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ELASTIC INSTABILITY OF MEMBERS HAVING SECTIONS COMMON IN AIRCRAFT
CONSTRUCTION

By GEORGEW. TEAYXE and H. W. WAFtCH 1

SUMMARY

TWOfundamental problems of eladio stability are
discussed in thti report, which was prepared by the
Forest Products Luboratoy 2 for publication by th$
Na&”onalAdtiory Committeefor AeTonuutics. In Part
I formulas are giwn for calculating the m“hkal stress at
which a thin, outstandingjlange of a compression memb-
er wdl &her wrinkle into iweral wwes or form into a
single hdf wace and twist the member abmd its lon.gL”-
tudinal axis. A mathematical study of th problem,
which together with experimental work has led to these
formulas, i.s gixen in an appendix. Reauhs of tests
eubw%ntiatingthe recommendedformulas are also pre-
sented. In Part II the lateral buckling of beams is
diwussed. 5%e results of a number of rnaihanatiod
#udie8 of this phenomenon hare been publtihed prior to
this un-iiing, but rery little experimentally determined
information relating to the problem has been aaailable
heretofore. .E%peri7nentalcerij$eation of the matliemat-
ical deductwu is supplied in this report.

INTRODUCTION

D@@ng for the greatest load with a given amount
of material in a comprmsion member generally leads
to the distribution of material at the greatest possible
distance from the neutral axis of the member. The
extent to which such distribution can be carried is
limited by the possibility of secondary failure. Com-
pression members with relatively wide and thin out-
standing parts may fail through Iocsl wrinklkg or
through twisting about the IoggitudinaI axis at loads
considerably less than those that wouId be expected
to cause the more common faiIurea of crushing for
short lengths or fkxure for longer lengths. When
such a compression member does fail, a thin,outstand-
ing element may either break up into sewrrd vra-ms

(wrinkle) or may buckle into a single half wave, de-
pending upon the length and the tmaionsl resistance
offered by the member of whioh it forma a part. Such
action has been observed for years. @eferencss 2,
14, 15, 18, and 21.)

Again, the strength of a beam increases more rapidly
with depth than with thielmess, and oonsequentIy in

1FTofas?cuof InBthemticqUnkmfty ofWkMmin.
Waintnlnedat?dadlw~‘Wfs,fnoooperatfonwiththeUr.thdtyofWfscodn.

airoraft, where weight is suoh an important matter,
designers custonmrdy use comparatively deep, narrow
beams. The ratio of depth to breadth, however, has
been kept within certain arbitrary or oonmutionaI
limits @ commercial practice, because of the weU-
Imown fact that a beam much deeper than it is wide
may buckle laterally and twist before it will break
by hending in a vertical phne. & a matter of fact,
there is for each condition of Ioading and support a
criticaI buckling load for such a beam just as there is
a oritioal Euler load for a Iong column.

Either buclding or twisting or both are IikeIy to -
occur in one member or another of an aircraft struc-
ture, and hence failure of a partic&r member may
be either in a normal type of bending or compression
resulting from the normaI Ioading or through Iaterd
buckling, wrinkling, or twisting under stresses having
their origin in the normal Ioding. Meana of esti-
mating the stress at which eIastic instability is likeIy
to occur have therefore become necaary in the cIose
designing of the present day, in order to provide
against secondary failure. Realizing thk, the Bu-
reau of Aeronauticsj hTayg Department, financed an
investigation of fundamental phases of elastic insta-
bility to be conducted by the Forest Products Lab-
oratory. Wood was used in the experiments, not that
the probIem is limited to any one material, but b-
cause of the convenience with which test specimens
can be made of wood.

The wrinkling and twisting problem has been ir.mesti-.
gated mathematically for homogeneous, isotropic ma-
terials, and useful results have been obtained, nottibly
by Timoshenko. @eferencw 17 and 21.) This report
reviews the generaI theory, adds an anaIysis that ap-
plies to nonisotropic material such as wood, and dis-
cusses the diminution of the criticaI str- caused by
the elastic giving of the materird at the base of the
flange. The exact mathematical approach to the
probIem leads to rather complicated resuRs; through
consideration of test data, however, these results can
be simply expressed for probIems of practicaI interest.

The allied problem of the Iateral stability of deep
beams has aheady been investigated rather ftiy from
a mthematioal standpoint. The results of such work
have been published by Miohell, PrandtI, Timoshenko,
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and others. (References 9, 11, 13, 17, 20, and 23.)
This report adds experimental verification of the re-
sults already obtained.

TEST MATERIAL

Test specimens were made of Sitka spruce cut in
Oregon and shipped in log form to the Forest Products
Laboratory where the wood was sawed into hunber,
marked, and seasoned. k a result of this procedure
the history of each piece and its location with respect
to others in the same log were known. Part of the
lumber was immediately kiln-dried after sawing and
part was left to air-dry. Specimens were made from
both the kiln-dried and the air-dried stock.

In selecting pieces for test specimens, the usual
Army and Navy specifications were adhered to with
an additional limitation as to knots and pitch pockets
in that none was permitted, no matter how small.

The .eIasticproperties of the material in tho various
planks from which the major test spccinmnswere taken
were determined by testing small control specimens
cut from the same planks and so located as to be
representative. In certain instances it was possible
to accomplish the same result by cutting the control
specimens from uninjured portions of the nmjor test
specimens after the main test had been complctul.
In other instances such properties M the stillness in
bending and the torsional rigidity of major test speci-
mens were determined by a secondnry test of tho major
specimens themsehws either before or subscquont to
the main instability test-. In such secondary tests the
stresses were kept well below the elnstic limit and
when they were made the usual control tests served
only as a check.
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CONSTRUCTION

PART I

THE WRINKLING AND TWISTING OF COMPRESSION MEMBERS HAVING THIN, OUTSTAND-
ING FLANGES

METHOD OF TEST

WEIXKLLNGTESTS

Two principal series of wridding tests were made on
comp~ion membe~ having thin, outstanding flmges.
In one series, a number of specimens, all having a
single flange of the same size, were tested under a com-
pressive load and the half wave Iengtk and the Ioad at
which vminkling started were recorded. The out-
standing fh.uges were then reduced in width a given
amount with the thickness left es before end the speci-
mens were again tested. This procedure was con-
firmed until the widths had been so reduced that
wrinkling did not occur.

In the other principaI series of tests the width of
flange was kept constant and the thickness was r-
duced after each test. Several specimens were used in
order to obtain reliable averages for the half wa-re
length and the wrinkling stress corresponding to each
thickwas. Figure 1 shows a specimen in the testing
machine.

In addition to the two principal series of tests, a
number of tests were made on built-up U, I, and +,
sections under axial compression.

TWISTING TESTS

The sekup for the twisting tests is shown in Figure 2.
Extension screws were attached to an ordinary 4-screw
testing machine in which specimens up to seversI feet
in Iength could then be handled. This set-up was used
only to obtain maximum Ioad. To obtain a load-
twist curve, a 2+mre_wmachine was used, one that could
take speci&ns up to about 12 feet in iength without
the use of extension screws. A pointer approximately
3 feet in Iength was attached to one flange and in some
instances to two fkulgw. As the cohmm twisted, the
end of the pointer passed over a plane table supported
from the base of the testing machine and when incm-
mem%of load were read by the operator at the balance
beam the position of the pointer was marked and the
load set opposite such marking.

Prior to the twisting test each specimen was tested
in torsion in order to obtain the torsiomd rigidity of
the member. The stress+swere kept weII within the
dSStiC limit during this kst.

ANALYSIS OF T& WRINKLING AND TWISTING
PROBLEM

The frdure of compression members that contain
wide, outstanding parts, as illustrated in F~e 3,
may be brought about through wrinkEng of the out-
shtding parts themsel~es instead of through the
normal failure of the member as a whole, if the out-
standing parts are sufficiently thin. When such wrink-
ling occurs, the outstanding f@e may either break
up into a single half wave or into more than one,
depending upon the torsional rigidity of the member
~d the &ity of the flanges. If an outstanding flange
projects from a member that is high in torsional stitl-
ness, vminkhng into several waves is Iikely to occur
if the ratio of the outstanding width to the thickness
of the flange is great. On the other hand, if the
torsiomd stifbess is not great, the outstanding pa:ti or
parts may form into single half waves and twist the
member about its longitudineJ axis. The criticaI
values of the stresses at which one or the other type
of buckling occurs are c@cussed in the foIlo~~
paragraphs.

WWNKUNG

A mathematical approach to the ~minklingproblem
is given in the appendk, where it is shown that the
critical -due of the compressive str- p for a plate
perfectly fixed aIong one edge, free along the opposite
e~oe, and simply supported aIong the ends to which
the Ioad is applied is given by

(1)

in which h is the thickness of the plate, b its width,
E the modulus of elasticity of the material, and k a
coefficient depending upon the ratio of the length of
plate a to the width 6.

The append& shows further that for structud steal
the calculated minimum value of k is L 16 and corre-
sponds to a ratio of a to b of 1.6 or a muItiple thereof.
(Reference 21.) The theoretical fornda for the mini-
mum criticaI st~s for steel vrouId therefore be

p=l.16E: (2)
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The mathematical analysis, as already pointed out, at
first assumesperfect fixity at the base of the outstand-
ing flange, a condition probably never realized in actual
practice, Consequently a critical stress much lower

Fmum l.-’rhe wrlnklf~ under Ioad in the tW&g maohtne
of a COmpI&wionmember hevfng a single MU oufstp.ndirg
flange

than that predicted by the theory is to be expected.
Roark, who used specimens like B and C of Figure 3,
in which the outstanding flange was clamped between
angles, found that the formula

p=o.6E; (3)

represented his experimental redts reasonably well.
(References 14 and 15.) The reduction of the coe5-
cient from 1.16 to 0,6 can be attributed to the lack of
perfect fixity at-the base of the flange. Even when an
outstanding flange and the rigid back from which it
projects are all in one piece, perfect fixity ah the baso

)?IGUFtX2.-The twfetiu nndez kad in tl Ittog
o! a campwslon member havtrrg twaral thlri, outstanding
afmgezl

of the ffange can not be assumed. There is an elastic
gi@g at the base of the plate and also in every device
used in an attempt-to obtain perfect fixity. Ihnce the
exact coefficient that should be used for steel and other
metals remains to be determined by experiment. A
diac~sion of the situation for wood follows.

The appendix shows that, on the basis of tho differ-
ential equation of a nonisotropic elastic plate, such as
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mod, a criticaI half wave length and a critical stress
may be adculated. The same mathematical work,
however, also shows that the dues of the half wave
length and the critical stressmry over a wide rtmge as
the inclination of the growth rings to the faces of the
outstanding flange varies from 0° to 90°.

The fact that perfect fixity at the base of the fl~oe,
as at first assumed in the mathematical study, can not
be obtained is true particularly of wood, which further
complicates the problem. The stresses at the base of
the flange resulting from the bending of the flange are
acting perpendicubmly to the grain of the wood, the
direction in which wood is weakest.

