisson’s relations; ~d lint, the r~a-
tionship between all the stresses on an element of the
wall, given by the laws of equilibrium. There is no
essential diflicndty in doing this. However, as the
contention to be made is that most writers consider
more items than necessmy, it will be sui%cientto take
their results and show what can be neglected.

Let us consider iirst the items that all authorities
agree cannot be neglected. The extensional and flex-
ural strains in the middle surface are

(5)

These expressions are the same as the well-known
expressions for the case of a flat plate, with the addi-
tion of w/r to the expression for e,. This term is due
to the change in circumferential dimensions with
change in the radius, which produces the strain:

‘+–l=;

The resultant forces and moments per unit length
of wall section, obtained by summing up the stresses
over the tbicknesa, are taken as shown in figure 14.
The relation between these and the strains of the
middle surface will be taken the same as in the case
of a flat plat8:

We will now setup the conditions for equilibrium of
an element such as shown in iigure 14. Before doing
this we must remember that we have taken u, w,and w
as the displacements occurring during buckling, and
hence the above quantities T., G., etc., represent only
the chzngtwin the internal forces during buckling. The
total internal force9 at any instant are the internal
forces present before buckling, plus these changes.
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In the particular problem that we are considering, the
tube is subjected to torsion and, if the tube is per-
fectly cylindrical and uniform, the stress distribution
and the distortion will be, before buckling begins, the
same as assumed in elementary mechanics. There will
be a shearing stress 5’ on normal and longitudinal
sections, which can be taken as uniform throughout
the entire tube, since t/r is sndl. There will be a
simple distortion in the circumferential direction,
which lenvea the tube still cylindrical and is of no
interest to us. To obtain the total internal forces we
must add to those shown in figure 14, the forces per
unit length St, which will be considered to be in the
opposite sense to T., and T-t.

In setting up the conditions of equilibrium of the
element we must take into consideration the changes
in the IM@S of its facea due to its distortion, as this
will obviously afFect the components of the “forces in
the different equilibrium equations. However, if the
displacements are small this effect will be small, and
its effect on T=, G., etc., is of a sand order of sm~-
ness compared to other items. But its effect on N

FmIJEE14.—FoIcsandmommisonelementof vnif.

may be of the same order of magnitude as these other
items, because St is an order of magnitude larger than
T., Q,, etc.; the latter forces are proportional to the
buckling displacements and when these displacements
are small, T,, Q., etc., must be small compmed to St,
which had a finite value when the buckling started.

The terms which we will consider in the equations
of equilibrium give, after simp%cation

There is no use in writing the equation of moments
about the radial direction, as it would merely state
what we have already assumed-that T=,= T=,’.

I’he term T,/r in the third equation comes from the
resultant of the force T,dz and the similar force on
the opposite face of the element, due to the angle
d8/Tbetween them; this is the only term we will con-
tider due to this angle, that is, due to the curvaiwv
of the element; all the other terms in (7) are the

same as for a flat plate. The term 2iSt& is the

only term considered due to the distortion of the ele-
ment; this is the resultant of forces S’tdz or S’tdson OH
four sides of the element, due to the angle of twist

between opposite sid=, && dx or &~8 ds. The mat

of the terms in (7) are due to changca in T=, US,etc.,
over the distances dz or dsj and to obvious moments
due to iVz and iV,, the same as for a flat plate.

Using the last two equations to eliminate iVz and
iV. from the third, replacing T=, Q., etc., by their
values in (6), and then e,, K., etc., by their values in
(5), we obtain three equations involving: derivatives
of u, u, and w W@ respect to z and 8, the unknown LSj
and the physical constants of the tube

(8)

where v= = ~~ + >$ and @ signifies that this opera-

tor is to be applied twice.
Equations (8) can be simplified as follows: Apply-

ing first =& and then ~ to the first equation, solving

in each case for the term involving o, and substituting
these expressions in the equation obtained by applying

&s to the second equation, we obtain an equation

from which o has been eliminated. Similarly, apply-

term involving u, and substituting in the tit equa-

tion, aftm applti &8 to it,we obtain an equation

from whi~h u has been eliminated. These equations
are, after simplification:

rV%”-&! $+&

asw aaw
(9)

r~=–(2+P) ~8–~

Now-, applying & to the fit of th~e equations ~d

& to the second, and substituting in the equation

obtained by applying @ to the third equation of (8),
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we obtain an equation from which both u and u have
been eliminated:

Equation (10) is the same aa the corresponding
equation for a flat plate, with the exception of the
second term; this is evident if we set r infinite in (10).
The contention being made is that this term repre-
sents the principal effect of the curvature in a large
class of problems of which the present problem is one.
I?or most problems, equation (10) represents the com-
plete equilibrium condition. However, if it is desired
to include constraints against u and o displacements in
the boundary conditions (as will be done here), rela-
tions (9) must be used for this purpose; this, of coume,
constitutes another effect of the curvature, but it will
be a very small effect in most cases.

