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SUMMARY

Two fundamental problems of elastic stability are
discussed in this report, which was prepared by the
Forest Products Laboratory? for publication by the
National Advisory Committee for Aeronautics. In Part
I formulas are given for calculating the critical stress at
which a thin, outstanding flange of @ compression mem-
ber will either wrinkle inio several waves or form into a
single half wave and twist the member about iis longi-
tudinal azis. A mathematical study of the problem,
which together with experimental work has led to these
Jormulas, is given in an appendiz. Resulfs of tests
substantiating the recommended formulas are also pre-
sented. In Part IT the lateral buckling of beams is
discussed. The resulls of a number of maihematical
studies of this phenomenon have been published prior fo
this writing, but very little experimentally defermined
information relating to the problem has been available
keretofore. Ezxperimental rverification of the mathemait-
teal deductions is supplied in this report.

INTRODUCTION

Designing for the greatest load with a given amount
of material in & compression member generally leads
to the distribution of material at the greatest possible
distance from the neuiral axis of the member. The
extent to which such distribution can be carried is
limited by the possibility of secondary failure. Com-
pression. members with' relatively wide and thin out-
standing parts may fail through local wrinkling or
through twisting about the longitudinel axis at loads
considerably less than those that would be expected
to cause the more common failures of crushing for
short lengths or flexure for longer lengths. Yhen
such & compression member does fail, a thin, outstand-
ing element may either break up into several waves
(wrinkle) or may buckle into a single half wave, de-
pending upon the length and the torsional resistance
offered by the member of which it forms a part. Such
action has been observed for years. (References 2,
14, 15, 18, and 21.)

Again, the strength of a beam increases more rapidly
with depth than with thickness, and consequently in
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aircraft, where weight is such an important matter,
designers customarily use comparatively deep, narrow
beams. The ratio of depth to breadth, however, has
been kept within cerfain arbitrary or conventional
limits in commercial practice, because of the well-
known fact that a beam much deeper than it is wide
may buckle laterally and twist before it will break
by bending in a vertical plane. As a mstter of fact,
there is for each condition of loading and support a
critical buckling load for such a beam just as there is
a critical Euler load for & long column.

Either buckling or twisting or both are likely to
oceur in one member or another of an aircraft struc-
ture, and hence failure of a particular member may
be either in & normal type of bending or compression
resulting from the normal loading or through Iateral
buckling, wrinkling, or twisting under stresses having
their origin in the normal loading. Means of esti-
mating the stress at which elastic instability is likely
to occur have therefore become necessary in the close
designing of the present day, in order to provide
against secondary failure. Realizing this, the Bu-
reau of Aeronautics, Navy Department, financed an
investigation of fundamental phases of elastic insta-
bility to be conducted by the Forest Products Lab-
oratory. Wood was used in the experiments, not that
the problem is limited to any one material, but be-
cause of the convenience with which test specimens
can be made of wood.

The wrinkling and twisting problem has been investi-

gated mathematically for homogeneous, isotropic ma-
terials, and useful results have been obtained, notably
by Timoshenko. (References17and21.) Thisreport
reviews the general theory, adds an analysis that ap-
plies to nonisotropic material such as wood, and dis-
cusses the diminution of the critical stress caused by
the elastic giving of the material at the base of the
flange. The exact mathematical approach to the
problem leads to rather complicated results; through
consideration of test data, however, these results can
be simply expressed for problems of practical interest.

The allied problem of the lateral stability of deep
beams has already been investigated rather fully from
& mathematical standpoint. The results of such work
have been published by Michell, Prandtl, Timoshenko,
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and others. (References 9, 11, 13, 17, 20, and 23.)
This report adds experimental verification of the re-
sults already obtained.

TEST MATERIAL

Test specimens were made of Sitka spruce cut in
Oregon and shipped in log form to the Forest Products
Laboratory where the wood was sawed into lumber,
marked, and seasoned. As a result of this procedure
the history of each piece and its location with respect
to others in the same log were known. Part of the
lumber was immediately kiln-dried after sawing and
part was left to air-dry. Specimens were made from
both the kiln-dried and the air-dried stock.

In selecting pieces for test specimens, the usual
Army and Navy specifications were adhered to with
an additional limitation as to knots and pitch pockets
in that none was permitted, no matter how small.
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The elastic properties of the material in the various
planks from which the major test specimens were taken
were determined by testing small control specimens
cut from the same planks and so located as to be
representative. In certain instances it was possible
to accomplish the same result by cutting the control
specimens from uninjured portions of the major test
specimens after the main test had been completed.
In other instances such properties as the stiffness in
bending and the torsional rigidity of major test speci-
mens were determined by a secondary test of the major
specimens themselves either before or subsequent to
the main instability test. In such secondary tests the
stresses were kept well below the elastic limit and
when they were made the usual control tests served
only as a check.
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PART I

THE WRINKLING AND TWISTING OF COMPRESSION MEMBERS HAVING THIN, OUTSTAND-
ING FLANGES

METHOD OF TEST
WRINKLING TESTS

Two principal series of wrinkling tests were made on
compression members having thin, outstanding flanges.
In one series, & number of specimens, all having a
single flange of the same size, were fested under a com-
pressive load and the half wave length and the load at
which wrinkling started were recorded. The out-
standing flanges were then reduced in width a given
amount with the thickness left as before and the speci-
mens were again tested. This procedure weas con-
tinued until the widths had been so reduced that
wrinkling did not oceur.

In the other principal series of tests the width of
flange was kept constant and the thickness was re-
duced after each test. Several specimens were used in
order to obtain reliable averages for the half wave
length and the wrinkling stress corresponding to each
thickness. Figure 1 shows & specimen in the testing
machine.

In addition to the two principal series of tests, a
number of tests were made on built-up U, I, and =,
sections under axial compression.

TWISTING TESTS

The set-up for the twisting fests is shown in Figure 2.
Extension screws were attached fo an ordinary 4-screw
testing machine in which specimens up to seversal feet
in length could then be handled. This set-up was used
only to obtain maximum load. To obiain a load-
twist curve, & 2-screw machine was used, one that could
take specimens up to about 12 feef in length without
the use of extension screws. A pointer approximately
3 feef in Iength was attached to one flange and in some
instances to two flanges. As the column fwisted, the
end of the pointer passed over a plane table supported
from the base of the testing machine and when incre-
menis of load were read by the operator at the balance
beam the position of the pointer was marked and the
load set opposite such merking.

Prior to the twisting test each specimen was tested
in torsion in order to obtain the torsionsal rigidity of
the member. The stresses were kept well within the
elastic limit during this test.

ANALYSIS OF THE WRINKLING AND TWISTING
PROBLEM

The failure of compression members that contain
wide, outstanding parts, as llustrated in Figure 3,
may be brought about through wrinkling of the out-
standing parts themselves instead of through the
normal failure of the member as a whole, if the out-
standing parts are sufficiently thin. When such wrink-
ling occurs, the outstanding flange may either break
up into a single half wave or into more than one,
depending upon the torsional rigidity of the member
and the fixity of the flanges. If an outstanding flange
projects from a member that is high in torsional stiff-
ness, wrinkling into several waves is likely to occur
if the ratio of the outstanding width to the thickness
of the flange is great. On the other hand, if the
torsional stiffness is not great, the outstanding part or

parts may form into single half waves and twist' the

member sbout its longitudinal axis. The critical
values of the stresses at which one or the other type
of buckling occurs are discussed in the following
paragraphs.

WRINEKLING .

A mathematical approach to the wrinkling problem
is given in the appendix, where it is shown that the
critical value of the compressive stress p for a plate
perfectly fixed along one edge, free along the opposite
edge, and simply supported along the ends to which
the load is applied is given by

2
p=EEp, (1)

in which % is the thickness of the plate, & its width,
E the modulus of elasticity of the material, and £ a
coefficient depending upon the ratio of the length of
plate @ to the width 5.

The appendix shows further that for structural steel
the calculated minimum value of % is 1.16 and corre-
sponds to & ratio of @ to b of 1.6 or a multiple thereof.
(Reference 21.) The theoretical formula for the mini-
mum critical stress for steel would therefore be

hi
p=116Ep (2)
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The mathematical analysis, as already pointed out, at
first assumes perfect fixity at the base of the outstand-
ing flange, & condition probably never realized in actual
practice. Consequently a critical stress much lower

FieoRE 1,—The wrinkling under load in the testing machine
of a compression member having & single thin, outstanding
flange

than that predicted by the theory is to be expected.
Roark, who used specimens like B and C of Figure 3,
in which the outstanding flange was clamped between
angles, found that the formula

h2

p=0.6EP (3)
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represented his experimental results reasonably well.
(References 14 and 15.) The reduction of the coeffi-
cient from 1.16 to 0.6 can be attributed to the lack of
perfect fixity at-the base of the flange. Even when an
outstanding flange and the rigid back from which it
projects are all in one piece, perfect fixity at the base

N
i f
.
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5

F1GURE 2.—The twisting under Joad in the testing machine
of a compression member having several thin, cutstanding
flanges

of the flange can not be assumed. There is an elastic
giving at the base of the plate and also in every device
used in an attempt to obtain perfect fixity. IIence the
exact coefficient that should be used for steel and other
metals remains to be determined by experiment. A

discussion of the situation for wood follows.

The appendix shows that, on the basis of the differ-
ential equation of & nonisotropic elastic plate, such as
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wood, a critical half wave length and a critical stress
mey be calculated. The same mathematical work,
however, also shows that the values of the half wave
length and the critical stress vary over a wide range as
the inclination of the growth rings to the faces of the
outstanding flange varies from 0° to 90°.

The fact that perfect fixity at the base of the flange,
gs at first assumed in the mathematicsal study, can not
be obtained is true particularly of wood, which further
complicates the problem. The stresses at the base of
the flange resulting from the bending of the flange are
acting perpendicularly to the grain of the wood, the
direction in which wood is weakest.

The appendix shows that the critical stress for a
quarter-sawn flange of spruce perfectly fixed at the
edge is

p=0. 228E§',

For a similar flange with growth rings at 45° to the
faces the critical stress is

p=0. 117E2'q
Because of the elastic giving of the material at the
base of the flange, however, there is & great reduction
in the actual critical stress. Furthermore, this elastic
giving tends to decrease the difference between the
critical stresses for flanges with growth rings at 45°
and 90°, respectively. Tests gave as the reduced
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FiGurE 3.~Typical cross sections of compression members that havs
wids, thin, outstanding paris
coefficient 0.07 for spruce flanges, and the expression
for the critical wrinkling stress then becomes

h2
p=0.07TE % R _ 4

Probably this coefficient may be applied to other
species without appreciable error.

In Figure 4, in which wrinkling stress is ploited
against the ratio of flange width to thickness, are
shown the results of some actual tests. Each cirele
represents the average of from 4 to 18 values. The
results have been adjusted by direct proportion to
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correspond to a modulus of elasticity along the grain
of 1,600,000 pounds per square inch. The full line is
the locus of the expression "

p=0.07%1,600,000 13 P (5)

No record of the angle between the growth rings and
the faces of the flange, the importance of which has
been mentioned, was made at the time of test, but
full-section blocks from many of the test specimens
were saved and the angle was subsequently measured.
The direction of the rings ranged from 45° to 90°, as it
does in what may be called commercial edge-grain
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FI1GURE 4¢—Tha relation between the ratic of flangs width to thickness and the
wrinkling stress of thin, outstanding fanges

{quarter-sawn)} stock. The test specimens, therefore,
represent what would be found in actusl practice. The
variation in the test results is accounted for by the
variation in the direction of the growth rings and the
difficulty of delermining accurately just when wrin-
kling started.

Since the phenomenon of wrinkling is one to avoid in
good design, it is unnecessary to calculate the critical
stress with extreme precision. Merely a fair approxi-
mation of the critical stress is sufficient to msake sure
that for the width and thickness of flange used the
critical wrinkling stress will exceed the primary stress
expected from the normal loads. Slightly superior
design in this regard will seldom mean an a.pprecmble
sacrifice in load-weight ratio.

Length of outstanding flange.

The coefficient % in the expression for critical wrin-
kling stress is & minimum when the ratio of the length
of plate a to the critical half wave length ¢ is an inte-
gral number. If the plate is short and afc is not an
integer, the critical stress may be considerably greater
than that given by the formula becayse the flange can
not then break into the ideal half wave length. If the
length is great, that is, if a/c is greater than 2 or 3, and
the ratio afc is not an integer, however, the critical
stress will be only slightly above that given by the
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formula, since the plate can then break into a half
wave length very close to theideal. In either case, the
formuls will give values on_the side of safety. For
greater detail see Tables VI, VII, VIII, XIII, and XIV
and Figures 23 and 24 in the appendix.

TWISTING

It is shown in the appendix that the critical buckling
stress for & long steel plate simply supported along one
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tions . (87), (88), and (89) of the appendix, is a good,

average figure for this species. This value of the coefli-

cient probably may slso be applied to other species

with sufficient accuracy. The critical stress is then
given_by

hl

p= 0 044 F 7 )]

If « member with a section like D of Figure 3 is sub-

jected to compressive stress, the outstanding flanges

will usually form into a single half
wave at & certain critical stress and

32000 _
S #V4 ;Squa.'f‘e fillets

in so doing will twist the member
about its longitudinal axis. When

I+l

Colume T-25 | » such action occurs, the outstanding

elements are essentially acting as

268060

“6.94"x5.94"x 0.624"
E={30D00 b,/5G.in.

plates simply supported on one side

and free along the opposite side, and
formulas (6) or (7) are used to calcu-

24000
Colurmy) . T-26

late the critical stress.

20000

+ /4" Square ﬁ/iifs .

