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A THEORETICAL ANALYSIS OF THE EFFECTS OF FUEL MOTION ON AIRPLANE DYNAMICS'

By AuBErT A. ScuY

SUMDMARY

The general equations of motion for an airplane with a num-
ber of spherical fuel tanks are derived. The motion of the fuel is
approximated by the motion of solid pendulums. The same type
of derivation and equations are shown to apply to any type of
fuel tank where the motion of the fuel may be represenied in
terms of undamped harmonic oscillators.

Motions are calculated for a present-day high-speed airplane
and a free-flying airplane model with two spherical tanks in the
symmetry plane. These calculations show that the normal air-
plane motion may be considerably modified and that residual
oscillations may result. The ratio of the natural fuel fre-
quency to the natural airplane frequency is shown to be the most
important parameter for determining the effect of the fuel motion
an the airplane motion. The stabilizing effect of turbulence in
the fuel is discussed, and it is suggested that the stabilizing effect
of artificially induced turbulence be inrestigated experimentally.

INTRODUCTION

Small-amplitude lightly damped lateral oscillations are a
troublesome characteristic of certain high-speed airplanes.
Several possible explanations for these oscillations, which are
adequate in specific cases, have been offered. For example,
reference 1 shows that nonlinear aerodynamic derivatives
could cause such oscillations, and it has been shown that
atmosphetic turbulence is another possible cause. It has
also been suggested that a possible cause of such oscillations
is the motion of fuel in the tanks. In some recently designed
airplanes the mass of the fuel relative to the airplane mass is
much larger than has been common in the past; therefore,
the effects of fuel motion can be expected to be relatively
more important. In fact, in several cases baffling the fuel
tanks was found to have considerable effect on the general
handling qualities of the airplane and sometimes actually
eliminated the troublesome lightly damped lateral oscilla-
tions which had been present.

An experimental investigation of the effects of fuel motion
on the lateral motion of a free-flying airplane model is de-
scribed in reference 2. The results indicated that the effects
of fuel motion were noticeable and caused the lateral motion
of the model to be very erratic.

The present analysis treats each fuel tank as a pendulum
oscillating in two degrees of freedom and applies Lagrange’s
equations of motion to obtain the interaction between these
pendulums and the airplane. Thus, for small motions the
fuels are treated as simple harmonic oscillators. The results
are applied to obtain the general equations of motion of this
system and, in particular, the lateral motion of an airplane
with internal fuel tanks in the plane of symmetry of the air-
plane. Since the general solution of the equations is ex-
tremely complicated, an attempt is made to evaluate the
results by carrying out numerical calculations for specific
cases. This approach is shown to be adequate in yielding
the most general effects of fuel motion.

The discussion of the numerical application of the equa-
tions of motion to specific cases is given in detail after the
derivation of the equations of motion. This discussion of
results is understandable quite independently of the deriva-
tion of the equations of motion.

SYMBOLS

XY,z airplane stability axes with origin deter-
mined by equations (13); also compo-
nents of applied forces along these axes

L, AL N components of applied moments about
X-, Y-, and Z-axes, respectively

i, j k unit vectors along .Y-, Y-, and Z-axes,
respectively

TR components of translational displacement
of airplane

F vector translational velocity of airplane
(fr+jyt+ki=ilitp)

U magnitude of steady-state velocity

Y, o, w components of disturbance translational
veloeity of airplane

v vector disturbance velocity of sirplane
(Gt jo+ kw)

R vector position of a point in airplane
(iR:+jR,+ kR,)

R/ vector position of center of gravity of
fuel in a particular fuel tank

Vv total vector velocity of & point in airplane

ISupersedes NACA TN 2280, “A Theoretical Analysis of the Effects of Fuel Motion on Airplane Dynamies™ by Albert A. Schy, 1951.

167



468

¢? 61‘!’

h

,[f

m

my

Ix Dy, Iz, Ixz

t ’ ’ ’
[X;IY;IZ:]XZ’

]Yzlj [‘YYI
I(i IPT

IIZII_/
Iy, Iy

Ky

REPORT 1080 --NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

sideslip angle (tm — {—)

infinitesimal rotations of airplane sbout
X-, Y-, and Z-axes, respectively

veetor rotational velocity of airplane
(ip+jb-+ky)

components of angular displacement from
vertical of line joining fuel center of
gravity to tank center, taken on mutu-
ally perpendicular planes; { positive in
direction of positive roll and » positive
in direction of positive pitch

distance from tank center to fuel center
of gravity

vertical displacement of fuel center of
gravity from equilibrium position

number of fuel tanks

mass

total mass of airplanc and fuel

total moments and produet of inertia of
airplane about X-, Y-, and Z-axes

rigid-body moments and products of in-
ertia about axesthrough centerof gravity

fuel moments of inertia about ¢~ and
n-axes through tank center

fuel moments of inertia about ¢- and
n-axes through fuel center of gravity
nondimensional radius of gyration in roll

(Vi

nondimensional radius of gyration in yaw

(5)
m, b2

nondimensional product-of-inertia param-

—1xs
eler <*mtb2)

kinetic energy

potential energy

period

time for exponentially damped or increas-

ing oscillation to halve or double am-

plitude, respectively
time

. . . ‘Ut
nondimensional fime parameter (T

acceleration due to gravity

flight-path angle with respect tohorizontal
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Subseripts:
f
a
0

air density

wing area

wing span

lateral nondimensional mass coefficient

(=33
F{b—pr’ .ubf—‘psb
differentiation operator %)

trim Lft coefficient (@éw)

'§ pUZS

rolling-moment coefficient
Rolling moment
1
5P USb
yvawing-moment coefficient
Yawing moment
1
50 UsSh

lateral-force coeflicient (

1

Lateral foree
§ P L’ ?S

particular fuel tank, or summation index
over fuel tanks (f=1,2, . . . k)

airplane without fuel

initial conditions at =0
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DERIVATION OF EQUATIONS OF MOTION
ASSUMPTIONS FOR DERIVATION OF GENERAL EQUATIONS OF MOTION

As a first approximation, only the effect of the motion of
the fuel as a whole is considered; that is. only the funda-
mental mode of the wave motion is considered. and this
mode is approximated by rigid-body motion. The main
effect of the internal wave motion is to introduce damping
into the fuel oscillation. This damping is caused by the
conversion of kinetic energv into heat through the turbu-
lence caused by the splashing of the fuel. A strictly analytic
consideration of such damping effects is extremely difficult;
on the other hand. the damping caused by the viscous tan-
gential forces between the fuel and the tank is completely
negligible (see reference 3). The analysis of the problem is
therefore confined to the motion with no fuel damping and
the effect of the damping is considered in the diseussion of
the results.

In a spherical tank the fuel can oscillate approximately as
a rigid body if no splashing is assumed for small oseillations.
The motion may be pictured as the “rocking’” of a spherical
segment of constant shape. The restraining force of the
tank. which always acts in a direction normal to the motion,
is exactly analogous to the tension in a pendulum. Thus,
the small motions of the fuel in a spherical tank may be rep-
resented quite well by the well-known simple properties of
small pendulum motions. This approach is used in the
mathematical analysis of the problem.

The effect of aspherical tank shape can be approximated
by replacing the tank by an equivalent harmonic oscillater
with an arbitrary amount of turbulence damping added even
for small motions. For example, the representation of ree-
tangular tanks as harmonic oscillators is discussed in refer-
ence 4. Thus in this ecase also the most general effects of
the fuel motion on the airplane motion should be qualita-
tively obtainable by this type of analysis.

The effects of large-amplitude fuel motions will be dis-
cussed qualitatively after the discussion of the results of the
mathematical analysis.  As usual in stability anslysis all
motions are assumed small and second-order terms are
ignored.