In using these simplified results for other problems,
it is only necessary to remember that the last term
of equation (10) repr~ents the radial force on the
cylinder wall due to the loading, per unit area of the
wall, to which the operator V’ is applied. Thus for
the problem of the buckling of a cylinder wall under
axial comprcmive stresses, S’O(due to an axial load or
due to bending), equations (9) and (10) will be aa
above except that the last term of (10) will be -t@

a’w
()

— o I?or a tube under a varying external pressure‘O as
p, this last term will be v’p (but if p is constant with
respect to L?,or varies very gradually, then the above
equations may be no longer applicable, as will be ex-
plained later). l?or studying lateral vibrations of the
cylinder wall, the last term of (10) will be mv’w, where m
is the maw per unit area and Mis the second derivative
of w with respect to time.

It is necessary now to justify the neglect, in deriving
(9) and (10), of many items which are commonly con-
sidered. In the relations between strains and dis-
placements (6), we neglected, in the expression for

,
~,, a term ~ w, due to change of curvature with change

of radius. If v is measured tangentially the expres-
sion for ~, should logically include also the term
1 aO
~ ~8; if o is measured circumferentially this is unnece9-

smy, but x=, should have an additional term ~ ~“.
r ax

As for expressions (6) for the internal forces and
moments in terms of the strains of the middle surface,
we have obviously neglected the effect of the varia-
tion in the length of circumferential fibers along the
thickness. Love (reference 9) gives a second approxi-
mation for the internal forces, in which the expressions
for (3=,Q,, Q.,, and (3=Jme the same as in (6), but the

expreiwionsfor T=, T,, T=,) and T=,’ contain a number
of additiomd terms involving the flexural strains
% K-, and K*,. In these expressions Tz. and T.,’
are no longer equal, but have values satisfying a more
exact statement of the equation of equilibrium of
momenta on an element, about the radial direction.

In setting up the equilibrium conditions (7), many
terms were neglected. It haa been noted that the
tam T./r in the third equation comes horn the re-
sultant of the T, forces on opposite faces of the ele-
ment, due to the angle d8/r between these faces. By
the same reasoning, there should logically be a term
IV,/r in the second equation, and a term Q=,’/rin the
equation of equilibrium of moments about the radial
direction, as noted in the last paragraph. The tam
zfi ah

m in the third equation represents the radial

components of St forces on’ opposite faces of the ele-

ment, due to the angle & &c or & d8 between

them. There are other small angles between the S%
forces on the opposite faces, produced by distortion of
the element, and these give remltanti in the z and s
directions; thcge are considered by Schwerin (reference
5) in his solution of the torsion problem.

The rustication for neglecting all thwe items lies h’
the followi&: If any, or all, of them are included, we
obtain finally an equation cmrcsponding to (10), which
includes all the terms in (10) and numerous additional
terms. Now suppose we take w as a harmonic func-
tion of 8,such as the expression (13), given later, for
which n repreaente the number of circumferential
waves of the clisplacement, and substitute it in this
equation. If we compare the two types of terms which
we obtain-those which we would get with (10) and the
additional terms-we, find that each of the additional
terms is equal to a term we get with (10) multiplied
by (t/r)’ or l/rig, and with some numerical factor of
the order of unity. Those involving (i/r)zcan be im-
mediately thrown out, for any ‘f thin-waled” cylinder.
Those involving l/n2 can evidently be neglected when
n is large. This means that (10) is applicable in all
thin-wall problems in which the deformation consists
of a large number of waves in the circumferential
direction, or in which it changes rapidly in this direc-
tion.

It is an intermting fact that a simple ttxt exists for
di.flerentiatingbetween items which can be neglected
on the above basis and those which cannot be, in the
expressions for e., K., etc., for T=, ~., etc., or in the
@librium equations. If we make the substitution
u=~ru’, o=~tlrv’, z= fix’, 8=~s’ and divide
W the items by the proper factor, we find that items
which can ‘be neglected are left with a factor t/r,while
the other items are free from such a factor. l?or
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example, suppose we wish to compare the items in the
expremion

K,=~+p$V+; :

Making the above substitution, we fid

The meaning of this is probably that, for the class of
problems to which (10) applk, u and o are of the

J
i

order of magnitude of y w.

One more question r-&@ring discussion is that of
how large n must be in order for (10) to give a reason-
ably accurate result. In the present problem the
results obtained horn (10) give an excellent check with
experiments when n is only 2. (See @. 2.) More-
over, the results seem to check reasonably with those
of Schwerin, who used rLnumber of the items neglected
in (10), indicating that thee.e items were of minor
importance even when n= 2. On the other hand,
the results obtained from (10) give an entirely dis-
torted result when n= 1. There seems to be a rather
critical change between n= 1 and n= 2, for our par-
ticular problem at least.

It is no inconvenience to us that (10) is inapplicable
when n= 1, because for this case the cross section of
the tube is entirely undistorted, merely undergoing a
general displacement. The elementary theory of
bending of a tube evidently applica in such a case, and
there would hardly be any advantage in having a
complex solution for a case to which elementary theo~
applias. However, borderline problems doubtless exist
for which neither (10) nor an elementary treatment
would be accurate. It cannot be concluded, however,
that the equations of equilibrium commonly used,
which take into consideration mne of the items neg-
lected in (10) but not all of them, will necessarily be
more accurate in such a case than (10). Unless the
equations of equilibrium take al.?such items into con-
sideration they may quite possibly be less accurate
than (10), ra*er than more accurate.