The appendix shows that the critical stress for a
quwter-sawn flange of spruce perfectly fixed at the
edge is

p= O.228E;

For a simiIar flange with growth rings at 45° to the
faces the critical stress is

p=o.l17E#

Because of the elastic giv@ of the material at the
base of the fkmge, however, there is a great reduction
in the actual critical stress. Furthermore, this ekzstic
giving teds to decrease the difference between the
critical stresses for flanges with growth rings at 45°
and 900, respect.iveIy. Tests gave as the reduced

-
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coefficient 0.07 for spruce flanges, and the expression
for the critical minkhng stress then becomes

p= o.07Eh2P

ProbabIy this coefficient may be
species without appreciable error.

(4)

appIied to other

In Figure 4, k- which wrkkling stress is pIotted
against the ratio of flmge width to thickness, are
shown the results of some actual tests. Each tide
reprwents the average of from 4 to 18 vaIues. The
resuh have been adjusted by direct proportion to

S9300-3-%

correspond to a modulus of ehsticity along the grain
of 1,600,000 pounds per square inch. The ffl Lineis
the locus of the ex-pression

p =0.07X 1,600,000 ~ (5)

No record of the angle between the growth rings and
the faces of the flange, the importance of which has
been mentioned, was made at the time of test.,but
full-section blocks from many of the test specimens
vreresaved and the mgle was sgbsequentIy measured.
The direction of the rings ranged from 45° to 90°, as it
does in what may be called commercit-d edge-grain

FIauzx 4.—The rel%t[onhetwwo the rnt!o of flange width to thfobess snd ths
WrinkQ. et=softhb mtste!wngaaoem

(quarter-sawn} stock. The test specimens, therefore,
represent what would be found in actual practice. The
variation in the test results is accounted for by the
variation in the direction of the growth rings and the
diEcuIty of de!ermining accuratdy just when wrin-
lding started.

Since the phenomenon of vmirWng is one to avoid in
good design,. it is unnecessary to calculate the critical
stress with extreme precision. hierely a fair approxi-
mation of the criticaI stress is sn.flicient to make sure
that for the width and thickness of flange used the
critical wrinkling stress will exceed the primary stress
expected from the normal Ioads. SIightIy superior
d&g.n in this regard will seIdom mem an appreciable
sacrifice in load-weight ratio. _.._ _.

Length of outstanding flange,
The coefficient kin the expr~on for criticaI wrin-

kling stressis a minimum when the ratio of the length
of plate a to the critical half wave kmgth c is an inte-
gral number. IX the plate is short and a/c is not an
integer, the critical stress may be considerably greatm
than that given by the fornda beca~e the flange can
not then break into the ideal ldf wave Iength. If the
length is great, that is, if a/c is greater thsm2 or 3, and
the ratio afc is not an integer, however, the oritid
stress will be only shghdy above that given by the

.____—
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formula, since the plate can then break into a half tions. (87), (88), and (89) of the appendix, is a good,
wave Iength very close to the ideal. In either case, the average figure for this species, This value of the eocfli-
formuki will give vahes cm the side of safety. For cient probably may also be applied to other species
greater detail see Tables VI, VII, VIII, XHI, and 2KtV with mdlicient accuracy. The critical stress is then
and Figures 23 and 24 in the appendix. given.by

TWISTING p= (IOU; (7)

It is shown in the appendix that the critical buckling If a member with a section like D of Figure 3 is sub-
stress for along steel plate simply supported do% one jw~d ~ compr~ve strw, the ou~~dfi~g fiang~
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will usually form into a single half
wave at a certain critical stress and
in so doing will twist tho member
about its longitudinal axis, When
such action occurs, the outstanding
elements are essentially acting as
plates simply supported on onc side
and free along the opposite S&j and
forrmdas (6) or (7) aro used to calcu-
late the critical stress.

NJ.emberswith I, H, or U sections,
such as E and F of Flguro 3, likcwiso
may twist under compressive loads if
the torsional rigidity of the section
is not great. If the torsional rigidity
is made large by using generous fil-
lets or, as with a U section, by mak-
ing the back considerably heavier
than the legs, failure through wrin-
&g, into several wavw may be
brought about and the critical stress
in such cases must be computed by
the formulas applying to that phe-
nomenon.

Actually, the rigidity of tho mem-
ber may be such thnt failure will
take place at a critical stress inter-
mediate between the minimum twist-
ing stress and the wrinkling stress, as
pointed out in the appendix. It is
extremely diflicult, howover, to cal-
culate accurately tho coefficient for
the intermediate conditions. Con-
sider for the moment– wood xnem-
bers with a section like D of Figuro
3. With no fillets at tho junction of
the four legs, tho coefficient ~0.044
was found to app~y. Aa Wets were
added, the critical stress incrcascd in
practicalitythe same ratio as the tor-
sional rigidity. A U section, such
as F of Figure 3, will twist at a

--

-.

p =0.385E; (6)

when Poisson’s ratio is taken .as 0.3.
For spruce the coefficient of equation (6) becomes

0.044 which, as explained in the discussion of equa-

side, free along the other aide, and simply supported stress corresponding to a coefficient of 0.044 if the
at the ends, to which load is appIied, is given by back and the legs are of the same tl~ic~ess. If th~ .

thickness of the back is increased or if fillets aro added,
the critical stress will increase in about tho same —
ratio as the torsional rigidity.

Hence the Forest Products Laboratory recommends
that the critical twisting stress be first calculrttcd for
such sections as D, E, and 1? of Figure 3 on the sup-
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position that no Wets are present and that aU parts
are of the same thickness. This sties.sshould then be
increased by rnuItiplying it by the ratio of tie torsional
rigidity of the act.usl section to the toreionaI rigidity
of the assumed section. This rule applies until the
limiting critical stress corresponding to the coefEcient
0.07 is reached.

In Figure 5 are shown a number of cruciform sec-
tions, some with and some without iillets. Wood
columns having these sections failed through
tmhing about a longitudinal axis. Accom-
panying each section is a graph showing the
relation between axial load and the angle of
Wi9t for the cohmm corresponding to it.
The horizontal dotted lima in these graphs
are drawn at the critical loads calculated in
accordance with the preceding recommenda-
tions.

For example, the mitioal stress for cohmm
T–25 (fig. 5) without fillets is given by

P ‘0.OMX I,gC)I@o(O”506)’(3.215)2

=,= (1.006)’
7.11 =0.144 I

ActuaI tests of the speoimens, made prior to the
twisting tests, yielded a ratio of 1.29. —.,

p =2,072X 1.26=2,610 pounds per square inch —
Area with ~ets u7.01 square inches —.,._-—
CriticaI load P =2,61 OX7.O1 E 18,300 pounds.

In &we 6 are shown a number of U sections of .—
cohnnns that failed through twisting about a longi-

=2,072 pounds per square inck

The area is 6.76 square inches and the criti-
cal load becomes

p =2,072X 6.76= 14,000 POlllldS.

As a further illustration, the critical twist-
ing stress for column T–25 (fig. 6) with
X-iuch square fits k calculated thus:

The torsion constant K for the section
without fillets is

Ku2X 0.318X 6.936X (0.506)a-0.572.

For the section with fillets K must be cal-
culated in three parts-the fist part is the
value K1 for the square centd portion of
the cohmm section, the dimensions of which
are 1.006 inches on each edge; the second
part is the tots.I value K’ for the four rec-
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tangles projecting from the square center;
and the third part is the increase & caused
by the four junctions. (Reference 22, p.26,
and 1929 annual report, p. 696.) The junc-
tions are treated as T junctions and the bar
of each T is taken as hdf of the square cen- 0 4
ter. The torsion constant is then the sum

8 /2 o 4 8 /2
Ar@e of fw[sfaf cenferaf cdmq dscyees

of the parts, which are calculated as folIows: X’mmx6.JFlre relatIonbetwean engkd*A tllecenter ofacokunnandasfe.1-~~ve
ksdfOrvarfoue ehanneI-ee&ione

K, =2X 0.315X2 X2.965X (0.506)s=0.484
&=4X0.15X(0.629)’ =0.094
K

Then
= 0.722

‘–Torsional rigidity with fillets 0.722
Totiond rigidity without ~eb ‘~-l.26.

.-

.-

..-

tudimd axis. Accompanying graphs show the relation
between the axial load and the angle of twist. The
horizontal dotted lines am drawn at the critical loads

---

calculated by formula (7).
The agreement between tests results and calculated

resuhtsas shown in Figures 5 and 6 is considered quite
satisfactory.

.-



380

Effect of length.

In arriving at
0.044 for spruce,
formula for free

REPORT NATIONAL ADVISORY

the coefficients 0.385 for steel and
which are used in the critical-stress
twistiw, the length of plate was

assumed as several times ~heoutstan-&ngwi~th. This
assumption gives the lower limit for the critical stress.
As the length is decreased to less than five or six times
the width, these coeilicients increase appreciably.
Consequently, if the legs of a channel section, for
example, are supported at intervals as by bracing and
the distance between points of support is less than
five or six times the width of the legs, the actual
critical stress will be higher than that given by the
proposed formulas.

CONCLUS1ONSFOR PART I

Thin, outstanding flanges of compres@on members
under load may buckle into several waves or may
buckle into a single half wave, in which event they
will tend to twist the member about its longitudinal
axis.

If both the length and the torsional rigidity of the
member are great such flanges will buckle into several
waves (wrinkle) and the critical stress for spruce
flanges is then given by

p= 0.074

If the torsional rigidity of the member is no’rgreat,
the thin, outstanding flanges will twist the member.

COMM~EE FOR AERONA~ICS ,

Under such rigidity the flanges may be regarded as
plates simply supported on three edges and free along
the fourtli edge. The critical stress for such a spruce
plate is given by

p= 0.044E;

Although the coefficients ‘n the preceding formulas
were obtained from the test of spruce flanges, the rela-
tions- among the elastic constants for tho various
species are such that the coefficients may be eqyctcd
to apply to all aircraft woods with safety.

IUembers having sections as shown in Figuro 3 will
twisk.under axial compression if the junction of tho
main elements is not strengthened with fillets. If
generous flets are used or if part of the main cloments
of the section are made heavier than the rest, tho thin,
outstanding elements may either vmbklg or twist the
member, this depending upon the amount of torsional
rigidity added. Elastic instability, therefore, may
occur at a stress intermediate between the critid
stresses corresponding to the coefficients O.O44 and
0.07. Intermediate critical stressesmay be calculated
by the rulm given in this report.

Failure through local buckling cap occur only when
the critical stressis less than the stressrequired to cause
ptiy failure.

Further conclusions, including calculated coefficients
for steel, follow the mathematical appendix.

-.
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PART II

THE LATERAL BUCKLING OF DEEP BEAMS

METHOD OF TEST The loading device consisted of five parts. A rod
VABIA’ITON OF FACTORS AFFECTING THE BCCKLUNG LOAD with an upset centrtd portion passed through the beam

In order to determine to what degree certain factom at the neutral axis. The upset portion was threaded
affect the critical load for lateral elastic instability of at each end so that the rod could be centered in the —.