DERIVATION OF GENERAL EQUATIONS OF MOTION

With the preceding assumptions the physical problem can
be considered as the interaction between two or more rigid
bodies, namely the airplane and the several fuel pendulums,
with each fuel pendulum considered as suspended from the
tank center. The only potential energy considered in the
svstem is that of the pendulums. If the inertial character-
istics of the airplane and the fuel are known, the kinetie
energy of the system can be obtained from the translational
and rotational velocities of the airplane and the fuels. With
this information the interactions in the system can be obtained

by using Lagrange's equations of motion in the form (see
reference 5)

d /[QE,

d dE,  JE
a1\ 3¢,

5=~ st 4 (i=1,2,...7n @

where ¢, is one of the n generalized coordinates of the system
corresponding to the n degrees of freedom, ¢,is the corre-
sponding velocity, and @; is the corresponding generalized
force. The ¢, will be lengths and angles and the correspond-
ing @; will be forces and moments, respectively.

The airplane itself introduces the customary six degrees
of freedom, which are the three displacements of the airplane
system along axes fixed in the airplane (z, %, z) and the cor-
responding angles of rotation of the airplane about these
axes (¢, 8, ¢¥). Tor small displacements, the pendulum
motion can be described by twe angles ¢ and 5 since the
vertical motion can be neglected (see fig. 1). The angle ¢ is
measured from a vertieal line through the tank center to the
projection of the line joining the tank center to the fuel
center of gravity on the vertical plane parallel to the ¥ axi
and 5 is the corresponding angle in the vertical plane parallel
to the .V-axis. For small angles, ¢ and 3 may be represented

1Cos $CO8 b d
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Finvre 1.—Decompasition of horizontal fuel motion ia terms of angles ¢ and 5 in vertical
plines.
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as in figure 1. In effect this figure makes use of the fact that
small angles may be added vectorially. When the two addi-
tional coordinates ¢ and # are used fo describe the pendulum
motion, the whole system has two additional degrees of
freedom for each fuel tank.

Expressions must be obtained for E; and E, in terms of
the coordinates of the system and their time derivatives in
order to use equation (1). The only potential energy is that
of the fuel pendulums, which can be written as follows for k
fuel tanks:

k
E, :fz:{ meh,g (2)

For the height of the center of gravity in each fuel tank, as
can be seen from figure 1,

h=he-+h,~Il—lcos { cos g=! [1——<1-—% §'2)<1-";' ?72>]

or

b L5t 3)

Note that the vertical displacement % is of second order in
the small quantities 7 and ¢. This fact justifies the previous
statement that the vertical displacement could be neglected
in describing the pendulum motion only by the two coor-
dinates 7 and ¢.  As might be expected, equations (2) and
(3) indicate that each fuel pendulum is being considered as
an undamped oscillator with two degrees of freedom in a
horizontal plane.

The kinetic energy of the total system ecan be written as
the sum of the kinetic energy of the airplane and the kinetic
energies of the fuels. Also the kinetic energy of each rigid
body can be expressed as the sum of the translational energy
of the mass moving with the velocity of its center of gravity
and the rotational kinetic energy of the mass about its center
of gravity. Thus, when the inertial characteristics of the air-
plane and the fuels are known, the kinetic energy can be
obtained as a function of the generalized coordinates and
velocities if the translational velocity of each center of gravity
and the ahgular velocities of the airplane and fuels about
their respective centers of gravity can be expressed in terms
of these generalized coordinates and velocities.

In order to obtain the required expressions for these veloci-
ties, a system of axes fixed in the airplane with the X-axis
along the steady-state velocity at £=01s used, asis customary
in stability analysis. For the present the origin of the coor-
dinates will not be specified. However, these stability axes
are not inertial axes and Newton’s second law applies only in
en inertial system of axes. The inertial axes may be taken
as axes fixed in the earth. Then in the equations of motion
the velocities and accelerations must be measured with Te-
speet to the earth, and their expressions in terms of com-
ponents in the moving airplane axes may be obtained as
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shown in reference 6. These expressions will give the kinetie-
reaction forces, which for the case of a rotating system are
often referred to as “gyroscopic’” forees. For the velocity,
referred to the inertial system, of any point defined by the
vector R in the airplane axes (in particular, for the centers
of gravity previously discussed),

V=F+oXR+R=iU+v+oXR+R 4)
where all vectors are given in terms of the airplane axes and
F=it-+jy+kz=iU+v

is the velocity of the origin of the airplane system with respect
to the earth, while » and « are the translational and rota-
tional disturbance velocities of the airplane axes,

Equation (4) may now be used to express the inertial
velocities of the airplane center of gravity and the fuel
centers of gravity in terms of the generalized coordinates by
inserting for R the values R, and R/, where R, is the vector
position of the airplane center of gravity and R/ indicates
the vector position of any particular fuel center of gravity.
The vector R, is constant; therefore, R,=0. To obtain R ,} s
note that to first order

R/ =R,—il,sin (yot+6—n)—Fl,({s— cos vo—¢ sin v+
kl; cos (vot+0—ny)

R/ =R,—il/sin vy (0—n,) cos v —fl({,—o cos yo—
\P Sin 'Yg)—}‘klf[COS 'YQ—'(B—"‘IU) Sin "(’0}

where R, is the fixed position of the tank center. Since v, is
constant, to first order

R,’ =il (n,— 6) Ccos 'yo—ﬂ;(f';—i;cos 'Yo’"’az’ sin o) -~
Kl (7,—6) sin 7o

Again keeping only first-order terms leads to the following
equation:

wX R, ~wX R,+il8 cos vo—jl ¢ cos vo-i sin vo) kL4 sin v,

Now combining the last two equations gives

wXRf,'{"R/’zwaf—i_i'f}flf cos 'Yo_jlfé'f’{"klfﬁf sin vo (5)

This equation shows, as could be predicted physically since
no viscous force is assumed befween the tank and the fuel,
that the airplane rotation affcets only the motion of the tank
center..

From equations (4) and (5) the necessary translational
velocities can be obtained for the translational kinetic ener-
gies. The rotational velocity of the airplane is simply .
The spinning motion of the fuel about the vertical axis is
ignored; then, the rotational velocity of the fuel may be
given by the components 4 and ¢. The two corresponding
horizontal axes of rotation through the fuel center of gravity
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are principal axes of the spherical segment of fuel; conse-
quently, no product-of-inertia terms occur in the fuel rota-
tional energy. Also, since the airplane center of gravity is
in the airplane symmetry plane, fy;=7x+=0 and only the
Iyz product of inertia will appear in the airplane rotational
energy.

By use of equation (4), the airplane velocity can be shown
ta be

Ve=i(U+ut6R, —¥R,) +i(v+iR: —$R. )+

kE(w+¢RB, —6R,) (62)
When equation (5) is substituted into equation (4), the
velocity of any particular fuel center of gravity is

V,:i(U+u—{—6'Rz!—xf/Ryf+7‘?fo Cos 70) +j(v+’:[’Bzf_¢Rz,-_
S +E(w+¢R, —6R. 4, sin v) (6b)

If 77 is the magnitude of the translational veloeity of the
center of gravity of a rigid body, I’ is its moment-of-inertia
tensor about the axes through its center of gravity, and
is the rotational velocity of the rigid body, the kinetic
energy is

Ek ‘72‘1"‘(13_ Lx.z 2Iy'z,(.dywz'—'

IY OJJ I{wﬁ—

QIXY,OJIQE,) . (7)

K l;
2IXZ Wl —

Thus, for the kinetic energy of the airplane, substitution of
equation (6a) into equation (7) gives

By =g (Ut iR — IR, )+ (0 F§R, —GR, )+

Iy’ Iy, 1., -
R Sl s S B

(8a)

(w+ &R, —OR: )+

and, for the kinetic energy of each fuel, substitution of
equation (6b) into equation (7) gives

Ee=T(U+ut0R:, — iR, 44, cosvo)+

(e 9B, — R, — $ A+ (w+ R, — O, A sinye) ]+

I/, L)
5 A (8b)

k
For the total kinetic energy, Ey=E; + > E,; therefore,
=1

equations (2), (3}, and (8) may be used in equation (1) to
obtain the (2k+86) equations of motion. However, it must
again be racaﬂed that the coordinate system is rotating.
The whole system is therefore subject to an additional
gyroscopic acceleration since the time-derivative operator
contains an additional giyroscopic term (see reference 6)
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when the components of the veloeity (or any vector) are
taken in the rotating system:

= P

5t1‘ r4wXr
Thus the gyroscopie acceleration acting on the whole rotating
system is

@Xr =eX{U+0)~ (X )U =l — k6l

The effect of this acceleration can be brought into the equa-
tions of motion by considering the inertial reaction of the
total mass to this aceeleration as an additional applied force.