Members with I, H, or U sections,
such as E and F of Figure 3, likewise
may twist under compressive loads if

the torsional rigidity of the section
is not great. If the torsional rigidity

16000

is made large by using generous fil-
lets or, as with a U section, by malc-

T

=

ing the back considerably heavier

12000

unds

£

6.936°x6.935°x0506"
=(90/000 b,/5q.

then the legs, failure through wrin-

| kling into several waves may be

brought about and the critical stress

8600

in such cases must be computed by
the formulas applying to that phe-

nomenon.

4000F-

Actually, the rigidity of the mem-
ber may be such that failure will

take place at a critical stress inter-
mediate between the minimum twist-

Axial compressive load, po

Colen 7’—/0

ing stress and the wrinkling stress, as

Colurar, T-1 pointed out in the appendix. It is

%}.1/4" Tr‘fmguiar fitle fs;\

3.
£

8000

5

7’x352x030/f
BS5q

extremely difficult, howover, to cal-
culate accurately the coefficient for
the intermediate conditions. Con-

-

-

6.96°x6.96"x0. 371" ™ ’
E=[752000 b/5q .

sider for the moment—wood mem-
bers with a section like D of Figure

4oaol

[

3. Withno fillets at the junction of
the four legs, the coefficient 0.044

was found to apply. As fillets were

Q 200

various cruciform cross sections

side, free along the other side, and simply supported
at the ends, to which load is applied, is given by -

h2
p=0.385E7; (6)
when Poisson’s ratio is taken 88 0.3. _ .
For spruce the coefficient of equation (6) becomes
0.044 which, as explained in the discussion of equa-

Angle of twist af cenfer of cofumn, degrees )
FIGURE 5.—The relation between angle of twist at the center of & column and axial compressdve load for

added, the critical stress increased in
practically the same ratio as the tor-
sional rigidity. A U section, such
as F of Figure 3, will twist at &
stress corresponding to & coeﬂiclent of 0.044 if the
back and the legs are of the same thickness.
thickness of the back is increased or if fillets are added,
the critical stress will increase in about the same
ratio as the torsional rigidity.

Henee the Forest Products Laboratory recommends
that the critical twisting stress be first calculated for
such sections as D, E, and F of Figure 3 on the sup-

€« .8

If the
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position that no fillets are present and that all parts
are of the same thickness. This stress should then be
increased by multiplying it by the ratio of the torsional
rigidity of the actual section to the torsionsl rigidity
of the assumed section. This rule applies until the
limiting critical stress corresponding to the coefficient
0.07 is reached.

In Figure 5 are shown a number of cruciform sec-
tions, some with and some without fillets. Yood
columns having these sections failed through

Actual tests of the specimens, made prior to the
twisting tests, yielded a ratio of 1.29.

p=2,072X1.26=2,610 pounds per square inch
Area with fillets=7.01 square inches
Critical load P=2,610X7.01=18,300 pounds.

In figure 6 are shown a number of U sections of
columns that failed through twisting about a longi-

twisting about & longitudinal axis. Accom-

panying each section is a graph showing the 25000
relation between axial load and the angle of

Cokann T-35

twist for the column corresponding to it.
The horizontal dofted lines in these graphs 4500

L] T

are drawn at the critical loads calculated in

3 48"x 548"« 0. 496" L9"x 3. 45" 0.3/8"
=[783000 b/sq. in. B =561000 Ib,/5q. in]

accordance with the preceding recommenda-
tions.

For example, the critical stress for column
T-25 (fig. 5) without fillets is given by

(0.506)* 16000

7=0.044X1,901 000(3 215)F /

=2,072 pounds per square inch. 1/_

120001
The area is 6.76 square inches and the criti-

cal load becomes

9 =2,072 X 6.76 = 14,000 pounds.

As a further illustration, the eritical twist-
ing stress for column T-25 (fig. 5§) with

ey gy

¥-inch square fillets is calculated thus:

The torsion constant K for the section
without fillets is

[]

3

K=2X0.318X6.936 X (0.506)* =0.572.

Axtal compressive load, pounds

For the section with fillets K must be cal-
culated in three parts—the first part is the

:

Column T-42 Cobunry T-40
1

value K, for the square central portion of

[ L

the column section, the dimensions of which
are 1.006 inches on each edge; the second

L90"x2.99"x0.295* L9I5"x 24950293
E={582000 b./5q.n £ = (582000 b,/sq. i)

part is the total value K, for the four rec-
tangles projecting from the square center;

and the third part is the increase Kj caused

by the four junctions. (Reference 22,p.26, 00 /

and 1929 ennual report, p. 696.) The junc-

74____

tions are treated as T junctions and the bar

of each T is taken as half of the square cen-
ter. The torsion constant is then the sum
of the parts, which are caleulated as follows:

£

K, = {L009) —0.144

K3=2X0.315X2X2.965% (0.506)%=0.484

Ky=4X0.15X (0.629)* =0.094

K ={(.722
Then

Torsional rigidity with fillets  0.722

Torsionsl rigidity without fillets 0.572

a

=1.286.

4 & 2 g 4 8 2
Angle of iwist af cenfer of cotann, degrees

l‘mmc—ﬁerelaﬂonbetweenansleottwtstattheeenterofnealum.nmduia!eompraﬁire

load for varlous channel cross sections

tudinal axis. Accompanying graphs show the relation
between the axial load and the angle of twist. The
horizontal dotted lines are drawn at the critical loads
calculated by formula (7).

The agreement between tests results and caleulated
results as shown in Figures 5 and 6 is considered quite
safisfactory.
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Effect of length.

In arriving at the coefficients 0.385 for steel and
0.044 for spruce, which are used in the critical-stress
formula for free twisting, the length of plate was
assumed as several times the outstanding width. This
assumption gives the lower limit for the critical stress.
As the length is decreased to less than five or six times
the width, these coefficients increase appreciably,
Consequently, if the legs of a chanmnel section, for
example, are supported at intervals as by bracing and
the distance between points of support is less than
five or six times the width of the legs, the actual
critical stress will be higher than -that given by the
proposed formulas.

CONCLUSIONS FOR PART I

Thin, outstanding flanges of compression members
under load may buckle into several waves or may
buckle into a single half wave, in which event they
will tend to twist the member about its longitudinal
axis,

If both the length and the torsional rigidity of the
raember are great such flanges will buckle into several
waves (wrinkle) and the critical stress for spruce
flanges is then given by

2

p=0.07E%
If the torsional rigidity of the member is notgreat,
the thin, outstanding flanges will twist the member.
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Under such rigidity the flanges may be regarded as
plates simply supported on three edges and free along
the fourth edge. The critical stress for such a spruce
plate is given by

h!
p=0.044Ep,

Although the coefficients ‘n the preceding formulas
were obtained from the test of spruce flanges, the rela-
tions_among the elastic constants for the various
species are such that the coefficients may be expected
to apply to all aircraft woods with safety.

Members having sections as shown in Figure 3 will
twist_under axial compression if the junction of the
main elements is not strengthened with fillets. If
generous fillets are used or if part of the main elements
of the section are made heavier than the rest, the thin,
outstanding elements may either wrinkle or twist the
member, this depending upon the amount of torsional
rigidity added. KElastic instability, therefore, may
occur at a stress intermediate between the critical
stresses corresponding to the coefficients 0.044 and
0.07. Intermediate critical stresses may be calculated
by the rules given in this report.

Failure through local buckling can occur only when
the critical stress is less than the stress required to cause
primary failure.

Further conclusions, including calculated coefficients
for steel, follow the mathematical appendix.
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PART II
THE LATERAL BUCKLING OF DEEP BEAMS

METHOD OF TEST
VARTATION OF FACTORS AFFECTING THE BTCELING LOAD
In order to determine to what degree certain factors
affect the critical load for lateral elastic instability of

The loading device consisted of five parts. A rod
with an upset central portion passed through the beam
at the neutral axis. The upset portion was threaded
at each end so that the rod could be centered in the

FiauRE 7.—The set-up of the test for lateral elastic Instability of a alngle beam under center loading

deep beams, tests were made in which 21l factors except
one were held constant while the isolated factor was
varied. In these tests the beams rested on two sup-

ports with their ends held vertical and clamped against’

lateral rotation but free to rotate in a longitudinel-
vertical plane as the beam deflected. Load was
applied at the center by means of the rod-and-bar
framework shown in Figure 7.

beam by means of two nuts, which were drawn snug
against the sides of the beam during test. Slotted
bars, the lateral positions of which were fixed by V’s
in the upset rod, connected each end of the rod to the
ends of an evener bar and from the center of this
evener bar s tiebar passed through the movable head
of the testing machine and was pin-connected to it
on the under side. All connections other than the
pin connection mentioned were knife-edge.
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FI1GURE 8.—The set-ap of the test for critical buckling load under constant bending moment with

the ends of the single beam held vertical and not restzained laterally

When load was applied by
lowering the movable head, the
beam could buckle freely to one
side or the other. Theset-up was
not considered satisfactory until
the beam buckled to one side and
then to the other with theslightost
adjustment of the rod by mcans
of the two nuts.

TESTS OF SINGLE BEAMS UNDER VARI-
OUS LOADING CONDITIONS

Three differentloading and fix-
ity conditions were chosen to dem-
onstrate the applicability of the
formulas recommended for the
calculation of critical buckling
loads. These conditions were:
First, constant bending moment
with the ends of the beam held
vertical and not restrained later-
ally; second, constent bending
moment with the ends of the beam
held vertical and restrained later-
ally; and third, a concentrated
load at-the center of a beam that
rested on two supports with its
ends both held vertical end re-
strained laterally.

Constant bending moment with-
out lateral fixity was obtained
by considering only the portion
of a beam that was between two
symmetrical loads. A total span
of 14 feet-was used and the two
symmetrical load points were 60
inches apart. In order to permit
the beam to swing frecly, both
supports and loads were applied
through members, 16 feot long,
that wers fres to swing and twist.
The beams were wedged into these
long members, which were slotted
and of sufficient rigidity to hold
the beams vertical. The two.
loading members were attached
to an evener timber, which in
turn was attached to the mov-
able head of a testing machino
with a tie bar. The set-up re-
quired head room of approxi-
mately 35 feet. A diagrammatic
sketch of this set-up is shown
in Figure 8.

Constant bending moment with
lateral fixity was obtained by using
asymmetrical 2-point loading and
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again considering only the portion of the beam between
the loads. For this condition, improvised extension
wings were put on & 30,000-pound capacity testing
machine that permitted spans up fto 16 feet. ILoad
was applied at iwo symmetrical points, in some tests
5 and in other tests 6 feet apart. In order to obteain as
complete lateral fixity as possible at the load points,
lateral, horizontal, pin-connected tie rods were attached
to the beam at intervals between the load points and
the supports. In addition, pieces 1% inches thick and
about 6 inches deep were clamped to both sides of the
beam from each load point outward and well toward
the support. Figure 9 shows this assembly.

at the supports bub because of resting on bell bearings
were not restrained laterally. Figure 10 shows &
panel before test.

ANALYSIS OF THE LATERAL BUCELING PROBLEM

A mathematical analysis of the lateral elastic insta-
bility of deep rectengular beams leeds to the following
general expression:

P=F1/]:7}L{,G"K_ @)
in which
P=the critical buckling load
E=the modulus of elasticity along the grain

FIaURE §.—The set-up of the test for critical buckling Ioad nnder constant bending moment with the ends of the singls beam held vertical and restrained lataraily

The third method of test, namely, the application
of a concentrated load at the center of a beam resting
on two supports with its ends held vertical, was
identical with the test procedure described under the
heading, Variation of Factors Affecting the Buckling
Load.

TESTS OF PANELS

Panels consisting of two beams held together with
ribs were tested in two ways. The first method was to
suspend the two beams on hanging supports 16 feet
long and to apply load to each beam at two symmetri-
cal points as just described for the testing of single
beams under conmstant bending moment with ends
held vertical and not restrained laterally. 'The second
method was to support the two beams on four ball
bearings and to apply a uniformly distributed load
over the ribs themselves; In doing this strips were
laid on the ribs upon which cans filled with sand were
placed. The ends of the beams were held vertical

I,=the momant of inertia about the principal vertical
axis

G'=the modulus of rigidity in torsion

K =the torsion constant of the section

L=the span '

F=a constant depending upon the loading and fixity
conditions.

(References 9, 11, 18, 17, 20, and 23.)

If b is taken as the width of beam and d the depth,
I, in equation (8) becomes

_a*
12

and the torsion constant K is expressed as follows:
K=gdb? )]

in which B is a constant depending upon the ratio of
d to b. Table I gives the velues of 8 for various
ratios of 4 to b.

I
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TABLE I ' e

THE FACTOR g8 FOR CALCULATING THE TORSIONAL
RIGIDITY OF RECTANGULAR PRISMS

Ratio of 8 Ratio of 8

sides, d/b aides, d/b
L00 0. 14058 22 0. 24012
105 14744 2,60 - 4936
110 . 15308 278 . 256806
L16 . 18021 8.00 . 26332
L20 . 16812 8. 650 . 27331
125 17178 4,00 . 28081
L30 17707 4.5 . 28685

- L8 . 18211 5.00 . 20138
1.40 . 18680 6.00 . 20832
1,45 . 19145 7.00 . 30382
1.50 . 19676 8.00 . 30707
1.60 20374 8. 00 . 30090
170 21003 10.00 . 31232
L78 . 21428 20,00 .32283
180 . 21748 50. 00 - 32013
190 . 22332 100. 00 . 88123
2,00 . 22868 @ . 38333
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Figure 12 shows the results of one representative series
of these tests. The circles represent test values and
the full line is the locus of equation (11). Again the

| agreement between actual test results and theory is

considered good.
- In the third series of tests, the span L was varied

while all other factors were held constant. The buck-
ling load for this condition reduced to
C
=f; . (12)

In Figure 13 are shown the results of two representa-
tive series of these tests. Again the circles represent
actual test-values and the full lines the respective loci
of equation (12) for the two beams sclected.