Fmcrim 7.—The set-up of the teet [W leted ehstfc fnetabfUty of a ehgiebeam under center hxidhg

deep beams, tests were made in which all factors except I beam by means of two nuts, which were drawn snug
one were held oonstant while the isolated factor was against ‘the sides of the be&n during t=t. Slotted

varied. In these tests the beams rested on two sup- bars, the lateral positions of which were fixed by V’s
....-.—

ports with their ends heId vertical and olamped against’
in the upset rod, connected each end of the rod to the

lateral” rotation but free to rotate in a longitudinal-
ends of an e-rener bar and from the center of this
evener bar a tiebar passed through the movable head

vertical plane as the beam deflected. Load was of the testing machine and was pin<onnected to it
applied at the center by meana of the rod-and-bar on the under side. AU connections other than the
framework shown in Figure 7. pin connection mentioned were knife-edge.

381



REPORT NATIONAL ADVISORY COMM13?FEEFOR AERONAUTICS

.SALL BEARING a 4P
MU WING>

rrsr SKAM

T
/“FRCCLYTwl~tiG /

AND #WlhflNG ARMS

BALL BMRING-

0

0

0.

0

0

.-
w

A

0
0.
0
0
.
0
0

!2...
0
0

-7.-.

—

==

—.—

—

MSC w MACH(NZ

.

0
0

Q=

o
0

.a
u

\

o

0
-

0

0

~

o

0

2..—-—.
Q

o
=

/
i

END VMW

4 F~LY TWIS71NG

AND sWINGIW ARMS

.

BALL 5?ARING

DmANOMclm

MOVASLC HEAn

=%

When load was applied by
lowering the movable head, the
beam could buckle freely to one
side or the other. The sot-up was
not considered satiefactmy until
the beam buckled to one side and
then to the other with theslightcst
adjustment of the rod by moans
of the two nuts.

TESTS OF SINGLE BEAMS UNDEIf VARI-
OUS LOADING CONDITIONS

Three diflerent loading and lix-
ity conditions were chosen to dem-
onstrate the applicability of the
forrmhs recommended for the
calculation of critical buckling
loads. These conditions wem:
First, constant bending moment
with the ends of the beam hold
vert.imdand not restrained later- .
ally; second, constant bonding
moment with the endsof tho beam
held vertical and restrained lat.cr-
dly; and third, a concentrat.cd
load at-the center of a beam that
rested on two supports with its
ends both held vertical and re-
strained lateralIy.

Constantbcnding moment with-
out lateral Iixity was obtaincci
by considering only the portion ‘-
of a beam that was between two
symmetrical loads. A tohd span
of 14 feetwas used and t.ho two
symmetl<cal load points wore 60
inches apart. In order to permit
the beam to swing freely, both
supports and loads wore applied
through members, 16 fcot long,
that were free to stiing and twist.
The beams werewedged into them
long mcmbem, which wom slothl.
and of sufficient rigidity to hold
the beams vertical. The two
loading members were attachwl
to an evener timber, which in
turn was attached to tho mov-
able head of a testing machino
with a tio bar. The set-up re-
quired head room of approxi-
mately 35 feet. A diagrammatic
sketch of this set-up is shown
in Figure 8.

Constant bending moment with
lateral&ity wasobtained by using
asymmetrical 2-point loading and

FIWBE 8,–Tha eet-np of the t@ for oritlcd bnoldfng lcEMundez cumtant bendfng moment with
the ends of the .sIngIebeam held vextioal and not rmkfned latemlly



EIASTIC LNS!L4BDLKW OF MEXK@EH H&~G SECTIONS COMMON IN AIBCRKFJ! CONSTRUCTION 383 .—

again considering onIy the portion of the beam between
the loads. For this condition, improtied extension
wings were put on a 30,000-pound capacity testing
machine that permitted spana up to 16 feet. bad
was applied at two gmunetricial points, in some tests
5 and in other tests 6 feet apart. In order to obtain as
complete lateral flxity as possible at the load points,
lateral, horizontal, pin-wmnected tie rods were attached
to the beam at interwds between the load points and
the supports. In addition, pieces 1%inches thick and
about 6 inches deep were c.kmped to both sides of the
beam from each load point outward and WEWtoward
the support. Figure 9 shows this aasembly.

at tinesupports but because of resting on baU bearings
vm.remot mdrained laterally. Figure 10 shows a .—
paneI before test.

ANALYSIS OF THE LATERAL BUCKLING PBOBIJE31

A mathematical anaIysia of the lateral elastic insta-
bility of deep rectangular beams leads to the following ._
general expression:

~=F4EM7K
~2

inwhich
P= the criticaI buckhg load
E= the moduh of el~ticity along the grain

(8)

-.—

1

FIGUBX9.–The set-up oftha W foraitfcdbucUfng Iodundw constant tsndfnsmonmnt wfth the ends oftbesIIu#E beam held v@fcaIund rmtmfmd MPJZJIY .-—

The third method of test, namely, the application
of a concentrated load at the center of a beam resting
on two supports with its ends held wsrtical, was
identical with the test procedure described under the
heading, Variation of Factom ~ecting the Buck@
Load. -

TESTS OF P.4NElS

Panels consisting of two beams held together with
ribs were tested in tmo maye. The first method was to
suspend the two beams on hanging supports 16 feet
long and to apply load to each beam at two symmetri-
cal points as just described for the twhg of single
beams under constant bending moment with ends
held vertical and not restrained laterally. The second
method was to support the two beams on four bdl
bearings and to apply a uniformly distributed load
over the ribs themselves; in doing this strips were
hid on the ribs u~on -which cans fled with sand -were

Iz = the momant of inertia about the principal vertical
axis

Q= the modulus of rigidity in torsion
K= the toreion constant of the section .
L=the span
F= a constant depending upon the loading and &ity

conditions.
(References 9, 11, 13, 17,20, and 23.)

If h is taken as the width of beam and d the depth,
11in equation (8) becomes

and khe torsion constant K is expressed as foIlowe:

K=#3 dba (9)

in which /3 is a constant depending upon the ratio of
d to b. Table I gives the values of p for various

—
.- -.

—- ..-
— .—

placed. The en& of the beams vmre held vertical ] ratios of d to b. ,.. —.
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TABLE I +

THE FACTOR /9FOR CM.LCULATING THE TORSIONAL
RIGIDITY OF RECTANGULAR PRISMS

Ratio of
sW% (i/b

lm
Los
L 10
L 15
L20
L%

/:

1.4s
1.WI

i%
L 76
L 80

i%

o.1405s
.14744
. lama
. M021
; y806

.17707
; yml

.19145

.19676

. !23874
,21092
. 2142s
. 2174a
. 22s82
.22529

FhtIoof
aide$,4/b

a 24012
. a4s26
.mam
.X882
. ml
. ml
.2W6
. 291ab
.m#2
. S388!2
.80707
.Omm
. ama
.32288
. waa
.aala
. 2Wa

Figure 12 shows the results of one representative series
of these tests. The circles represent test values and
the fuU line is the 10CUSof equation (11). Again the
agreement between actual test results and theory is
considered good.

In the third series of tests, the span L was varied
while all other factors were held constant. The buck-
ling load for this condition reduced to —..——

P=$j (12)

In Figure 13 me shown the results of two representa-
tive series of these tests. Again the circles represent
actual ted-values and the full lines the respective loci
of equation (12) for the two beams selected.

FIGOXE1O.—Arfbbed panel before W

In the ‘firstseries of tests to check the relation of the
various factors in thegeneral equation, all factors except
the depth of beam (d) were held constant. The buck-
ling load then reduces to

in which (1 is Rconstant. In ~ie 11 are plotted the
results of four seriesof tests in which d was varied while
all other factors were held constant. The circlesrepre-
sent the actual loads and the full lines are loci of equa-
tion (10). The agreement--is considered very satis-
factory.

In the second series of tests, the width b was varied
while all other factors were kept constant. The buck-
ling load in this case becomes

. . . .

The effect of the modulus of elasticity in bending
could not be separated from that of the modulus of
rigidity in torsion for the purpose of checking further
the fundamental expression, because when one is
changed the other changes with it., and therefore
neithercould be isolated. Nloreover, it was impossible
to ascertain experimentally with wood alone the impor-
tance of their combined eflect on buckling load because
the range over which theirproduct varies is too limited. _.
For std, the modulus of rigtidityin torsion is commonly
taken as two-fifths of the rnodulus of elasticity in
ben~g while for spruce it is in the neighborhood of

.—

one-fifteenth or one-sixteenth. Since some previous
tests of std beams have shown excellent agreement
with &iticaI values calculated by the formulas, it
therefore appeared logicdl to assume that, if tests of . .
wooden b’cams also checked values given by the formu-



las, the moduli of ehsticity in bending and of rigidity
in torsion are in their right relation in the formula.
(References 6 and 9.)

Following are formulas that apply to rectangukr
berms under various loading and fixity conditiorm.

FI~~ 11.—TIMrelation between the Ieterfd bnekliw
kadandthe dep~of&run m@31fkdbyatodonm -
rwtfon factm (d~s],fordeep rwtarrgder beams

In all cases the ends of the beam are asumed to be
vertical. An end not restrtied, in the terminology

.
I1

8W
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/’t

I

I I

*W .~

5 I
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z’ /

@ ‘ / /
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-x
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1
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FIGUEBEL-TIM reletlon between the Meaal buokln.g had and
the cube of the width ot beam modb%f by a toreion cmrwtfon

rector (Mm), h deep, lwtaWnkbeeJn9

used, is held verticaI but is not otherw& constrained,
am-lan end restrained is both held vertical and clamped
agtit Iati?rtdrotation. Figure 14 showe the lahmd
deflection of the longitudinal & for three principal
conditions of reatrtit.

-1ohSE 1.—~ thin, deep, rectangular beam under

385 ‘–

con-
stant ben-&ng moment M, with ita ends
not restrained.

g5fM I I L l\ I I 1

i

SeriesS-2 S+ies S-I

?$ I

~BLc4J
a 20 #.60 80

~ hches

RGVM M.–The reh.tfonbetueen the Ietenal buckling kmd and
the SPQ for deep, reeta@= I=IIM

CASE2.—The same as case 1 except that the ends are
restrained.

i

F!kmOfbgvtldxd & C7f7erC$=ficiti .

IIEhd.sresfraaiedhlera&
—. —. —. —.—. —

Ron of Lndek=kd km
—1

Rn ofbi@’rxkk# axisofferdelkcfti.

C.Laterdresfran( of cemfer of v
ti- —. ...— ..— .—-— .— —- —-- --- .+

h of U)dekcfed bean

.—. —.

Hn of kn@fd+ici axk afferder?ecfkn

FrmmrI lL—The Iateral defteetlon of the Iongltudhiid exts of a dncIe rectmgn-
Iarbeam when the bending !rra tifealPIene berames unstable and eidmrfse
~~

CASE3.—A thin, deep, rectsnguhr cantilever with a
. concentrated load P at the end.