If the totsl mass is m =m,+ me, this reaction has the
following components:

Vi=—m Uy

(9)

Z’:thﬁ-

In addition there is the inertial reaction torque 3, on the
fuel; this torque acts about the tank center and is caused by

the &ccelera;tion of thfe tank center. For each tank, the
vector reaction torque 1s
M/ =R/ —RyXm,U(—jj+kb
=m,U[(—il, sin v, + kI, cos vo) X (—ji + ké) -+
Second-order terms]
~mfoU(zy €08 vo--f6 sin yo-+ ki sin yo)
Since M =(M/); cos vo+(M/). sin v, and M, =(31,),,
A =md, Uy (costyo-Lsin®yy) =m LTy (10a)
M) =m ;U6 sin v, (10b)

The forces and moments in equations (9) and (10) must
be added to the weight and aerodynamic forces to obtain
the @; in equation (1).

For convenience, the results of equations (2), (3), and (8)
are as follows:

k
By=g g3 mds(si+n7) (11a)
E=72 (U+u+6R, —§R, +(s+9R, — $R. '+
. . k .
(9B, —6R: )1+ 3 %Ln—‘ (UtutoR, —
YR, il cos v+ (v + ¥R, — R, — (A )+
Iy
(w+ bR, — (R, +i, sin vo)]} L gy
Iy’ ot e
2} z 152 Ixz@‘/‘i‘ Z(Iffffl u;"?f)
(11b)
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Equations (9), (10), and (11) may now be used in equa-
tion (1) to obtain the equations of motion. It should be
noted thabg——L— ©,0_ 2 = and EJ i

U +wy ou' 2y ov Tow
ample, to obtam the equation of motion in the z-direction,

note that

Forex-

OE,_OE, .
dr oz

Then, equation (1) may be written as follows:
4 9111;;)_& )
dt Tdi
=i, (12+6Rza—gbRy“)+rZ‘,m,(u+ R, — ¥R, +
=1

Ay cos vo)
s & -
=mﬂl+B(mal?za-\—')—_‘,mfsz)-—W<maRya+
=1
k £
;m;Rz,f>+§ﬁfmﬂ; Cos "YO:X (12)

The position of the origin of airplane coordinates has not
vet been specified. Equation (12) and the similar equations
ohtained in the other degrees of freedom suggest that the
position of the origin be determined by the following three
conditions:

&
InaRxa—l_Z: m!Rh:O (138')
=1
13
maH,a-E«?z} m. R, =0 (13b)
=1
k
maRza—I—fZ‘ mfRz!=0 (13¢)
f=1

Equations (13) imply that the origin is at the position of the
total center of gravity when the fuel mass is treated as being
concentrated at the tank center. This choice of the origin
greatly simplifies expressions such as equation (12). The
physical reason for this choice is again that the fuel does not
rotate with the airplane; thus, a force acting on a line through
this point, the center of gravity where the fuel reaction is
assumed concentrated at the tank center, will produce no
rotation of the airplane,

The following substitutions will also greatly simplify the
writing of the final equations of motion:

Fem I ma[(R ) ()T B R+ (B

Ty =Tam (R (R o [(R )+ (R,

. - (14a)
La=1I7 + ma(Re )™+ (B) |+ 2 ms [(Be)*+ (Hy)]
[XZEIXZ"_{'maR: Rz +i mfRz Rz
ot Ty ey J

Note that the quantities defined by equations (14a) are the
total moments and product of inertia about the origin of the

airplane coordinates when the fuel mass is assumed to be
concentrated at the tank center. Finally, the necessary
moments of inertia of each fuel pendulum about the tank
center are

Iff:I§/r+7an!2 } (14b)

L =I, +m/}
Without loss of generality then, equations (13) and (14)
are used in the equations of motion ebtained by substituting

equations (9), (10), and (11) into equation (1). The general
equations of motion can now be given as follows:

m,zk—}—?i_,; mA 5, cos yp=X

m,(u’)—Uf?)-f—é1 Mgy sin yo=2

iR 3 ) 6
(Moot 35 iR R, )
Tt‘__{ (R., cos vo— Ry, sin yo)ymdsdiy= M r (15a)

Lginmady fgn 44 cos vo+(b—Uf) sin vo+

Rylcp sin yo—k-B(Rzl €08 vo— Rz sin yo)—
Ryl{[} €oS yo]=0

m(s+U¢)— mfffs“;—I

- fxzzf;—(maﬁyamﬁ;l m,R, ﬁ,{) i

E
Zj M (Beyt 4Ry cos vo) =N

Ixﬁb—“fleﬁ—(ma&af{va'*'% mfR‘fR"f) o+ 1 (15b)
; k
;1 mflf(szE,—{—Ryﬁf Sin 'YO) =L
I ftmil(gti— i —Uj+Rep—R. 6) =0
p

In equations (15a) and (15b) only the fuel equations for the
first fuel tank have been writien. In each set there are k
similar fuel equations. As has been previously stated, the
forces on the right-hand sides of these equations are the
applicd forces and the weight and aerodynamic forces.
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SIMPLIFYING ASSUMPTIONS

The equations of motion have been separated into what
wonld generally be considered the longitudinal motions,
equations (15a), and the lateral motions, equations (15b).
In the ordinary six-degree-of-freedom case, as can be shown
from considerations of symmetry, no cross-coupling terms
exist between these motions in the serodynamic forces (see
reference 7).  Although such terms are known to exist in
practice, they are small and generally neglected. However,
many cross-coupling ferms oceur between equations (15a)
and equations (15b) because of the fuel motions, even when
the werodynamic coupling forces are ignored. The magni-
tudes of these fuel forces can be seen to depend on the masses
of the fuels, the vector positions of the fuel tanks, the “ pendu-
tum length” (i. e., the radius of the tank and the height of
the fueld, and the accelerations involved in the fuel motion.
[ncreasing the magnitude of any of these parameters will
inerease the effect of fuel motion. For most airplanes these
fuel forces will be relatively small, but the present investiga-
tion is primarily concerned with all first-order fuel effects.
[n any particular case, the actual magnitudes of these forces
may of course be obtained by inserting the values of the
previously mentioned parameters.