F1aUuRE 10.—A. ribbed panel before test

In the first series of tests to check the relation of the
various factors in the general equation, all factors except

the depth of beam (d) were held constant. The buck-
ling load then reduces to

in which C is & constant. In Figure 11 are plotted the
results of four series of tests in which d was varied while
all other factors were held constant. The circles repre-
sent the actual loads and the full lines are loci of equa-
tion (10). The agreement-is considered very satis-
factory.

In the second series of tests, the width b was varied
while all other factors were kept constant. The buck-
ling load in this case becomes

P=0b%+B (11)

The effect of the modulus of elasticity in bending
could not be separated from that of the modulus of
rigidity in torsion for the purpose of checking further
the fundamental expression, because when one is
changed the other changes with it, and therefore
neither could be isolated. Moreover, it was impossible
to ascertain experimentally with wood alone the impor-
tance of their combined effect on buckling load because
the range over which their product varies is too limited.
For steel, the modulus of rigidity in torsion is commonly
taken as two-fifths of the modulus of elasticity in
bending while for spruce it is in the neighborhood of
one-fifteenth or one-sixteenth. Since some previous
tests of steel beams have shown excellent agreement
with critical values ealculated by the formulas, it
therefore appeared logical to assume that, if tests of
wooden beams also checked values given by the formu-
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las, the moduli of elasticity in bending and of rigidity
in torsion are in their right relation in the formuls.
(References 6 and 9.)

Following are formulas that apply to rectangular
beams under various loading and fixity conditions.
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FIaGRE 11.—The relation between the latera! buckling
load and the depth of beam modified by a torsion cor-
rection factor (d+/ #), for deer, rectangular beams
In all cases the ends of the beam are assumed to be
vertical. An end not restrained, in the terminology

800 l /‘4
8600 )
//

Q__ .
g“w ! //
p
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24 52
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FIGURE 12.—The relation between the lateral buckling lead and
the cube of the width of beam modified by a torsion correction

facter (43+/B), for Qeep, rectangular beams

used, is held vertical but is not otherwise constrained,
and an end restrained is both held vertical and clamped
against lateral rotation. Figure 14 shows the lateral
deflection of the longitudinal axis for three principal
conditions of restraint.
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Case 1.—A thin, deep, rectangular beam under con-
stant bending moment A, with its ends
not restrained.

27 ~ELGR o
—=VELER R —

%
3

Series 5—2'\ \-Seﬁes S-/

AN
N -

8

Buckiing loaad, poun

3

2aq 40 . .
Span, inches : s
FIGURE 13.—The relation between the latersl buckling load and
the span, for deep, rectangular heams

Case 2—The same as case 1 except that the ends are
restrained.

e 21—3[EL_—I,GK _

A:Mo loferal resfranit af ends : . —

Plan of undeflected beam | 5

Flon of longitudingl axis affer deflection . S

B:Ends resirained kolercly

Plan of undeffecied beam

Pion of longitudinal axis affer defleclion.

C.Lalerd resfrant of cenfer af span

= ———— —_———r 3

Plan of undeflected beam

Flon of longifudinal axis affer deffechon .

FIGURE 14.—The lateral deflection of the longitudinal axis of a single rectangu-
lar beam when the bending In & vertical plans becomes unstable and sidewise

buackling oceurs
Casg 3.—A. thin, deep, rectangular cantilever with a
. concentrated load P at the end.

. 4EL,GK
P = ——Lz . - - —

CasE 4.—A thin, deep, rectangular cantilever with a
uniformly distributed load W.

o 129VELER T

LZ
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Case 5.—A thin, deep, rectangular beam supported
at the ends and carrying a concentrated
load P at the middle, with its ends not
restrained.

p_16.9VELGE
L!

Casnm 6.—The same as case 5 except that the ends are
restrained.

P_25.9JEI,GK
AT

Cask 7.—A thin, deep, rectangular beam supported at
its ends and carrying a uniformly dls-
tributed load W with its ends not re-

strained.
28.3VELGK
W=
Cask 8.—The came as case 7 except that the ends are
restrained.
»_43.3VELGK
==

Jasg_9.—Afthin, deep, rectangular beam subjected to
a constant bending moment M and an
axial thrust P/, with its ends not restrained.

_JELGK |
M=—""F \/I“wEI2 |

Cask 10.—The same as case 9 except that the ends are

restrained.
2#xEL,GK P'L2
M==7 / 1- 47T,

Case 11.—A thin, deep, rectangular beam supported
at its ends and carrying both & uniformly
distributed load W and a concentrated
load P at the middle, with its ends not
restrained.

PL? WL
169 28.3

=ELGK

Combinations of the preceding cases may be similarly
expressed. . . .

Case 12.—A thin, deep, rectangular beam supported
at its ends and carrying a concentrated
load P at its middle, with lateral support
as by tie-rods, at the middle, and the
ends not restrained. Such a beam
buckles laterally in two half waves.
(Fig. 14, C.)

P=44'5 I}_%,E(;,—K e

i of the results obtained by Timoshenko.
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BUCELING FORMULAS FOR I BEAMS

The preceding formulas require modification when
the beam has flanges, since the lateral flexure of the
flanges then becomes important. Following are some
(References
7, 18, 17, 18, and 20.) Two more symbols are intro-
duced. Let
Iy=the moment of inertia of one flange about the

principal vertical axis

and let
3 ot B ELh?
2 GKL*

CASE 13.—An I beam subjected to a constant bending
moment MM, with its ends not restrained.

M=TVELOR i

Case 14.—The same as case 13 except that the ends
are resfrained.

M=2"'—z—— VELGE VI+irta?

Casg 15.—The same as case 13 with the addition of an
axial thrust P,

wu-TVERE iy [ BT

Case 16.— The same as case 15 except that the ends

are restrained.
f Pz

M__L'“_ \ ¢~ a7ET

Case 17.—A cantilever I beam with a concentrated
load P at the free end.

= ’ P= -\)EfsaK -
L2

V1+4na?

in which values of F for reciprocal values of o? are:
1.

—-

o et 1 2 4 8 12 16 % 32 40 o«
F: 448 187 122 0.8 80 7.2 6.7 62 59 56 40

Cask 18.—An I beam supported at its ends and corry-
ing & uniformly distributed load W, with
the ends not restrained.

 FJELGR
W=y uek

in which values of F, for reciprbcal values of a? and for
three differant placements of the load, are:

liaet 8 18 B o6 4 0 0 2 e
gi Fr143.2 530 42.6 36.3 826 3.5 30.5 208 0.3 228 283
) F- 028 983 80.4 274 202 .2 258 200 M2 266 3

Fro916 78.2°60.4 431 407 381 360 344 326 3L0 288

The placements of the load on the beam, numbered to
correspond with the values of ¥, are:

(1) Along the neutral axis.

(2) On the top.

(3) At the bottom.
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Case 19.—The same as case 18 except that the ends
are restrained.

7 FVELOR
Lﬂ
1.

¢ 04 4 8§ 16 3 96 128 200 400 «
P: 498 160.8 116.3 9.2 73.0 58.0 658 &34 L2 43.8

CasE 20.—An I beam supported at its ends and carry-

ing a concentrated load P at the middle,
with the ends not restrained.

p_FELGR

==
Liac s 8 18 2 o 6 W W e
) T oe64 8.0 256 7.8 10.4 183 17.9 IL5 I7.2 169
@ &4 23 o 84 149 KO 180 1A €9
3) F- 1458 500 B2 305 255 224 L2 0.0 189 16.9

As in case 18 the load is applied:
(1) Along the neutral axis.
(2) On the top.
(3) At the bottom.
Case 21.—The same as case 20 except that the ends
are restrained.

p_FVELGR

L2

Lias s 8 18 2 o 6 00 @ M o
F: %3 §8.8 655 50.2 40.2 342 3L8 30.0 285 B2 %59

Case 22.—An I beam supported at its ends and carry-
ing a concentrated load P at the middle,
with the ends not restrained, and the
beam laterally supported at the middle,
as when two parallel girders have a lateral
connection between them at the middle
of their span.

P=F3[EI,G'K
L2
L ot 4 518 2 w1 oW w0 e

F; 466 154 114 86.4 60.2 546 524 49.8 47.4 445

Case 23.—An I beam supported af its ends and carry-
ing s distributed load W, with the ends
not restrained, and the beam laterally
supported at the middle of the span.

7 FVELGR

I2
al,: 0.4 4 8 18 32 8 128 200 40 -
.? 873 21 164 125.5 100.8 79.4 764 728 0.6 650
112 9L2 73.7 7L5 63.9¢ 66.8 658
F‘TM: 2&2 141 1112 856 SLS 7.0 T35 659

Again the load is app]ied:
(1) Along the neufral axis.
(2) On the top.
(3) At the bottom.

EXPERIMENTAL YERIFICATION OF THE BUCELING FORMULAS

Time and funds were not available for the experi-
mental verification of the formulas for all the loading

and fixity conditions listed. Over 40 I and rectangular
beams, however, were tested under the following condi-
tions, which represent a considerable range for the
fixity and the loading constant F.

Case 1.—A rectangular beam subjected to a constant
bending moment, with its ends not
restrained.

Case 2.—A rectangular beam subjected to & con-
stant bending moment, with it sends re-
strained.

Case 13.—An I beam subjected to a constant bending
moment, with its ends not restrained.

Case 14.—An I beam subjected to a constant bending
moment, with its ends restrained.

Casg 21.—An I beam resting on two supports, with &
concentrated load applied at the middle
of the span, and the ends restrained.

The results are shown in Tables IT, III, IV, and V.
Since the exact fixity conditions assumed in the mathe-
matical analyses are difficult of attainment, the agree-
ment of test results with values given by the formula
is remarkable. We consider this agreement, together
with the agreement for a limited number of metal
beams, conclusive proof that the formulas are appli-
cable to beams under sctual service conditions.

A REPORTED DISAGREEMENT WITH EXPERIMENTAL RESULTS

The only experimental record of fests with wood
that has come to the attention of the present authors
is an undergraduate thesis that has been published
as National Advisory Committee for Aeronautics
Technical Note 232, “The Latergl Failure of Spars.”
In this note a wide difference between actual and

.theoretical results is reported, the statement being

made that actual loads ranged from one-half to one-
fifth the loads cslculated by the formula applying
to the test conditions. Examination of this note,
however, leads to the conclusion that the theoretical
formulas were not correctly applied in two respects,
as follows:

1. The coefficient 16.9, which the authors of the '

note used, applies only to the conditions of case 5 of
the present report. Their loading conditions, how-
ever, were those of case 12, which requires 2 coefficient
of 44.5. In addition, the ends of the fest beam were
under light lateral restraint, which would increase
the coefficient to about 50.

2. It appears that they used the moment of inertia
about the principal horizontsl axis instead of that
about the principsal vertical axis.

Only part of the test resulis reported could be
checked, since in several instances the beams were
stressed beyond the elastic limit and stress-strain
curves with which to modify the modulus of elasticity
were not available, yet proper work-up of their ex-
perimental data gives results that check with pre-
cision the theorefical results.
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TABLE II . . -

THE CONSTANT BENDING MOMENT REQUIRED TO CAUSE LATERAL BUCKLING AND TWISTING OF THIN,
DEEP, RECTANGULAR BEAMS HAVING THEIR ENDS UNRESTRAINED LATERALLY BUT BHELD VERTI- -
CALLY ALTHOUGH FREE TO ROTATE IN A LONGITUDINAI-VERTICAL PLANE

STRESSES WITHIN THE ELABTIC LIMIT

1 2 3 4 ] 6 7 8 9 10 1
Buckling moment by~
EI3by— GK by— : ==
Beam Nominal dimensions (inches) L Calcalation from coltmps—
* Tost
QOaloulation{ ‘Test [Calcylatfon] Test 8and5 | 3and6 | 4and 6
R-102 L3 S, 000 78, 050 000 60 070 225 10, 480
R~105, ;‘byye g%’, 000 21& 800 267185', 300 60 28’, 200 22: 870 femeucunmon 1& 850
R-107 oo eaeee 1byé 084, 000 938, 000 sT.':,GOO 161, 300 [-43 21, 800 20, 850 20, 380 23,620
R-108, . 14 by 6 1,744,000 | 1,607,000 28, 800 873, 200 60| 80,620 42,230! 41,380 43, 200
R-111 1A DY G e 8,830,000 | 8,638,000 547, 000 496, 000 60| 70,700 | 67,300} 70 300 07, 500
BTRESSES BEYOND THE ELASTIC LIMIT
1 2 3 4 5 6 7
Buckling moment by—
Beam " Nominal dimensions (inches) Comected | g bytest | Z | catemation )
from colum: Test
3and ¢
R-~110. [ 134 by 44, 1, 630, 060 gﬁ 600 60 41, 730 42,350
R-112. —— dmmmmmmammcadesemaema—an 2by 6 - 4, 670, 000 1, 000 60 118,25 102, 800
R-118. - - 14 by 4V ... 3, 105, 000 355, 000 60 45, 250 42, 350
2 8 U [ S — &, 980, 000 1, 088, 000 60 133, 500 98, 250
All caleulations were made with a slide rule,
E=modulus of elasticlty as determined from control tests increased 11 per cent to correct for shear distortion.
E’=secant modulus of elastioity as obtained from a stress-strain curve, .
Iy=mmomsnt of inertia of a beam about its principal vertlcal axis.
G=modulus of rigldity.
K=torsion constent for the section.
L=length subjected to constant moment,
TABLE III
THE CONSTANT BENDING MOMENT REQUIRED TO CAUSE LATERAL BUCKLING AND TWISTING OF THIN, .
DEEP I BEAMS HAVING THEIR ENDS UNRESTRAINED BUT HELD VERTICALLY ALTHOUGH FREE TO
ROTATE IN A LONGITUDINAL-VERTICAL PLANE .
1 2 3 4 5 i 7 8 [ 10
EI by— Buckling moment by—
Beam - Nomins! dimensions (tnches) B | G2y OO | L | Galoutation I )
Calculation Test from colu -
6and 7 '
2by 6 by 35,40 000 140, 000 000 | 124, 100 60 550 810
ey R mE dem dme mi o8 mw) ww
by 54 26.73 | 2,700,000 | & 710,000 ; B8, 780,000 | 151, 500 60 68, 100 75, 000
2by 7by 48, 58 412, 000 862, 000 §78,000 | 12,010 60 9,870 13, 450
lﬁbylib 24. 60 225, 000 492, 000 520,000 §  15,3%0 80 5,770 5,350
14 by 8 b; 36.00 242, 510 536, 000 | 545, 000 17,150 60 8, 500 8, 880
1by 6 by 8871 80, 600 262, 000 332,000 [ 82 250 60 8, 750 8,210 .
1by6éby 85 58 50. 050 158, 000 221, 000 18,450 80 3, 150 3,970
2b¥ 7hy 48. 58 503,000 | 1,070,000 [ 1,022 000 18, 400 60 15, 070 15, 120
1by 6 by 38 95 71,200 206, 000 219, 500 23,820 a0 8, M5 4, 500
B by 5 27.67 | 8,208,000 | & 880,000 [ & 935000 | 150,000 80 66, 700 65, 500

All caloulations were made with & slide rule.

h=height of beam,

E=modulus of elasticlty as determined from control tests increased 11 per cent to correct {or shear distortion.
Jy=moment of inertia of 1 flange about the principal vertical axis of the beam.
Iy=moment of inertia of & beam about its prinelpal vertical axis.