~=4d~K

CASE4.—A thin, deep, rectanguhm cantilever with s
uniformly distributed Ioad W.

.—

,..

—.-.
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CASU5.—A thin, deep, rectangular beam supported
at the ode and carrying a concentrated
load P at the middle, with its ends not
restrained.

CASEI6.—The same as case 5 except that the ends are
restrained.

—
~=25.9@1@K ..:,

L2

CASE 7.—A thin, deep, rectangular beam supported at
its ends and carryiug a uniformly dis-
tributed load 11’ with its ends not re=
strained.

CASE 8.—The came se case 7 except that the ends are—..
restrained,

ZASE~9. —A~thin, deep, rectangular beam subjeckd to
a constwt banding moment AZ and an
axial thrust P’, with its ends not restrained.

‘d
~= T~EI,QK ~ P’L’

L
——

#E12

C?ASE10.—The same as case 9 except-that the ends are
restrained.

CASE 11.—A thin, deep, rectagguhr beam supported
at its ends and carrying both a uniformly
distributed load W and a concentrated
load P at the middle, with its ends not
restrained.

PL’ WLZ
— = @?IxK~+2S.3

Combinations of the preceding cases maybe similarly
expressed.

CASE 12.—A thin, deep, rectangukw beam supported
at its ‘ends and carrying a conmntrated
load Pat its middle, with lateral support
as by tie-rods, at the middle, and the
ends not restrained. Such a beam
buckles lateraIIy in two half waves.
(Fig. 14, c,)

BUCKLING FORMULAS FOR I BEAMS

The preceding formulas require modification wlmn
the beam has flanges, since the latmd flexure of the
flanges then becomes important. Following aro some
of the results obtained by Timoshenko. (References
7, 16, 17, 18, and 20.) Two more symbols are intro-
duced. ht
Is= the moment of inertia of one flange about the

principal vertical axis
and let

EI&’
af =2 *m2

-.
.—.—

CASEI13,—An I beam subjected to a,constant bending
moment M, with ita ends not r&rained.

T-K ——
-—

M.~ + + U’iY2

CASE 14.—The same as case 13 except that the ends
are restrained.

.

CASE 15.—The same as case 13 with the addition of an

axial thrust P’.

L ~~+-$~ ~ - - ““ z
~= W~EI,tlK

d

CASE 16.— The same M case 15 except that the ends

are restrained.

,—
.

CASE 17.—A cant.iIever I beam with a conc&trated –

load P at the free end.

,- “p= FJ~K”
—

LZ .—

in which values of F for reciprocal values of az, are:

+fLl 12481216 24s240”ca
R44.2 l&7 12.2 9.8 8.0 7.2 6.7 6.2 5.9 6.6 4.0

. “- . -=.

CASE 18.—An I beam supported at its ends and carry-
ing a uniformly dietributad load W, with
the ends not restrained. —

F4WK
—.

~=:~ . .—

in which values of F, for reciprocal values of a? and for
three differant placements of the load, are:

ill1 %1412 LUO 426 26.3 32.6 31.6 W5 29.8 2Q2 =6 !2?.S
2 F: 928 2S3 20.4 27.4 282 %2 2S.8 X.O 23.2 X16 X.8

F.’22L6 78.2”69.4 &l 4Q7 23.1 %20 24.4 &2.6 8L0 2&8

The pkicementa of the load on the beam, numbered to
correspond with the values of F, are:

(1) Along the neutral axis.
(2) On the top.
(3) At the bottom.
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C~E 19.—The same as case 18 exoept that the ends
are restrained.

$0.4481662E6 M2)O~=

R&s UYL8 119.2 9L2 7S.0 ~0 6!L8 6&4 6L2 48.S

CKE 20.—An I beam supported at its ends and carry-
ing a concentrated load P at the middle,
with the ends not restrained.

+Q448162204W M3020=
(l F: S6.4 8LQ 250 2L8 ]9.4 L%3 17.9 17.6 17.2 l&9

[4 E,%: “
17.0 1s4 149 14.9 16.0 l&4 1K7 16.9

t&O 2&2 2(L6 2L6 224 2L2 21.O l&9 16.9

As in case 18 the load is applied:
(1) Along the neutraI axis.
(2) On the tap.
(3) At the bottom.

CASE 21.—The smne as case 20 except that the ends
are restrained.

$CL44816S2C4 M1602Z0400.

F:W 818 65.6 60.2 4Q2 %2 8L8 all 2%5 2a2 25.9

C~E 22.—An I beam supported at its ends and carry-
ing a concentrated Ioad P at the middie,

with the ends not restrained, and the

beam laterally supported at the middle,

as when two parallel girders have a Iated

connection between them at the middle

of their SpSI1.

1a: 0.4481622 e21282m 400=

F; 4M 154 114 8&4 69.2 64.6 62.4 4U8 47.4 4L6

CKE 23.—An I beam supported at its ends end carry-
* a distributed load W, with the ends
not restrained, and the beam lateralIy
supported at the middle of the span.

!41 E676 ~ ;% ~fi 100.8 79.4 76.4 7%8 09.6 6&9

ZE
9L2 76.7 7L6 6S.9 61L8 66-E

2621MMl LlL2 8S.6 81.6 77.0 7%6 6Jk9

Again the load is applied:
(1) Along the neutnd *.
(2) On the top.
(3) At the bottom.

EXPERIMENTAL VEBJFICATION OF THE BUCKLING FORMULAS

Time and funds were not avaiIable for the experi-
mental verification of the fornmhia for aU the loading

and &i@ conditions listed. Over 40 I and rectangular
beams, however, were tested under the following condi-
ti.ms, which represent a considerable range for the
flxity and the loading constant F.
CME 1.—A rectangular beam subje&d to a constant

bending moment, with ita ends not

restrained.

CmE 2.—A reotangdar beam subjeoted b a ccn-

stant bending moment, with it sends re-

strained.

C-E 13.—An 1 beam subjected to a constant bending

moment, with ita ends not restrained.

CME 14.—An 1 beam subjected to a constant bending

moment, with its ends restrained.

CME 21.—An 1 beam resting on two supports, with a

concentrated load apphd at the middle
of the span, and the ends rdrained.

The results are shown in Tables II, III, IV, and V.
Since the exact &i@ conditions fwumed in the mathe-
matical analysw me di&dt of attaimnmt, the a=~
ment of test resuh with values given by the formula
is remarkable. We consider this agreement, together
with the aggeement for a Iimited number of metal
beam9, conclusive proof that the formulae are appli-
cable to beams under actmd service conditions.

A FU!lPOET~ D13AGlZ=lENT W4TH EXPERIMENTAL RESULTS

The only experimental record of tests with wood
that has come to the attention of the present authors
is an undergraduate thesis that has been published
as JWational Adviso~ Committee for Aeronautics
Technical ~ote 232, “The Lateral FaiIure of Spars.’i
In this note a wide dillerence between aofiual and
theoretical results is reported, the statemat being
made that actual loads ranged from onduilf iw one-
flfth the loads calctiated by the formula apply@
to the test conditions. Examination of this note,
however, Ieade to the conclusion that the ttheoreticxd
form&s were not correctly applied in two respeots,
u follows:

1. The coefbient 16.9, which the authors of the
note used, applies onIy to the conditions of ca9e 5 of
the present report. Their loading conditions, how- -
ever, were those of ease 12, which requires a coefihient
of 44.5. In addition, the ends of the test beam were
under light lated restraint, which would increase
the coeiTmientto about 50.

2. It appears that they used the moment of inertia
about the principaI horizontal axis instead of that
about the principaI vertical axis.

Ordy part of the test results reported odd be
cheoked, since in several instanca the beams were
stressed beyond the sIastic tilt and stress-strain
curves with which to modify the modulus of eksticity
were not avaiIable, yet proper work-up of their ex-
perimental data gives results that cheak with pre-
oision the theoretical wults.

.—

—.

--
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TABLE II ; .

THE CONSTANT BENDING MOMENT REQUIRED TO CAUSE LATERAL BUCHLING AND TWISTING OF THINt
DEEP RECTANGULAR BEAMS HAVING THEIR ENDS UNRESTRAINED LATERALLY BUT HELD Verti-
cally ALTHOUGH FREE TO ROTATE IN A LONGITUDINAL-VERTICAL PLANE

STRESSES WITHIN THE ELASTIC LMT

1 2 8 416/6 7

EIs by- GK by-
E4Sm Nominal dkSdOIIO(imh&9) L

Oelmdetlon Tmt Cakmletfon Test

R-102. . . . . . . -------------------- ~ by 6_._. -_.. __.._ ..-
R-10& . . . ..-.. ----------------- 1 by 0----------------------

2&Lx&l ~-:-:::--.:: 70M 7&lm3 6J
4

R-lo7 . . . . . . . . . . . . . . . . . . . . . .._. _...-. 1 by 6___. ._... _._.._. w’ Ooo - -w-m
R-102. . . . . . . . . . . ..--- . . . . . . . . . . . . . . 1X by 6-------------------- 1,744 OKl ~ &37,Ooo

;7& %#J g

R-III - . . . ..- . . . ----------------------- 1% by 6--------------------- &iWQmo &6Qfr03 647,m 48&ofm 60

STRESSES BEYOND THE ELASTIO LIMIT

8 I 9 10 11
—

Bueklirrg moment by—

-CEk ‘-
I 1 1

1 2 8

“- r -

4 5

Beam Nominal dhI16&ORS(fnebes) Corrrre$ed (7Kby tmt L

who . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rl12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1J4by AH-------------------------------

w118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 by 6-----------------------------------------

~~g - ,,jS-J~ 6J

1)4 by 4)4. . . . . . . . ..-.. -..- . . . . . . .._. _._..
R.l14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..- 2 by 6.-. __ . . . . .._. _.._ . . ..__. _.._ . . .._

& lo&m 00
qfnm, oml J%E ~

All calculatfom were made wftb a slide tie.
E-modulus of elasticity es determined from control teats inoreeeed 11PSI cant to carract for shear distortion.
E’-aemnt modnhrs of elast[otty es obtnbwd from a stress.etralm curvr+
Ii-moment of insztfsof a beam aborrtft9 prfncipel vaftfcfd axis.
G-modulus of rIgidlt y.
K-torafon constant for the sactiorr.
L-length subjected to constant moment.