THE BOUNDARYCONDITIONS

There are only two boundary lines to a tube (the
two ends), instead of the four which we have in rec-
tangular plate problems. The boundary conditions
which wewould have for the lateral sidesof a plate or for
the edgca of the split in the cake of a split tube are
replamd in the case of a complete tube by the condi-
tion that the &placements must be cyclical functions
of q with the cycle length rd.

We will consider two edge conditions at the ends.
For the case of clamped edges we will assume all com-
ponents of displacement, and the slope of the surface
in the axial direction, to be zero. There must, of

course, be a uniform circumferential displacement for
at least one end while the torsion is being applied and
before buckling takes place. However, we are con-
sidering only what takes place during buckling. Wo
will fhd that our equations can be satisfied with S’ a
constant, which means that S, and therefore the torque
on the tube, remains constant during the buckling,
There is therefore no reason for any relative circum-
ferential displacement of the ends while buckling takes
place, and the conditions for fixed edges are

(? &o
hoz= k–; u=v~w=—=2 (11)

Similarly, the condition for hinged edges at the ends
is that the components of displacement and the mo-
ment G=are zero:

z. Q.2+pg. (J‘=+2.” ‘=v=w-al? (12)

Both of the above end conditions evidently require,
not only that the edges of the tube shall be clamped
or hinged, say to some rigid end piece, but that the ends
u a wlm?eshallhave no linear or angularmotion relative
to each other. However, if we take the iinal results
obtained, and calculah the resultant of all the forces

(
on the end of the tube due to buckling, that is, the

1resultant of T=, T%,,N=, Q=, and Q=, when z = — or2
1)z=—– 2 we find this resultant to be zero. This means

that no constraint are required to prevent motion of
the ends of the tube as a whole; that is, it makes no .
difference whether or not they are free to move as a
whole (this does not apply to the case n= 1, which is
discussed later).

THE SOLUTION

The equations of equilibrium and the boundary con-
ditions are satisfied if u= v= w= o-an obvious solu-
tion of no interest to us. Buckling displacements ~ro
othertypes of displacement which satisfy these condi-
tions. There are many such displacements and each
one requires a certain definite vahe of N. Our prob-
lem is to tid the lowest of such vahma of iS for each
given tube; buckling will certainly take place as soon
as 5’ exceeds this value. In the present problem the
equilibrium and boundazy conditions can be satisfied
if S is a ccnstant with respect to the displacements,
and the displacements are the following functions of
z and s:

(13)
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where U., V-, ~m, and n are real numbers, n being
an integer, and Ammay be complex. Substituting
these values in (9) rmd (10), we obtain

&

2
l–p +

u.=> $ a
1+ +

+

)

(14)

‘“=-%%!)>”

The summation signs have been dropped. If these
equations are satisfied without the summation signs,
they will certainly be satisfied with them.

If we now substitute (13) and (14) in the eight
boundary conditions (11) or (12), and eliminate s
from these equations in a similar mam.nerto that used
later, we obtain eight linear equations in WI, 17L,TVs,
etc. As there are no terms not containing Wm, it will
take eight w&Isa of W., which means eight terms in
the summations of (13), as well as a detmninamtal rela-
tion, to satisfy thsm. This detennimmtal equation
involves the eight valuea of &. As (15) is of eighth
degree in X., for a given set of valuea of k, H, and A,
XWmay have in generaJ eight different values. It can
easily be shown that under theseconditions the determi-
nantal equation and (15) together determine arelation
between k, H, and A. The problem is to detmnine
this relationship; it is not impossible to do it, but the
algebraic complexities of the problem render it im-
practicable.

We will therefore make certain minor approximations
that will make the problem more hctable. The re-
sults of experiments give the clue for doing this. It

is evident from (13) that ~d = ~ is the tangent of the

angle of deflection wavea with the axial direction.
I?rom the theory of Southwell and Skan (referauce 6)
rmdfrom experiments, we lmow that the ~gle Ostm
at about 45° for infinitely short cylinders and rapidly
decreases as the length increases, being about 15° when
the length equals the diameter, and evidently approach-
ing zero at very large length/diameter ratios (of course,
we will show that 0 is a function of H, rather than of
Z/d, but the foregoing statement is justified by the fact
that d/thas a practical lower limit determined by the
elastic limit of available materials).

TIIis indicates that, for all except very short tubw,
~dk is small compaxed to 1. Of course, the actual
deformation is a superposition of eight deformations,

wch with a different value of Xm/k;some of the values
]f X~/kmay not be small, but experiment as well as
bhefollowing theory show that the importani values of
ire/kare certainly small, except when Z/d is small.
We are also quite safe in assuming that hm/kapproaches
mro for large values of l/d, as this assumption certainly
@ves a good iirat approximation, and this fit approxi-
mation vertiik the asamption.