Symmetrical fuel distribution.—Some of the terms in
equations (15a)—for example, the ¢ and ¥ terms in the 6
equation—are essentially product-of-inertia terms arising
from unsymmetrical distribution of the fuel about the y=0
plane (i. e., the plane of symmetry). That this is so can be
seen if the fuel tanks are assumed to be distributed symmetri-
cully with respeet to the svmmetry plane; that is

k

k k
2 merva,:Z mfRz,Ru_(:Z m.rRyf=0 (16a)
7=1 =1 =t

and from equations (13)

R, =0 (16b)

Therefore, these terms vanish for symmetrical fuel distribu-
tions. In most cases the fuel will be symmetrically distrib-
uted. and substitution of equations (16} into equations (15)
vields the equations of motion for svmmetrical fuel distri-
hution:

k N
n’tﬂ,‘l‘%“z m;[;ﬁf cos ')’Q:;EL—
=1
. - 5 k .
mw— U642 md 5, sin yo=2
=1
. ko . .
Iv8+4+27 (R, cos yo—R:, sin yoymdg,=M
=1 ’ ’
) . rii7a)
L r mii[g g+ cos vo+ (0 — U8) sin yo+
Ry ¢ sin vo+8(R., cos yo— R, sin yo)—
R, b cos o) =0
7

31

2T24R3—54

. k w
m{e+ U‘.b)'—; mA =Y
=1
. - k -
Ipy—1Isz0 “; MALR: {r+ R, jrcos vog=N
Icp— [xz’#-{-[z:{ mAR: SRy firsiny) =L }(17D)

Ir1§21+mlll(gfl—l:_irgb’:‘Rzl‘Z—‘ RzL‘;.)) =0

4

In equations (17) even though the terms arising from unsym-
metrical fuel distribution have vanished, some cross-coupling
terms still remain between equations (17a) and (17b). These
terms occur in the 7 equations of set (17a) and in the ¢ and ¢
equations of set (17b). The significance of these terms is
evident since each contains a factor R,,f. Thus, these terms
arise when the airplane has fuel tanks with centers not in
the plane of symmetry, even though they are symmetrically
distributed with respect to this plane. For example, they
would arise for wing-tip tanks. Physically, these terms
clearly give the interaction between the longitudinal fuel
motion 7, in the wing-tip tanks and the airplane rotation
about the vertical axis, which eonsists of the lateral motions
¢ and ¢. For example, assume for simplicity that y,=0;
then, a yawing acceleration of the airplane will cause a lon-
gitudinal fuel aceeleration #, in the wing-tip tanks, and vice
versa.

From this discussion the » motion appears to couple the
lateral and longitudinal airplane motions even for the per-
fectly symmetrical fuel distribution described by equation
(16a). However, the fact that this coupling does not oeccur
can be seen by considering any pair of symmetrically placed
and loaded tanks. Designate the n motion in this pair of
tanks by m, and 5, Then, the 5 equations in equations (17a)
show that a longitudinal horizontal acceleration of the tank
gives rise as expected to 7 accelerations. Since the system
is linear, this portion of the » motion may be considered
independently, and because of the symmetry of the two
tanks it is seen that #;=#, for the portion of the 7 motion
arising from the longitudinal motion. Therefore, in the ¢
and ¢ equations of set (17b) the effects of this % will vanish
since R,,=—R,,. In a similar manner the laterally caused
7 motion can be shown to have no effect on the longitudinal
motion. Essentially the argument is that the 5 motion for
each pair of tanks can be split up for perfectly symmetrical
fuel distribution into symmetrical and antisymmetrical
motions. The symmetrical portion of the 7 motion for each
pair of tanks couples only with the longitudinal motion; the
antisvmumetrical 7 motion couples only with the lateral
motion. Thus, for perfectly symmetrical fuel distributions
the 7 equations of set (17a) could be eombined with set (17b),
only lateral degrees of freedom in the 7 equations being used
(since the syvmmetrical portion of the y motion is of no
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interest); or the 5 equations may be used as shown with
equations (17a), the lateral degrees of freedom in the 7
equaiions being ignored.

Fuel tanks centered in symmefry plane.—Many airplanes
have large internal fuel tanks which are centered in the
airplane symmetry plane. For such airplanes the equations
of motion may always be separated into independent lateral
and longitudinal modes since I,,=0. Using this value In
equations (17) gives the equations of motion for tanks
centered in the symmetry plane:

k 3
mﬂ},—l—fz m g, cos yo=X
=1
., k «
mg(u'}—UG)-{-; m g, sin yo=2
o k i
I}'8+Z (sz cos ’}’Q_R;f sin ’Yg)mf[fﬁ]= 3.{
i=1 r (18a)
In1ﬁ1+m151[9771"r’£:’~ c0s Yo+ (w— U8) sin o+
(Rz‘ coSs 'YO_RZI sin yc)é1=0
. J
N Lk . A
m;(f}’{‘U%&)—; mfz_;g'f:}
Iz?,[/—]‘x'qu—; mflfR;fff=A“
IX¢—IXZ¢+fZ) mAR, {,=L r (18h)
=1 !
Iﬁfl'i‘?ﬂ:lh(Qﬁ'l"b—DT;b“Rflgb_Rzlé;):O
J

Each set of equations, (18a) and (18b), contains (£+3)
variables; the two sets can be seen to be independent of each
other since the ¢ motion of each tank couples with only the
lateral motion and the y motion couples with only the longi-
tudinal motion.

For the case of a single fuel tank at the airplane center of
gravity the modification of equations (18) is obvious. Then
R,=R,=0, and all coupling between the rotational motion
and the fuel motion vanishes; that is, all the fuel terms in the
rotational equations vanish and all rotational terms in the
fuel equations vanish, For an aspherical tank the rotational
coupling in this case will be small.

LIMITATIONS INHERENT IN THE APPROXIMATIONS

Before proceeding to the application of equations (18b)
it is appropriate to consider somewhat more explicitly the

assumptions involved in the indiseriminate droppiung of all
second-order {erms which appeared during the derivation
of the equations of motion. In this connection the correc-
tion, arising from the airplane accelerations, to the constant.
acceleration feld ¢ involved in the pendulum potential en-
ergy should be considered. The assumption which is implied
in neglecting these accelerations is that the accelerations of
the tank centers are small with respect to g.

If this and previous approximations are considered, it
can be seen that three essential assumptions were made in
dropping second-order terms:

(1) The fuel and airplane angular displacement variables
are small enough so that the angle approximates its sine.
However, this approximation sometimes took the form that
the angle was much Jess than 1 radian.

(2) The disturbance velocities are much less than U, and
products of the linear or angular velocities can be ignored.

(3) The accelerations of the tank centers must be small
compared with g. ’

Strictly speaking then, the statement that the equations
of motion (15), and also the simplified equations, arc ac-
curate equations of motion to first order is to be taken to
mean that the motions to which these equations apply are
restricted by the preceding three conditions. Thus, the
equations would appear to remain accurate at least at the
beginning of a disturbance. Moreover, when the motion
becomes Jarge enough that these assumptions break down,
the fundamental physical assumption that the fuel may be
considered to move as a rigid body also breaks down; there-
fore, nothing can essentially be gained by keeping higher-
order terms in the mathematical expressions.

Since the pendulum motion is little changed even up to
angles of 30° to 40°, it could be expected that aside from
splashing effects these equations should remain a good to
fair approximation even at such angles. On the other hand,
even the splashing effects, although they would infroduce
some damping and change the inertial characteristics of the
pendulum somewhat, could certainly not be expected to
cause the general assumptions to bresk down completely
for fuel motions up o angles of 30° to 40°. Thercfore, the
equations of motion derived are assumed to present a fair
picture of the disturbance motion even up to fuel displace-
ments of this magnitude.

APPLICATIONS TO SEVERAL CASES

NONDIMENSIONAL EQUATIONS FOR TANKS IN SYMMETRY PLANE

The equations of motion (18b) have been applied to the
lateral motion in several cases with two fuel tanks in the
plane of symmetry. In these cases the lateral motion can
be considered independently. The applied forces are the
weight, the usual serodynamiec forces linear in the disturb-
ance velocities, and any disturbing forces that may be
present. In order to put the equations in nondimensional
form, the nondimensional lateral airplane equations are used



A THEORETICAL ANALYSIS OF THE EFFECTS OF FUEL MOTION ON AIRPLANE DYNAMICS 175

as obtained in reference 8. The fuel equations are made
nondimensional by making the standard transformation to
nondimensional time derivative, as in the airplane equations,

!lf

and then by dividing through by The resulting

nondimensional expressions in the foﬁo“mg equations are
defined in equations (20):

‘ 1 i
(F‘I)D—*};C‘y‘g)ﬁ (#bD—"—CL tan'yo)u——(‘{,‘(p ‘u,bIb[D SI
{.
#bzﬁpeﬁ'zzé Cy (194a)
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GE%
T (20)
Ky “mdb
Ir=I;,

The derivatives Cyp and Cy_ were assumed to be zero.

