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A THEORETICAL ANALYSIS OF THE EFFECTS OF FUEL

By hBER17 A. sckn

SUII>I.LRY

The general equations qf motion for an airplane with a nurn-
her o! sphem”caijuel tan,lwarc da-iced. fie motion of thefuel is
appron.mated by the motion of did p(ndulums. 7%e same type

I{ider-iration and equations art shown to apply to any type of
~uel tank -where the motion nj the fuel may be represented in
terms of undamped harmonic oscillators.

.If(otions are calculated-for a present-day high-speed airplane
Gnd a ~free-jying airplane model -withtwo sphen.cal tanks in the
.vymme~ry plane. These calcuiatiung ~hozc that the normal air-
plane motion may he considerably modijied and that re~”dual
osciilatio ns may recwlt. The ratio of the natural fuel fre-
quency to the naturai airplane freqwncy is shown to be the mo~t
irnports nt para meter=~ordetermining the efect of thef wl motion
(ifi the airplane motion. The stahiliting e~ect OJturbulence in
thefuel is discussed, and it is suggested that the stabilin-ng e~ect
qf artificially induced turbu[ence he in restigated experimentally.

INTRODUCTION

SmaH-ampIitude lightly damped lateral oseiktiom are a
troublesome characteristic of certain high-speed airplanes.
SeYeral possible explanations for these osciIIations, which are
adequate in specific cases, have been ofierecl. For example,
reference 1 shows that nonIinear aerodynamic deri-ratives
could came such oscillations, and it has been shown that
attnosphp?ic turbulence is another possible cause. It has
aIso been suggested that ~ po~sible cau5e of such osc~ations
is the motion of fuel in the tanks. In some recentl-y designed
airplanes the mass of the fuel relative to the airplane mass is
much Iarger than has been common in the past; therefore,
the effects of fueI motion can be expected to be rekttively
more important. k fact, in several cases baffling the fuel
tanks was found to have considerable effect on the general
handling quaIities of the airpkme and sometimes actually
eliminated the troublesome Iightly damped lateraI oscilla-
t.ions which had bew present.

An experimental imrestigation of the effects of fuel motion
on the Iateral motion of a free-flying airpIane model is de-
scribed in reference 2. The resuIts indicated that the effects
of fuel motion were noticeable and caused the IateraI motion
of the modeI to be very erratic.

1~~~~~~&~>~~c.+TkJ~, ,’.\T~~P~~@l-A]r~~of& Eff@~OfF~P]>r~~i~~On

The present anaI@s treats each fueI tank as a penduIum
osciHating in two degrees of freedom and appIies Lagrange’s
equations of motion to obtain the interactio~ betweea these
pendulums and the airplane. Thus, for small motio~ the
fuels are treated as simple harmonic oscillators. The results
are applied to obtain the general equations of motion of this
system and, in particular, the lateraI motion of rm airplane
with internal fud tanks in the plane of symmetry of the air-
plane. Since the generaI solution of the equations is cx-
tremeIy complicated, an attempt is made to e-wduate the
results by carr-jing out numericaI calculations for specific
cases. This approach is shown to be adequate in yielding
the most general effects of fueI motion.

The discussion of the numerical application of the equa-
tions of motion to specific cases is given in cIetaiI after the
derivation of the equations of motion. This discussion of
results is understandable quite independent tlj- of the deri~a.-
tion of the equations of motion.

SYXIBOLS

.Y, r, z airpIane stability axes with origin deter-
mined hj- equations (13); also compo-
nents of appIied forces aIong these axes

L, .11, ,V components of applied moments about
X-, Y-, and Z-axes, respectiTel>-

i, j, k unit vectors aiomg X-, 1“-2 and Z-axes,
respect ively

2’,y, z components of tran.dat iomd dkplacement-
of airpIane

F T-ector t randat ional velocity of airplane
(ii +j.lj + k: = ic~+- 0)

L; raaatitucle of steady-state velocity
u, L’,70 components of disturbance tran.dational

~elocitj- of airplane
0 rector disturbance -relocity of airplane

(iu +jo+ kwj
R -rector position of a point in airplane

(iR.+- jl?,+ kRz)
R; _rector position of center of gra~ity of

fueI in a particular fuel tank
v totaI vector Telocity of a point in airpiafte

?.irplme Dymaw” by AIbert A. ,%hy, 19s1.
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air density
wing area
wing sp fin
kitera~ nondimensional mws coefil~icnt.

(

mt nl[——
‘b=p Sb’ ‘b f—p Sb )

infinitesimal rotations of airplane about
.Y-, 1’-, and Z-axes, respectively

vector rotational l’elocity of airpkme
(ij+jd+kJ)

components of angular displacement from
lvcrtical of line joking fuel center of
gravity to tank center, taken on mutu-
all}’ perpendicular pkines; f positive. in
direction of positi~-e roll and ~ positive
in direction of positive pitch

distance from tank center to fuel center
of gravitv

vertical displacement of fuel center of
gmvity from equiIibriunl position

number of fuel tanks
mass
Iota] mass of airplane and fuel
total moments and product of inertifi of

airplane about X-, Y-, and Z-axes
rigid-body moments and products of in-

ertia about axes through cent w of gravit y
fuel moments of inertia about {- and

~-axes through tank center

d()cM7erentiation operator ~jD

c. ( )’trim Iift coetlicienb ~g Cos 70
2P u’s

roIIing-momen t cocfhient

1

A

(.
l-&ing moment
—1

~ptl%b
)

k
m
m~
r=y,i,-,Iz, I.yz c,

Ix’, 1s’, lz’, IA-Z’,
Iyz’, Ixr’

1,=1{,
Ir’, Iv’ fuel moments of inertia about {- and

~-axes through fuel center of gra~ity
nondimensional radius of gyrztion in roll

/ ,–~.—,

nondimensional radius of gyration iD yaw

nondimensional product-of-inert ia pa ram-Kxz
–1..

()
eter -———

mtbz

kinetic energy
potential energy
period
time for exponentially damped or increas-

ing oscillation to halw or double wn-
plitude, respectively

time
‘Utonondimensional time pmwneter —b, Subscripts:

f

s

particular fuel ttink, or summation index
o~er fueI tanks {j= 1, 2, . . . k)

airpkme without fu CI
initial conditions at t= O

acceleration due to gravity

. -——

flight-path angle with respect to horizontal

a
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.-i THEORETICAL ANALYSLS OF THE EFFECTS

DERIVATION OF EQU.4’TIONS OF 310TIOX

LSSU>IPTIOXS FOR DERIVATION 0)? GExER.4L EQUATIOXS OF MOTIOX

.ks a first apprikmation, onIy the effect of the motion of
the fueI as a ~vho]e is considered; that is. only the funda,-
Iwntal rnocle of the wa-re motion is considered. and this.
lnode is approximated hy rigid-body motion. TILe main
effwt of the internal w~ve. motion is to introduce damping
i]lto the fuel oscillation. This damping is mused by the
{’{inversion of kinetic enerm- into heat through the tLUbu-
[once caused by the spl.ashin~ of the fueI. .1 strictl~- a.naI~-tic
consideration of such damping effects is extremel~- difllcuft;
I}n the other hand, the damping caused b~- the viscous ta.n-
~ential forces bet~veen the fuel and the tank is completel~-
negligible (see reference 3). The analysis of the problem is
therefore confined to the motion with no fueI damping and
ttle effect of the damping is considered in the discussion of
the resuIts.

In a sphericaI tank tile fueI can osciLfate approximately- as
a ri,gicl b(K[~-if no splwhing is assumed for smaII osciilatiorw.
The motion may be pictured as the “rocking” of a spherical
s~~nlent Of CfinSta.Ilt Sha~t’. TILe restraining force of the
[ink, which always acts in a direction normaI to the motion!
i< exactlv analogous to the tem~ion in a pcndul[un. Thus,
the smaII motiom~ of the fueI in a sphericaI tank ma}- be rep-
resented quite weII by the well-known simple properties of
small pendulum mot ions. This approach is useci in the
mathematical analysis of the problem.