These facts are the basis for the approximations
w%ichwe will use. Starting with (14), if we neglect

)
(Am 2.
— m comparison to 1, we obtain(k

~ .W. A.———u nk
(16)

v.= –~

The error introduced by this approximation is zero at
both extreme.s, when Z/d is inb.ite, and ako when
!/d =&because both U= and V. are then zero any-
way, since n becomes idn.ite. The error is small for
my intermediate case because when x~/kis not small
compared to 1, n is large and U. and Vm are of little
importance. l?or example, when lld= 1, taking
Am/k= tan 15°, the error in V= is about 3 percent, and
in U. (which is much less important than V=, as it
contains the factor Xm/k)about 14 percent. Moreover,
investigation of the iinal results shows that U. is never
of any particular importance, and even V. is not
important here, only becoming of importance when 1
is large compared to d.

Substituting (13) and (16) in (11) or (12), and
dividing through by common factors, we find, for

7
z- A

“==:’“W-(nw=o
‘=0’ ‘W-s(n-)=o
“=0’‘W=’+’++=o

(both edge
conditions)

(17)

We will neglect the third condition for hinged edges,
that u= O. This is by far the least important of the
four conditions, owing to the relative ?i@pi.iicance of
U., as mentioned before. Neglecting this condition,
and using the trigonometric formulas for the sines and
cosines of the sum of two numbem, we obtain



} (hinged edges)
* cos n; (2WmA.~as X.) = O

I

All these conditions will be”sctisfied if

(clamped edges)

(hinged edges)

(18)

These four equations for each end condition can be
satisfied by four values of W., that is four terms to
the sumnmtions of (13), and a determinantal relation-
ship involving the hms. The conditions (18) “are the
same rLsthe boundary conditions found by Southwell
and Skan (reference 6) for the case Z/d= O.. These
writers show that the detenninantal relationships
between the X+, implied by (18), can be put in the
following folmls:

(19)

We will next use the fact that Xm/kis small compared
to 1 (except for small values of l/d) to reduce the equi-
librium equation (15) h one of the fourth degree in
Am.

‘w cm be ‘one ~ ‘everhT+Y?:iR:accurate E to merely ccmmderH

a quantity independent of x., ll%il w“”oitilti a so-
lution. This gives

The error introduced is zero for the extreme cases, when
l/ds F (since ~~k= O), and when .Z/d=O, since H= O

COMdUTI’EE FOR AERONAIJILTCS

for thi9 case. I?or intermediate crws, a fair iirst
approximation for the value of A, and therefore of iS,
could be expected even if we neglected hm/kaltogether
in the above quantity, taking HI= H, because when
the error in neglecting &/k is large, His small and the
whole second term in (15) is of small importance in
determining A; when this term is important Xm/kis
small compared to one, and the error is srndl.

A second approximation for the relation between iS
and His obtained by taking

‘=H’(1+%9 (21)

where A.* is taken as a weighted average of the four
values found in the first approximation. In figure 1
the relation between A and H, for clamped edges,
obtained from the first approximation, is shown by the
dottsd line, while the second approximation is shown
in full line. The diihrence between the vrdues of A
or S found from the first and from the second approx-
imation is never more than about 20 percent (and is
much less than this in the range of greatest practical
importance). Hence, if general experience is u safe
guide, the maximum error in the second appro.simfition
is probably not more than a few percent. This is
borne out by the tests, as the average ratio of e.speri-
mental to theoretical remdts is about the same in the
range where the theory is most uncertain, as it is in the
more certain range.

A further tiplification of (15) can be obtained by
completely neglecting (X#k)2 in comparison to one in
both the fit and second terms. Equation (16) then
reduces to

3&4- 6izGBJXm+n8D=O (22)

This would give a very poor appro.xhnation for very
short tubes, but it is an mcellent approximation for
long tubw for which &/k is small, and the error
becomw zero w-henl/d= m. Due to the absence of a
term in X=2this equation is much eaaier to work with
than (2o), and we can obtain most of our results from
it, using (2o) only to iill in the theory for very short
tubes. The results obtained from (22) are shown in
iigure 2, and also give the straight upper portions of the
curves in iigure 1. Equation ,(20) yields the lower
portions of these curves, which approach mymptoti-
cally the straight lines given by (22).