G=modulus of rigldity.

K=torsion constant for the section.

Lmlength subjected to constant moment.
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TABLE IV

THE CONSTANT BENDING MOMENT REQUIRED TO CAUSE LATERAL BUCKLING OF THIN, DEEP BEAMS
HAVING THEIR ENDS RESTRAINED LATERALLY AND HELD VERTICALLY ALTEOUGH FREE TO ROTATE

IN A LONGITUDINAIL-VERTICAL PLANE °

RECTANGULAR BEAMSB
i ; 2 3 4 ) 8 9 10 11
.[ Buckling moment by—
i ELby— . GEby—
Beam | Nominal dimensions (tnches) Calcunlation from columns—
F - Test

Cslenlation| Test Calculation! Test 3end5 | 3endS [ 4and 6
R~101 —— by 6 430,200 |oeememeaea ] 78, 600 72| 15850 , 14,350
R-102 by 6 398,000 | _____| ;éoso 60| 18,120 18,470 16, 740
R-107. I1by 6 984, 000, 938, 000 175, 900 161, 60 43, 600 41,720 40, 730 365,050

I BEAMSB
1 2 3 4 5 T 8 9 10

ElL by— Buckling moment by—

Beam Nominal dimensfons ¢nches) A? ulm on r GE by L Qalcalation

Calenlation from Teast
6and7

I-10._ — 4 by 6 by ¥ flange by ¥ web 3540 21,000 [ 2,140,000 | 2,290,000 | 124 100 60 81, 850 85, 900
1. 114 by 6 by }4 flange by 35.76 204,000 | 1,006,000 [ 1,008,000 | I24,300 80 45, 100 %150
I-13. 2 by 7by ¥ flange by 48 58 412, 000 8§62, 000 878, 000 12,910 ()} 34, 420 330
I-15_ 13 by 8 by 34 fiange by 3§ web_.__ 36.00 42, 500 536, 000 545, 000 17, 150 60 10, 700 14,180
b 1by 6 by M flange 36.71 80, 600 262, 000 32,000 32, 250 00 13, 220 11, 3%
17 lbyobyggﬂange 3558 59, 050 158, 000 221,000 | 13,450 60 7,780 *7, 700
p L S 2by 7 by 34 flange 43,58 508,000 | 1,070,000  1,022,000] 18,400 60 41,340 26, 430
I-10. 1by 6 by s flangs by 35.95 71, 200 208, 000 219,500 | 22,320 -] 9,380 8,870
I-20__ ———— 14 by 8 by §| flange b: 35.78 241, 300 551, 000 547, 000 27, 200 60 21, 180 18, 610
) o 1} by 6 by 34 flange by 24 50 1%, 000 425, 000 562, 500 13, 650 6 15, 750 11, 490

All calculations wers made with a slide rule.

A=height of beam.
E=modulus of elast
B=moment of inertia

as determined from confrol tests increased
about the principal vertical an!xés of the heam.

ﬁnnze
Jym=moment of Inertia of a beam sbont its principal vartical

G=modulus of rigidity.
HKm=torsion constant for the section.
Lwlength subjected

to constant moment.

11 per cent to carrect for shear dfsturtion.

TABLE V

THE CONCENTRATED CENTER L.OAD REQUIRED TO CAUSE LATERAL BUCEKLING OF THIN, DEEP I BEAMS
SUPPORTED AT EACH END WITH

E ENDS RESTRAINED LATERALLY AND HELD VERTICALLY
ALTHOUGH FREE TO ROTATE IN A LONGITUDINAL-VERTICAL PLANE

1 2 3 4 5 8 9 10 i
Buckling load by—
Beam Nominal dimensions (Inches) B | by b EL b&m wﬁg{m e F
Calculation! Test
85.05 |- 189,800 423, 000 15, 040 82| o.0328 40.8 483 400
34.69 74, 800 238, 200 23,300 82 . 0063 30.6 338 405
LT 184, 500 412,000 13, 010 82 . 0350 4.8 455 450
47.61 289, 100 562, 000 550
2440 137, 100 250, 500 10,080 82 L0247 37.3 05 307
24.21 189, 400 414, 200 12,770 82 0288 385 416 400
3457 339, 500 718, 000 23, 060 823 0390 42.4 810 720
2421 190, 500 414, 800 12,680 832 . 0271 36.9 418 410
3605 71, 500 212, 000 0, 220 8 . 0092 31.& 02 320
35.05 552,000 | 1,171,000 26, 150 a2 . 0350 47 1,244 860

ATl calculations were made with a slide rule.

A=height of beam
E=modalus of elastic!ty
Iy=moment of Inertia of

from control tesis

Is-mamantoflnartlao[shaamnbouﬂtsp cipal vertical

Gmmodulas of rigidit,
K=torslon constant Ior the section,
Lmgpan.

Enhkt

LT T4

11 per cext tg correct for shear distortion

determined Increasad
of 1 flange about the principal va:ﬂmla;xxis of the beam.

j73
F=multiplylng factor in the Iateral buckling formuls, dependent upon a?
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STRESSES BEYOND THE ELASTIC LIMIT in which % is & constant that need not be evaluated
The calculation of a criticel load that produces a | when Figure 15 is available. The modulus below the
fiber stress beyond the elastic limit is possible by | elastic imit will be called E in this report and that
mesans of the preceding formulas if the modulus for | above will be called E’. Although both depend upon
inelastic deformation is known. Although this modu- | the slope of the line connecting the origin with the
lus is a variable beyond the elastic limit, it may be | stress-strain curve at the particular stress in question,
obtsined from a stress-strain disgram. Figure 15 | E’ is usually spoken of as the secant modulus.
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FI1oURE 15.—8tress-strain curves for spruce beams. Values taken from these curves are for use in the equation:

Modulus of elasticity=130.7 X straln

shows such a diagram for a spruce beam in bending. The formula proposed by Karman and advocated

From it the required modulus, for a stress either below | by Timoshenko for calculating E,

or above the elastic limit, may be determined by means - _ 4EXE

of the formula: - = WE+ JEL)g (14}
stregs !

Modulus of elasticity =130. 7k><stram (13) in which E, is the tangent modulus on the compression
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side of the bjsam and E is the initial modulus, can not
be used for wood. (Reference 16.) It can not apply
to wood beme when the meximum load in bending
is reached the stress-strain curve for the compression
fibers has tyirned downward, which means that £ has
become neghtive. In fact, before the maximum load is
reached the, tangent to the stress-strain curve for the
compressior} fibers has become horizontsl, which means
that the fdrmuls would give the beam no stiffness,
whereas it hctually is still resisting an increasing load.

Whatevelr the method used, more than one trial will
have to be made in the calculation of the critical stress
because E’'is not known until the stress is known. In
calculating' critical loads by simply substituting E’
in the formyulas that were developed on the assumption
that the ellastic limit was not passed, two further
assumptionis are made, as follows:

1. Passing the elastic limit does not affect the
torsion modulus G.

2. The dgcrease in F is constant along the span.

In invesdigating critical loads, four rectangular
beams were subjected to a constant bending moment
that produced lateral buckling at a fiber stress beyond
the elastic Iimit. The results appear in Table II.
The corrected values of EI; given in the table were
obtained by rnultiplying the secant modulus E’ by
the moment of inertia I; of the cross section about its
principal vertical axis. The calculated critical bend-
ing moment for the first beam listed in the second part

of the table (R--110) is about 1% per cent lower than :

the test value, ‘while the calculated values for the
second (B~-112) and the third (R-113) beams are
respectively 13 and 7 per cent higher than the fest
values. The second (R-112) and the fourth (R-114)
beams, which were of the same size, were made from
adjacent planks cut from the same log. Control tests
showed the material in R~114 to be slightly superior.
Consequently its low test bending moment is difficult
to account for unless the beam had become slightly
warped before tesf, in which event the actual stress
at failure would be higher than the calculated stress
and the value of £’ lower than that used.

LOAD NOT APPLIED ALONG THE NEUTEAL AXIS

The development of the buckling formulas is
greatly simplified by the assumption that the load is
applied along the neutral axis of the beam, snd in
aircraft work usually no material error will normally
be iniroduced by assun such an application of the
load. In a few of the cases for which formulas are
given, coefficients are also given for load applied along
the neutral axis, on the compression flangs, and on
the tension flange of th3 beam. For the development
of the formulas for a load placed above or below the
neutral axis, attention is again directed to the work
of Timoshenko and to advanced texts on strength of
materials or applied elasticity. (References 7, 12,
and 18.) '

BUCELING OF BEAMS TIED TOGETHEER WITH RIBS

When two thin, deep beams are tied together with
ribs, in addition to carrying whatever direct load is
normelly placed upon them the ribs will act to prevent
lateral buckling of the beams. Very often, though,
when the direct load is transferred to the beams from
the ribs, the ribs may be laboring to sustain the load
already upon them and consequently may have no

____ . = D
FIGURE 16.—Ths test of a panel to show that the tendency of an axially loaded
single spar to buckle fs transmitted by the ribs to an mmloaded single spar

Teserve streﬁgth left for any extra load that a tendency
of the beam to buckle would produce.

The first panel test was made to demonstrate the
fact that the tendency of an axially loaded spar to
buckle is transmitted by the ribs to the unloaded spar.
For this test there was made a panel consisting of two
1% by 6 inch spars spaced 55 inches center to center,
four compression ribs spaced 55 inches, and drag
wires in the three bays. No ribs were put in between
the compression rihs. Axial load was applied to but
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one spar, which deflected alternately in and out between
compression ribs as the beam of Figure 14, C, deflected.
The test was stopped at a load of 12,750 pounds with
the panel still uninjured. The deflections were in-
creasing rapidly at-that time, and apparently the load
was very near its maximum. Auxiliary ribs were
then put in between adjacent compression ribs, four
in each bay. Figure 16 shows the completed panel
ready for test. Axial load was again applied to but
one spar. The test was stopped at a load of 29,000
pounds, which was very near the maximum.

Under the conditions of the second test, in which
all ribs were in place, the two spars act—=as one, the
lateral rigidity of the panel being the combined rigidi-
ties of the two spars. Similar tests were made by the
Engineering Division of the War Department, Air
Service, at McCook Field with identical results.

FIiGURE 17.—Wing ribs for which the degree of attachment of the ribs to the beams is adjustabls

In the next panel tests the beams were subjected to
bending, and load was applied directly to them and
not to the ribs. Two 1 by 6 inch rectangular beams
subjected to & constant bending moment over 60
inches of their length were tied together with four ribs
spaced 12 inches center to center in the 60 inch bay.
Constant moment was applied by using the apparatus
ghown in Figure 8, except that double the number of
support and load rods were used. The ribs that tied
the two beams together were as shown in Figure 17;
they were held in place simply by the friction under
the heads of the bolts, the holes for which were slotted.
Obviously, if the bolts were not-drawn tight the beams
could buckle very easily, while if they were drawn
tight twisting was practically prevented. The evener
bar was not pin-connected to the movable head in this
test but was rigidly attached to it, so that if one beam
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stopped teking load more was thrown uppn the other.
When the panel was assembled the bolts holding the
cleats along'one beam were drawn up i%ghtly, while
those along the other beam were not.! The beam
supported by the less rigid cleats quit takiing load at a
moment, of 35,530 inch-pounds, while the bne with the
more rigid cleats did not buckle until it was subjected
to & moment of 53,620 inch-pounds. (The results
show what may heppen when the ribs s}art to fail.
Incidentally, had the beams been held so as to restrict
bending to a vertical plane, each should biave carried
65,550 inch-pounds and had they been free to buckle
laterally each was calculated to sustain 21,270 inch-
pounds, Y

The next panel tested was similar except that the
ribs were glued to the flanges. Load wasf) applied to
the beams as before, and failure occurred) when each

beam was subjected to as‘moment of
55,600 . inch-pounds. The’/ calculated
bending moment for each w}ith bending
confined to a vertical plans was 62,800
inch-pounds. .