METHODS OF SOLUTION

In the present case the two fuel degrees of freedom intro-
duce two additjonal oscillatory modes into the characteristic
solution, in addition to modifyving the original airplane mode.
The motion will therefore be a combination of three oscilla-
tions (aside from the less important exponential modes), but
just knowing the three oseillatory roots is insufficient to indi-
cate the type of motion since the relative magnitudes of the
oscillatory modes must also be known. For this reason
motions must be caleulated in order to see the actual effects
of the fuel motion. However, in several cases the charae-
teristic roots were also found in order to facilitate the inter-
pretation of the motions. These cases will be discussed
subsequently.

The most convenient method for the analvtical solution
of a set of linear ordinary differential equations such as
equations (19) is probably the Laplace transform method
{see reference 8). However this method is extremely cum-
bersome and difficult to check since it involves the expansion

" of fifth-order determinants in which the elements are often

quadratic functions of the characteristie root. Therefore, it
seemed preferable to use some step-by-step method which
would be more amenable to machine computation.

Reference 9 gives a matrix method for getting the step-by-
step solution of a set of linear ordinary differential equations.
When applied in the present case to equations (19) this
method results in a simultaneous solution for the motion in
each of the five degrees of freedom and alse for the motion
in D¢, D, D¢y, and Dia. The calculations were carried out
on the Bell Telephone Laboratories X-66744 relay computer
in use at the Langley Laboratory. The essential details of
the method are given in appendix A,

SOLUTIONS FOR SEVERAL CASES

The two basic cases for which motions were caleulated
were case A, a present-day high-speed airplane with two fuel
tanks satisfying the conditions for equations (19}, and case
B, which corresponds essentially to case B of the model used
in reference 2. 'The essential parameters for these two cases
are given in tables I and II. Table II gives the conditions
for case A when both tanks are one-half full (A;) and when
the fuel height equals one-half the radius (A,) and for case
B when the fuel heights in both tanks are 2 inches (Ba), 3
inches (B:), and 4 inches (B.,).

In case A the tanks are spherical, somewhat over 4 feet in
diameter, and centered on the body axis spproximately 4
feet in front of and behind the airplane center of gravity.
The flight conditions are given in table I. The fuel weight
in the half-full condition is approximately 25 percent of the
total weight.

In case B the tanks are spherical, centered in the plane of
symmetry slightly less than 5 inches below the airplane axis

TABLE I
STABILITY DERIVATIVES AND MASS AND GEOMETRICAL
CHARACTERISTICS FOR TWO CASES CONSIDERED

f
i Parameters Case A Case B
]
oS, ~Lod2 QY-
G e e 017 £0.17
Cig.. —0. 126 —0. 14
C'.,. —(. 01552 b—0. 40
Ci,. —~0.342 —0.30
[ —0.28 —0. 18
Clyoeeieme S .- 0.0795 .30
W e}.ght of au'plane alone, I - 6 00 1125
Lol A - 130 2 67
b fe . - . 2 40
T LS 0 —11
g slugsfertt .o ____ 0. 00138 0. 002378
Sbfsee. T 04 BL5to 7425 |
1

® In case Bey, Cap=0.29.
b vctually, slightly different values of Ca, were used for each of the subcases of case B.
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and 4 inches in front of and behind the model center of
gravity. The diameters are 8 inches and the total fuel
weight in the half-full condition is approximately 46 percent
of the total weight. The flight conditions are the same as
in reference 2.

Motions were calculated for certain subcases of the basic
cases which were obtained by varying certain significant
parameters. By comparing the resulting motions an attempt
was made to evaluate the effect of varying such factors as
amount of fuel, position of tanks, and relative natural fuel
and airplane frequencies on the disturbance of the airplane
motion caused by fuel motion. Also various initial condi-
tions were considered to show the effect of initial conditions

TABLE I1
FUEL DEPENDENT PARAMETERS

Pyrameters A Ag B2 By By
Radius of forward
tank, fi. .. e 2.15 215 0,333 0,333 0.333
Radius of rear tank, ft. 2.12 212 0.333 0.333 0.333
Fuel height in for~
ward tank, ft.. ... 2.15 1975 0. 1667 0. 250 0.333
Fuel height in rear
tank, ft__ . oacmeeeees 2.12 L06 0. 1667 (. 250 0. 333
5y I 3 3.5 0.333 0.333 0.333
Ry ft ... —-4.1 —0.333 -0, 333 ~0.333
Ry, fbo . N 0.0123 0. 407 0. 407 0. 407
Ry, (t —0.0144 0. 407 0. 407 Q. 407
Weight of
fuel, 1 462 151 3.07 4.85
Weight of rear fuel, Ih. 1,068 334 1.51 3.07 4.85
Totsl weight of air-
plane and fuel, 1b__ . 9, 518 7,766 14. 27 17.39 20. 95
CLoo e 0.19 0. 19 1. 362 1.178 1.174
Iy, slug-ft?. .. 1,360 1,360 0. 1081 0.1243 (. 1428
Iz, slug-ft2.___ 7,340 7, 708 C. 2098 0. 2206 0.233
262 277 0 0 0
0. 806 1.45 0.225 0.174 0.125
0.795 1.43 0.225 0.174 0.125
85.2 40.0 0. 00315 0. 00507 0. 00668
I, slug-e2 59.7 28.1 0.00315 0. 00507 0. 00668
i
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on the resulting motion. Insome cases an initial disturbance
in sideslip was assumed, and in other cases an initial fuel
disturbance was assumed. An initial sideslip of 5° and a
fuel displacement of 10° were arbitrarily chosen as standard.
Since the equations are linear, multiplying the initial dis-
placements by a common factor simply multiplies the result-
ing motions by the same factor. In this connection it must
be emphasized that, if at any time the caleulated motion in
any degree of freedom becomes too large to satisfy the
limitations previously discussed, the following motion is
meaningless. For example, if a 5° displacement in 8 gives
rise to a fuel motion much greater than 30° to 40°, the accom-
panying 8 motion is meaningless because the assumption of
small displacements is violated. However, if multiplying the
fuel motion by some arbitrary factor, for example 2/5, will
bring its peaks down to less than 30° to 40°, then the g motion
resulting from an initial 8 disturbance of 2° can be obtained
by simply multiplying the previous 8 motion by 2/5 also.
The effect of large fuel displacements must be discussed
qualitatively.

The motion in sideslip and the motion of the two fucl
pendulums in the various subcases are shown in figures 2 to
12. Comments on these motions are presented to facilitate
interpretation of the figures. The period of each fuel pendu-
Ium is called the natural fuel period. The period and damp-
ing of the airplane, the fuel being disregarded, are called the
natural airplane period and damping.

Case A,.—The natural fuel periods for case A; (half-full
tank) are approximately 1.66 seconds and the natural period
of the airplane alone is 1.40 scconds. Damping to half-
amplitude occurs in 2 cycles.

The motion in figure 2 is for initial g,=2°- The carly g
motion seems to have more damping than the natural airplane

——— 4, Front f
— &, rear fank ‘

e - N o B } . e =

ank

FLaURE 2. ~Present-day high-speed airplane with tanks one-half full (case Az). Sidesip and fuel motions following initial sideslip, Sy=2°.
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mode. The disturbance arising from the fuel modes is evi-
dent after 2 eyveles. That the irregular residual oseillation
of amplitude %° to %° is essentially due to the fuel modes
is seen from the fact that the dominant period in the later
motion is approximately 1.6 seconds. Notice that in this
case a 5° initial B, would almost immediately cause fuel dis-
placements of over 80°, so that the following motion would
he radically changed.