As (20) and (22) are of fourth d’kgreein”x., they me
in general satisfied by four values of & that is, four
roots of the equation, for any given set of values of
k, H, and A or n, J, and B. But these four values of
& must also satisfy the boundary condition (19), and
in general this can only be done if certain relations
exist between k, H, and A or n, J, and B. The prob-
lem is to find these relations; when we have them we
stillhave the task of selecting the values of n or k which
give the lowwt S for any given tube, as buckling con
occur when this S is reached.
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As the term in Am3is absent in both (2o) and (22) we
know that h,+ 1,+ ~,+ k= O. From the results of
Southwell and Skan (reference 6) we bow that for the
case ljd u 0, two of these roots are real, and the other
two complex with the real part negative. Trial shows
this to be true for all values of Z/d. We can therefore
eqnwss the roots as follows:

A,=a+b, 12=a –~, A3=–a+ic, b= -a–it (23)

where a, b, and c me positive red numbem. The equa-
tion of which these are the roots is
[X~–(a+b)][X~–(a– b)][Xn–(–a+ic)] b~-(-a-it)]=

&’-(2a2+ b’– 8&’-2a@’+ &)&+(a’–b?(a’+ &)=O
Equating the coefficients in this equation to those

in (2o) we find the following conditions which must be
satisfied:

za’+~’–$=–m%
a(b2 + c’) = ##& (24)

((22–b? (a’+ (?) m &+’&/2
or if (22) is used

2a’+lP–cP=O

a(l)2+ c’) = nbBJ (25)

3(a*– N) (az+ c’) =nSJg

These three equations from the equilibrium con-
dition (24) or (25), must be solved with a fourth given
by the boundary conditions. This is obtained by
substituting (23) in (19); the results can be put in the
following form:
. 2bc (cl:d~~d

4a2=b’–c2+Ntan2b
(b2+c?)2 (26)

4a2= ylh:;
61–$–*6

tanh 2c
where N- =1. Trial shows that 2C

l-co~ ~:;o:h Zc

7
is never less than 6, and 2b varies between m and ~m,

for clamped edges, and between mand $, for hinged

edges, for the lowest range of red solutions for i3 (red
solutions can also be obtained with values of 2b around
27, 3iT, etc., but these solutions give much higher
vrducs of 5’). I?or such a range of values, we can take
N= 1 without any appreciable error.

Consider now solutions obtained with (25) (which
will apply to all but short tubes). Eliminating a
between (26) and the first equation of (25), and as-
suming values for b between the limits mentioned
above, we solve for the corresponding values of c. This
can be done directly in the caae of clamped edges,
as we huve a simple quadratic equation in c to work

with; in the case of hinged edges, the values of c were
found by a simple graphical method. The value of a
can next be found from the first equation of (25), and
then the values of ns% and n5BJ from the last two
equations. Table II shows various sets of values of all
thwe quantitiw, thus obtained.

l?rom the sets of values of n8# and n5BJ we can cal-
culate, for any given value of n (2, 3, 4, etc.) sets of
corresponding values of J, and then B. In this way
were plotted the families of curves, showing the relation
between B and J for n=2, n =3, etc., in iigure 2.
Obviously, only the portion of each curve which is
bchno the other curves, that is, the portion between
intersections with the adjacant curves, has practical
signiikance, as buckling will occur at the lowest stress
at which equilibrium in a buckled state can exist.
Hence, the relation between B and J (and therefore
between t? and the properties of the tube), when buck-
ling occurs, is given by the jagged lines shown in the
figure, made up of the lower portions of the curves for
n= 2, n= 3, etc. As indicated on the @ure, the inter-
sections of the curves give the values of J at which the
number of circumferential waves will change from one
integer to the next. Thus a clamped edge tube for
which ~ 1.45 should buckle in two waves; and for
1.45>00.35 it should buckle in three waves, etc.
It will be noted that test results are quite consistent
with we thecny in this respect.

The relation between nGBJ and ns~ can be very
nearly expressed, for the range of values of actunl
significance, by the formulas: n5BJ is equal to

0.385 (ns~?+ .94 (n8J’)~+ 18.3 (clamped edges)
0.385 (ns~?+ (n.sy)~+ 6.5 }(hinged edges) ’27)

The values obtained born these expressions are shown
in table II, in the column next to n5BJ. These rela-
ti9ns can be simplified to

B= O.385d+~~+$$ (clamped edges)

1

(28)
B=O.3850 +-&++$ Wged edg~)

These are the equations of the individual curvm in
figure 2. For very large vtilues of J, n= 2 and only
the &at terms of (28) me importamt, giving us equa-
tion (2). This is the equation of the line eef in figure
2, which the curves for n = 2 approach mymptoticrdly.
By equating the right-hand side of (28) to the same
expression with n replaced by n+ 1, we obtain an
equation for determining the value of J for which the
number of circumferential waves changes from n to
n+l.

It will be noticed that the part of the jagged lines
in figure 2 corresponding to larger values of n approach
closer and closer to the envelopes of all the curves,
shown by the broken lines de. For values of J below
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6 or 7 this envelope can be used instead of the jagged
line without serious error. We can obtain the equa-
tion of this envelope very simply-marely by treating
n as though it could have any value, fractional as well
m integral. In the last column of table II, values of
ns~ have been raised to the % power and divided into
corresponding values of n6BJ, giving us values of

n5BJ B
W=p

~GUEE I&—plot OffaU1 a@lnst B/~~

These values have been plotted on figure 15. It will
be seen that the minimum value of B/tF%md there-
fore the minimum value of B for any given value of
J~ccurs when ns~ = 2236 (clamped edges) or n89 =
s22 (hinged edges), that is when

n u 2236~/3 = 2.62/> (clamped edges)1 (29)
n= 822k/>5 2.31/> (hinged edges)