TABLE III

Buckltng moment by-

THE CONSTANT BENDING MOMENT RE UIRED TO CAUSE LATERAL BUCKLING AND TWISTING OF THIN,
%DEEP I BEAMS HAVING THEIR END UNRESTRAINED BUT HELD VERTICALLY ALTHOUGH FREE TO

ROTATE IN A LONGITUDINAbVERTICAL PLANE

1 2 8

I I

Beam I Nomirrd dlmedme (bmhea) I hS

-----1
&b~Wby7 flangeby%weh . . ..- . . . .._.-
1 DyUDyfi~~ Dy% WfJD_.-....-_....

by7byWf&eby%e web. . . . . . . . . . . . . . . .
bY6by~@eby~web --------- -
by 6 b? flanqe by 4 web._ . ..___~...L— , m.—_. —., —.t

1-10-------------------------- 2 by 6 !? %.gapge by 94-Teb-------------
I-H. . . . . . . . . . . . . . . . . . . . . . . . l“’-
I-l!l. .-- . . . . . . . . . . . . . . . . . 2
1-18. . . . . . . . . . . . . . . . . . . . . . . . . . 2t
1-14. . . . . . . . . . . . . . . . . . . . . . . . . . 11

k1-15. . . . . . . . . . . . . . . . . . . . . . . It
I-18. - . . ..– . . . ..-. -... -... lbyoD~

r
rI-17. -... _ . . . . . . . . ..-. _._.- 1 by 6 by 6 =:; 6 ~&.. _..._

—.. —------ .

I-18 . . . . .._ . . . . .._.. ------- 2 by 7 by 6 flange by ~ web . . . . .._... --
I-19. . . . . . . . . . . . . . . . . . . . . . lbY6byfie llargabg~:z-.:::::::
1-22. . . . . . . . . . . . . . . . . . . . . . . . . . , ‘2%by”b5ibY % . . .

All ealordations were made with 6 dide nrk
1
-----.—-.—--.----.....

4

nE!i3Xon

h-hel@ of beam.
E-mcMulue of slWfolty es determtnad from wntrol tmta fncrwsed H per esnt to mrrect for shmr dktortlon.
h-moment of Inertia O!1 flange about the prInclp+J vertical axis of tha bmm.
Ii-moment of inertia ofs beam abcut its urhrcicai vertfcai axis

L
G&by

Test

—
8

—

L

m
00

%
64
w
00
60
00
60
00

7...:”-.::
81rcklIr3smoment by-

Cehxdation
iufmddu,m

—. . . ..—

m
1

.

Q-modulus d rtgldty.
If-torsionwrr9tant for the swtion.
L-lengthsubjeoted to oonatsnt moment.
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TABLE IV

THE- CONSTANT BENDING MOMENT REQUIRED TO CAUSE LATERAL BUCKLING OF THIN DEEP BEAMS
HAVING THEIR ENDS RESTRAINED LATERALLY AND HELD VERTICALLY ALTHOUGH FRkE TO ROTATE
IN A LONGITUDINAL-VERTICAL PLANE

,_

RECTANGULAR BEAMS

‘l’bdu1 !2
i —.=

,-
EL by– 1“GKby— I L

...-
Beam INomfneldimeneione (inOhe9)

—

IR-lOI.............................. gg:.--.--.-.--.---.--.-
R-lm--------------------------------- --–--–. –-—-–-—
R-Ire --------------------------------- Lby 6-------------------- t-l

IL850 --–-—-- —-— I$wio
1$4# ——.

2% ,
l& 740

4q7sQ Woso

-.-=-

* “-
Barn Nomfrrd dkMSfO”9@hes) “h’“onl===q””

.—

——

L Ckddation
fro~m* Test

I

1
1-10. - . . . . . . . . . . . ---------
I-11------------------------
I-u-------------------------
Hti-..____. . .._. _...-.
r-Iu. .- . . . . . ..- . . . . .._..-.-_
1-17-----— -------------
I-18 . . . . ..-. -----------------
1-19. -.-.. – . . . . --------------
I-23-. . . . . . . . . . . . . . . . . . . . .
r-m.. . . . . . . . . . . . . . . . . . . . . . . . .
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STEESSESBEYONDTHE ELASTICLIMIT

The calculation of a critical load that produces a
fiber stress beyond the elastic limit is possible by
means of the preceding formulas if the modulus for
inelastic deformation is known. Although this modu-
lus is a variable beyond the elastic limit, it may be
obtsined from a stress-strain diagram. Figure 15

COMMITTEE FOR AERONAUTICS

in which k is a constant that need not be evaluated
when Figure 15 is avaiIable. The modulus below-the
elastic limit will be called E in this report and that
above will be calIed E’. Although both depend upon
the slope. of the line connecting the origin with the
stress-strain curve at the particular stress in question,
E’ is usually spoken of as the secant modulus.
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shows such a diagram for a spruce beam in bending. The fommda proposed by Karman and advocated
From it the required modulus, for a stress either below by Timoshenko for calculating E’,
or above the elastic limit, maybe determined by means — 4EXE1
of the formula: . “= (~E+ ~)”

(14)
stress

Modulus of elasticity= 130.7k x strtin (13) in which El is the tangent modulus on the compression
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side of the b&im and E is the initial moduhs, can not
be used for ;

T

d. (Reference 16.) It can riot apply
to wood be ause when the maximum load in bending

L
is reached t e stress-strain curve for the compression
fibers has t ed downward, which means that El has
become neg’ tive.

?
In fact, before the maximum load is

reached thq tangent to the stress-strain curve for the
cumpresaio~ fibers has become horizontal, which means
that the f&mula would give the beam no stiffness,
whereas it hctually is still resisting an increasing load.

Whatev& the method used, more than one trial will
have to be wade in the calculation of the criticrd stress,.
beoause E’!Is not known until the stress is known. h
calcu.Iating’ critical loads by simply substituting E’

r
in the form’ as that were de-ieloped on the qassumption
that the e astic Iiro.it was not passed, two further
assumptiotis are made, as follows:

1. Passin the elastic hit does not aflect the

{

torsion mo’ ulus G.
2. The d, rease in 17is constant along the span.
In investigating critical loads, four rectangular

beams were’ subjeoted to a constant bending moment
that produced lateral buokling at a fiber stress beyond
the elastic limit. The results appear in Table II.
The corrected values of EIS given in the table were
obtained by rpultiplying the secant modulus E’ by
the moment ok inertia 11of the cross section about its
principal vertical &s. The calculated critical bend-
ing moment for the &et beam listed in the second part
of the table (IL-110) is about 1% per cent lower tlnm
the test value, ~while the calculated mdues for the
second (R-112)” and the third (R–113] beams are
respectively 13 and 7 per cent higher b the test
vahms. The second (R–112) and the fourth ~-l 14)
beams, which wem of the same size, were made from
adjacent pkmks cut from the same log. Control tests
showed the materiai in R–114 to be slightly supe”tior.
Consequently its low test bending moment is diflicult
to account for unless the beam had become slightly
warped before test, in which eveati the actual stress
at faih.re would be higher than the calculated stress
and the value of E’ lower than that used.

LOAD NOT APPL7ED ALONG THE NEUTBAL AXCS

The development of the buckling formulas is
greatly simpl&d by the assumption that the load is
appIied along the neutral axis of the beam, and in
aircraft work usually ni) mahwird error vziUnormaIIy
be introduced by sssu&g such an application of the
load. Ih a few of the cases for which fornmb are

given, coefficients are ak’o given for load applied along

the neutral ask, on the impression flange, and on

the tension flange of th+ beam. For the development

of the formulas for a klad plaoed above or below the
neutral axis, attention is again direoted to the work

of Timoshenko and to advanced texts on strength of

materiaIs or applied elasticity. @eferences 7, 12,

and 18.)

BUCKLING OF BEAMS TIED TOGETEER WITH BIBS

~en two thin, deep beams are tied together with
ribs, in addition to carrying whatever direct load is
normaUy placed upon them the ribs will act to prevent
lated buckling of the beams. Very often, though,
when the dhect load is transferred to the beams from
the ribs, the ribs may be labor@ to sustain the load
aIready upon them and comequently may have no

—

TWmtr 16.–Tbatastofa mel teshowthattbstedmey c#ana2iaUyloadsd
Snglaapsrto bucklefs trsmmittiby tharfbtomunh.ded aingIe sw .-

reserve str&gth left for any extra load that a tendency
of the beam to buclde would produce.

The &at panel teat was made to demonstrate the --
fact that the tendency of an axiaIIy loaded spar h
buckle is transmitted by the ribs to the unloaded spar.
For this tFStthere was made a panel consisting of two --
1X by 6 inch spars spaced 55 inches center to center,
four compr-ion ribs spaced 55 inches, and drag
wires in the three bays. No ribs were put in between
the compression ribs. Axial load was apphd to but
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one spar,which deffected alternately in and out between
compression ribs as the beam of Figure 14, C, deflected.
The twt- was stopped at a load of 12,750 pounds with
the panel still uninjured. The deflections were in-
creasing rapidly at-that time, and apparently the load
was very near its maximum. Auxiliary ribs were
then put in between adjscent compression ribs, four
in each bay. Figure 16 shows the completed panel
ready for test, Axial load was again apphed ta but
one spar. The tat was stopped at a load of 29,000
pounds, which was very near the maximum.

Under the conditions of the second ted, in which
all ribs were in place, the two spars act-as one, the
lateral rigidity of the panel being the combined rigidi-
ties of the two spars. Similar tests were made by the
Engineering Diwision of the War Department, Air
service, at McCook Field with identical results.

I

stopped. taking load more was thrown uph the other.
W%~n the pa&I was assemb~edthe bofi~; holding the

b
cleats along” one beam were drawn up t htly, while
those along the other beam were not. The beam
supported by the l% rigid cleats quit tak$g load at a
moment of 35,530 inch-pounds, while the ~nc with the

!

more rigid cleats did not buckle until it w subjected
to a moment of 53,620 inch-pounds. he results
show what may happen when the ribs s art ta faiI.
Incidentally, had the beams been held so a? to restrict
bending to a vertical plane, each should *VC ca.rricd
65,550 inch-pounds and had they been fre~ to buckle
laterally each was calculated to sustain ~1,270 inch-
pounds. )

The next panel tested was &niIar exce’ t that the

rribs were glued to the flanges. Load wa applied to
the beams as before, and failure occurred} when each

FIGURE17.—WIngribe fc+which the degrw 01attadunent of the riIm to the beam h adjnstablii

In the next panel tests the beams were subjected to
bending, and load was applied directly to them and
not to the ribs. Two 1 by 6 inch rectangular beams
subjected to a constant bending moment over 60
inches of their length were tied together with four ribs
spaced 12 inches center to center in the 60 inch bay.
Constant moment was applied by using the apparatus
shown in Figure 8, except that double the number of
support and load rods were used. The ribs that tied
the two beams together were as shown iR Figure 17;
they were held iu place simply by the friction under
the heads of the bolts, the holes for which were slotted.
Obviously, if the bolts were notdrawn tight the beams
could buckle very edy, while if they were drawn
tight twisting was practically prev~ted. The evaner
bar was not pin-connected to the movable head in this
test but was rigidly attached to it, so that if one beam

beam was subjected to a ‘moment of
\55,600 inch-pounds. The calculated

bending moment for each w~th bending
confined to a vertical plane was 62,800
inch-pounds.