The effect of asphericd tank shape can be apprc}xin::lted
t,y repIa,ring the tank b~- an equi-raient harmonic mcilktcr
w-i[h tin arbitrary amount of turbulence damping ac{decfeven
f(]r small motions. For example, the representation of rec-
ttinguI~r tank< as harmonic oscillato~ is discussed in refer.
t~nrp 4. ThLLS in this case also the most generaI effects of
tl]e fuel motion on the airplane motion should be qualita-
tively obtainable b~- this type of analysis.

The effects of large-amplitude fueI motions v.ill be dis-
(’USSCC1 qualitative> tifter the discussion of the results of the
mathematical anal~sis. As usual k stahilit}- analysis EIl
motions are assumed sma H and second-orc~cr tt.rn~s are
imlf}re(l.

DRFUV.S.TLOS OF GEs!zLL.%L E(l U.iTIOSS OF MOTIOX I

IYith the preceding assumptions the physica~ probkrn can
~JV considered as the interaction bet~~een two or rnorti rigid
lmdies, namely the airpIane and the severaI fueI pendulums,
\vith each fuel pendulum considered m suspended from the
tank center. The onIy potential energv considered in the
system is that of the pen{lulurns. If the inertial characte-
ristics of the airplane and the fuel are known, the kinetic
energy of the system can be obtainecl from the trandational
and rottitiomd ~elocities of the airpIane and the fuek. With
this information the interactions in the system can reobtained
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by US&C Lagrange’s equations of motion in the form (see
reference 5)

d bE; W. tIEp ,
()- --=-~”Q’z dq, d~i (i=I,2,...n) (1)

where qi is one of the n generalized coordinates of the system
correspondi~~ to the n degrees of freedom, Q~is the corre-
sponding veIocity, and Qi is the corresponding generalized
force. The g~-d be IerLgtk ancl angies and the correspond-
ing Qi wdl be forces and moments, respectively.

The airplane itseLf introduces the customary six degrees
of freedom, which are the three cIispIacements of tbe airplane
system rdong axes fixed in the airplane (z, y, z) and the cor-
responding ar@es of rotation of the airplane about. these
axes (d, 9, ~). For small displacements, the pendulum
motion can be described by two angIes ~ and v since the
vertical motion can be neglected (see ~w. 1). The angIe ~ is
measumcl from a vertical Iine through the tank center to the
projection of the Line joining the tank center to the fueI
center of gratity on the vertical plane parallel to the Y-axis
and ~ is the correspond~u angle in the verticaI plane parallel
to the X-axis. For smaII angles, ~ and ~ may be represented
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as in figure 1. ln effect this figure makes use of the fact that
small angles may be added vectorially. When the twro addi-
tional coordinates ~ and v are used to describe tke pendulum
motion, the }~hole system has t,w-o additional degrees of
freedom for each fuel tank.

Expressions must bc obtained for E~ and E, in terms of
tbe coordinaks of the system and their time derivatives in
order to use equation (1), The only potential energy is that
of the fuel penduIums, w%ich can be w~ritten as follows for k
fuel tanks:

(2)

For the heigh~ of the center of gravity in each fuel tanli, as
can be seen from figure 1,

h=hc+hq=l-l COS f COS q“[’-(’-w+’)]

Note that, the vertical displacement h is of second order in
the small quantities T and t. This fact justifies the previous
statement that & vertical displacement could be neglected
in describing the pendulum motion only by the t;vo coor-
dinates q and ~. As migh~ be expected, equations (2) and
(3) indicate that each fuel pendulum is being considered as
an undamped oscillator with twro degrees of freedom in a
horizontid plane.

The kinetic energy of the totaI system can be written as
the sum of the kinetic energy of the airplane and the kinetic
energies of tile. fuels. AIso the kinetic energy of each rigid
body can be expressed as the sum of the translatiomd energy
of tl~e mass mo vi~~ with the velocity of its center of gravity
and the rotational kinetic energy of the mass about its center
of gravity. Thus, w-hen the inertial r.haracte.ristics of t.l~eair-
plane and the fueIs are known, the kinetic energy can be
obtained as a function of the generalized coordinates and
velocities if the translational velocity of each center of gravity
and the angular velocities of the airpIane and fuels about
their respective centers of gravity can be expressed in terms
of these generalized coordinates and veloc.iiies.

In order to obtain the required expressions for these veloci-
ties, a system of axes fixed in the airplane mth the X-axis
a~ong the steady-state veIocity at t=O is used, as is customary
in stability analysis. For the present the origin of the coor-
dinates will nok be specified. Howeverj these stabdity axes
are not inertial axes and IVevrton’s second law applies only in
~IJninertlial system of axes. The. in ertid axes may be taken
as axes fixed in the earth. Then in the equations of motion
t.l~e velocities and accelerations must be measured With le-
spcct to the earth, and their expressions in terms of com-
ponents in the moving airplane axes may be obtained as

show-n in reference 6. These expressions w-illgive the kinetic-
reac.tion forces, Which for the case of a rotating sys~em arc
oft en referred to as “gyroscopic” forces. For the vcIocIt y,
referred to tJ~e inertial system, of any point [Icfincd by tlw
vector R in the airplane axes (in particular, for the cent ~’rs
of gravity previously discussed),

V=r+tu XR+fi=KJ+v+wXR+k (4)

N-here all vectors are given in terms of the airpIane axes cmd

r=ii+j~+k2=iL?+v

is the velocity of the origin of the airplane system tit h rcspcwt
to the earth, while u and u are the translational and rota-
tional disturbance. veloci ~ies of the airplane axes.

Equation [4) may now IX used to express the inertial
velocities of the airplane center of gravity and the fucI
centers of gravity in terms of the generalized coordinates by
inserting for R tl)evalues R. and R,’, Where R= is the vector
position of the airplane center of gra-vity and Rf’ indicates
the vector position of any particular fuel center of gravi}y.
The vector R. is constant; therefore, R.= O. To obtain R:,
note that, to first order

l?; =Rf– il, sin (70+& qf)–.jlf({f-@ cos 70–~ sin 7.)+

lcl, Cos (-Yo+e– qf)

Rr’ =Rf– ilf[sin yo+(6– ~,) cos ~,] —jl~(~j—d cos 70—

# sin yO)+klf[cos TO–(6– q,) sin 70]

where Rf is the fixed position of the tank center. Since TOis
constant, to first order

k~ = ilf(7jr–;) cos 70–j/,(~,–$cos -YO-JI sin 7.)+

klf(if– $ sin To

Again keeping onIy first-order terms leads to the following
equation:

wx Rft = WXRf+ ilfd cos TO–jlf(icos TO+4 sin yJ+k/# sin 70

NOW combining the last two e.qufitions gives

wx Rrl + Rf’ =wxRf+i~flf cos ~o–jl,kf+klf{f sin -YO(5)

This equation shows, as could be predicted physically since
no viscous force is assumed bct!vwn the tank find the fuel,
thatr the airplane rotation affects only the motion of the tunk
cent er.

From equations (4) and (5) the necessmy translatiomd
velocities can be. obtained for the translational kinetic ener-
gies. The rotational velocity of the airpkme is simpIy m.
The spinning motion of the fuel about the ~ertical axis k
ignored; then, the rotational velocity of the f~lel nla~ be
given by the components i and j. The two corresponding
horizontal axes of rotalion through the fuel center of gravity
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tire principal axes of the sphericaI segment. of fuel; conse-
quently, no product-of-inertia terms occur in the fueI rota-
tional energy. .%o, since the airpIane center of gravity is
in the airplane symmetry pIane, lYZ= lXI-=O and ordy the
I,yz produc~ of inertia wiII appear in the airpIane rotational
energy.