These minimum values of B/~ are 1.29 for clamped
edges, and 1.18 for hinged edges. Hence, the mini-
mum B for any given J is

B= 1.29 # (clamped edges)
B= 1.18 ~ (hinged edges) 1 (30)

These are the equations of the envelopes in figure 2.
Equations (29) give the approxhnata number of cir-
cumferential waves in which a tube will buckle; if n
is taken as an integer, these equations give the inter-
section of the envelope with the corresponding curve.
These equations can be put in a differen~ form by

multiplying (29) by Z/dand (30) by ~~~:

k= 2.62 ~ (clamped edges)
k=2.31 ~ (hinged edges)

A= 1.29 ~ (clamped edges)
A=l.18 lV (hinged edges)

In this form, they were used to plot the
end of the curves in figures 1 smd 3.

right hand

We have assumed the minimum number of circum-
ferential waves to be two. The case n= O clearly hm
no significance for the torsion problem, but the oaso
n= 1 is not so obvious. This would give n distortion
in which cross sections remain circular but are dis-
placed, the displacement spiraling around the center
line, so that the shape of the tube would become some-
thing like that of a corkscrew. Suoh a displacement
can easily be obtained by tmisting n long piece of
rubber tubing in the hands; however, no such distor-
tion has been observed in a thin-walled metal tube,
even in the tube shown in figure 10, which had a
length/diameter ratio of nearly 170.

(a)

PIOUEE16.—TIMw n-L

b previously explained, the equations of equilib-
rium that we have used do not apply to this case, but
the elementm-ytheory of bending of a tube does apply.
Figure .16a shows a tube undergoing this type of dis-
tortion, under the action of a twisting moment Mt,
the center line being bent to a spiral and having the
constant angle o with the axis of the spiral. If the
couple M~ acta about the axis of the spiral, all parts
of the tube will be subjected to the bending moment
M, sin O. At the same time it can easily be shown
that all parts of the tube are bent to Q ourvature
sin2 o/l? (where 17 is the radius of the spiral). This
curvature is in the same plane as the bending moment
M, sin O. Hence all parts of the tube will be in
equilibrium if

M’, ~ o.E1m~
.

M,wEI~e

E the end conditions are such that sin

(D)

o/R can have
only one particular value, as in the case disoussed in
the next paragraph, then this formula determines o
value of M: at which the tube can buckle in the shapo
given.

It was assumed above that the couple M, is applied
at the axis of the spiral. In a practical case it would
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naturally be applied at the end of the tube, as shown
in figure 16b. As the couple has only been moved
parallel to itself this is statiwdly equivalent to the
case of figure 16a, and the above reasoning still
appliea. But now the couples at the ends of the
tube are not about the line joining the two ends
(shown dotted in the figure). In order to fulfill a
requirement that the end couples be about this line,
the spiral form of the tube must consist of an even
number of full turns. The condition for this is that

sin o @—.
B 1

where m is an integer. Taking m-l, as in @me 16c,
and substituting this in (a), we fid

~,u2Ty

This checks Greenhill’s solution (reference 10) and the
loading conditions correspond to those assumed by
Greenhill. However, many other solutions could be
obtained from (a) for other end conditions, and the
special end conditions assumed by Greenhill are no
closer to most practical caeea thrm the others. In
none of these cases could the loading applied be called
a pure twisting moment, a9 the applied couple is not
about the axis of the tube at the end, as it is for
instance in the actual experiment shown in figure 10.

It would not be worth w-bile, for most practical
purposes, to try to obtain solutions for other end
conditions such m that in figure 10, because a little
figuring indicates that this type of buckling can never
be of importance with metal tubes. In the last
analysis such a buckling merely amounts to a change
of a component of the twisting momant into bending
moment. The resulting deflections could never be as
great as the bending deflections which would occur
if the whole twisting moment were to be applied a-sa
bending moment. In the case of a long piece of rubber
tubing, enormous angles of twist cam be obtained.
This deformation is not eapecidly apparent, as it
leaves the tube cylindrical as before; if, now, some of
this twisting defomnation suddenly goes into bend-
ing deformation, the resulting deformation is very
spectacular, even if the anglea of bending are only a
small part of the previous angles of twist. In the
case of the steel tube shown in figure 10, which is
about as extreme as any practical case could be, the
torque at which buckling occurred would only have
caused a deflection of 1 inch in the middle of the
63-inch span, if it had all been applied as a bending
moment. It is evident that the occurrence of a frac-
tion of this deflection due to a spiral defomnation would
not even be noticeable.