The third and final step was the test
of single bays with load applied to the
ribs alone. (Fig. 10.) T’ac panels were
8 feet between supports ~d the beams
36 inches center to centxjr, Seven ribs
of the lightened plywood type, rectan-
gular in form, extending 12%inches be-
yond each beam and spaced 12 inches
apart, tied the two hum togetlwr.
The ends of the beams rested on thrust
bearings and were held vertical during
test. Roller bearings under the ball
bearings at one dupport permitted
movement as the beam deflected.
Thin strips 7 feet 5 inches long, notched .-
at the ribs, were I.aid on the ribs, and
cans filled with sand were placed on
them.

For this flxity and loading the beams, which were
rectangular and %by 4 inches in cross section, should
have buckled lateralIy at approximately 91 pounds
each if “unsupported by the ribs’. If bending had been ““–
confined to a vertical plane, 970 pounds should have
been required to break each beam. The ribs when
supported laterally should ha~rebe~ good for 250 to
300 pounds. The preceding valuea are calculated
ones,

The two be&s were suppcrted at the center by a
cross timber resting on two ja’ck screws, with tho ribs
supported only by the beams. A load of 735 pounds
was put .on the paneI and th’~ screws lowered. The
beams remained in a vertical plane throughout their
length. The timber was again brought up against the
two beams to relieve the load and more load was
added. No buckling occurred at 1,155 pounds when
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the screws were Iowered. Again the two beams were
supported at the center by the cross timber and more
load was applied. A total of 1,370 pounds was sus-
tained by the ribs with the beams stW supported at
the center. This load, however, was approaching the
maximum for the ribs. When the screws were again
lowered the” ribs did not have ticient additional
strmgth to resist the tendency of the beams to buclde
and they ga~e way.

The two beams, which were uninjured in this test,
were again ~ed in a second panel. This second panel
was like the first in every respect, but the loading w-as
somewhat different. In place of the notched 7-foot
5-inch loading strips, short smooth strips that =-
tended over two aud three ribs alternately were used.
Instead of having the long strips with their notches
hold the to~s of the ribs in line, strips &inch thick
and 2 inches wide were ~aid flat along each side of each
rib and tac~ed at the ends aud center to the short
loading sti”ps. k this test, as in the first, the lovrer
chords of the ribs were unsupported. Because the
short loading @rips pertnitted freer lateral play in the
beams, this panel failed at a lower load than the fit.
A maximum load of 900 pounds was obtained, at which
load the lower part of the ribs buclded untd the ribs
lay ahnost flat @inst the loading strips.

In the third and fired test of this series the bottoms
as well as the tops of the ribs were held in line and the
same beams were used again. Ten rows of 1~-inch
commercial cotton tape -wererun pamdlel to the spars
and sewed to the ribs. Two diagonal pieces on both
top and bottom were then se-wedto the pmalleI rows.
Although this taping was hardIy comparable with wing
covering, it held the ribs in Iine quite welI. The short
loading strips of the previous test were again used in
addition to the tape.

As previously stated, the lateraI buckIing load of
each spar when it was unsupported was calculated as
91 pounds, which is 182 pounds for the panel. The load
required to break each one if bending had bees confined
to a vertical phme was 970 pounds or 1,940 pounds for
the panel. Failure occurred at a total 10MIof 1,470
pounds, at which one beam buckkd badly and col-
lapsed. The ribs had started to buckle somewhat-,
which permitted ‘the one beam to buckle out of a
vertical phme. Greater strength of the ribs or greater
torsional rigidity of the spar would have prevented this
buckling and twisting. A box beam of the same
strength in bending, for example, would not have
buckled at this same load.

The nose of an airphme wing helps to hold the front
or deeper spar in limeand the viing covering keeps the
ribs in line. With tkis support, fairly L3rgeratios of
depth to breadth maybe used if the ribs are made with
just a little surphs strength.

Some years ago, after the test of a great many
bemns in connection with a study of form factors, the

m300J32~

suggestion was”made that the ratio of the moment of
inertia about the principal horizontal axis to the
moment of inertia about the principal vertical axis be
kept 10W,below 25 if possible. A further suggestion
was that when this value was exceeded special at ten-
tion shouId be given to the facto~ that insure lateraI
@i&@. (Reference 101 p. 16, and 1923 annual
report, p. 39o.) As a result of the present experiments,
the Forest Products Laboratory has learned what
factors are invohd in the Iateralbuckling load and has
concluded that no arbi- ratio for the moments of
inertia can properly be set and that such a method of
design shouId not be use&

In previous tests it was practically imp&sible to
prevent the buckIing of I beams having a momen&gf-
inertia ratio of 39. In the panel with the 1 by 6 inch
beams just mentioned, for which the momenhof-
inertia ratio is 36, the mmirrmm moment was approxi-
mately” 89 per cent of the moment that would have
been required to cause faihre had bending been
confined ta a vertical plane, and even this percentage
mdue could not have been obtained if it had not been
for the excess strength of the ribs. In the third $est of
the last panel, which had % by 4 inch beams and for
which the moment ratio is 64, the maximum load was
approximately 76 per cent of the load required to
cause faiIure had bending been confined ta a vertical
plane.

In au of the recent tests it is probable that the
beams were recei~ leas lateral support than the
beams in an ordinary wing panel would receive and the
end &ity was less than that which obtains in the usual
drag bay. ‘i’i5th a more or less rigid nose, such as one
of plywood or metal, and ribs slightly over strength,
beams with momenkf-inertia ratios considerably in
excess of 25 can be counted upon for &eir full bending
strength.

CONCLUSIONS FOR PART U

Deep beams may faiI through bucklhyg laterally and
twisting at loads much 1sss thqn those calculated by
means of the usual beam formula.

There is for each &ity and loading condition a
critical lateral buckling load for a deep beam just as
there is a critical load for a .cohunn.

A mathematical analysis of the problem for various
Ioad@g and fity conditions leads to formulas that
contain the dimensions of the beam, the modulus of
elasticity along the grain, the moduhs of rigidity in
totion, the span, and a constant depending upon the
loading and fixity conditions.

Iihperimental redte conflmn the practical appE-
cabil.ity of these formulas.

When one spar of an airplane wing or other paneI
is subjected to an axkd load and the other spar and the
ribs are not loaded, the lateral rigidity of the whole
combination is the sum of the lateral rigidities of the
two spars.
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When two deep beams fastened together with ribs
are subjected to bending, latmmlbuckling of the beams
may or may not be prevented. When one or both of
suoh beams are heavily stressed and in need of lateral
support, the ribs, if they are not stronger than is neces-
sary to carry the load upon them, oan not oarry the
extra load that is induoed by the tendency of the
beams to buckle.

A fairly rigid nose and ribs slightly overstrength will
permit the use of airora,ftwing beams that have a rela-
tively large ratio of moment of inertia about the prin-
cipal horizontal axis to that about the principal vertical
axis.

No arbitrary moment-of-inertia ratio can be used
with certainty. Each particular case must be studied
individually and lateral support must be provided in
accordance with the tendency of the beam to buckle
laterally rather than to bend in a verticaI plane.

This investigation was undertaken as a study”in air-
craft design. The conclusions, however, are of general
application, even though some of them for convenience
are worded as if they applied only to aircraft.
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APPENDIX
A MATHEtiATICAL STUDY OF THE ELASTIC STABILITY OF THIN, OUTSTANDING FLANGES

UNDER COMPRESSION

I INTRODUCTION

In discussing the stabiIity of a column or oti
compression; member having one or more thin, out
standing fla&s, it is necessary to consider not otd~

,.

the conditions for the stability of t.h[
cohmm as a whole but also the stabilit~
of the flanges themselves. The probkm
of the stability of such a flange is essen-
tially that of the stability of a rectiam
gular pIate simply supported along the
ends to which the load is applied, free
aIong one of the other edges, and on the
remaining edge either simply supported,
imperfectly fixed, or perfectly fied, de-
pending upon the nature of the section.

\ %mosheno has discussed this problem

\in considerable detail for p~atw of
I ‘:isotropic material. (References 17 and

FIGUMM.-A reo.
tangnlar pL9te
unti a nnbm
wmpfesive load
on two Opxte
*

$11.) ‘In the following appendix his

\

ethods wilI be extended to pIates com-
osed of a nonisotropic material, such

a wood, whioh will be considered
have three mutualIy perpendicular

pl es of elastic symmetry. = anal-
y s for isotropic pIates will aIso be
s arized and some further conclu-
sion drawn.

——simpIy supported. The edge y =fi is free whik the
edge y= O is either &nply supported, partially &ed,
or perfectly fixed.

The case in which the edge y=O is perfectly I&d,
a case which rareIy or never occurs in practioe, is first
treated for both isotropic and nonisotropic material,
making use of the Werential equation for the deflec-
tion of the pIate from its phme and of appropriate

—

boundary conditions. A simpler approximate method
b~ed on energy considerations is then apphd to @e
same case and the results are compared and found to
check in a satisfactory manner. The approximate
method is then applied to the case in which the edge
in question is only partially &d, the case in which
the edge is simply supported appearing as a limiting
* . ..— —— -..

The differential ~quation satitied by the deflection
w is obtained tim the following di&rentiaI equations

, connecting the stress resultan~ 2’, & and IV and the. .
stress couples Q and H acting upon an elementary
portion of the plate with edges dz and dy. (Reference
8; art. 326, equations (24), (25), (26), and art. 331,
equations (45) and {46).) The notation used is that
of Love. @eference 8, =t. 294.)

\

EXACTMETHOD; B, SE OF FLANGE PERFECTLY FIXED djvl d~a ~ a~ ~ @w- ~+~f~y+zl=o.
~+ a~ + ‘ ax’ —+81 &..y ~

DIFFERENTIAL EQUATIO FOR TEE DEFLECTION OF A FLANGE g t3zaY
OF NONISOTROPIC MA, EEIAL UNDER A COMPRESSIVE LOAD

WI w+~2+L~=o
A plate of tbickne h, Figure 18, is considered to tkc ~

Iie in the n-plane ~nd to be bounded by the Iines dQI ~dHl_N1 +MI =0
Lx=O, z=a, y=O, mu g= b. Uniform compressive ~ti

(16)

$

loads ~ per unit lengt of edge, paraIIel to the X-axis,
“w+H,a$+&+&=O.Ql@X-QZ G+H1 ~are appIied to the e es it=O and z=a, which are

,.

x

/
Z

A H, B
FLQ?rarIQ.-(A) S- resrdffmtaand (M StIBSconpleonanelementtis plate
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1

In equations (15) and (16)X’= 3? =2’ =ikf’ =iV’ = O,
since {he components of the external force per unit
area and of the external couple are zero.

To calculate T1“ ● s “ o s Ha it is necww ~
express the components -of stress X= “ “ “ ● ● ● X~ in
terms of the deflection w and the elastic 00nstants.
(Tigure 20.) The displacements u and o are given
with fmf%cientaoouracy by

U&
(17)

aw
. .

v= –z~’

The components of strain are

au a%
‘=’’%’–zw

(18)

For a more ext.msive discussion of the components of
strain, see artiole 329 of refercume8.