By use of equation (4), the airplane veIocity can be shov;n
in be

F’.=i(L’+u+811z=— JR=) +~( u+ !@.=—dl?zc) +

k(w+&r=-eR=a) (6ti)

ll-h~’n equation (5’) is substituted into equation (4), the
vdocity of any particular fuel center of gravity is

J“r=i(L~+u+dR.r— &RxT++Jr cos 70) +j(r +~R.f–~R,f–

~.+) +k(~ +~R#Rzf+ ifff sin TO) (6b)

If T’ is the magnitude of tbe translational velocity of the
center of gravity of a rigid body, 1’ is its moment-of-inertia
tensor about the axes througk its center of gratity, and a
k tbe rotational velocit~- of the rigid body, the kinetic
energy is

Ek=~m V2+ $Jx’ti.z+ Iy’ioy2+I~’w.2— 21~-z’uvw. —

21xz’WJ,-21xy’C L!=4 . (7)

Thus, for the kinet!c energy of the airplane, substitution of
equation (6a) into equation (7) Q-t-es

E,C=~[(~+u+6R,=– $~u~2+(U+&Rz=–$Rze)’+

Ix’ y , JF’.,LIZ’ .,
(W+ 4Rya–4R.a)z]+T4 ~ ~0 , ~prxz’~$

[8aj

and, for the kinetic energ-r of each fuel, substitution of
equation (6b) into equfition (7) gives

Ekf=~[(c’+u+eR. f–JR,f+iflf COS70)’+

(c+ ~R=r– jiR.I– ii~) 2+ (W+ M,f- IWf+ Msinm)q +

f~:;., IV’., (~b)~Lf”7~m

For the to tzd kinetic ener~-, E~= E~=+ $J E~f; therefore,
f=1

equations (2), (3), ancl (8) may be used in equation (1) to
ohttiin the @k+6) equations of motion. However, it must
zgain be recaIIed tl~at the coordinate system is rotating.
The whole system is therefore subject to an additional
g}Toscopic acceleration since the time-derivative operator
rontains an additional g~Toscop;c term (see reference 6)

When the components of the velocity (or any vector) are
taken in the rotating system:

:i=r+d?r

Thus the gyroscopir acceleration acting on the \vhoIe rotating
system is

@x; =ax(iL~+D) =(@x~L:=jJu—kdL~

The effect of this acceleration can be brought into the equa-
tier.s of motion by considering the inertial reaction of the
total mass to this acceleration as an additional fippIied force.

If the total mass is m,=ma+~ml,
fo!lo-wi~~ components:

l“=-m, C$

.Z’=m, V6 1

this reaction has the

(9)

In addition there is the inertial remtion torque .Mf’ on the
fuel; this torque acts about the tank center and is caused by
the acceleration of the tank center. For each tank, the
Yector reaction torque is

ili?f’=(llf’ – Rf) x mf?l’(– j~+k$)

Second-order terms]

The forces and moments in equations (9) and ( 10) must
be added to the w-eight and aerodynamic forces to obtain
the Qi in equation (1).

For convenience, the results of equations (2), (3), and (S)
are as folIows:

E,=; g&mJr(<[2+qf7 (1 la)
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Equations (9), (10), and (11) may nowTbe used in equa-
tion (1) to obtain the equations of motion. lt should be

b a =~,g_b,an,la_anoted th$l.t~=~(~+~) au ~~ ~~
ai bw’ ‘Orex-

ample, to obtain the equation of motion in the z-direction,
note that

dE~_d_Ev=o
dx ax

Then, equation (1) may be written as follow-s:

=n~e(u+eB,a —jRua)+&m,(ti+ iRzf-FR,f+
f=1

;Jf Cos yJ

(

.. ‘ k

)(

.,
=rn~ti+8 m.R,G+~mfR.j — m.Rua+

i= 1

)
& m~R~, +f~ti~mi~ cos 11,=-x

(~g)
f=l

The position of tbe origin of airplane coordinates has not
yc’t been SpCCiiitid. Equation (12) and the similar equations
ol)tained in the other degrees of freedom suggest that the
position of the origin be determined by the following three
conditions:

rnqR,U+& ml Rz,=O (13a)
f=1

m. RUa+& mrRP,=O (13b)
f=1

m.li’za+k mJR,[=O (13C)

Equations (13) impIy that the origin is at t.hc position of the
total center of gravity when the fuel mass is treated as being
conrentlrated at the tank center. This choice of the origin
gretitly simplifies expressions such m equation (12,,I. The
physical reason for this choice is again that h fuel does not
rotate }vit.h tlif? airplane; thus, a force acting on a line through
this point, the center of gravity where the fuel reaction is
assumed concentrated at tbe tank center, wiII produce no
rotation of the airplane.

The foHow@ substitutions w-ill also greatly simplify the
~vriting of the fimll equations of motion:

1:
1., =1~’+m. [(R,.)’+ (RJ2]+ZJ m~[(%,)2+ (%)2]

1,-1,.’+ m.[(R,=)2+ (l?.=) 2]+$jm, [(R.,) 2+( R.,)2]

1

(14a)

1. =Iz’ + m. [(R.O)’+ (Ry=)2]+& mf[(l?.,)’+ (R,,)’]

Ix. = Ixz’+n@eR,~+ ~ rnfR.JR,j

Note that the quantities defined by equations (14a) are the
total moments and product of inertia about the origin of the

airpkne coordirmtm when the fud mass is assunvd to be
concentratwl at the tal~k center. Finallyj the nccessaly
moments of inertia, of each fuel pendulum about the tank
centw are

(14b)

‘iVithout$ loss of generality thcl], equations (13) and (14)
are used in the equations of motiol~ obtained by substitutil]g
equations (9), (10), and (11) into equation (1). The general
equations of motion mu no~v be given as foIlowS:

in equations (15a) and (15b) only the fuel equa~ions for the
first fuel tank have been writk’n. ln each set thmc arc k
similar fuel equations, As has been pn?viously stated, the
forces on the light-hand sides of t,hesc equa tiom tire the
applied forces and the weight and aerodynamic forces.
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SI}IPLJFYING ASSU31PTIOXS

The equations of motion have been separated into What
\vollld generalIy be considered the Iongituclinal motions,
e{iuat ions [15a). and the lateraI motions, equations (15b).
In the ordinary six-degree-of-freedom case, as can be show-n
from considerations of symmetrv, no cross-coupling terms
twist bt!t\YWll t!Ut!Wmotions in the aerodynamic forces (see
rvferenee 7’). .AIthough such terms are known to exist in
prtict ice, they tire small and generalIy neglected. However,
Intiny cross-coupIing terms occur between equ~tions (15a)
:in(i equations (15b) because of the fuel motiom<, even vi-hen
tbe aermlynamic coupling forces are ignored. The maani-
tuIkIs of these fuel forces can be seen to depend on the masses
{~ftile flle>Is,the vector positions of the fuel tanks, the” pendu-
Ium length” (i. e.. the radius of the tank and tlw height of
the fueI’}, and the accelerations involved in the fuel motion.
[nrreasi~o the magnitude of any of these parameters -will
ill(.rease the effect of fueI motiou. For most airplanes these
fl~e}forces will be relati~ely smaII, but the present investiga-
t ion is primarily concerned with W first-order fuel effects.
11~:iny particular case, the actuaI magnitudes of these forces
m:iy of course be obtained by inserting the vaIues of the
previously mentioned parameters.

Symmetrical fueI distribution.~some of the terms in
fw~luiti(lns (1.5a.’)- for example, the ~ and J terms in the O
w!uat ion-are essentiall~- product-of-inertia terms arising
fr(-,m unsymmetrical distribution of the fueI about the y=(I
~Jlane (i. e., the plane of symmetry). That this is so cam be
+t,eu if the fuel tanks are assumed to be (Iistributetl sJ-mmetri-
{I:dly with respect Lo the symmetry p~ane; that is

:Iml fn}m equations (13)

R,.= () (16b)

Ttl.eref~lre, these terms mmisb for s.ymmetrica} fuel distribu-
titlns. In most cases the fuel will be symmetrically distrib-
l~tetl. and substitutio~ of equations (16} into equations (15)
yie[{ls the equations of motion for symmetrical fueI distri-
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(llb)

In equations (17) cl-en thugb tile Mm arising from unsym-
metrical fuel (distribution have vanished} some cross-coupling
terms still remain hetl~-een equations (17a) and (17 b). These
terms occur in the T equations {Jfset (17a) and in the @and ~
equatiomq of set (lib). The sibtificance of these term ~
evident since earh contains n factor RV~. ‘llus, these terms
arise when the airplane has flleI tanks With centers not in
the plane of symmetry, even though the>- are sJ-mmetrica~~-
distributed with respect to this plane. For example, they
rould arise for Wing-tip tanks. PhysicaU~-, these terms
cIearIy give the interaction ~x’t~~-eenthe longitudinal fuel
motion ~F in the wing-tip tanks and tbE’ airpIane rotation
about the verticaI axis, which consists of the Iatertd motions
~ and +. For exampIe, assume for simplicity that ~0=0;
then, a ~-a~-ing acceleration of the airplane w-ill cause a lon-
gitudinal] fud ameleration ijf in the ~ring-tip tanks, and rice
~ersa.