Returning to the cases where n> 1, the shape of
buckling deflection can be found as follows: From the
valuea of a, b, and c which have been determined, the
values of Xl, AZ,~, h are found horn (23). Putti

these in any three of the four equations of (18), we
solve these equations simultaneously for Wz, W_g,and
T7iin tams of TVl. Using the9e valuea, the value of n
(obtained m elsewhere discussed) and (16), in (13), we
obtain the desired expressions for u, v, and w. These
expressions contain an indeterminate factor WI) which
is to be expected, as the absolute magnitude of the
displacement is indeterminate. These calculations can
be made from the results obtained later for short tubes,
as well as from the results already obtained for long
tubes. However, as the work of solving equations (18)
simultaneously is quite laborious, it has been carried
out for only one case, that of long clamped edge tubes;
the result should apply with sufficient accuracy to
most of the experiments and to most practical appli-
cations. Using the values of b, c, and a from the
fourth line of table H, we find, for long clamped edge
tubes

w=~, [COS(n ;+ll.54~)+ 1.301 COS(n:+4.86 $)

( )
–0.00064 ainh 12.00 ~ sin n ~–8.20 ~

– 0.00172 cosh 12.06 f COS (~-8.20 f)]

[( )
v=u-~Wl sin n :+11.64;

( )
+1.301 sin n:+4.86 f (31)

( )
+0.00064 sinh 12.06 ~ cm n ~–8.20 $

–0.00172 cesh 12.06 ~ sin (;-8.20 f)]

“-$w’Fo77ti(n:+11@

+3.16 E&(~+4.86 f)

+ 0.0082 sinh 12.06 f COS(~–8.20 ~)

+ O.O1O3COSh 12.06 ~ a (~-8.20 f)]

where n is given by figure 2 or equation (29).
The results found so far were obtained horn (26) and

are not accurate for short tubes. To obtain a solution
from (24) and (26) is much more diiiicult. Particuku
solutions were found as follows: Values of b and c are
assumed, and the value of a found from (26). The
value of k is then found from an equation obtained by
dividing the third by the iirst equation of (24); E’ is
now found from the tit and then A from the second
equation of (24).

The value of His now computed from (21). This
requires the selection of a weighted average value for
Xma. For this purpose three solutions for the shape of
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the buckling deflection are available, the one above for
the case Z/d= OJ(clamped edges), and solutions for the
case ljd = O for both edge conditiofi, given by South-
well and Slmn (reference 6). In all these solutions the
first two terms involve ~, and h, respectively, and the
last two terms involve k and ~. These last two terms
me much smaller than the first two. In figure 17 the

J q 1.0-
- *
4 f?