Assume that the mderial of the plate, wood, has
three mutually perpendicular planes of elastic sym-
metry. (Reference 8, arts. 110 and 111.) Denota by

.%ikk
Fmmm 20.-Components of displawment in t.wm of

deflection

E,, Er, and E. Young’s moduli in the directions x, y,
and z, respectively, by U.VPoisson’s ratio asmciated
with contraction parallel to the Y-axis and stress
parallel to the X-axis, and by pz~the modulus of rig-
idity corresponding b the directions z and y. The
stress components X2, Yw,and XV are then given by

By ddnition

s
‘D Xzzdz.G = _m

(Reference 8, art. 294.) Then

Q’=-D’(%+””%)’(20:

-E,h8 .
“ =12(1 – r,vrv=)

R like manner,.
Q,

(
iYw

)
.–~ ~+usy~ ‘

vhere
\

I
(21)

ivhere
E&S

‘g= 12(1.– r=’.u,J
.

Further, from their de6nitiona,

afwH,= –HAIafiJ

where

Jf=pzs$
. .

(22)

(23)

(24)

I (25)

In the last of equations (16) the quar titiea Q,, 6J,

/H,, and H,, which are expressed by (20), 22), and (24)
in terms of second partial derivative o“f w, are each
muhiplied by seoond derivatives of w.

P
ach of these

derivatives may be considered small and ~theproduct of
two of them negligible. It follows that/

s;- –s,. / (26)

/
From the first two equations (16, and equations

(20), @), arid (M) it is found that
I

/

It is olear from their definitions and (19) that 5’1and
S, are small. (Reference 8,- art. 294.) Also from ita
definition and equation (18) 27 is small. Equation ._
(26) apd the &at “two of equa Ions (15) are satisfied
iipproximatdy by taking }

where P is the load per unit le’ gth of the loaded edges.
PThe third of equations (15),; on making use of (27),

(28), and (29), then gives fire dWerential equation of

the plate:
!

Or .“

(31)
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BOUNDABY CONDITIONS

On the sinlply supported edges z =0 and x= a of
Figure 18,

W=o (32)
and

Gl=o. (32a)

The Iast condition requirea that

@3)

On the ihed edge, y= O,

W=o (34)
and

h o.
,%=

(35)

On the free edge, y=b,

(7,=0

and

Rewriting these conditions for the edge y=b,

(36)

(37)

where
2M

2–U==”%
that is,

~= (2– (r=,)E.-4k# (1- ff=,up).
E, (38}

SOLUTION OF THE DIFFEBEN’I!IAL EQUATION

Conditions (32) and (33) are satisfied by

w= sin yY@) ‘h M f(y). (39)

It wiII be convenient to .wplace nar/a by ~/e, for if the
flange breaks up into more than a single half wave
each portion of kngth alm = e may be considered as a
p~ate of length c simply supported at its ends. We
shaJIaccordingly interpret A as given by the equation

where c maybe either the entire length of the flange or.
a portion of this length, = circumstances require.

In accordance with (3C)f(y) in (39) must satisfy an
orchmy linear ~erential equation of the fourth order.
Its solution can be written

Conditions (34) and (35) are saf.i&d if the constants
in (4o) are so rdated that we may write

f(y) =A (00S ~y–cosh W) +B (sin py-$inh @./). (42)

The substitution of (39) combined with (42) in the
conditions (36) and (37) leads to the equations:

-A[(#?+ Uah’) COSI%+ (c+ L@’) cosh ab]+ —

and
A~@’+2A’–rx’) sin I%–a(d-2N+A’) sinh cd]+
l?[-B@g+2A’-UA7 cos @-#(& -2x’+uh’) oosh ah]=O.

(44)
Ii (44) note that after some reduction

&+(2 – C)X’= c?– c=,??
c?– (2 – u)x~=f?+ m=rxz.

Ik this reduction the folIowing relations were used:
2Lti

C?-~=2~J !2-U=Uzr+ZI and E,UW=E.U,=.

(Reference 1, p. 104.) Ihing the abbreviations
#=@ + U.MAz
s= az—C%J%, (45)

the equations (43) and (44) can be mitten in the form

A[tcos~b+s coAab]+B[tti ~b+~gfiab]=O

(46)
~sti~b-dtiab]+a-~ cospb-flmha]=o..

In order that solutions of the system (46) other than
A= O and B= O may exist, that is, that a solution
different horn zero of the di&rentiaI equation (30) of
the form (39) may mist, it is necessmy and sufficient
that the determinant of the coticients of A and B in
(46) vanish. The result of equat@ we deterroi.mmt
to zero is, after some reduction,

2t8+(P+d) Cos/3bCoshd=
(a’;P&)

ain~bsinhab.

(47)

Multiplying this equation through by b+,the terms can
be arranged so that a and P occur onIy in the combina-
tions ab and pb. We then write (equations (4I))

ab = (~UV+ V)i
(48)

flb= (~– v)~,
where

(49)

end

U=+x[+$(K–DIG) +GPb’]. (50)

.

.-

.-
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GENEEAL EXPFfESSION FOR CRITICAL STRESS

By assigning a due to the_ratio c/b the quantity
V is determined. The corresponding value of U can
then be found by solving equation (47). The value
of the critioal stress

corresponding to this
from equation (60).

P=;
value of c/b can then be found
From (60) it follows that

Or

p=kEz& (51)

~ASmC CONSTANTSOF SPRUCE

The elastic constants to be used in the computa-
tion depend upon the orientation of the plaqos of
elastic symmetry of the wood in the plate. It wiIl
be assumed throughout the discussion that the grain
of the wood is paraIlel to the X-axis, the direction
in which the compressive loml is applied. Two cases
for the direction of the growth rings of the wood will
be considered, one in which the rings are perpendicu-
lar to the faces of the plate and another in which
they make an angle of 45° with the faces.

In the first case (fig. 21) Young’s moduli E., E’y, and

Y

o
z

FIOURB 21.—The oross
seotionof 8 IWMer-
sawn tlango

E; are equal to EL, EB, and E’T,
respedively, the subscripts L, R,
and T derioting the longitudinal,
radial, and tangenthd moduli, re-
spectively. The values for these
and other elastio oonstants for
spruoe were taken from a report of
the British Aeronautical Research
Committee. (Reference 1, p. 105.)
The values are:

E~= 1.95x 10° Um=o. 45

E~=O. E! XIOa - uLr=”O.539”

Er=O. 07x 10g VRV=O.559

#L~=O.104X 10° u== 0.03

PLT=O.072X 106 UTL=o.0194

~~v=(). 005X 10s cr,~=O. 301

In the second case, when the growth rings make an
angle of 45° with the faoes of the plate (fig. 22), the

dastic Gonstants E, . . . . . . . ● p., can bO @r-
eputed from those just given by the folIowing formulas:

l?.
=— (u.,+ u.,),‘v’ 2EL

(Referenoe 8, art. 111.) It is
then found that

E.= O.CJ1875X106
u,.= 0.00475
lT=~= 0.494
~=V=O.0851X 105.

lUouE.CZ.-me ma section
of* wad _ the growth
rfngs of which mnko8nmgIe
Orwwlththokru

CRITICAL STRESS FOR A FLANGE W SPRUCE

Values of ii in equatiou (5I), the equation for criticnl
stress, which result from solving equation (47) for the
cases of growth rings perpendicular to the faces of tho
flange md at 45° tQ tho faces, are given in Tnbhx VI
and VII, respectively.

TABLE VI

THEORETICAL CONSTANTS FOR FLANGED COM-
PRESSION MEMBERS OF SPRUCE HAVING TEIE
GROWTH RINGS PERPENDICULAR TO THE FACES
OF THE FLANGE, CALCULATED BY THE EXACT
MATHEMATICAL METHOD

I ,. 1.

The * um critical stressfor growth rings perpen-
dicular to the faces of the flange occurs when the half
wave length is 3.25 times the outstanding width of the
flange.. This critical strew is equal to 0.228 EJi’/bz.
Ordimrily the length of the Lcolumn is such that”the
flange can not break up inti~segments the length of
which.is exactly 3.25 times the outstanding width.
Under such a condition the strese will be increased as
the values in the table indioate. Ckmsiderabloincreases
would “be found for coneiderable doparturcs from the
optimum value of the ratio GIL Such departures occur -”
only when the column is so short that its length is lCSS
than two or three times the optimum half wave length.
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TABLE v-n

THEORETICAL CONSTANTS FOR FLANGED CObi-
PRE+SSION ME.MBERS OF SPRUWE HAVING THE
GROWTH RINGS AT AN ANGLE OF 4iFWITH THE
FACES OF THE FLANGE, CALCULATED BY THE
EX.AOT MATHEMATICMJ 31ETHOD

I @ I u I k I

Consideration of Tables TT and VII shows that the
theoretical critkxd stress is considerably lees when the
growth rings make an angle of 45° with the facw
of the flange (@g. 22) than when they make an angIe
of 900 (iig. 21). The chief factor in determiningg the
vrwiation in the criticaI stress vcith variation in the
angle between rings and faces is the ratio -?&/&.
This ratio is nearly constant when the angle made by
the ringa tith the faces of the flange lies between 20°
and 70°, and hence the results for rings at an angle
of 45° may be taken to apply over this range. W’hen
the rings are parallel to the faces of the flange,
however, the minimum criticaI str- is found by an
approximate method given later in this report to be

0.164 Es h2/bz
for a flange with a perfectly bed edge. This critical
stress is intermediate between those for flv with

- the rings at angles of 45° and of 90° with the faces.
The theoretical critical stress for a flange with a

perfectly fixed e@e is not attained b practice because
the condition of perfeot fity at the base of the flange
is not realized. Later in this report it will be pointed
out more in detail that as the fity at the base of the
flange decreases the variation of the critioal stress with
inclination of growth rings becomes smaUer and
uMmately, as the fixity continuw to diminish, the
oritical stress for a flange with rings parallel to its
faces becomes less than that for a shikxr flange with
rings at 45°, which in turn is ahrays kss than that for
a similar flange with range at 90°.

DIFFERENTIAL EQUATION AND BOUNDARY COI’TLMTIONS FOB A
FLANGE OF ISOTROPIC MATERIAL

The preceding analysis is m -tension to fkmges
of nonisotropic material of the method that Timo-
shenko used in discuass flanges of isotropic material
(Reference 17, p. 350.] ‘Whm the material is isotropic
the differential equation (30) becomes

where
~s

C-12(1–F)” (53)

The boundary conditions are given by equations (32]
to (37) after u=,and u= have been replaced with m. The

diflerentkd equation and the boundary conditions are
then those used by Timoshenko. The critical load is
determhed by solving equation (47) where t and s
are given by (45) with u== c and where a and 13are
given by (48) with

V’n$ (54)

and
U=;V. (55)

CRITICAL STRESS FOB A FIAII-GE OF ISOTROPIC MATEEIAL

The valims of D corresponding to various v81ue9of
the ratio c/bas calculated by Timoshenko are given in
Table V311 for flanges of isotropic material. In the
third column of this table appear the values of k in
the formula

~=kE~, ‘

where p fi the critical stress. This formula is obtained
at once from equation (55) by noting that

I

l-d-=

P-; and c= ~S12(1–d)”

h the computations u was taken as 0.25.