The motions shown in figure 3 for (f)o=({2)s=10° are
quite regular and indicate one dominant mode in each motion.
The fuel period is 1.6 seconds. The airplane period starts
at 1.4 seconds, builds up to 1.7 seconds, and averages 1.6
secomds. The amplitude of the sideslip motion is very small.
The largest such motion which could oceur for this type of

477
disturbance would be for initial ({1)e=({2)e=230° and would
give 8 amplitude slightly more than 0.1°.

The small amplitude of the sideslip motion in figure 3 was
surprising. It was conjectured that for this fuel configura-
tion the fuel displacement (£1)o=10° and (f)e=—10°,
corresponding essentially to an initial yawing moment, might
be more effective in inducing an airplane oscillation. (See
fig. 4.) Apparently, this configuration is more effective
inasmuch as the sideslip motion now builds up to an ampli-
tude of approximately 0.4°. The energy necessary to induce
this considerable “snaking” type of oscillation seems to be
obtained initially from the rear-tank motion, which is in the
proper phase relation with the sideslip motion to feed energy
into it at the stari of the motion.

N\

N

N \/ v

, fromr fonk
§., rexr

For

;1": ~"

i

i

t |
b A4 ol
i L gel

12

F1oURE 3.—Present-day high-speed airplane with tanks one-half full (case 4;).

f, sec

Sidestip and fuel motions following initial fuel disturbance, ()= (F)e=10°
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The fuel periods in the regular motion are slightly over
1.6 seconds. 'The airplane period increases from 1.5 to 1.8
seconds and has an average period of 1.6 seconds.

Case A,.—The natural fuel periods in case A, are approxi-
mately 1.52 seconds and the natural airplane period is 1.49
seconds. Damping to half-amplitude occurs in 1.3 cycles.

The motion in figure 5 is for initial 8;=0.5°. The early
sideslip motion secems to be of greater damping than the
natural airplane mode. The residual airplane motion arising
from the fuel modes sets in very quickly and is a regular
unstable motion of very large relative amplitude with a
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period of approximately 1.7 seconds. Both fuels start with
a period of approximately 1.5 seconds, which increases to
1.7 seconds. ) ,

In figure 6, (f)o=—10° and ({3)o=10°. The sideslip
builds up to a fairly regular oscillation of 0.4° amplitude
with the period increasing from 1.5 seconds to 1.7 seconds.
The fuel motion has a period somewhat under 1.7 seconds
with amplitude quickly building up to the limits where
splashing must become important.

Case B,.—The sideslip motion shown for case B, appears
to be a normal damped oscillation for the first 4 seconds

20r
/6

2 /

————— &, Fronmt fork
s, rear fonk

1 L 1 ] i i

! 1 ! { | 1

- E— !
Q 4 .8 Le LE 26 24 28 32 36

| —
40 44 48__.52 56 80 84 88 72 76

t, sec

FIOURE 4.—Present-day high-speed airplane with tanks one-half full (case A1), Sideslip and fuel motions following Initial fuel disturbanee, (§1)e=10°, (¥2)o=—10°
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(fig. 7, 8,=5°), but then the peaks show a slight {rregularity
instead of damping smoothly. The period of the early side-
slip motion appears to be somewhat over 0.9 second and the
motion damps to half-amplitude in less than 2 cyveles. This
motion is very close to the undisturbed airplane model
tperiod of 0.92 sec and damping constant of 1% eveles).
The natural fuel periods are 0.61 second. The fuel motion
is very irregular and obviously contains considerable amounts
of at least two characteristic modes.

Cases B; and B,.—The motion in cases B; and B, shown in
figures 8 and 9, respectively, for 8,=5° is very much the
same as in the previous one, except that the disturbance of
the airplane mode in the sideslip motion appears somewhat
more pronounced as the amount of fuel increases.

Figure 10 (case By, ({1)¢={({2)0=107) shows that the motion
in sideslip resulting from the fuel displacement is much more
irregular than in case’A. The dominant mode corresponds
to a fuel frequency, but apparently the airplane mode is
present with considerable amplitude. The maximum oscilla-
tions are approximately £4°. The sideslip motion in this
case was much more irregular than for the corresponding
initial conditions in case A. It was conjectured that this
might be caused by the fact that in this model both tanks
are below the X-axis, so that the coupling of the fuel motion
with yawing and rolling motions does not have the same
phase relationship as in case A where ome tank is above and

ON AIRPLANE DYNAMICS 479
one is below the X-axis. Therefore in case By, shown in
figure 11, the front fuel tank was assumed to be above the
Xaxis, all other conditions remaining as in case B,. In this
case the general type of motion does seem to resemble that
in figure 3. The sideslip, which builds up to +4°, shows
a snaking at the fuel frequency.

In case A the fuel natural periods are very close to the
airplane period. In case B, however, the fuel period is ap-
proximately two-thirds of the airplane period. In case By,
shown in figure 12 for 8,=35°, the value of C’,‘ﬁ of the model
has been arbitrarily changed to give the model a period very
close to the fuel period of 0.66 second. Comparison with
figures 2 and 5 shows that the motion in this case is very
much like the motion in case A.

Transverse accelerations.—In evaluating pilots’ reactions
to snaking oscillations, the magnitude of the transverse
accelerations involved in the oscillations has been found to
be an important factor. Acceleration amplitudes above
0.025¢g are found to be bothersome, and amplitudes above
0.08¢ are considered very unsatisfactory. Calculations of
the transverse accelerations involved in several of the previ-
ous motions were carried out. The magnitudes of the accel-
eration peaks in the residual oscillations were found to be
approximately 0.04¢ to 0.05g. The actual motions are not
shown sinee all the airplane oscillations are essentially of the
same type as the g8 motions.

A deg
D

S et . fron? famk
S, rear fonk

AN :
88 82 2Jé&

16 20 24 25 32 36 40 44 48 52 56 60 64 &8 77 76 80 &<
f, sec

4 8 12

Fi6URE 5,—Present-day high-speed airplane with fuel heights onc-half the tank radius (case A»}. Sideslip and fuel motions following initial sideslip, 83=0.5°.
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FrarrE 7.—Free-iying airplane model with fuel heights one-half the tank radins (case Ba).

DISCUSSION OF RESULTS

The motions described in the preceding section are suffi-
eient to give a fair picture of the types of possible fuel effects.
Moreover, since each motion is just & superposition of the
characteristic modes of the total system, these motions are
often easier to understand if the characteristic roots are
known. Physically it is clear that the characteristic modes
will not differ much from the natural (uncoupled) modes
when the interaction between the airplane and fuel is small.
Comparison of figures 2, 5, and 12 with figures 7, 8, and 9
indicates that the interaction between airplane and fuel is
strongest when the frequency of the airplane is close to that
of the fuel, as might be expected from comparison with the
resonance phenomena exhibited by an oscillator driving a
system at its natural frequency. For this reason the charac-
teristic modes of the total system were calculated in cases
A: and By, where the frequency ratio between airplane and
fuel natural frequencies was practically unity. The natural
modes are given for purpose of comparison. The results

272483 - 54——32

Vs
~ - /
\
: 1 { 1 1 H i ] £ L ! £ ] i 1
= 12 18 20 24 28 32 ‘36 40 44 48 52 56 &0

=C

Sideslip and fuel motions following initial sideslip, Se=5°.

are given as follows in terms of periods and times to halve
or double amplitudes, in seconds:
Case A;, natural modes:

P.=149 Ty,=1.91
P,=P,=1.52
Case A,, total system:
P,=147 T,=61
=1.29 Ty=1.34
P,=1.67 T,=4.56
(Case By, natural modes:
P.=0.66 Ty=1.29
P,=P,=0.66
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FI6URE 8, —Free-flying airplane model with fuel heights three-fourths the tank radius (case Bs). Sideslip and fuel motions following initial sideslip, Bo=5°.