From this discussion the ~ motion appears to couple the
IateraI and Longitudinal airplane motions even for the per-
fectIy symmet ricaI fueI dktribution described by equat ian
(16aj. Howerer, the fact that this coupIing (Ioes not occur
can be seen by considerk~ any pair of syrnmetricWy placed
and loaded treks. Ilesignate the q motion in this pair of
tanks by ~1and ~,. Then, the ~ equations in equations (17aj
show that a longitudinal horizontal acceleration of the tank
gives rise as expected to q accelerations. S.mue the s~-stem
is linear, this portion of the v motion UMJ- be considered
inclependentIy, and because of the symmetry of the two
tanks it is seen that iji=ijz for the portion of the’ v motion
arising from the longit udirml mot ion. Thereforel in the ~
and @equatio~< of set. (17bj the efftwts of thii i will -ranish
since R&I= —Rl,. In a sindar manner the IateridIy caused
q motion can be- sho]~-u to hare no effecL on the longit.udimd
motion. Essentiall~- the argument is that the q motion for
each pair of tanks can be spIit up for perfevtly symmetrical
fuel distribution into symmetrical and antis~munetriml
motin~s. The symmetrical portion of the ~ motion for each
pair of tanks couples ord~- with the Iongitutlimd motion; the
antis~-mmetrical w motion couples only With the latersd
motion. Thus, for perfectly symmetrical fuel distributions
the q equations of set (17a) could be combined w-itb set (ljbj,
only lateral degrees of freedom in the ~ equfitions be~~ used
(since the s~-mmetrical portion of th~ TI motion is of no
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interest); or the q equations may be used as shown With
equations (17a), the lateral degrees of freedom in the v
equations being ignored.

Fuel tanks centered in symmetry plane. —hhmy airplanes
have large internal fuel tank which are centered in the
airplane symmetry plane.. For such airplanes the equations
of motion may almys be separated into independent lateral
and longit udirml modes since Rrf = 0. using this wdue in
equations (17) gims the equations of motion for tanks
centered ifi the symmetry plane:

k
mtu+~ inJfijf cos TO=.Y

mJ(ti— U6)+& mflfijf sin -fO=Z

. J

Each set of equations, (18a) and (18b), contains (k+3)
variables; the two sets can be seen to be independent of each
other since the f motion of each tank couples with only the
lat4eral motion and the ~ motion couples with only the longi-
tudinal motion.

For the case of a single fuel tank at the airplane center of
gravit.~- the modification of equations (18) is obvious. Then
R@= Rf=O, and all coupling between the rotational motion
~Y}dtile fuel mo t,ion l~anish es; t,llt~tis, all LIICfuel terms in the
rotational equations vanish and all rotation al terms in ihe
fuel equations vanish. For an asphericaI tank the rotational
coupling in this case w-ill be small.

LIMITATIONS INHERENT IN THE APPROXIhfATIONS

Before proceeding to the application of equations (18b)
it is appropriate to consider somewhat more explicitly the

assumptions involved in the indiscriminate dropping of a 11
second-order terms which appeared during the derivation
of the equations of motion. In this connection the corrcc-
t ion, arising from the airpkme acc.clera.tions, to the constant
acceleration McI g involved in the pendulum pokmtial en-
ergy should be considered. The assump [ion Which is impli[~(l
in neglecting these aceeleraticms is tlmt the accelerations of
the tank centers are small with respect to g.

If this and previous approximations arc considered, it
can be seen that three essential assumptions were mado in
dropping second-order terms:

(1) Tlue fuel and airplane anguIar displacemonfi varialh
arc small enough so that the angle approxirnaks its sine.
However, this approximation sometimes took tha form that
the angle was much less than 1 radian.

(2) The disturbance -velocities are much less than C?,ond
products of the linear or angular -reIocitics can be ignored.

(3) The accelerations of the tank centers must be small
compared with g.

.

Strictly speaking then, the statement that the equations
of motion (15), and also the simplified equations, arc ac-
curate equations of motion to first order is to be takcm to
mean that the motions to which these equations apply are
restricted. by the preceding three conditions. Thus, th(’
equations would appear to remain accurate at least at, the
beginning of a disturbance. kforeover, v-hen the motion
becomes~arge enough that these assumptions break dovm,
the fundamental physical assumption that the fuel may be
considered to move as a rigicl body also breaks down; there-
fore, nothing can essentiality be gained by keeping highcr-
order terms in the mathematical expressions,

Since the penduIun~ motion is little changed even up to
angles of 30° to 40°, it. couId be expected that, aside from
splashing effects these equations shoulcl remain a good to
fair approximation even aL such angles. On the other hand,
even the splashinz effects, although they would introdum
some damping and change the inertial characteristics of the
pendulum somew-hat, could certainly not be expcckd to
cause the general msump tions to break down completdy
for fuel motions up to angles of 30° to 40°. Therefore, the
equations of motion derived we assumed to presen L a fair
picLure of the disturbance motion e~-cn up to fuel displace-
ments of this maamitude.

APPLICATIONS TO SEVERAL CASES

NOIXDlhlE~SIONALEQUATIONSFORT.4NKSlN 9YMM~TR~PLA~~

The equations of motion (18b) have been applied to the
Jat eral motion in several cases with t \vo fuel tanks in the
plane of symmetry. In these cases the Iaternl motion van

be considered independently. The applied forces me the
weight, the usual aerodynamic forces linear in the disturb-
ance velocities and any disturbing forces that, may I-w
present, In order to put the cquat ions in nondimensional
form, the nondimensional lateral airplane equations arc used
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as obttiirmd in reference 8. The fuel equatiom are made
ntonclinlensiomd bev making the standard traneforma-tion to
nuDdime~~ionaI time derivati~e, as in the airplane equations,

m~fu=
and then by ditiding tlu-ough by ~. The result ing

nondimensional tqnvssions in the foIIow-ing equations are
defined in equations (20):

(19b)

The deri-i-at it-es (7Y, and (7}-,were assumed to be zero.

>lE~HODSOFSOLL~ON

In the present case the two fueI degrees of freedom intro-
tIuce two additional oscillatory modes into the characteristic
soIution, in addition to modify@ the Oriatid airpIane mode.
The motion -mill therefore be a combination of three oscilla-
tions. (aside from the less important exponential modes), but
just knowing the three oscillatory roots is insufficient to indi-
rtite the tJTe of motion since the relative magnitudes of the
oscillator~- modes must also be know=. For this reason
motions must. be calculated in order to see the actual effects
of the fueI motion. How-ever, in several cases the ch~ac.
teristic roots mere also found in order to facilitate the inter-
pretation of the motions. These cases -wiI1 be cliscussed
subsequently.

The most. convenient method for the mmlytical solution
of a set of Jinear ordinary di!lerenthd equations such as
equations (19) k probably the Laplace transform method
(see reference 3). How-ever this method is extremeIJ- cum.

bersofne and cliflictdt to rheck since it invoIves the expansion
of fifth-order c~eterminants in w-hich the elements are often
quadratic functions of the characteristic root. Therefore, it
seemed preferable to use some step-l~y-step method which
-WOUICIbe more amenabIe to machine cofnp~[tation.

Reference 9 gi~es a matrix method for getting the step-by-
step solution of a set of linear ordinm~- Jfferent.iaI equations.
Yi_hen applied in the preseut. case to equations (19) this
method resuIts in a simuIIaneous sohtion for the motion in
each of the five degrees of freedom and aIso for the motion
in D+, D+, D~l, and D~z. The mhdat.ions were carried out
on the BelI Telephone Laboratories .X-66744 reIa~- computer
in use at the LangIey L~horatory. The essentia.I details of
the method are given in appendix .1.