The third and final step was the test
of single bays with load applied to the
ribs alone. (Fig.10.) Taepanels were
8 feet between supports and the beams
36 inches center to centgr. Seven ribs
of the lightened plywood type, rectan-
gular in form, extending 12¥ inches be-
yond each beam and spaced 12 inches
apart, tied the two beams together.
The ends of the beams rested on thrust
bearings and were held vertical during
test. Roller bearings under the ball
bearings at one support permitted
movement as the beam deflected.
Thin strips 7 feet 5 inches long, notched
at the ribs, were laid on the 1ibs, and
cans filled with sand were placed on
them.

For this fixity and loading the beams, which were
rectangular and % by 4 inches in cross section, should
have buckled laterally at approximately 81 pounds
each if unsupported by the ribs. If bending had been
confined to a vertical plane, 970 pounds should have
been required to break each beam. The ribs when
supported laterally should have been good for 250 to
300 pounds. The preceding; values are calculated
ones. .

The two beams were suppcried at the center by a
cross timber resting on two jack screws, with the ribs
supported only by the beams. A load of 735 pounds
was put on the panel and th: screws lowered. The
beams remained in a vertical plane throughout their
length. The timber was again brought up against the
two beams to relieve the load and more load was
added. No buckling occurred at 1,155 pounds when
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the screws were lowered. Again the two beams were
supported at the center by the cross timber and more
load was applied. A total of 1,370 pounds was sus-
teined by the ribs with the beams still supported at
the center. This load, however, was approaching the
maximum for the ribs. When the screws were again
lowered the ribs did not have sufficient additional
strength to resist the tendency of the beams to buckle
and they gave way.

The two beams, which were uninjured in this test,
were again ysed in a second panel. This second panel

was like the first in every respect, but the loading was .

somewhat different. In place of the notched 7-foot
5-inch loading strips, short smooth strips that ex-
tended over two and three ribs alternately were used.
Instead of having the long strips with their notches
hold the tops of the ribs in line, strips %-inch thick
and 2 inches wide were laid flat along each side of each
rib and tacked at the ends and center to the shord
loading strips. In this test, as in the first, the lower
chords of the ribs were unsupported. Because the
short loading -strips permitted freer lateral play in the
bea.ms, this panel failed at a lower load than the first.
A meximum load of 900 pounds was obtained, at which
load the lower part of the ribs buckled until the ribs
lay almost flat against the loading strips.

In the third and final test of this series the bottoms
as well as the tops of the ribs were held in line and the
same beams were used again. Ten rows of 14-inch
commercial cotton tape were run parallel to the spars
and sewed to the ribs. Two diagonal pieces on both
top and bottom were then sewed to the parallel rows.
Although this taping was hardly comparable with wing
covering, it held the ribs in line quite well. The short
loading strips of the previous test were again used in
sddition to the tape.

As previously stated, the lateral buckling load of
each spar when it was unsupported was calculated as
91 pounds, which is 182 pounds for the panel. Theload
required to break each one if bending had been confined
to a vertical plane was 970 pounds or 1,940 pounds for
the panel. Failure occurred at a total load of 1,470
pounds, at which one beam buckled badiy and col-
lapsed. The ribs had started to buckle somewhat,
which permitted the one beam to buckle out of a
vertical plane. Greater strength of the ribs or greater
torsional rigidity of the spar would have prevented this
buckling and twisting. A box beam of the same
strength in bending, for example, would not have
buckled at this same load.

The nose of an airplane wing helps to hold the front
or deeper spar in line and the wing covering keeps the
ribs in line. VYith this support, fairly large ratios of
depth to breadth may be used if the ribs are made with
just a little surplus strength.

Some years ago, after the test of a great many
beams in connection with a study of form factors, the

80300—32—26

suggestion was made that the ratio of the moment of
inertis about the prinecipal horizontal axis to the
moment of inertia about the principal vertical axis be
kept low, below 25 if possible. A further suggestion
was that when this value was exceeded special atten-
tion should be given to the factors that insure lateral
rigidity. (Reference 10, p. 16, and 1923 annual
report, p. 390.) As aresult of the present experiments,
the Forest Products Laboratory has learned what
factors are involved in the lateral buckling load and has
concluded that no arbitrary ratio for the moments of
inertia can properly be set and that such a method of
design should not be used.

In previous tests it was practically impossible to

prevent the buckling of I beams having & moment-of-

inertia ratio of 39. In the pane] with the 1 by 6 inch
beams just mentioned, for which the moment-of-
inertia ratio is 36, the maximum moment was approxi-
mately 89 per cent of the moment that would have
been required to cause failure had bending been
confined to a vertical plane, and even this percentage
value could not have been obtained if it had not been
for the excess strength of the ribs. In the third fest of
the last panel, which had ¥ by 4 inch beams and for
which the moment ratio is 64, the maximum load was
approximately 76 per cent of the load required to
cause failure had bending been confined to a vertical
plane.

In sll of the recent tests it is probable that the
beams were receiving less lateral support than the
beams in an ordinary wing panel would receive and the
end fixity was less than that which obtains in the usual
drag bay. With a more or less rigid nose, such as one
of plywood or metal, and ribs slightly over strength,
beams with moment-of-inertia ratios considerably in
axcess of 25 can be counted upon for their full bending

strength.
CONCLUSIONS FOR PART II

Deep beams may fail through buckling laterally and
twisting at loads muck less than those caleulated by
means of the usual beam formula. _

There is for each fixity and loading condition a
critical lateral buckling load for a deep beam just as
there is a critical load for a column.

A mathematical analysis of the problem for various
loading and fixity conditions leads to formulas that
contain the dimensions of the beam, the modulus of
elasticity along the grain, the modulus of rigidity in
torsion, the span, and a constant depending upon the
loading and fixity conditions.

Experimental results confirm the practlcal appli-
cability of these formulas.

Yhen one spar of an airplane wing or other panel
is subjected to an exiel load and the other spar and the
ribs are not loaded, the lateral rigidity of the whole
combination is the sum of the lateral rigidities of the
two spars.
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When two deep beams fastened together with ribs
are subjected to bending, lateral buckling of the beams
may or may not be prevented. When one or both of
such beams are heavily stressed and in need of lateral
support, the ribs, if they are not stronger than is neces-
sary to carry the load upon them, can not carry the
extra load that is induced by the tendency of the
beams to buckle.

A fairly rigid nose and ribs slightly overstrength will
permit the use of aircraft wing beams that have & rela-
tively large ratio of moment of inertia about the prin-
cipal horizontal axis to that about the principal vertical
axis.

No arbitrary moment-of-inertia ratio can be used
with certainty. Each particular case must be studied
individually and lateral support must be provided in
accordance with the tendency of the beam to buckle
laterally rather than to bend in a vertical plane.

'This investigation was undertaken as a study in air-
craft design. The conclusions, however, are of general
application, even though some of them for convenience
are worded as if they applied only to aircraft.
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APPENDIX

}
A MATHEMATICAL STUDY OF THE ELASTIC STABILITY OF THIN, OUTSTANDING FLANGES
UNDER COMPRESSION

) INTRODUCTION

In discussing the stability of a column or other
compression 'member having one or more thin, out-
standing ﬁaxtlges, it is necessary to consider not only

. ) the conditions for the stability of the

‘ column as a whole but also the stability
’ of the flanges themselves. The problem
‘L];lel_l] of the stability of such a flange is essen-
p tially that of the stability of a rectan-
gular plate simply supported along the
ends to which the load is applied, free
along one of the other edges, and on the
remaining edge either simply supported,

k imperfectly fixed, or perfectly fixed, de-
pending upon the nature of the section.

y=0
y=o

| Timosheno has discussed this problem
&in considerable detail for plates of
! isotropic material. (References 17 and
\21) In the following appendix his
ethods will be extended to plates com-
i osed of a nonisotropic material, such
I ! I 1 l I waod, which will be considered
P have three mutually perpendiculer
F?:::uﬁ:‘*p:; plenes of -elastic_symmetry.. His anal-
under & unlform ySAS for isotropic plates will also be

compressive losd g arized and some further coneclu-
on two opposite
edges

o =0

EXACT METHOD; BASE OF FLANGE PERFECTLY FIXED

DIFFERENTIAL EQUATIOW FOR THE DEFLECTION OF A FLANGE
OF NONISOTROPIC MA'JFERIAL UNDER A COMPRESSIVE LOAD

A plate of thickneks A, Figure 18, is considered to
lie in the X¥-plane t.\Iild to be bounded by the lines
z=0, z=a, y=0, an{d y=>5. Uniform compressive
loads P per unit length} of edge, parallel to the X-axis,
are applied to the edges x=0 and z=g, which are

z K '
} he s
YY
xr W Te
V‘V i’

/

¥y

A

simply supported. The edge y=5 is free while the
edge y=0 is either simply supported, partially fixed,
or perfectly fixed.

The case in which the edge y=0 is perfectly fixed,
a case which rarely or never oceurs in practice, is first
treated for both isotropic and nonisotropic material,
making use of the differential equation for the deflec-
tion of the plate from its plane and of appropriate
boundary conditions. A simpler approximate method
based on energy considerations is then applied to the
same case and the results are compared and found to
check in a satisfactory manner. The approximate
method is then applied to the case in which the edge
in question is only partially fixed, the case in which
the edge is simply supported appearing as a limiting
form of partial fixity.

The differential equation satisfied by the deflection
w is obtained from the following differential equations
connecting the stress resultants 7, S, and & and the
stress couples @ and H acting upon an elementary
portion of the plate with edges dz and dy. (Reference
8; art. 326, equations (24), (25), (26), and art. 331,
equations (45) and (46).) The notation used is that
of Love. (Reference 8, art. 294.)

T, aS: Fw d*w _

%+%—NI%—N,%+Y’=O (163

a_éflﬁ_;_ %l;lﬁ'+ﬂ%_’;‘;_s,%+& %+T2%+Z'=0-
- Nyt I/ =0

%ﬁ%—m + M =0 (16)

0w 0w 0%
Gl m" Gz az_a‘y'l"Hl W

. &
y A
Z
Y Vﬁ"’
~

H B

2,
+H,%+SI+S,=0.

FiarrE 10.—(A) Btress resulfants and (B) stress couples on an element of a plats
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In equations (16) and (16) X' =Y'=2Z'=M'=N'=0,
since the components of the external force per unit
area and of the external couple are zero.

To calculate T3« « « « - - H, it is necessary to
express the components of stress X, « + - » + * X, in
terms of the deflection w and the elastic constants.
(Figure 20.) The displacements u and v sre given
with sufficient accuracy by

“ . ow
)
17)
A -(7
v P4 ay
The components of strain are
_u__ ow
% %R 61:’
(')‘u 8 _ 0w
ay + —2z B3z 2y

For a more extensive dJscussmn of the components of
strain, see article 329 of reference 8.

Assume that the material of the plate, wood, has
three mutusally perpendicular planes of elastic sym-
metry. (Reference 8, arts. 110 and 111.) Denote by

0

Fieurg 20.—Components of displacement in terms of
deflection
E., E,, and E; Young's moduli in the directions z, ¥,
and 2z, respectively, by o, Poisson’s ratio assaciated
with contraction parallel to the Y-axis and stress
parallel to the X-axis, and by psy the modulus of rig-
idity corresponding to the directions z and y. The
stress components X, Yy, and X, are then given by

E, .
X,= 1= 02,912 (€zs+ oyatyy)
= e B,z _a_i@ g _a’_’w '
1 — 0ayoye\ O2® " 7% Byz (19)

- “n"v:(af-'- v gy a )

X = ey by = 2/-‘:,2 a?a_y

By definition -
Gi= X.zdz.
(Reference 8, art. 2904.) Then
G,=—D, %—?+o’”%—f ’ (20)

L]

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS !

where g ‘
' ) _ zh H
DB | ey
In like manner
Gz=“‘D7<T+ 0':1'3? l (22)
where 2‘
E.ht
Ll T ———" ‘ (23)
Further, from their definitions,
H=—H=M, —3’;—/ (24)
where {
h8
M= I‘zv 6 } (25)

In the last of equations (16) the quarptities Gy, G;,
H,, and H;, which are expressed by (20), {22), and (24)
in terms of second partial derivatives o;f w, are each
multiplied by second derivatives of w. [Each of these
derivatives may be considered small and jthe product of
two of them negligible. It follows tha

8= — 5. (26)

From the first two equations (16¥ and equations
(20), (22), and (24) it is found that

N=-Di(GE+ o ) M s
' @7)
N3= —D3< +a':, af::lgy\ 3-[ _ag.%.

It is clear from their definitionsfand (19) that S; and
S, are small. (Reference 8, art.[294.) Also from its
definition and equation (18) T4 is small. Equation

(26) and the first two of equatfions (15) are satisfied

approximately by taking

IS'1=IS'1='T':’='O (28)

and

T,=constan }: =—P (29)

where P is the load per unit ]epgbh of the loaded edges.
The third of equations (15),: on meking use of (27),
(28), and (29), then gives thie differential equation of
the plate: )

—D, a4w+ oy a:a*t) M ax"a—'
-D a‘“’+ o)~ M gy — P gm0,
"\ "=va=ay= a=ayz 3—
Or
01%4$+2Kaa:‘f;;,,+17,g;"+1>g%’=0 (30)
where
. K Dioye+ ngcrg_'*' 2M 31)
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BOUNDARY CONDITIONS

On the simply supported edges z=0 and z=a of
Figure 18,

w=0 (32)
and
G =0. (321a)
The last condition requires that
9% 02
W + a'yg a‘y’l‘g (33)
On the fixed edge, y=0,
w=0 34
and .
Sw
| % 0. (85)
On the free edge, y=5,
Gg = 0
and
aH' G G &%
N) = —Dl ay?f'l'a’”a‘ ;gy 2-3’.{6 ;gy
Rewriting these conditions for the edge y=5,
9? 0?
a:;f +osy a;f =0 (36)
and
& o
A+ @) 55=0, @7)
where
2M
2—o=oyt D,’
that is,
= (2 _ d’l) E’ _éﬂﬂ (1 _ G’SUO'!E) . (38)
)
SOLUTION OF THE DIFFERENTIAL EQUATION
Conditions (32) and (33} are satisfied by
w=sin T2 f () =sin Mz ). (39)

It will be convenient to replace mx/a by =/e, for if the
flange breaks up into more than a single half wave
each portion of length a/m=c may be considered as a
plate of length ¢ simply supported at its ends. We
shall accordingly interpret A as given by the equation

where ¢ may be either the entire length of the flange or-

a portion of this length, s circumstences require.