Case By, total system:

P,=0.65 T,e=30
P,=0.54 Ty=1.5
Py=0.71 T,,=0.48

In these cases of large interaction it is difficult to identify
one of the characteristic modes as the airplane mode. The
characteristic mode in which the period is changed least
from the natural airplane period has been ecalled the airplane
characteristic mode. However, in figures 5 and 12 this
mode is not obviously the dominant one, as the airplane
mode is in figures 7, 8, and 9.

The most important effects to be noted in these particular
cases, where the fuel and airplane frequencies are equal, are
that a characteristic mode which is very lightly damped with

g frequency close to the natural airplane frequency exists
and that an unstable mode appears. In connection with the
first of these effects, it would seem thaf, theoretically,
certain initial conditions might be found that would exeite
mainly this lightly damped mode in the characteristic solu-
tion for B, so that the resulting motion would be a typical
snaking. Of course the required initial conditions might or
might not be practical ones.

The total characteristic modes were also calculated for
cases B, and By, to investigate the changes in motion caused
by a hypothetical shift of one of the fuel tanks. The natural
modes and the characteristic modes of the total system are
given as follows for comparison:

Cases B, and By,, natural modes:

P,=0.84
P1=P2=066

Ty,=1.64
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FiatRE 9.—Free-fying airplane model with tanks one-half full (case By, Sideslip and fuel motions following initial sideslip, 8¢=5°.
Case By, total system: It is interesting to note that both fuels in figure 10 and
also in figure 11 seem to follow the more stable fuel mode in
P,=0.88 Ty=1.91 the part of the motion shown. The 8 motion in figure 11
P,=0.63 Tu=5.45 seems to show the effect of the unstable mode. It appears
N in this case that, when the fuel tanks are in front of and
3 = . - - -
£,=0.53 Ty=161 behind the center of gravity, the configuration with one tank

above and one below the X-axis gives rise to an unstable
mode: whereas the configuration with both tanks below the
P,=0.86 T,=1.14 X-axis makes both fuel modes stable.
A = A comparison of figures 2 to 4 or figures 5 and 6 clearly
PIZO.OI z,ézlg.b - e .. .
shows that the initial conditions can have & very important
P,=0.60 T,=—10.2 effect, since the least stable mode does not necessarily become

Case By, total system:
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Fiaure 10.—Free-fiying airplane model with tanks one-half full (case By).
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Sideslip nnd fuel motions following Initial fuel disturbance, (f1)o={{10e=10°.
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FiurE 11.—Free-flying airplune model with tanks one-half full and front tank assumed to be shifted above the X-uxis (case Bya).

f8 20
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Sideslip and fuel motions following initial fuel disturbance

(o= {{2o=10°.

dominant for a long time. The 8 disturbance was chosen as
a typical airplane disturbance. On the other hand the dis-
turbance of the fuels as an initial condition would seem to
be completely artificial. However, these motions are be-
lieved to give a rough idea of the residual oscillations caused
by fuel motion, at least insofar as magnitude is concerned,
sinee, if the fuels were still displaced after the airplane motion

had practically died out, the remaining motion might be
considered to be the tvpe caused by a fuel displacement.
From this point of view figures 4, 6, 10, and 11 scem to
indicate that residual oscillations of the order of magnitude
of %° fo ¥%° might be expected in these cases. Actually,
figures 10 and 11 would show oscillations of the order of
%2 for 30° fuel displacements.
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FisuRE 12.—Free-flying airplane model with tanks onc-half full and Cug adjusted to make natursl firel and airplane frequencies equal {case Bu).
initial sideslip, Be=35°.

Sideslip and el motions following ~

Because of the lengthiness of the calculations, only cases
A, Ag, and By, were carried out far enough to show the
residual oscillations following & 8 disturbance. It is evident
that the motion in case B,, (fig. 12) resembles the motion in
case A (figs. 2 and 5) much more than it resembles the un-
modified case B motion (figs. 7 to 8). The reason for the
smaller relative fuel motion in case By, is probably the fact
that the relative fuel mass is considerably larger than in
case A, In case Ay (fig. 5) the residual oscillation dominates
the motion almost immediatelv. These results show that the
importance of the residual oscillation depends mainiv on the
¢loseness of the natural airplane and fuel frequeneies, that is,
on the parameter which might be called the frequency ratio.
Inasmuch as the previous discussion of the characteristic
modes indicated that the frequency ratio was also the most
important factor affecting the characteristic modes of the
system, the frequency ratio generally can be seen to be the
most important factor determining the disturbance of the
normal airplane motion caused by the fuel. Mloreover, case
A indicates that for spherieal tanks the fuel frequency may

easily be of the same order of magnitude as the airplane
frequency. Reference 4 indicates that the same is true for
rectangular tanks and for arbitrarily shaped tanks of reason-
able dimensions. Thus, even though the residual oscillations
might oceur at fuel frequencies, these frequencies would not
be distinguishable from the normal sirplane frequency in the
cases where the fuel effect is most pronounced, since in these
cases the frequency ratio approaches unity,

The effects of unstable modes cannot be understood with-
out considering the nonlinear effects due to splashing of the
fuel. For linear systems the presence of an unstable mode
would imply that the total system is unstable. It has been
shown, however, that in an actual motion if the coefficient
of the unstable mode in the solution for the sirplane motion
is very small compared with the coefficient of one of the
stable modes, then the unstable mode will not appear in the
early part of the motion. Now even in cases where the inter-
action is weak, one of the fuel modes (with no natural demp-
ng assumed) may be unstable. In such cases the unstable
mode in the airplane motions will be relatively very small,
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while the unstable mode may be dominant in one of the fuel
motions. Then this fuel motion may become very large
before the effect on the airplane motion can be observed.
At this point splashing will set in and the equations of motion
no longer hold, Actually the energy lost in splashing may
damp out the fuel motion so that the effect of this fuel mo-
tion, and therefore of the unstable mode, may never ap-
preciably appear in the airplane motion.

In case A,, however, the interaction is large, and figure 5
shows thattheunstable mode doessoon become very important
in the 8 motion. Here again the effects of large-amplitude
fuel motion and, in particular, the nonlinear effects of fuel
splashing should be considered qualitatively. In cases A;
and A,, because of the strong interaction, a sideslip of 5°
would very quickly give rise to fuel displacements of the
order of magnitude of 90° or greater. Physically, it is clear
that the airplane motion is feeding energy into the fuel
motion in this early part of the motion. Because of the
large amplitudes of the fuel motion, a large component of
this motion is in the vertical direction, so that a considerable
part of the energy in the fuel motion will go into creating
longitudinal airplane motion. Because of the symmetry con-
ditions previously cited this energy will not be fed back into
lateral motion, so that the fuel tends to stabilize the lateral
motion by feeding some of the energy from the lateral into
the longitudinal motion. Also the turbulence due to splash-
ing will absorb energy which will then be lost altogether
from the motion.

One conclusion which can be drawn from this discussion
is that the motion following large disturbances may be more
stable than that following small disturbances. For example,
the initial disturbances in figures 2 and 5 have been adjusted
so that during the motion shown there is little splashing, and
considerable residual oscillations are shown. But if the ini-
tial disturbanees in these cases had been 5° or more in 8,
the energy lost in splashing in the early motion would pos-
sibly be so great that the residual motion in 8 would be
smaller than that shown here. This might explain why some
airplanes which definitely showed troublesome fuel oscilla-
tions were reported to be more stable in conditions of large
atmospheric turbulence than in slightly turbulent atmos-
pheric conditions.