SOLUTIOXS FOR SEVERAL CASES

The t~-o basic cases for -which motio~ l~ere calculated
-were case .4, a present-day high-speed airplane with two fueI
tanks satisfying the conditions for equations (19), and case
B, which corresponds essentially to case B of the model used
in reference 2. The essential parameters for these LW-Ocases
are given in tabIes I and II. TabIe II gi~es the conditions
for case ~ m-hen both tanks are one-haIf fulI (...,) and w-hen
the fuel heigh~ equaIs one-half the radius (&) and for case
B w-hen the fuel heights in both tauks are 2 inches (BJT 3
inches (Bs), and 4 inches (B4).

In case .4. the tanks are sphericaI, somewhat o-rer 4 feet in
diameter, and centered on the body axis approximately 4
feet in front of and betid the airplane center of gratity.
The flight conditions are given in tabIe I. The fuel weight
in the half-full condition is approximately 25 percent of the
totaI weight..

In case B the tanks are spherical, centered in the .plane of
symmetry slightly kiss than 5 inches below the airpIane axis

TABLE I
ST.iBILITY DEFtIV.iTIJ-~ .l\” D 31-%SS AI-D GEOIIETR.ICML

CHARACTERISTICS FOR TWO C.+SES CC)XSIDERED

!
Parameters C’a.’wA I CL- B F

Cap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
\

–L04?
1

–a-m i
~ C=fl. . .. ..... . .. . ... ... . .. ... .. . ... . ... .. . .. ... . ... . 0.17 =0.17
J clfl... .... . .. ... . .. –&r& j
I c ........ ... .. ... .. ... . ... . .. .. . .. . .. . ... .. ...

-o. 1%
b-a w.o f

I c: ....... . .. . .. . .... .. .. . . . .. . .... .. .... . ... . .. ....-
–0.oIS52

–a 342 –0.33
c: ....... . .. ... . . . .... . .... ... ... .. . .. .. .. . .... . . . –o.28 –O.16 ,
c&..................................................

I
o.0?36 0.30 j

W-eight ofairplane tione, Ib . . . . . . . . . . . . _____________ 6,:x
I s.qft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .../

IL 25
26i

\ :,~dii:=:_._--.. -.---.- . . .._. - . . . . . . . . .._... _.-_~

[ ~s:&m-f(:::::::l::::::::::::::::::::::::::::~ ~m: ~50$023$ ~
:?: ~

1’
io’i]

[
=Knm.%B!s, C’.8=0.2?3.
~ .ictually, sfighffy dii%mmt Mues of C’., wwe IEed for each of the subcases of case B.
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ant{ 4 inches in front of and behind the model center of
gravity. The diameters arc 8 inches and the total fuel
w-eight in the half-full condition is approximately 46 percenL
of the total weight. The Higlit. conditions are the same as
in reference 2.

hloticms were calculat.od for certain subcases of the basic
cases w-hieh were obtained by varying certain significant
ptiral!~etcrs, By coruparing the resulting motions t-mattempi
was made to evaluat.c the effect of varying such factors as
amount of fueI, position of tanks, and relative na turaJ fuel
and airplane frequencies on the disturbance of the airplane
motion caused by fuel motion. .41s0 various initial condi-
tions were considered to show the, effect of initial conditions

TABLE 11

FUEL DEPENDENT PARAkIETERS

—1

Parameters A,

1

R=;,ft . . . ..-..–.–.-.
R,i, ft -----------------
R,,, ft-----------------
W6ight of forw3rd

fuel, lb . . . . . . . . . -----
Weight of rear fuel, Ib.
Total weight of ak-

nkme and fuel.lb.. .
Ci .iiig.y:;:::::::::: --

shrg-ft~. . . . . --------
!, sIug-ft:. . . . . . . . . . ...

Ix,
[z,
Ixz
2,,flu.. ... ... . .. .. .... .
l?,ft..... . .. ..... . .... . .
I,, sIug-ft~. . . . . . . ..--..
r?, stug-rt~... -—---

2.15
2.12

215

212
3.5

-4.1
0.0123

–o. 0144

1,4s0
L068

9,518
0.19

1,3641
7,340

262
0.806
0.795
85.2
59.7

A2

215
z 12

1.075

1.06
3.5

–4. I
0.0123

–0. 0144

462
334

7,766
0.19

1,360
z y

1.45
1,43
40.0
29.1

B*
—

0,333
0.333

~
0.1667

0.1667
0.333

–0. 333
0.407
0.407

1.51 ~
1.51

14.27
1,002

0.10s1
0..%29s

0.22:
0.!225

0.00315
0.00315

A

Ba

0.333
0.333

0.250

0.250
0.333

-0.333
0.407
0.*O7

3.07
3.07

17.39
1.178

0.1243
0.220:

0.174
0.174

0.00507
0.00507

n

R4

0.333
0.333

0.333

0.333
0.333

–o. 333
0.*O7
0.407

4.85
4.85

20.95
1.174

0.1428
0.233

0.12:
0.125

0.0uG68
0.00608

.

on & resulting mo~ion. ln some roses an init id (Iisturballce
in sideslip w-as assumec], and in other cases an initial fuel
disturbance -w-asassumed. .An initinl sideslip of 5° find n
fuel displacement, of 10° Were arbitrarily chosen us stan(lfird.
Since the equations ar~ linear, multiplying tbc initial dis-
placements by a common factor simply multiplies th~ result-
ing motions by the same factor. In this connection it must
be emphasized thut,, if at, any time the mlculahxI motion in
any degree of freedom becomes too large to sritisfy the
limi tat ions previously- discussed, the following motion is
meaningless. For example, if a 5° displacement in F givw
rise to a fuel motion much greater than 30° to 40°, the n(’conl-
panying P motion is meaningless because tllc assump ~ion of
smrrII clispIacements is violatt’d. How-ever, if multiplying the
fuel motion by some arbitrary factor, for example 2/5, will
bring its peaks (lowm to less than 30° to 40°, then the@ motion
resulting from on initial $’disturbance of 2° can be obtaimul
by simply multiplying the previous 8 motion by 2[5 also.
The effect of lm-ge fuel displacements must be discussed
qmilitat itiily.

The motion in sicleslip and the motion of t.hc two fuel
pendulums in the various subcases art? show-n in figures 2 to
12. ~ornrnents on these motions arc presented to faeilitntc
interpretation of tlw flgurcs. The period of each fuel Ixm(lu-
Iurn is caI1ed the nat,ural fuel period. Tlie period and damp-
ing of the airplane, the fuel being disregarded, arc called tllc
natural airpkm c period and clftmping.

C!ase AI.—T1lc natural fuel periods for case .L1 (half-full
tank) are approximately- 1.66 s:conds and the mkturd period
of the airplane alone is 1.40 seconds. Damping to half-
amplit.ude occurs in 2 c~cI?s.

The motion in figure 2 is for initial f?O=20. The early ~
motion seems to have more (iamping than t.hc nat Iu-al airplano.-

-u
-/.6 ,

–—.~; frcmf f;%

20 -

(3’
@
-0

%%

<

-20 -

L? .8 /.6 ~4
.-

‘tg sec

FLGTIRE 2. -1’Le.wnt.day hish-speed fairphmewith tanks (mc-hnlffull (cow A;). Sideshp and fud motions following initial sidcsIip, SO= ~.
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mode. The disturbance arising from the fuel modes is evi-
cl(’Ili after ~ Cycles. That the irregular residual Osdbttion
of arnplitu[le 140to !~” is essentially due to the fuel modes
is seen from the ftict that the dominant period in the later
motion is appraximateI~- 1.6 seconds. h“otice that in this
case a 5° initial & v-ouJd almost immediately cause fuel dis-
pkmernents of over 80°, so that the follow-irqz motion Would
I](}radically chm:ed.