In accordance with (8C) f(y) in (39) must satisfy an
ordinary linear differential equation of the fourth order.
Its solution can be written

fy)=Cie~¥ + Coe*¥ + (; cos By + C: sin By, (40)
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.where

od=o1 N(K2—DiDs) + DyP+ —D—]
(41}

KX

ﬁ'_ }\’(.K2 .D]_.Dﬂ) +.D3P— —.D—

Conditions (34) and (35) are satisfied if t.he constants
in (40) are so related that we may write
f5) = 4 (cos fy—cosh ay)+ B (sin fy—Zsink ay). (42)

The substitution of (39) combined with (42) in the
conditions (36) and (37) leads to the equations:

A[(8 + o, A2) cos 80+ (o — o2A2) cosh ab]+
B(8+ 0.,\) sin ﬁb+§(a’— o2\?) sinh aB]=0 (43)

and

| A[B(B2+2M—cN?) sin Bb—alad— 27\’-!—&'?\’) sinh abl+

B[—B(82+2X2—a)?) cos Sb—B{a?—2N24-aA?) cosh ab]=0.
(44)
In (44) note that after some reduction

B+ 2—\N=a—oyA?
— (2— )N =84 o, A\

In this reduction the following relations were used:

at— ﬁ’—@; 2—oc=0g5n+— DM: and E,o.,=E,04:.

i (Reference 1, p. 104.} TUsing the abbreviations

I=F+ g M

g=at— g, A}, (45)

the equations (48} and (44) can be written in the form
Al cos Bb+s cosh abl+ Bt sin gb+L & sinh a5] =0

(46)

A[Ss sin 86 — of sinh ab] + B[ — 88 cos 55 — £t cosh ab] =0.

In order that solutions of the system (46) other than
A=0 and B=0 may exist, that is, that a solution
different from zero of the differential equation (30) of
the form (39) may exist, it is necessary and sufficient
that the determinant of the coefficients of A and Bin
(46) vanish. The result of equating the determinant
to zero is, after some reduction,

28+ (F+s’) cos b cosh ab= (a’t ﬁﬁsﬂ) Bb sinh ab
(“4n

" Multiplying this equation through by 5%, the terms can

be arranged so that « and 8 occur only in the combina-
tions «b and 8b. We then write (equations (41))

ab=({TV+ V)t
. 48)
ﬁb = ('V uv- V)iz
where -
vz 5, (49)
and
U= Di_K["’% (K*—DD)+DPW.  (50)
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GENERAL EXPRESSION FOR CRITiCAL STRESS

By assigning a value to the ratio ¢/b the quantity
V is determined. The corresponding value of U can
then be found by solving equation (47). The value
of the critical stress '

P
=y

corresponding to this value of ¢/b can then be found
from equation (60). From (50) it follows that

=55
~[amv-omm(5- -D.) |Bege

A (51)

ELASTIC CONSTANTS OF SPRUCE

The elastic constants to be used in the computa-
tion depend upon the orientation of the planes of
elastic symmetry of the wood in the plate. It will
be assumed throughout the discussion that the grain
of the wood is parallel to the X-axis, the direction
in which the compressive logd is applied. Two cases
for the direction of the growth rings of the wood will
be considered, one in which the rings are perpendicu-
lar to the faces of the plate and another in which
they make an angle of 45° with the faces.

In the first case (fig. 21) Young’s moduli E., £, and
E, are equal to Ep, Ey, and Ey,
respectively, the subscripts L, R,
and 7 denoting the longitudinal,
radial, and tangential moduli, re-
spectively. The values for these
and other elastic constants for
spruce were taken from a report of
the British Aeronautical Research
Committee. (Reference 1, p. 105.)
The values are:

Ep=1.95X10%

Er=0.13X10%"

Er=0.07X10¢
Zz  pe=0.104X10°
per=0.072X10°
per=0. 005X 108

¥

orr=0.45
orr=0. 539
orr="0. 559
orz=0.03.
o =0. 0194
ore=0. 301

Q

FIGURE 21.—The cross
section of & quarter-
sawn flange

In the second case, when the growth rings make an
angle of 45° with the faces of the plate (fig. 22), the
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elastic constants B, « « « « « + « ¢ pey €80 be com-
puted from those just given by the follow"ing formulas:

1 _1 1 1
E 4_EE 4Er 4#31-

ORT

T 2By

!Tn='ﬁ' (G'LR+ O'LT)}

__r
O';r—-‘E—gvlTv;,

— 2prriir .

’ Hrr+pre

(Reference 8, art. 111.) It is
then found that

E,=0.01875X 108
oy2=0. 00475 i

Fi16URE 2.—The cross section

/'Z

¥

ooy =0. 494 of & wood fiange the growth
sy =0. 0851 X 10°. tinges of which make anangle

CRITICAL STRESS FOR A FLANGE OF SIPRUCE

Values of £ in equation (51), the equation for critical
stress, which result from solving equation (47) for the
cases of growth rings perpendicular to the fauces of the
flange and at 45° to the faces, are given in Tables VI
and V1II, respectively.

TABLE VI

THEORETICAL CONSTANTS FOR FLANGED COM-
PRESSION MEMBERS OF SPRUCE HAVING THE
GROWTH RINGS PERPENDICULAR TO THE FACES
OF THE FLANGE, CALCULATED BY THE EXACT
MATHEMATICAL 'METHOD

ofb v | x
3.40 16.42 0. ZB540
THR TR
248 | B
3.00 1430 %&‘n

The minimum critical stress for growih rings perpen-
dicular to the faces of the flange occurs when the half
wave length is 8.25 times the outstanding width of the
flange. This critical stress is equal to 0.228 EA/b*.
Ordinarily the length of the:column is such that the
flange can not break up intc segments the length of
which is exactly 3.25 times the outstanding width.
Under such a condition the stress will be increased as
the valuesin the tableindicate. Considerableincreases
would be found for considerable departures from the
optimum value of the ratio ¢/b. Such departures occur
only when the column is so short that its length is less
than two or three times the optimum half wave length.
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TABLE VII

TEEQRETICAL CONSTANTS FOR FLANGED COM-
PRESSION MEMBERS OF SPRUCE HAVING THE
GROWTH RINGS AT AN ANGLE OF 45° WITH THE
FACES OF THE FLANGE, CALCULATED BY THE
EXACT MATHEMATICAL METHOD

l b T E
534 14.88 0. 217308
520 1478 117119
510 |, IL76 17118

| &00 K74 117118
490 LT3 17227

| €0 1475 1r7880

I

Consideration of Tables VI and VII shows that the
theoretical critical stress is considerably less when the
growth rings make an angle of 45° with the faces
of the flange (fig. 22) than when they make an angle
of 90° (fig. 21). The chief factor in determining the
variastion in the critical stress with variation in the
angle between rings and faces is the ratio E/E..
This ratio is nearly constant when the angle made by
the rings with the faces of the flange lies between 20°
and 70°, and hence the results for rings at an angle
of 45° may be taken to apply over this range. Yhen
the rings are parallel to the faces of the flange,
however, the minimum ecritical stress is found by an
approximate method given later in this report to be

0.164 E. r*/b?

for a flange with & perfectly fixed edge. This critical
stress is intermediate between those for flanges with :

the rings at angles of 45° and of 90° with the faces.

The theoretical critical stress for a flange with a :
perfectly fixed edge is not attained in practice because |

the condition of perfect fixity at the base of the flange
is not realized. Later in this report it will be pointed
out more in detail that as the fixity at the base of the
flange decreases the variation of the critical stress with
inclination of growth rings becomes smaller and
ultimately, as the fixity continues to diminish, the
critical stress for a flange with rings parallel to its
faces becomes less than that for a similar flange with
rings at 45°, which in turn is always less than that for
s similar flange with range at 90°.

DIFFERENTIAL EQUATION AND BOUNDARY CONDITIONS FOR &
FLANGE OF ISOTROPIC MATERIAL

The preceding analysis is an extension to flanges
of nonisotropic material of the method that Timo-
shenko used in discussing flanges of isotropic material.
(Reference 17, p. 350.) When the material is isotropic
the differential equation (380) becomes

ow . dw  dw Pdw
= et artoas 0 (62)
where o
CL=I§?F:;§‘ (53)

The boundary conditions are given by equations (32)
to (37) after apy and o have been replaced with s. The
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differential equation and the boundary conditions are
then those used by Timoshenko. The critical load is
determined by solving equation (47) where { and s
are given by (45) with o =0c and where a and 8 are
given by (48) with

v=r5 (54)

and

U=Fi- 55

CRITICAL STRESS FOR A FLANGE OF ISOTROPIC MATERIAL

The values of U corresponding to various values of
the ratio ¢fb as calculated by Timoshenko are given in
Table VIII for flanges of isotropic material. In the
third column of this table appear the values of % in
the formula

.
p=kE '

where p is the critical stress. 'This formula is obtained
at once from equation (55) by noting that

P ER?
p=y end O=p5— oy

In the computations o was taken as 0.25.

; TABLE VIII

! THEORETICAL CONSTANTS FOR FLANGED COM-
PRESSTON MEMBERS OF ISOTROPIC MATERIAL
CALCULATED BY THE EXACT MATHEMATICAL

. iiSEg‘gg)D AND WITH POISSON’S RATIO TAKEN

&

[adid il wlal ainl i ad ol ad ol ol ud
hNOOﬂﬂéﬂuh“ﬂHO
BREBEEEREEEERE | o
REEREEEREBERD
PREPDEEPEEEEEEE |
BYRRSBRRHEEENE

In Table VIII the critical stress is least when the
half wave length is equal to 1.635 times the width of
the outstanding flange. If a, the total length, is either
less than 1.635b or somewhat greater than this amount
the critical stress will be greater, as Table YIII shows.
As g increases toward twice the idesal half wave length
the critical stress begins to diminish, reaching the
seme minimum value at ¢=3.276 as at a=1.6355.
YWhen thoe column is long in comparison with the

more times the width) the flange will bresk up into
waves the half length of which is approximately
1.6355, and the critical stress will then differ but little
from that for this ideal half wave length.

width of the outstanding flange (the length three or '
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APPROXIMATE METHOD
DISCUSSION

Approximate results were obtained by Timoshenko
with & method that is based upon energy relationships
and that is an important extension of & method used
by Bryan. (References 3, 4, 5, 19, 20, and 21.) The
deflection of the plate (fiz. 18} is expressed as a sum of
terms of the form .

w=.A1¢1($E, 2/)+Az¢z($; ?J)+ LI (56)

the functions ¢;, g, - . . . . being chosen to satisfy
the boundary conditions as nearly as possible and the
coefficients A;, 4z ... .. being arbitrary. This
expression for the deflection w. is then substituted in
the integral representing the energy of deformation of
the plate. The result is a function of the arbitrary
constants 4;, A, ...... The energy is then
equated to the work done by the compressive load P
per unit length acting on the edges =0 and z=a.
The result is an equation that can be solved for P
in terms of the arbitcary constants 4;, 4y, . . . . ..
The ratios Al A;, Asfdy, . .. .. are then chosen in
such & way as to meke P a minimum. If the resulting
stress, '

P
=7

where h is the thickness of the plate, is less than the
stress for primary failure of the column. of which the
plate is a member, the plate will fail by buckling at the
critical stress p. Hor a full discussion of the method,
with examples of its application to simple cases, see
Timoshenko’s paper. (Reference 19.)

The energy of deformation of the plate, under the
assumption that the stress components X,, Y,, and
Z, are negligible, is given by .

h
b 2
V=i [ [ [ Fetwrt Vot Kiew) dedy dz. 60)

Substitutihg the values of the strain components given

in (18) and those of the stress components given in

(19) for nonisotropic material having three mutually
perpendicular planes of elastic symmetry, the result is

V=t ), e 2) + )

+2E.0,: g_u_; ?’j 932] + 4;;,,,(-&———) }dy de. (58)

For isotropic ma.tenal this becomes

-8 [1(33+32) 2o [Z2

~(25) Jlov g (59

The work done by a compressive load P per unit
length of edge, applied to the edges x==0 and z=¢
(fig. 18) is given by

NN LT

In what follows, the integrations with respect to z
in (58), (59), and (60) will be performed between the
limits 0 and ¢, where ¢ is the half wave length of the
deformed surface. In certain cases ¢ will be equal to
a, while in others it will be a fractional part of a.

BASE OF FLANGE PERFECTLY FIXED

The assumed deflection (equation (56)) will be
taken sas

w={ A, (6b%2 — 4y + %) + Ay (yF — 10b%?

+205%")} sin . (61)
The functions of y in the first and second terms of
(61) represent respectively the deflection of a canii-
lever fixed at the end =0 under a uniform load and
under a load that is proportional to . Timoshenko
in treating the isotropic plate by this method chose
other functions. (Reference 21, p. 405.) It is nol
apparent that either choice possesses any particular
advantages over the other.

Flange of nonisofropic material.

Entering (61) in (58) it follows that for nonisotropie
material

hAE,
48¢%(1 — ouyoys)

in which, letting

V= [do + dlz +d22’] (62)

P=p’ (63)
dg=2.311r*+ x?