g $3
~~~

L %.
o 0 .5

.-H-O (clmnpededge)

K T x/1

Fmwm 17.-Ohrtahowfq IQhtk nnfrnrmrfam Ofh andk

ratio of the average absolute magnitude of the lust
two terms, to the average absolute magnitudes of the
first two, is plotted against x/1. It will be seen that
the last two tirms are very unimportant compared to
the tit two, and hence k and k tie unimportant
compared to Xl and h. Comparison of the terms con-
taining Xl and X2shows that these are of the same
order of magnitude for all of these extreme cases.
Equation (21) was therefore taken as

H=H’(’+*7=H’(’+*7
This is of course rather a rough correction, but it may
be considered to be applied, not to the whole solution
for -A or S, but to the error in the first approximation,
m previously discussed.

We now have corresponding values of A and H,
satisfying the equations of equilibrium and the bound-
my conditions. However, the original choice of 7Jand
c was purely guesswork, and with diihrent values of b
and c we may obtain higher or lower values of A, and
therefore of S, for the same value of H. I?or these
higher or lower values of S there will correspond cer-
tain values of k and therefore of n. We know that the
actual value of n will be that giving the lowest value of
S’consistent with equilibrium and boundary conditions.
It is therefore clear that the smallest values we can
find for A in terms of H by the above process will be
the correct wilues.

If we had to try values of b and c blindly, the work
would be very difficult, aa only a small range of values
even result in red values for a, k, A, and H. However,
we already know the values of b and c for the extreme
cases when H= O and H= =, given by Southwell and
Skan, and the previous solution obtained from (26).
These sets of values of b and c are represented by the
points p and q, figure 18. The desired values of b and

60

56

5.2

4.8
c

4.4

4.0

.36

.5!2

28 1.36 1.40 1.44 /.64 ~ 4.68 /.72 /.76 1.80

FIGUEE l&—Vdues foundforbandcfromH-O to H-W.

c, for intermediate values of H, are obviously given by
points on some li - connecting p and g. By trying a
number of points Jstributed over the area between p
and g, plotting the results on figure 1, and making use
of cross plotting, we locate with sufficient accurooy the
lines shown in @ure 18, which correspond to the lower
part of the curves in figure 1. Points on either siclooi
the lines in figure 18 give points above the curves in
figure 1. Table III gives sets of values of b, c, a, k,
H’, H, and A obtained in this way. Equations (1)
are merely formulas which have been found nearly to
check the relation between A and H given by them
values, as will be seen from the last column of table
Ill. Corresponding values of k and H have been
plotted in figure 3, forming the left-hand end of tho
curves shown, which approach asymptotically the
portions previously found, at the right.

The theoretical value of the angle which the buckling
Amd

waves make with the axial direction is tan-l ~ for

each of the four components of the wave, aa has been
pointOd out previously. As it has been shown thot
the components involving b and & are comparatively
unimportant, and that the other two components me
of nearly the same magnitude, an approximate value
for the a@le of the reauhtantwave is evidently
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O=tm-q+,sr$:tm-lf (32)
te9t9j wpecially as it iz dif3icult to get a very accurate
value for o from experiments. The curves of figure
4 were plotted from (32), using values of a, k, and H
from table III. Equation (3) is also obtained from
(32), using the value of a for H= w.

The author wishes to aclmowledge the valuable sug-
gestions of Dr. Theodor von Khrmhn for interpreting
the application of the simplified equilibrium equations;
the help of Messrs. K. W. Donnell and L. Secretamin
carrying out the experiments; and several helpful criti-
cisms from Dr. S. Timoshenko.

A more accurate value for three particulsx cams can be
found from the three available solutions for the shape
of the buckling deflection. Setting equal to zero the
derivative with respect to s of the exprwaion for w,
we obtain the equation of the line at the top or
bottom of the wave. The desired angle is the tangent
of the slope of this line, or tan-l ds/dz. It is found that,
for these extreme cases, the angle is nearly constant
near the middle of the tube, and checks the value
found from (32) within about 10 percent. Hence (32)
is probably sticiently accurate for a check on the

TABLE I—EXPERIMENTAL DATA
GUGQEIWCMAtAERONAUTICALLABORATORY,

CALmOENIA INSTITUTE OF TEC~OLOGY.STEEL TUBES

MAY 6, 1933.

TABLE II
d

WKa
7.0
h89
hEs
hsa
.310
.319
.319
,319
.2.19
.319
,319
.319
6.07
6.67
3.76
3,76
LB
6.07
5.07
3.76
&76
L39

;~

ho7
3.76
LW
LE3
LIB

d

1

Imhea
as

.W3

.376

4%’

11?
131
I&8
2L 4
20.6
can
&o
&o
&o
&o
&o
&o
0.0
.2.0
&o

1$8
l!Lo
120
120
120

w
33.0

1

fxllY

Imbm
lL 6
L&3
LU3
1.E3

:;
LW
LS2
LMl
L09
L92

M
2s3
139
2s
202
!L17
z 17
213
213
206
Zea
23U
280
206
201
201
284
201

Rxlw

~

aL 8
3L 3
aL 3
3L 3
3L 3
3L 3
3L 3
3L 3
3L 3
3L 3
3L 3
3J.3
3L 3
3L 3
3L 3
3L 3
3L 3
3L 3
3L 3
3L 3
3L 3
3L 3
3L 3
3L 3
3L 3
3L 3
3L 3
3L 3

n o

as ;
44 ------
40 . . . . . .
EC ------
2 ------
2 -. -.. .
2 . -----
2 ------
2 . . ..-.
2 .- .-. .
2 ------

. -----
29 11
13.4 11
la 4 10
lLl 10

10
lt !
la 1 1!
10 10
126
0.6 ;!

: 9
&1 Q

10 8
7.9 9
5
4 4
4,7 6

b
I

c

I

a

I “w I ““m;

OLAMPED EDGES I
?L18
am
4.2d

H!
10.64
15.47
30.40
.

2io
L49
LZ73
L%
L 47

M

HLNGED EDGES

9.04 -------------& 27.8 al

l?$% g: J&:
&040

Lm?lw?i%’ Jill
. .&?%)$.324?.8)?

TABLE III
BRASS TUBES

txllY LExlo+ n , !

b c a k H’ H I A RWL7$

In:;

&o
(?%0

N
0.0

H
&o
&o
&o
eLo
&o

El
120
120
Uo
120
120

w
33.0
alo

In# lx Ills
i13

&m M 3
0.02 16.3
h 91 lfi 3
5,87 10.3
L07 lh 7
x 11 l&7
x 11 I&7
20a lh 7
289 I&7
213 16.7
2WI lh 7
2W lh 7
213 lh 7
&w 10.3
&co 10.3
&al lt 3
&06 m 3
6.67 lIL 3
20J ~:
2a5
&m . 16.3
6.91 10.3
6.B 10.3

Ini-:

L=

W
282
170
192
112

%’
72
m
to

72
776
no
478
~

z
m
128

11
U
&8
a7
6
7.8

$6
7.1
7.8

16
14
lL 6
12;

18
0.7

l!

7.2
6
s

OLAMYED EDGES

L304
L7M
L 781
L 761
L 721
L @31
L078
LO@

L3’S3
L3W
L?Z16
L404
L4!M
L 410
L 391

4%34yJ7 L’% . ..-...E. o
;~

7.39 7.39
218 L%9

z 14
7.Ee

271 2h9 M
L22 247 4.10 M 17.04 1:%
6.69 x 91 &21 iii’ 09.6
h’w 363 10.S2 377
&m 383
&cc 4.10 2%% ‘%’ ‘?! ii: LgU~

HINGED EDGES

L446 L18 –.-.-.–. o 4.40
L63 L73 L62

261 1:$? $(%
k%’ 4.e9 k!’ 4X6 2%3
2&s 7.11 131 m 66.3
294 7’23 m
x21 2%% - m L%
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