Tl~e motions shown in figure 3 for (f~),= (~z)o= 10° are
quite re~dar am I indicate one dominant mode in each motion.
The fuel period is 1.6 seconds. The airpIane period starts
at 1.4 seconds, builds up to 1.7 seco~ds, and averages 1.6
secon([s. The amp]itude of the sideslip motion is ~ery small.
‘rhe largest such motion which could occur for this t>-pe of

-J,.
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disturbance W-OUMbe for initial (r,),= (~,)0=300 and -would
give ~ amplitude sL@tly more than 0.10.

The smalI ampIitude of the sideslip motion in figure 3 w-as
surprisi~w. lt. }\-as conjectured that for this fueI configura-
tion the fuel displacement (~1)0= 10” and (~5)0= —10°,
corresprmding essentialI~- to an initial yaw-ing moment, mi.ghb
be more effective in inducing an airplane oscillation. (see
fig. 4.) ,&pparently, this conjuration is more effective
inasmuch as the sideslip motion now- buiI& up to an ampli-
tude of appro.ximate}~- 0.4”. The energj- necessary to in(luee
this considerable “snaking’? type of oscillation seems to be
ob ttiined initially from the rem-tank motion, -which is in the
proper phase relation with the sidesIip motion to feed energy
into it at the start. of the motion.

.,

,-

: ,->
<
L-

-,

.“

.-

.,. )

- ~=

,

Fh;r: RF.3 —Pre-mt.day high-speed irpkme with t~$ one-half MI (@&e4.1). SidesLipand fuel motims following iMiaI fueI djjtmb~m, &l)6=&f)4=I(j..
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The fuel periods in the regular rnoiion are slightly over
1.6 scconcls. The airplane period increases from 1.5 to 1.8
seconds and has an average period of 1.6 seconds.

Case A2.—The natural fuel periods in case .4Zare approxi-
matel~- 1.52 seconcls and the natural airplane period is 1.49
seconds. Damping to half-a.rnplitucle occurs in 1.3 cycles.

The motion in figure 5 is for initiaI PO=0.5°. The early
sidcslip motion seems to be of greater clamping than the
natural airplane mode.. The residual airplane motion arising
from the fuel modes sets iD very quickly and is a regular
unstable motion of very large relative amplitude w-ith a

./3

I

period of approximately 1.7 seconds. Both fuels stur~ With
& period of approximately 1.5 seconds, which increases to
1.7 seconds.

In figure 6, (f,),= – 10° and (f~),= 10°. ‘l’J..Msideslip
buiIds up to a fairly regular oscdlatiou of 0.4° amplihldc
with the period increasing from 1.5 seconds to 1.7 seconds.
The fue] motion has a. period somewhat under 1.7 seconds
with amplitude quickly buildiug up to the limits where
splashing must become important.

Case Bj,—The sideslip motion shown for case BZ appears
to be a normaI dampe(l oscilkkion for the first 4 seconds
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FIQLIRE4,—Present-day high-speed airplane with tanks one-half full (case .41). Sideslip and fuel motions following fnitid fuel disturb~ncc, (11)0=10”,&!)o=-1OO.
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(fig. 7,/?.=5°), but then the peaks show a slight irregularity
instead of damping smootM}-. The period of the early side-
slip motion appears to be soineit-hat. owr 0.9 second and the
motion damps to half-amplitude in less than 2 cycles. This
mation is very cIose to the undisturbed airphme mocle~
(period of 0.92 sec and damping constant of 13: cycIes).
The naturaI fueI periocls are 0.61 second. The fuel motion
is vmy irregular and ob}-iously contains considerable amounts
of at Ieast two characteristic modes.

Cases Bi and Bi.—The motion in cases B~ and BAshown in
figures 8 and 9, respectively, for &=5° is very much the
same as in the previous one, except that the disturbance of
the airplane mode in the sideslip motion appears somew-lmt
more pronounced as the amount of fueI increases.

Figure 10 (case B~, (~1)0= &JO= 10°) shows th~t the motion
in sicleslip resultirg from the fuel displacement is much more
irregular than in case-.{. The dominant. mode corresponds
to a fuel frequency, but apparently the airplane mode is
present with considerable amplitude. The maximum oscilla-
tions are approximately + ~’i”. The sideslip motion in this
case vi-as much more irregular than for the correspond~~
initiaI conditions in case A.. It w-as conjectured that. this
might be caused by the fact that in this model both tanks
m-e below- the X--axis, so that the coupling of the fuel motion
w-ith yaw-@ and rolI&~ motions does not have the same
phose relationship as in case .4 where one tank is above and

OF FUEL MOTIOX OX AIRPLAXE DYN.&lHCS 479

one is below the .T-asis. Therefore in case B,=, shown in
figure 11, the front fueI tank w-as assumed to be above the
X-axis, alI other conditions remain@ as in case BA. ln this
case the general type of motion does seem to resembIe that
in figure 3. The sideslip, -which buikk up to + ~“, shows
a snak& ak the fuel frequency.

In case .+ the fuel natural periods are -rery cIose to the
airplane period. ID case B, how-ever, the fuel period is ap-
proximately two-thirds of the airpkne period. In case B40,
shown in figwe 12 for ~0=50, the ~alue of (2.P of the model

has been arbitrarily changed to gi~e the model a period very
close to the fueI period of 0.66 second. Comparison with
figures 2 and 5 shows that the motion in this case is -rery
much Iike the motion in case .<.

Transverse accelerations.—In evalua,tirg piIots’ reactions
to snak~~ oscillations, the magnitude of the transverse
accelerations involved in the oscillations has been found to
be an important factor. .kcceleration amplitudes above
0.02.5g are found to be bothersome, and amplitudes above
0.08g are considered -i-e~ unsatisfactory. CaIcdations of
the transverse ~ccelerations in-rol-red in several of the previ-
ous motions were carried out. The magnitudes of the accel-
eration peaks in the residual oscillations were found to be
appro.ximateIy 0.04g to 0.05g. The actuaI motions are not
show-n since all the airplane oscillations are essentially of the
same kype as the /3motions.
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FIG.RE 7.—Frse-fl$ing airpIane mcdeI with fuel heights one-hti the tank radius (case Bd. Sideslip and fuel motions foIIowing initial sidedip, &t=5°.

DISCUSSION OF RESI.JLIW

lle motions described in the preceding section are suffi-

eif~nt tO give a fair picture of the types Of pOssible fuel effects.

J [OreOver, since each motion is just a superposition of the

{.htiracteristic mc)des Of the tot~ system, t~~se motio~ are

[) ft6?Il easier to understand if the characteristic roots are

l~nozvn. Physically it is clear that. the characteristic modes

lviH nOt differ much from the natural (uncoupled) modes

~vht’n the interaction between the airpIane and fuel is small.

(’Onlparison of figures ~, ~, and lZ with figures 7, 8, and 9

intlirates tht the interaction between airplane and fuel is
strongest w-hen the frequency of the airpIane is cIose to that.
{}fthe fuel, as might be espected from comparison tith the
resonance phenomena exhibited by an oscillator clritig a
system at its nat l.[raI frequency. For this reason the charac-
teristic modes of the totaI system -were calculated in cases
.1, md B4~, where the frequency ratio between airplane and
flwI naturaI frequencies vras practically unity. The naturaI
modes are given for purpose of comparison. The resuIts

are given as follow-s in terms of periods and times to halve
or doubIe amplitldes~ in seconds:
C!ase .42, naturaI modes:

P==l.49 TK=l.91

PI= P2=I.52

C&se A2, total system:

P.=1.47 T,4=61

P,=l.29 T%=l.34

P2=l.6i T2=4.56

Case B,~, natural modes:

P==0.66 T%=l.29

P1=P,=0.66
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P.=0.65 T%=30

P,=O.54 T,=l.5

P,=o.il T?<=0.48

In these cases of large interaction it is difficult [o identify
onr of the characteristic modes m the airplane mode. The
characteristic mode in which the period is changed Ieast.
from the natura] airplane period has been cdcd the airp~ane
cllararteristic. mode. How-ever, in figures 5 and 12 thk
mode is not obviously the dominant, one, as the airplane
mode is in figures 7, 8, and 9.