[41 15“—"'(1—1,.1,"£“ﬂ2 3. 43°a,,]p+ 28. sg ot
d,=16.7887*+ x*

[303.4&1(:[—_E?’Eﬁ—26.300”]p+ 208.3 %!’ p* (64)
ds=30.488%* + x*

— 2
[559.7“’—”(17"’*@‘1 —50.160',,]p+ gr7.9Ze
z £

and
15, (65)
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From (60) and (61) it follows that

2
T=11—;A1’b°(co+clz+cgz’) (66)

where
ce=2.311, ¢;,=16.788, and ¢;=230.488. 67)

Equating 7" and V as given by (62) and (66) and solving

for p=P/h,

_ 1 (k+d12+d222 h_z
AT 1 o-,,o-,,)p(co+ clz-l-c,z’)E’ b (68)

The critical stress p will be & minimum if 2 is the
larger of the roots of

dp
dz=0l

Equation (68) may be written

hz
p= kEzl;i' (69)

The calculation outlined sssumes the ratio /b to be
given and determines the critical stress for this ratio.
By calculating k for a series of ratios ¢/b the ideal half
wave length is found as that which makes the critical
stress a minimum.

In Tables IX, X, and X1, the values of % for cer-
tain values of the ratio ¢/b are given for flanges of
spruce, the growth rings being respectively perpen-
dicular to the faces of the flange, inclined to them at
an angle of 45° and parallel to them. The elastic
constants for spruce given earlier in this appendix
were used in the calculations. For rings parallel fo
the faces, we note that

E,=1.95%X108

E,=0.07x10°

12y =0. 072X 108

oz =0. 539

ays=0. 0194,
(Reference 1, p. 105.)

TABLE IX

THEQORETICAL  CONSTANTS FOR FLANGES OF
SPRUCE, UNDER LONGITUDINAIL COMPRESSION,
THAT BAVE THE GROWTH RINGS PERPENDICU-
LAR TO THE FACES OF THE FLANGE, CALCULATED
BY THE APPROXIMATE METHOD

b E

0. 228356
- 228256
- 228710

B o okad
™8

TABLE X

THEQORETICAL CONSTANTS FOR FLANGES OF
SPRUCE, UNDER LONGITUDINAL COMPRESSION
THAT HAVE THEE GROWTH RINGS AT AN ANGLE
OF 45° WITH THE FACES OF THE FLANGE, CAL-
CULATED BY THE APPROXIMATE METHOD

b E
51 0.116812
52 - 116508
53 Lo
TABLE XI

THEQORETICAL CONSTANTS FOR FLANGES OF
SPRUCE, UNDER LONGITUDINAL GCOMPRESSION,
THAT HAVE THE GROWTH RINGS PARALLEL TO
THE FACES OF THE FLANGE, CALCULATED BY
THE APPROXTIMATE METHOD

cfb E

0. 16399
. 16381
16389

poag
©om~]

The results agree remarkably well with those given
in Tables VI and VII as the result of more exact
analysis. '

Flange of isotropic meterial.

After substituting the assumed deflection (61) in
the integral (59) for the energy of deformation of the
flange in the case of isotropic material and equating
T and V as given by (59) and (60) it is found that

_ 1 /dq + dIZ + Jzz :
P -\ stz + c,z’,)Eg’ (70)

where
P
7<%

and expressions for dy, d;, d; are found from (64) by
writing -
E.=E,=E, oy=0u=0, and p'"=”=2(1+0’)-

The quantities ¢, ¢;, and ¢; have the values given by
(67).
If equation (70) is written in the form

?=kEb£: - (T1)

the value of the minimum £ for a given value of the
ratio ¢/b can be calculated as with nonisotropic mate-
rial. A few values in the vicinity of the half wave
length for which the critical stress is a minimum are
given in Table XTI; Poisson’s ratio ¢ was taken as
0.25.
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TABLE XII

THEORETICAL CONSTANTS FOR FLANGES OF IS0O-
TROPIC MATERIAL UNDER LONGITUDINAL COM-
PRESSION, CALCULATED BY THE APPROXIMATE
(1}12]352THOD 'AND WITH POISSON’S RATIO TAKEN AS

/b k

1.66 L 16434
.60 1. 16390
167 1. 16407

The minimum values of k in Table XII differ from
those of Table VIII by a small fraction of 1 per cent.
The half wave lengths at which the minimum critical
stress occurs differ by about 1.5 per cent. Plotting
the curve connecting criticael stress and half wave
length in the vicinity of the minimum critical stress
will show that this difference has little significance.
For steel, with Poisson’s ratio taken as 0.3, a similar
celculation gives a minimum % of 1.1592 correspond-
ing to & value of ¢/b of 1.60.

BASE OF FLANGE IMPERFECTLY FIXED

Discussion.

The condition of perfect fixity assumed in the pre-
ceding sections of this report for the edge of the flange
y=0 (fig. 18) is probably never realized. This is due
to two circumstances, which will be considered sepa-
rately. Both result from the moment induced at the
edge y=0 by the deformation of the outstanding flange
bounded by this edge. This moment causes twisting
of the whole cross section of the column and it also
causes elastic giving of the material along the junction
of the base of the flange and the body of the ecolumn.
Both of these phenomenas, twisting of the section and
elastic giving at the base of the flange, are accompanied
by a change in the inclination of the flange at its base

from the value zero required by the condition of per-

fect fixity. The twisting phenomenon is easily ex-
pressed in terms of the torsional rigidity of the section.
The elastic giving appears to involve factors that are
best determined experimentally.

Effect of twisting of column.

We proceed to calculate the effectof the twisting of
the column induced by the moments acting along the
edge y=0. (See Timoshenko. Reference 21, p.400.)

Let ¢ denote the angle of rotation of a cross section
the abscisse of which is z. If elastic giving of the
material is neglected for the present,

=(a
dy v-o

The torsional couple in any section is then

(72)

d¢ Pw
M= GKBE—GK(W .

where @ is the modulus of rigidity of the material and
K is the torsion constant of the section. (Reference 22,
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p. 11, and 1929 annual report, p. 681.) 'The couple
applied per unit length is then

m=S ‘wqupo

In applying the approximate method, the strain
energy resulting from the twisting of the column (in
whole or in segments) should be added to the sirain
energy of deformation of the corresponding portion of
the outstanding flange. The strain emergy per half
wave length ¢, resulting from twisting, is

G L NE Y

w=f(y) sin 7% -

GK
- [f’( ):r (73)
To apply the approximate method let
w=[Ay+A1<l—cos b)] sin — (74)

If A;=0 the edge y=0 is simply supported. If A=0
the edge y=0 is fixed. Hence, by sallowing A/A to
vary from zero to infinity, all conditions on the edge
y=0 intermediate between those for an edge simply
supported and those for one perfectly fixed can be
satisfied by a deflection in the form given by (74).

It follows from (73) and (74) that

Al

V1 = T (75)
where QK
r=—a (76)

In calculating V; for & column of spruce the modulus
of rigidity @ may be taken as the mean modulus that
would be given by a torsion test on a ¢ylinder of circular
section. This value may be conveniently taken as
Young’s modulus in the longitudinal direction divided
by 15.6. (Reference 22, pp. 21 and 24, and 1929
annual report, pp. 691 and 694.)

Flange of nonisotropio material,

For nonisotropic material, such as wood, with three
mutually perpendicular planes of elastic symmetry it
follows from (58) and (74) that

E Rext
48(1 — Gzyayz)
+dy (—__>+E' 326’+c15(4 7:::)

Hr (1—0'sﬁz=) 1 ] [b? _é 8
R s +AA*¢<1 r+?>

252l 3]

Ve {A E 4,(1,:(1;0'”!0'!;) b:l
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From (60) a.td (74)

r-L ”I;_zr +a(3-2)+aap (1——+ 1t,):I
From
using \
' P
| ;‘%=z, p=§—=’ and p=F¢ (77)

it follows that
i [+ diz+ e, B2
r _{12(1—0'310’,,;)]; coteizteet | °b° (78)

h2
p=kE:p; (788)

or

where for convenience the following notation has been
used:

12(F — a4y02)7b GK b

e=——-b-E35rL— 12(1— o’,,o’,,,)r’ ~ (79

1 4“:(1 o'no'x)P
do=3+7 =7

4

4 8 oy 2 1—0py0yz
dim1 =5t G (1= D)o vl S (80)

T2
_3_ 4. l_l Ea(l—onop)p | By p®
d=3 z ) + 9T E 32
1 4 8 3 4
co'=—3') c;_"‘i‘ —‘;+ F! a.nd cz='§—;- (81)

Flange of isotropie material.

For isotropic material equation (78) with appropri-
ate values of dy, d;, da, €y, €1, 804 ¢; becomes that given
by Timoshenko, to whom the choice of the form (74)
for the deflection 10 is due. (Reference 21, p. 401.)

The values of the coefficients dy, d;, and d; are

R W (¢S L
a-1-4+5-2(1- 2)+ (1—a) (1+ )](82)

3 4,
=3 =7 (4 r)+32

e=12(i~ N I - (83)

where

The constants ¢, ¢;, and ¢ are unchanged.

The critical stress p is given by

_ ‘l” l du + dlz + dgza) 2
P_lz(l—cr")p co+ 12+ ca2? Eh‘ (84)
or
2
p=kEL. (843)

Application of formulas.

Equations (78) and (84) are of the same form as (68)
and should be used in the same way. For a given ¢
and & series of values of the ratio ¢/b a series of crifical
stresses p are determined corresponding to & suitable
value z. The ratio ¢/b associated with the minimum
critical stress (if there is & minimum) determines the
half wave length ¢ that is ideal for the value of ¢ under
consideration.

For the study of a given coluran it is more conven-
ient to proceed in another way. The first step is to
construct a table giving £ in the formula for the
critical stress p as a function of the fixity coefficient ¢,
for each of a series of values of the ratio ¢/b of the half
wave length to the width of the outstanding flange.
Table XIII was constructed in this way for flanges of
spruce and Table XIV for flanges of isotropic material.
The results in these tables are also shown in the curves
of Figures 23 and 24.

The use of these curves in studying & givern column
is discussed in a later section of this appendix. In
interpreting the curves, it must be borne in mind that
the fixity coefficient e depends upon the half wave
length ¢ and the outstanding width 4 as well as upon
the thickness A and the torsion constant XK.

TABLE XIII

THE COEFFICIENT ® IN EQUATION (78} FOR A
FLANGE OF SPRUCE HAVING GROWTH RINGS AT
AN ANGLE OF 45° WITH THE FACES

&b € t k ] € E

1 010 0.868 3 0.10 0.15
1 .03 886 3 .05 147
i .3 885 3 .03 (142
1 .0 884" 3 .0l 138
1 .00 .863 3 -00 132
5 .10 .18 T .10 17
5 .05 .12 T .05 .162
5 .3 004 7 .03 091
5 .01 .03 7 0L .073
5 .00 075 7 .00 059
9 .10 .138. 12 .10 J181
g J05 | .1IB 1 .05 L1489
¢ S03 ) .100 12 .03 S
9 0L 074 13 .01 .07
9 00! los3 12 .00 . 049
15 .10 l 241 2 .10 375
15 .05 195 20 .05 2R
15 .08 J150 20 .08 257
15 .a 098 0 0L 133
15 - 00 047 20 .00 .04
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TABLE XIV

THE COEFFICIENT k IN EQUATION (84a) FOR A
FLANGE OF ISOTROPIC MATERIAL THAT HAS
A POISSON’S RATIO OF 0.25

efb . k efb_ e k
1 0. 50 1.287 2] -0.50 0.678
1 .10 1.278 3 .10 .828
1 .00 1 269 2 .06 622

S, 2 .01 817
2 .00 .618
3 .50 .618 4 80 . 660
8 .10 . 522 4 .10 . 498
8 .08 500 4 .05 .478
3 .01 498 4 .08 467
3 .00 496 4 .01 .458
4] oo | s
5 .50 750 7 .50 1026
b .10 . 503 T .10 . 549
§ .05 . 469 7. .05 .48¢ >
5 .02 . 448 7 .03 458
) .00 434 7. .01 481

.- 7 .00 .418
10 .50 1640
10 .10 . 875
10 .08 . 543
10 .00 .409

Flange with a simply supported edge, the limiting case
as the fixity coefficient approaches zere.

As the fixity coefficient e approaches zero in equations
(78) and (84) it is found that the value of 2 correspond-
ing to a minimum value of p approaches zero. This
should be so for as ¢ approaches zero the edge y=0
becomes more and more nearly simply supported.
The ratio of 4; to 4 in (74) will then approach zero.
By equation (77) this implies that z approaches zero,
a8 just noted.

Accordingly the limiting ecritical stress as € ap-
proaches zero is found to be

_ i 1y b
-t BIEE
by setting ¢=0 and z=0in (78) and (80). The values

of k given by this formula for a simply supported edge
agree well with those of Table XIII for the fixity
coefficient e=0. As p becomes large p decreases to the

limiting value,
(sz) E, _b_z

Using the elastic constants for spruce having the
growth rings at an angle of 45° with the faces of the.
flange, (86) becomes _

(86)

2
p=0.044 E,%—,- (87)

If the growth rings are perpendicular to the faces of the
flange

hz
»=0.083 E. 73 (88)
while if they are parallel
2
p=0.037 E, %—, (89)
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. Thus for a flange with a simply supporited edge the

critical stress is less when the growth ringf are parallel
to the faces of the flange than when the rings are
inclined to them at an angle of 45°. For ) flange with
a perfectly fixed edge, on the contrary, the critical
stress was found to be less when the rings }are inclined
to the faces at an angle of 45° than whien they are
parallel to them. The relative vanatlon of the critical
stress with inclination of the rings is less} for flanges
with simply supported edges than for {those with
perfectly fixed edges.