A more important conclusion is that the fuel can be used
to stabilize the airplane motion by introducing turbulence—
for instance, by use of appropriate baffles. This can be seen
by noticing that the early part of the 8 motion in figures 2
and 5 is very stable. But if most of the energy fed into the
fuel in this part of the motion were converted info heat
through turbulence, then as has been pointed out this energy
could not be fed back into the airplane motion and the

residual oscillations would not appear. Since the amount
of energy lost in turbulence cannaot be calculated analytically,
it would seem that an experimental investigation of the
effects of honeycomb or other turbulence-inducing baflles
on the airplane stability would be desirable, especially in
ceses where the airplane and fuel natural frequencies are
approximately equal.

Finally it is possible in a strongly unstable case of residual
oscillations, such as shown in figure 5, that the fucl may
lose just cnough of its energy in splashing to reduce its
amplitude to where the motion is again smooth. Then,
because of the instability of the system for small motions,
the amplitude might again begin to build up. In this way
continued oscillations of a more or less regular nature would
occur when the caleulations negleeting splashing show un-
stable motion. This result is important because it shows
that somewhat irregular small-amplitude oscillations can be
expected when the ratio of the airplane natural frequency
to the fuel natural frequency approaches unity, even for
moderate fuel masses of the order of one-tenth the total
mass or less.

EFFECTS OF ASPHERICAL TANKS

The ecalculations have been earried out for rigid-body
motion in spherical tanks only. Actually this assumes that
for small oscillations the fundamental wave motion in
spherical tanks approximates rigid-body motion. This
approximation only applies when the tanks are one-half full
or less. This restriction is not too serious, however, since
the fuel motion will generally have its greatest effect in this
range.

It is important to note that the potential energy of the
fuels is simply the potential energy of a set of harmonic
oscillators located at the positions R, Thus, the same
general analysis will apply whenever the fuel motion in the
tank can be represented in terms of harmonic oscillators
with given effective mass and spring constant. Reference 4
has already been mentioned as obfaining such a representa-
tion for the fundamental mode of a rectangular tank.
Usually the fundamental mode will be the most important
and will involve the greater effective mass. Tt is conceivable
that for long tanks the second mode might be of a frequeney
closer to that of the airplane and in that case might be more
important. In such a case each mode might be represented
by a separate oscillator. As has been pointed out, the
damping is mainly due to turbulence and will be more im-
portant for aspherical tanks. For small motions, however,
the damping may still be neglected.

From the general derivation of the cquations of motion,
the most important result was the effect of fuel distribution
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on the coupling of lateral and longitudinal motions. It is
plain that these results apply strictly only to spherical tanks.
Consider for example a tank of triangular plan form located
in the symmetry plane and oriented symmetrically with
respect to this plane. Because of the symmetrical orienta-
tion it can be seen that, although sideslip motion will give
rise to forward and rearward forces (because the pressure
forces are normal to the diagonal surfaces), the forward and
rearward motion will give antisymmetrical lateral forces
which will cancel. In this case the result would be to feed
energy from the lateral into the longitudinal motion; this
condition would be favorable since the longitudinal motion
is generally well-damped. For an unsymmetrically oriented
tank of this type, energy could be fed back again from the
longitudinal to the lateral motion and the problem would be
quite complicated.

In general, the results on coupling for spherical tanks
would be valid to first order for such symmetrical plan forms
as the rectangular or the diamond-shape ones. For any
simple symmetrically oriented shape in the plane of sym-
metry, a loss of energy from the lateral to the longitudinal
motion might occur. This condition would be favorable.
Finally, for tanks outside the plane of symmetry the same
considerations would be valid if the tanks were symmetrically
placed with respect to the symmetry plane and symmetrically
shaped with respect to the plane through the tank center
parallel to the symmetry plane.

CONCLUSIONS

The following conclusions may be drawn from the the-
oretical analysis presented:

1. Considerable disturbances of the normal airplane motion
can be eaused‘ by fuel motion.

(a) The most important factor determining the effect
is the ratio between fuel and airplane frequencies. Yhen
these are equal, even moderate amounts of fuel (one-
tenth the total mass or less) may cause considerable
disturbances.

(b) The most usual type of disturbed motion is a some-
what irregular small-amplitude oscillation and the type
of motion is strongly dependent on the initial conditions.

(c) The effects of splashing will be to make the motion
more stable, and the loss of energy in fuel turbulence may
make it possible to increase the stability by artificially
introducing turbulence in the fuel.

2. The fuel motion may cause coupling between lateral
and longitudinal motions.

3. The derivation of the equations of motion for spherical
tanks may be applied to any tanks where the fuel motion
may be represented in terms of harmonie oscillators.

Laxerey AERONAUTICAL LABORATORY,
NarioNaL Apvisory COMMITTEE FOR AERONAUTICS,
LaxcLey FieLp, Vai., November 21, 1950.



APPENDIX A

A STEP-BY-STEP SOLUTION OF THE EQUATIONS OF MOTION IN MATRIX NOTATION

A matrix method for solving the equations of motion is
given in reference 9. The first step in this method is to
reduce equations (19) to a set of first-order equations by
introducing as new variables D¢, Dy, D¢y, and Df, as de-
scribed in reference 9 for D¢ and Dy. This transforms the
equations of motion into & set of nine linear first-order
equations in the nine variables. In matrix notation the
equations may then be written as follows when there are no
applied forces Cy, Cy, or O

A(Dg)+Bg=0 (A1)

where A and B are ninth-order square matrices and ¢ is the
column matrix (or veetor), the elements (components) of
which are the nine variables. In partitioned form,

B= _Qééi_____{:‘]

= [f?}g‘l;¢;¢;6;D§2;D§’1;D¢;D¢]

where I, is the identity matrix of fourth order; 0, and 0,
are zero matrices of order (4X5) and (5X4), respectively;
and

- Kb "#bglz/b _Pblll/b 0 0 N
6 ‘—Hbzlz zg/bz _#bllezl/bg #bez HDKZ2
AssE 0 .L‘leszg/b2 Nbllezl/bz .UZJKXE pKxz
—1 0 Ky R.fb  —Ry/b
1 K 0 R,Jb —Ry[b |
B 1 1 1 7
0 0 '—§ OL —5 OL t-aano -—§ OYS
Lo
0 0 0 0 —7 Cng
Oy= 1
0 0 0 ) -3 C‘S
G 0 0 0
¢ 0 0 0 0o
1 1
0 0 —5C, =30
E.,= 1 1
54 0 0 —Z Czp _Z Ozr
0 0 0 —1
| 0 0 0 —1. ]

Equation (Al) may be solved for Dg by multiplying
through by the inverse of A:
Dg=—A"'Bg=Pq {A2)
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Equation (A2) shows that, when there are no applied forces,
the differentiation operator with respect to nondimensional
time may be replaced by premultiplication with the matrix
P=—A"'B. For example, note that

Dq=D(Dq)=P(Dg)=F*

and thatsimilar relations would result for higher powers.
Now, by Taylor's expansion, the value of g(s+As) may
be obtained from the value of g(s) by the series

A
ds+ 89 =g+ D+ Do+
By use of equation (A2), this equation can be writien

q<s+As)—[Ig+— P+ pry ] o) (A3)

which is the fundamental recurrence relation used in the
step-by-step calculation. In equation (A3), I, is the ninth-
order identity matrix. The set of initial disturbances g
being given, the magnitude of the step As will determine
the number of powers necessary to obtain a given accuracy
in the solution. Because of the relatively high fuel fre-
quencies and because it was desired to obtain the motion to a
rather large number of periods with reasomable sccuracy,
the series in equation (A2) was used to the sixth power with
As approximately 1/20 of the airplane period. Thus, the
matrix relation (A3) was

gls+as)=0qq(s) (A4)

where

Q=153 P+<AS) Py + 80 p
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