The most important effects to be noted in these particular
cases, where the fuel and airplane frequencies are equal? are
that a charactwistic mode -which is very lightIy damped with

a frequency close to the natural airplane frequency exists
and that an unstable mode appears. In conrm’tion \vith ~lJc!
first of these effects, it. Would seem that,, theoretically,
certain initial conditions might be fOUIld thaL would exvite
mainly this lightly damped mode in the characteristic solu-
tion for p, so that the resulting motion would be a tyIIi(al
snaking. Of course the required initial conditions migIlt or
might, not be prarticfil Ones.

The totaI characteristic modes were also udculat WI for
cases B1 and Bla to investigate the chinges in mo~ion mud

by a hypothetical shift of one. of the fuel tanks, The natural
modes and the char~cteristiu modes of the tolal system arc
given as foIIo\vs for comparison:
Cases B, arid BAa,natural modes:

P==0.84

P1=P,=0.66

T%=l.&$
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(’WC B~, total system:

P==0.88 T~=l.91

P,= ().63 T%4=5.45

1’,=0..52 T?4=1.61

~ase B,c, tottil system:

P.=0.86 T%=l.14

F’,=0.61 T,.+= 19.5 :

P,= fi.60 Tz= 10.2

It is interesting to note th~t- both fuels in figure 10 and
also in figure 11 seem to follow the more stable fuel mode in
the part, of the motion shown. The D motion in figure 11
seems to show- & effect of the um<table mode. It. appenrs
in this case that, w-hen the fud tanks are in front of and
behind the center of gravit~-, the conflgurtition with oue tank
above and one below- the .Y-a..is gi~es rise to an wstahle
mode; -whereas the configuration with both tanks below the
X-axis makes both fuel modes stable.

.% comparison of figures 2 to 4 or 6gures 5 and 6 clearly
shows that the initial conditions can hal-e a very irnportanh
effect, since the least stable mode does not necessarily become
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FII.,uKc 11.—Free.flying afrphme mo~el ii’ith tanks onc.hajffnfI and front tank assumed to be shifted above fhe X.uXis (COSCB+.).
(Cl)o=(r!klo”.

dominant for a long Lime. Tllc~dist.urbance ~vas chosenas
a typicid airphmc disturbance. On tile Otherhand the dis-
turbance of the fuels as an initial condition would seem to
lw completely artificial. HOwever, these motiOns are lw-

lieved to give a rough idea of the residuaI oscillations czused
hy fueI motion, at. Ieast insofar as magnitude is concerned,
since, if the fuels were still displaced a ft.er tl~e airplane motion

hm.1 practically did

SidesIip and fuel motioos foffowinginitial fuel dhturbtiwc

outj tile remaining motion mi@t 1x2

considered to be the type caused by a fuel displacrrnrnt.
From this point of view figures 4, 6, 10, an(l 11 scoIn to
indicate that residual oscillations of the order of mtignitu({e
of ~“ ~o ~“ migl~L bc expected in these cases. iict[lally,
figures 10 and 11 Would sho\v oscillations of the ortIer of
~{ofor 30° fuel displacements.
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Fb,1.RE 12.—Fre&flyiug sirpl.me model with tanks one-half full and C’,Sa@~*zed to tie mhmelfuelsndairpIane frequencies eqcmi (case B<*). Efdesfip and lueI motions fdffiwing -
initi:d sirfcsliP, pa= 5°.

Ikause of the Lengthiness of the calculations, only cases
.!,, .42, and Bjti were carried out far enough to show- the
rwsidual oscillations following a @disturbance. It “Eevident
that the motion in case B~b (fig. 12) resembIes the mot~on in
rase .A @gs. 2 and 5) much more than it resembIes the un-
modified case B motion (figs. 7 to 9). The reason for the
smaller relative fuel motion in case BAbis probabl~- the fact
thtit the reIative fuel mass is considerably Iarger than in
{.ase .i. In case .~z (fig. 5) the residual oscillation dominates
tile mfotion almost immediate~~-. These resuIts sIm\v that the
inlportanre of the residual oscillation depends mainly on the
~~Iosenessof the ntituraI airphme and fueI frequencies, that is,
t~n the parameter w-hich might be calIed the frequericcy ratio.
Inasmuch as the previous discussion of the characteristic
modes indicated that the frequency ratio Was also the most
import ant factor affect ing the characteristic modes of the
system, the frequency ratio generally can be seen to be the
most important factor determining the disturbance of the
niormaI airpIane motion causecl by the fuel. 310reover, case
i! indicates that for spherictd tanks the fuel frequency may

eady be of the same order of rmgniturle as the .airphme
frequency. Reference 4 indicates that the same is true for
rectanegdar tanks and for arbitrarily shaped tanks of reason-
able dimensions. Thus, even though the residual oscilhtions
might occur at fuel frequencies, these frequencies would not
be distin=tishable from the normal airplane frequency in the
cases where the fuel effect is most pronounced, since in these
cases the frequency r~tio apprcmches unity.

The effects of unsttibIe modes cannot be understood \}ith-
out consider@ the nonlinear effects due. to splashing of the
fueI. For linear systems the presence of an unsta_bIe mode
would imply that the total s~-stem is unstabIe. It has been
showm, ho-w-ever, that in an actuaI motion if the coefficient
of the unstabIe mode in the soIution for the airplane motion
is very- smaII compared tith the coefficient of one of the
stable mocIes, then the unstabIe mode will not appear in the
early part of the motion. liTow even in cases where the i.n&r-
tiction is meals, one of the fuel modes (with no naturaI damp-
ing assumecl) may be unstable. In such cases the unstabIe
mode in the airpIane motions wilI be relatively ver~- smaII,
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\vhile the unstable mode may be dominant, in one of the fuel
motions. Then this fuel motion may become very large
before the effect on the airplane motion can be observed.
iit this point splashing w-illset in and the equations of motion
no longer hold. ~c.tm~lly the energy lost. in splashing may
dtimp out, the fuel motion so that the eileci of this fuel nm-
tion, find therefore of the. unstable mode, may never ap-
preciably appear in the airpIane motion.

In case .&. however, the interaction is large, and figure 5
shows that the unstable mode does soon become very important
in LIle @ motion. Here again the effects of large-ampIitude
fuel motion and, in particular, the nonlinear effects of fuel
splmhing should be considered qualitatively. In cases Al
tind .&, because of the strong interaction, a sideslip of 5°
w-ouId very quicldy give rise to fuel disphicemm ts of the
order of magnitude of 90° or greater. Physically, it is clear
that the airplane motion is feeding energy into the fuel
mot ion in this early part of the motion. Because of the
large amplitudes of the fuel motion, a large component of
this mot ion is in tl~e vertical direction, so that a considerable
part of the energy in the fuel motion w-ill go into creating
longit udimd airphme motion. Because of the symmet r~ con-
ditions previously cited this energy w-ill not be fed bacli into
lateral motion, so thzt the fueI tends to s~abilize the lateral
mot ion by feeding some of the energy from the lateral into
the longitudinal motion. Also the turbulence due to sphLsh-
ing wi]l absorb energy which w-ill then be lost altogether
from the motion.

One conclusion which can be drawn from this discussion
is that, the motion following large disturbances may be more.
stable than that following small disturbances. For exanlpIc,
the initial dist urbanees in figures 2 and 5 have been adjusted
so tha ~cluring the motion shown there is little splashing, and
considerable residual oscillations are showcn. But. if the ini-
tial disturbances in these eases had been 5“ or more in B,
the energy lost in splashing in the early motion would pos-
sibly be so great that the residutd motion in p WouId be
smaller than that shown here. This might explain d~y some
airplanes which definitely showed troublesome fuel oscilla-
tions were reported to be more stable in conditions of large
Htmospheric turbulence than in slightly turbulent at.n~os-
pheric conditions.

.i more important conclusion is that the fuel can be used
to st tibilize the airplane motion b~-introducing turbulence-
for instance, by use of appropri~te bafiles. This can be seen
by noticing that the early part, of the ~ motion in figures 2
and 5 is very stable. But if most of the energy fed into the
fuel in this part of the motion were converted into heat,
through Lurhulence, then as has been pointed out, this energy
could not be fed back into the airplane motion and the

residual oscillations would not, appear. Since thu amount.
of eneragr lost in turbulence cannn t be calculated analytically,
it would seem that an experimental investigation of the
effeck of honeycomb or other turblllence-til(l~lci]lg btifTfcs
on the airplane stabi~ity Would be desirable, espcrially in
cases Where the airplane and f~lel natural frequencies are
approximatel~- equal.