In practice, the fixity at the bases of tlye flanges is

small. Consequently the variation of the critical
stress with the inclination of the growth rihgs mey be
expected to be similar to that for flanges with simply

supported edges.

From._this point on the discussion will bie limited to
flanges with growth rings at an angle of; 45° to the
faces. The results may be considered to b}e applicable
to flanges with rings at any inclination except for the
extreme cases of rings nearly parallel to 'the faces or
nearly perpendicular to them. In the first case the
calculated critical stress should be reduced somewhat,
while in the second it should be increased somewhat.
These formulas hold for long flanges. Ifor short ones
the effect of the first term of (85) must be included.

For isotropic material the equatxons carresponding
to (85) and (86) are

1
p= [12(1 e +3 (1+a)]Eb’* (90
and
1 h’
P 5+ o) L b 1)
With ¢=0.25 equation (91) becomes
; .
p= 0 4Eb’ (92)
and with #=0.3 _
2
p= 0.38'5.E{Lp' (93)

For short flanges the first term in (90) must be re-
tained.

The results expressed by equations (85) to (93) for
flanges with a simply supported edge at y=0 could
have been obtained directly through the approximate
method by assuming, for example, instead of (74) that

W=Ay.

'This was done for isotropic flanges by Timoshenko.
(Reference 21, p. 396.)

Effect of elastic giving of material at the base of the
flange,
In obtaining the preceding results the lack of fixity
of the edge y=0 was ascribed to the twisting of the
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column, either as a whole or in segments, in conse-
quence of the moments applied at this edge by the
deformation -of the flange. Actually, however, the
material at the base of the flange yields elastically
under the action of these moments so that the angle
of rotation of the section is less than (8w/0y)y—o,
the inclination of the flange at its base. Accordingly
equation (72) should be replaced by

#=1().

where 5 is some proper fraction. The effect is to
reduce the strain energy Vi (equation (73)) resulting
from the twisting of the column. To the reduced V;
should be added the energy of deformation of the ma-
terial at the base of the flange. This portion of the
energy is relatively small. The resultis that Vj, equsa-
tion (73), which was added to V, equation (58), to ex-
press the whole energy of deformation of the flange

and column in so far as it arises from the load on the-

flanges, should be reduced. This is equivalent to say-
ing that e as calculated by (79) from the torsional ri-
gidity of the section should be reduced.

For flanges of wood in which the grain is longitudinal,
such reduction in the fixity coefficient is very great.
This is due to the extremely small relative value of the
modulus of elasticity £ in the direction parallel to the
faces of the flange and perpendicular to its length,
which ranges from Y5 of the modulus in the longitudinal
direction in quarter-sawn flanges of spruce to ¥oo of this
modulus in flanges in which the growth rings make an
angle of 45° with the faces. The tests show that, for
celculated coefficients of fixity of the order of magni-
tude of 2 and above, the critical stress corresponds to an
actual fixity of about 0.01. Corresponding reductions
in the smaller calculated fixity coefficients are ob-
served but the law that the reduction follows has not
been determined.

The practical result of the reduction in fixity because
of elastic giving is that the condition of a simply
supported edge at the base of the flange is closely
approximated when the calculated fixity coefficient is
small. The material is unable to transmit the bending
moment from the base of the flange to the body of the
column, with the result that the flange itself is inclined
nearly as if it were merely hinged or simply supported
at its base and consequently a condition in which
formula (87) is applicable is approached. ‘This
situation will be discussed further in connection with
the study of two flanged columns with the aid of the
curves of Figure 23.

A similar but probably not so great a reduction
occurs in the calculated fixity coefficients of the

flanges of structural steel columns in consequence of
the elastic giving of the material at the bases of the
flanges. Practically no data are available for use in
determining the extent of this reduction.

Examples of the determination of the critical stresses,
neglecting the effect of elastic giving at the bases of
the flanges.

In the following paragraphs will be explained the
procedure to follow in applying the results of the
preceding mathematical anslysis, using the fixity
coefficient as calculated from the torsional rigidity
of the section and the dimensions of the flange and
neglecting the reduction in this coefficient that should
be made to allow for the elastic giving of the material
at the base of the flange. The method can then be
applied when the reduced coefficients are known by
substituting in each case for the fixity coefficient e the
reduced fixity coefficient ¢’.

The method will be first applied to a column of
spruce similar to many of those used in the tests. The
dimensions are shown in Figure 25. The growth
rings in the single outstanding flange will be assumed
to make an angle of 45° with the faces of the flange.
"The fixity coefficient is given by

G b o 05"
e=12(1—a',,,a’,,)r’EKcT- ;
It /]
a_ 1 G
E. 156 Zh
it follows that j
Kby
e=7.58b—h,c—,- (94)
With the given dimensions

where a=qb. e=1066 3.

It is important to observe that
the coefficient ¢ depends upon
the half wave length ¢. This co- Fromex 25—The cross
efficient was computed for a series
of possible half wave lengths, the
length of the column being 40
inches, and the quantity &, to which
the corresponding critical stress is
proportional, was then taken by extrapolation from the
curves of Figure 23. The results are shown in Table
XYV. The numbers in the last column of the table are
really estimated, since the values of e concerned are far
beyond the limits plotted on the curves of Figure 23.
Through inspection of this column and the curves in
Figure 23, however, it becomes clear that the flange will

T
2

of 45° with the faces
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break into five half wave lengths, the critical stress be-
ing 0.12 E.h?(b?, corresponding to the value 5.33 of the
ratio ¢/b. These values agree well with those calcu-
lated for e= . Indeed it is apparent from the be-~
havior of the portions of the curves shown that the
ordinates rapidly approach their limiting values as e
increases.

The approximate method used in calcula.tmg the
curves of Figure 23 gives values of k£ that are slightly
too large for the hlgher values of e. High values of ¢,
however, do not occur in cases of practical interest, as
will shortly be seen. The approximate method may
therefore be considered entirely satisfactory.

TABLE XV

VARIATION OF CRITICAL STRESS WITH NUMBER
OF HALF WAVE LENGTHS FOR THE 40-INCH CQIL-
UMN OF FIGURE 25

Number of k
A B = estimated)
8 5.00 3.83 96.1 0.18
7 5.71 3.81 73.4 .18
8 8,67 4,45 §3.8 .12
b 8.00 533 . 87.5 12
4 10.00 a.a7 24.0 .12
3 1333 .80 1.5 LU
] 20. 00 18.33 6.0 .20
1 40.00 28. 67 L6 .40

Table XV was calculated on the assumption.that the
effects of the elasti¢ giving of the material at the base
of the flange could be neglected. This table indi-
cated & minimum critical stress of 0.12 E.A%b?, corre-
sponding to the value 5.33 of the ratio ¢/b. Actual
tests, however, show that the flange wrinkles at &
stress of 0.07 EA%/b%. (Part I, equation (5), p. 9.)
This reduction in the critical stress should be attrib-
uted to the elastic giving of the material at the base
of the flange. The curves show that.this minimum
critical stress should be attributed to a fixity coeffi-
cient in the vicinity of 0.01 and & ratio of ¢/b of about 7.
This example i1s very informing, since it indicates a
reduction in the fixity coefficient from a number of
the order of 20.0 to one of the order of 0.01.

In the example just considered there was only one
outstanding flange. If there are N flanges, the fixity
coefficient as calculated should be divided by N. _

Consider now the section of column T-25, Figure 5.
The length of the column is taken as 120 inches.
The growth rings of the wood will be assumed to
make an angle of 45° with the faces of the flanges.
In accordance with equation (79)

7.58 K b*

7RG =2 736

€= —

(95)

where a=cfb. Proceeding as before Table XVI was
constructed with the aid of the curves of Figure 23.
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TABLE XVI

VARIATION OF CRITICAL STRESS WITH NUMBER OF
HALF WAVE LENGTHS FOR COLUMN T-25 OF
FIGURE 5

Number of i

half wave [ cmacfh « k
lengths

8 15. 00 4,67 0. 1258 0118
7 17. 14 5.84 . 0060 L118
8 20,00 8.3 it 107
& 24,00 T.47 .0i00 . 108
£ 30.00 e 34 . 031 L1
3 49. 00 12 46 017 . 102
2 60. 00 18. 68 . 0078 107
1 120. 00 87.37 . 00 1,120

t Estimated.

" The values of % in Table XVT indicate that at a
critical stress of 0.102 EA/b* each flange will break
into three half wave lengths corresponding to a fixity
coefficient of 0.0176. The tests showed that each

_flange broke into a single half wave length and the

column twisted at a critical stress of about 0.044
E_R*[b?, the critical stress for a simply supported edge.
This means that the calculated fixity coefficient has
been reduced nearly to zero by the elastic giving of the
material at the bases of the flanges.

Failure through twisting or wrinkling.

When, as in the example just given, the least critical
stress is associated with a half wave length equal to the
length of the column, the column fails by twisting
about its axis. At the base of each ﬂange, as & result
of the beginning of failure, & torque that is in the same
sense for the entire length of the column is applied to
the column as a whole. If a flange breaks into several
half wave lengths, however, the torques at its base are
in opposite senses in adjoining half wave lengths and
consequently oppose one another.

Practical rules for determining the critical stress, al-
lowance being made for elastic giving of the material
at the bases of the flanges.

In a cruciform section having equal arms and no
fillets it appears from equation (95) that a change in
the dimensions, b, the outstanding width, and A, the
thickness of the flange, will not greatly alter the cal-
culated fixity coefficient ¢, since K, the torsion constant
is nearly proportional to b and to A% (Part I, p. 7.)

Much the same situation exists in other sections,
such as L, U, Z, and T, made up of component rect-
angles, all parts being of equal thickness and having
no fillets. It appears from the data at our disposal
that the flanges of such sections may be treated as
having their bases simply supported. The critical
stress for long columns of spruce of such sections may
then be teken as 0.044 E, 1Yb%, provided that this
stress is less than the one that would cause primary
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failyre. If fillets are added to any of these sections
or if the thlck,n&ss of the back of a channel is increased,
for example,} the critical stress will increase. The
exact afhouné of this increase can not be stated, since
the law by which the calculated fixity coefficient is
reduced through the giving of the material at the
.bases of the flanges is not known. Tests indicate,
however, that the critical stress is increased approxi-
mately in the ratio of the torsional rigidity of the
changed section to that of the original section. This
relation may be taken to hold for spruce until the limit-
ing critical stress 0.07 E;h*b? is attained.” From this
point as the torsional rigidity increases the critical stress
remains unchanged.

As the critical stress increases with increasing co-
efficient of fixity at the base of the flange, the type of
failure changes from one through twisting to one
through wrinkling. The distinction befween these
externally different types of failure does not appear to
be important, since the one goes over gradually to the
other.

For flanges on short columns the critical stresses
will be higher than those for the long columns just
considered.

As previously stated, the foregoing discussion applies
to flanges of spruce in which the growth rings make an
angle of 45° with the faces of the flange. Flanges of
steel or other isofropic material can be treated in a
similar way through the use of Table XTIV and the
curves of Figure 24. Sufficient experimental data for
steel columns, to enable the authors to estimate the
effect of the reduction in the calculated coefficient of
fixity, have not been found in the literature.

CONCLUSIONS

1. Und-er a compressive load, the critical stress for a
moderately long flange of spruce, perfectly fixed along
its base and of thickness A and width 5, is given by

_ R
p=0228 E;

when the growth rings are perpendicular to the faces
of the flange (fig. 21}, by
&

2
p=0.117 E. 7

when the rings make an angle of 45° with the faces
(fig. 22), and by

2
p=0.164 E, %,
when the rings are parallel to the faces. In these

formulas E; is Young’s modulus in the direction of the
803800—82——&7

grain of the wood, which is taken as the direction of the
length of the flange.
For a flange of steal the base of which is perfectly
fixed the critical stress is given by
‘h2
p=1.16 E%,
when Poisson’s ratio is taken as 0.3.
2. If the base of the flange s simply supported the
corresponding critical stresses are

hz
r= 0.053 E:: b_z

and
h2
) p=0.044 E, 35

and

h!
p= 0.037‘ E. 7
for a flange of spruce and

h?
' »=0.385 EF:

for & flange of steel. Such a condition at the base of
the flanges is found, for example, in the case of columns
of L, U, Z, T, and < sections without fillets and
having parts of the same thickness.

8. The condition of perfect fixity is not realized in
practice because of the elastic giving of the material
at the base of the flange. Tests indicate that the
upper limit of the critical stress for moderately long
flanges of spruce is given by

1
' p=0.07E,2—',- .

This is an average value from fests of specimens in
which the growth rings were at various inclinations
to the faces of the flanges. For strictly quarter-sawn
flanges the critical stress would be somewhat higher
and for plain-sawn ones somewhat lower. The re-
duction from the values given for flanges with per-
fectly fixed edges should be attributed to the elastic
giving of the material at the bases of the flanges.

Because of the same elastic giving the fixity of
flanges with partislly fixed bases is greatly reduced.
For such flanges the critical stress ranges from

2
p=0.044E,§i,

to the upper limit \
? =0.07E,;j—',-

Both limiting stresses can be increased somewhat for
strictly quarter-sawn flanges and should be reduced
somewhat for plain-sawn ones.
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Tests on steel flanges were not made. As a result
of the elastic giving of the material at the base of the
flange, however, it is probable that the upper limit of
the critical stress will be found to be considerably less
than that calculated for & flange with a perfectly
fixed edge. _

4. The eritical stresses for short flanges are greater
than those given by the preceding formulas.

5. The critical stresses obtained through use of
these formulas will be of interest only if they are less

!
;
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than those that would cause a primaryli failure of the
column under consideration. '
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