Finally it is possible in a strongl)- unstalde case of residllal
oscillations, such as shown in figure 5, thaL the furl may
lose just enough of ifs energy in sph~s}ling to reduce its
amplitude to v-here the’ motion is again smooth. Then,
because of the instabdit.y of the system for sn~~ll motions,
the wnplitude might, again begin to build up. In this way
continued oscillations of a more or less regular nature WOU1(I
occur when h c.alculstions negh’cting splashing show un-
stable motion. This result. is important, because it sho}vs
th%t somewhat irr~gular smtdI-ampIitude osciflstions can lx’
expected lvhen the ratio of the airplane nmtural frequcnvy
to the fuel natural frequency approarhcs unityj even for
moderate fuel masses of the orcler of one-tenth th? tottil
mass or less.

EFFECTS OF ASPHERICAL TANKS

The calculations have been carried out for rigid-bwly
motion in spherical tanks onIy. .4ctuaIly this assumes tha[

for small oscillations the fundametltal wave motion in
spherical tanks approximates rigid-hotly motion. Tl}is
approximation only applies When the tanks are one-half f(dl
or less. This restrickiou is not Loo serious, however, SiII(’C
the fuel motion will generally have its greatcs~ duct in this
range.

It is important, to nok that the potential onrrgy of the
fuels is simply the potential energy of a set of harllloni(’
oscillators located at the positions Rfi Thus, the snmc
general analysis w511apply whenever the fuel motion in th(’
tank ca~ be represented in terms of harmonic oscillators
with given effective mass and spring constant. Refcrencr ~
hvs already been mentioned as obtaining such a rcprwnt ti-
tion for the fundammtaI mode of % rectangular hlnk.
Usually the fundamental mode w-ill be the n~os~ impor~an(
ancl will involve the greater effective mass. It is conceivah!c
that for long tanks the second mode might bo of a frcqueriry
closer to that. of the airplane and in that, rtise might ?-Nmore
important,. In such a case each mode might be represented
by a separate oscil}a.tor. lls has been pointe(l out, the
damping is mainly due to turbulence. and will be more im-
portant. for aspherical tanks. For small motions, ho\revcr,
the damping may still be neglected.

From the generaI derivation of the equations of motion,
the most important resuIt }Yas the effect of fucI distribution
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011 the coupling of Iateral rmd longitudird motions. It is

pltiin that these resuIts apply strictIy only to spherical tardis.

consider for example R tanli of triangular pIan form located

in the symmetry plane and oriented s~metricdly with

respect to this phtne. Because of the symmetrical orienta-
tion it can be seen that, although side&p motion miII g-i~-e
rise to for-ward and rearward forces (’because the pressure
fortes are normal to the diagonal surftices), the forward and
rwarward motion w-ill give antisymmetrica.1 lateraI forces

Ivllich }Yill cancel. In this case the restdt \vould be to feed

(,nergy from the ]ater~ into the IOn@tudinal motiOn; t~<

{wnc[ition W’OU]d be fa~OrabIe since the ]on=fitudina~ motion

is genertiy welI-damped. For an uns-ymmetricaIIy oriented

tanli of this type, energy could be fed back again from the

longitudinal to the Iateral motion arrcl the problem would be
(Illite complicated.

In generaI, the resuIts on coupling for spherid tanks
Ivould be vaIicl to first. order for such s-~etrical pIan forms
as the rectarrgular or the diamoncl-sha.pe ones. For any
simple symmetrically oriented shape in the pIa.ne of seym-
metry, a Ioss of energy from the lateral to the longitudimd
mOtlOII Il@t OCCUT. This condition lyo~l}d be fa.~-orab~e.
FinaIIy, for tanlis outside the pIane of symmetry the same
considerations w-odd be valid if the t.a~s were scmmetrica~y
placed with respect to the symmetry plane and suymmetricafly
shaped with respec~ to the pIane through the tanli center
~~araI1eIto the symmetry plane.

CONCLUSIONS

The folIowing conclusions may be draw-n from the the-

oretical anal@ presented:

1. Considerable disturbances of the normal airplane motion
can be caused by fueI motion.

(a) Th~ most important factor determining the effect
is the ratio between fueI and airpIane frequencies. When
these are equa~, e~en moderate amounts of fuel (one-
tenth the total mass or less) may cause considerable
disturbances.

(b) The most usual type of clisturbed motion is a some-
what irregukm small-amplitude osciIIat.ion and the. type
of motion is strongly dependent on the initia~ conditions.

(c) The effects of splashing will be to rnalie the motion
more stable, and the loss of energy in fuel turbulence may
make itt possible to increase the stabi~ity b~- artificiality
introducing turbulence in the fuel.

2. The fuel motion may cause coupling between lateral
and Iongitudimd motions.

3. The derivation of the equations of motion for spherical
tanks may be appIied to any tanks where the fuel motion
may be represented in terms of harmonic oscillators.

hl-GLEY .AEEoxAKTIc.kL L.\ BOR.\TORY,

NAJTIOXTAL ADVISORY COMMITTEE FOR AEROX.ILYTICS,

LANGLEY FIELD, T.%., A’ocernbcr 21, 1950.



APPENDIX A

A STEP-BY-STEP SOLUTION OF THE EQUATIONS OF hlOTION IN IIIATRIX NOTATION

~ matrix method for solving the equations of motion is
given in reference 9. The first step in this method is to
reduce equations (19) to a set of first-order equations by
introducing as new variables ~d, ~t, llrl, and ~fz as de-
scribed in reference 9 for 11+ and Zhj. This transforms the
equations of motion into a set--of nine linear first-order
equations in the nine variabIes. In matrix notation the
equations may then be written as follows When there are no
applied forces CY, Q., or Cl:

.4(DQ) +.BQ=O (Al)

where A and 1? are ninth-order square matrices and q is the
column matrix (or vector), the elements (components) of
which are the nine variables. ln partitioned form,

[1A=;;;::;
+iia5

!7=[t27rl,@,?,P,~r2 )~rl,~@,~#l

where 1Ais the identity matrix of fourth order; 04h and OSA
are zero matrices of order (4x5) and (5 X~)~ respecti~eIy;
and

.4,,=

o

0

0

G

o

‘o

o

0

0

.0

–+ (7.

o

0

0

0

0

0

0

0

0

Equation (Al) may be

Equation (M) show-s that, when there are no applied forces,
the differentiation operator with respect to Donclimensiona]

time may be replaced by prenllllti~~lication with tlw matrix

P= —A-n?. For exampIe, note that

D’q=D(Dq) =P(Dq) =P’q

and that3imi1ar relations w_ouMrcsuIt for higher powers.
Nowj by Taylor’s expansion, the vaIue of g(s + As) may

be obtained from the value of q(s) by the series

q(s+h)=q(s)+~ D@)+$/z D’@)+ . . .

By use of equation (.%2), this equation can be written

[
q(s+As)= 19+A3 P+% ~?+ . . .1q(s) (A3)

Which is the fundamental recurrence relation used in tho
step-by-step caIcuIat.ion. In equation (.13), .TQis the nintli-
orde.r identity matrix. The set of initiaI disturbomcws go
being gi~-en, the maemitude of the step AS will determine
the number of powers necessary to obtain ~ given accuracy
in the soIution. Because of thti relatively high furl fre-
quencies and because it }vas desired to obtain the motion t,o a
rather Iarge nurnbcr of periods with reasonable 8Ccuraey,
the series ih equation (A2) w’as used to the sixth poww with
As approximatdy 1/20 of the airplane period. Thus, t]ir
matrix relation (.%3) was

q(s +Asj= Qq(s) (A4)
Where

(As)2P2+ ,. .+-@# P’
Q=I,+~ P+7

,.
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solved for
tjhrojgh by the inverse of ~:

Dq= –A-’Bq =Pq

,?.lq by multiplying
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