TABLE VIII

THEORETICAL CONSTANTS FOR FLANGED COhi-
PRESSION MEMBERS OF ISOTROPIC MATERIAL
CALCULATED BY THE EXACT biATHEMATICA~
METHOD AND ‘NTTH POISSON’S RATIO TAKEN
AS 0.25.

LO
L1
L2
L3
L4
L5
L6
L63S
L7
L8

k:
22
%4

.- .-
-. ...=

.>-w

.

.-

,--—:-—

.-

..-.

h Table WCt the critical stress is least when the

half wave hmgth is equal to 1.635 times the width of

the outstanding flange. If a, the total length, is either

1sss than L635b or somewhat greater than this amount
the critical stress wiU be greater, as Table YE( shows.
As a increases toward twice the ideal half wave Iength
the critical stress begina to diminish, reaching the
same minimum due at a= 3.27b as at a= L635b.
When tho cohurm is long in comparison with @e
width of the outstanding flange (the length three or
more times the width) the flange wiH break up into
waves the haIf length of which is approximately
1.635b, and the critical stress will then differ but little _
from th8t for this ideal half wave Iength. .—
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APPROXIMATE METHOD

DISCUSSION

Approximate results were obtained by Timoshenko
with a method that “k based upon energy relationships
and that- is an important extension of a method used
by Bryan, (References 3,4, 5, 19,20, and 21.) The
deflection of the plate (fig. 18) is expressed as a sum of
tams of the form

the functions +1, 42, . . . . . being chosen b satisfy
the boundary conditions as nearly as possible and the
coefficients Al, AZ, . . . . . being arbitrary. This
expression for the deflection w. is then substituted in
the integral representing the energy of deformation of
the plate. The re@t is a function Qf the arbitrary
constants A], AZ, . . . . . . The energy is then
equated to the work done by the compressive load P
per unit length acting on the edges g= O and z= a.

The result is an equation that can be solved for P
in terms of the arbitrary constants Al, A2, . . . . . .
The ratios AJAI, AJA1, . . . . . are then chosen in

such a way as to make P a minimum. If the resuItiug
stress,

D

where h is the thickness of the plate, is less than the
stress for primary failure of the column. of which the
plate is a member, the plate will fail by buckling at the
cr{tica~s~~s p. For a f~ djscmsion of fie method,
with examples of its application to simple cases, see
Timoshenko’s paper. (Reference 19.)

The energy of deformation of the plate, under the
assumption that the stress components XZ, YZ, and
Z, are negligible, is given by

h

v=;J;J:J ?%.+ Yuauu+Xgz,) dz dy eke. (57)
-i

Substituting the values of the strain components given
in (18) and those of the s@ess components given in
(19) for nonisotropic matmial having three mutually
perpendicular planw of elastic symmetry, the result is

For isotropic material this becomes

(59)

The work done by a compressive load P per unit
length of edge, applied to the edges z= O and x=a
(fig. 18) is given by

(60)

In what follows, the integrations with rcqmct to z
in (58), (59), and (60) will be performed between the
Iimits O and c, where c is the half wave length of tho
deformed surface. In certain cases c will be equal h
a, while in others it will be a fractional part of a.

BASE OF FLANGE PERFECTLY FIXED

The assumed deflection (equation (5G)) will be
taken as

W= {Al(6b~z–4by’+y’) +AJ#– 10bfI?

+20&3P) } sin ~. (61)

The functions of y in the first and second terms of
(61) represent respectively the deflection of a crmti-
lever fixed at the end y= O under a uniform load and
under a load that is proportional to y. Tmoshenko
in treating the isotropic plate by this method choso
other functions. (Reference 21, p. 405.) It is not
apparent that either choice possesses any particular
advantages over the other.

FIange of nonisotropic material.

Entering (61) in (58) it follows that for nonisotmpic
material

v“ h3A12b9Er
48c’ (1– umrYz)[&l+d,z+d,z’] (62)

inwhich, letting
c’

p=~r
b (63)

do=2.311#+#

[
41.15/4 – fJs#~w)

ill= 1
-3.432uVg P+ 28.8~ps

d,= 16.788r4+ ~

&= 30.488r4+ r’

[
5597 J%(1 – fJwu&’J

1
E #

E= –50.16a,s P+ 377.2 ~~

md

&b,
‘-A*

-.

(66)



ELASTIC MUTABILITY OF MEMBERS HAVING SECTIONS COMMON IN AIRCIUJ?I? CONSTRUCTION 401

From (60] and (61) it follows that

~= Pr*—A,2&(co+ CIZ+ c2~1
4C

(66)

where
cO=2.311, Cl= 16.7SS, and CZ=30.48S. (67)

Equating T and V as given by (62) and (66) and salving
for p= P[h,

1 d)+c?,z+d,z’ h’
(~= 1%-f(l – 17=rr”=)pco+ Clz+ C*Z*P ‘Fm ’68)

The criticaI stress p will be a minimum if z is the
larger of the roots of

!3?=0.
dz

Equation (68) may be written

The calculation outlined assumes the ratio c/bto be
given and determines the critical str- for this ratio.
By calculating k for a series of ratios c/b the ideal haIf
wave length is found as that which makes the crithd
stress a minimum.

In Tables IX, X, and XI, the values of k for cer-
tain values of the ratio cjb m given for flmges of
spruce, the growth rings being respectively perpen-
dicular to the faces of the flange, inclined to them at
an angle of 45°, and parallel to than. The elssti
constants for spruce given eml:= in this appendix
were used in the calculations, For rings parallel to
the faces.,we note that

E==l. 95X106
Er=o. 07X 106
bv=O. 072x 10s
ra=o. 539
U,==o. 0194.

(Reference 1, p. 105.)

TABLE IX

THEORETICAL CONSTANTS FOR FLANGES OF
SPRUCE UNDER LONGITUDINAL CObfPRESSIONJ
THAT H’AVE THE GROWTH RINGS PERPENDICU-
LAR TO THE FACES OF THE FLANGE, CALCULATED
BY THE APPROXIbIATE METHOD

H---”
‘O k

Z.9 a !zzaaE8
La .mzM
S.4 .!2%19

TABLE X

THEORETICAL CONSTANTS FOR FLANGES OF
SPRUCE UNDER LONGITUDINAL COMPRESSION
THAT HkVE THE GROWTH RINGS AT AN ANGLi
OF 45°WITH THE FACES OF THE FLANGE CAIr
CULATED BY THE APPROXIMATE METHOD

c/b

H
k

6.1 : :lu
::

. llica
I

TABLE XI

THEORETICAL CONSTANTS FOR FLANGES OF
SPRUCE UNDER LONGITUDINAL COMPRESSION,
THAT HkVE THE GROWTH RINGS PARALLEL TO
THE FACES OF THE FLANGE, CALCULATED BY
THE APPROXIMATE METHOD

The results agree remarkably well with those given
in Tables VT and VII as the result of more e..act
malysis.

FIange of isotropic material.
After substituting the assumed deflection (61) in

the integral (59) for the energy of deformation of the
flange in the c= of isotropic materhd and equating
T and V as given by (59) and (60) it is found that

& +d,z + (&- 2
(

>E? (70)p= 12T’(:– d)p CO+CIZ+C2Z2 b=
where

~=;

and expressions for &, dl, d~ are found from (64) by
writing

E
Ez=Er=E, Uz,=trvz=u, and p.s,=p=~.

The quantities cO,cl, and C2have the valuw given by
(67).

If equation (7o) is written in the form

(71)

the value of the minimum k for a given value ‘of the
rdio clb can be calculated as with non.isotropic mate-
rial. A few values in the vicinity of the half wave
length for which the critical stress is a hum are
given in Table XII; Poisson’s ratio a was taken as
0.25.

.“-+

--

.. .

..—
—

-.
----

-.

-

.

.-

—



402 REPORT NATIONAL ADVISORY COMMITTEIl FOR AERONAUTICS
.-

TABLE XII

THEORETICAL CONSTANTS FOR FLANCH18 OF ISO-
TROPIC MATERIAL UNDER LONGITUDINAL COM-
PRESSION, CALCULATED EY THE APPROXIMATE
METHOD AND WITH POISSON’SRATIO TAKEN AS
0.25

Id-d
:{

L 164S4
L 11WK3
L 16407

The minimum values of k in Table 2CII differ from
those of Table VIII by a small fraction of 1 per cent.
The haIf wave lengths at which the minimum critical
stress occurs difler by about 1.5 per cent. Plotting
the curve connecting ctitical stress and half wave
length in the vicinity of the minimum critictd stress
will show that this difbrence has little significance.
For steel, with Poisson’s ratio taken as 0.3, a similar
calculation gives a minimum k of 1.1592 correspond-
ing h a value of c/b of 1.60.

BASE OF FLANGE IMPERFECTLY FIXED

Discussion,
The condition of perfect fixity assumed in the pre-

ceding sections of this report for the edge of the flange
y-O (fig. 18) is probably never realized. This is due
to two circumstances, which will be considered sep&
rately. Both result from the moment induced at the
edge y= O by the deformation of the outstanding flange
bounded by this edge. This moment causes twisting
of the whole cross section of the column and it aIao
causes elastic giving of the ma@rial along the junction
of the base of the flange and the body of the column.
Both of these phenomena, twisting of the section and
ehistic ghring at the base of the flange, are accompanied
by a ohange in the inclination of the flange at its base
from the value zero required by the condition of per-
feot fixity, The twisting phenomenon is easily ex-
pressed in terms of the torsional rigidity of the section.
The elastio giving appeara to involve factors that are
beat determined experimentally.

Effeot of twisting of column.

We proceed to calculate the effectmf the twisting of

the column induced by the moments acting rdong the

edge ~= O. (See Timoshenko. Refercmce 21, p. 400.)
Let # denote the angle of rotation of a cross section

the abscissa of which is x, If elastic giving of the
materisl is neglected for the present,

4‘(g),.,” (72)

The torsional ccuple in any section is then

)~=aKg=cK(& ,.0

where Q is the modulus of rigidity of the material and
Kis the torsion constant of the section. (Reference 22,

p. 11, iihd 1929 annual report,” p. ~.)’” The couple ‘--
applied per unit length is then

~g= qg$.$.),.oo?n=—

In applying the approximate method, the strain

en@gy=Fesulting from the twisting of tho column (iu _

whole or in segments) should be added to tho strain

energy of deformation of the corresponding portion of

the outstanding flange. The strain energy pm half

wave length c, resulting from twisting, is

“ v~=PwY~”Hxa%)J=
H“

(73)

To apply the approximate method let , .J., —,

‘=P@+A’(’-cOsm’k?” ’74)

If Al = O the edge y= O is simply supported. If A = O

the @e y=O is fked. Hence, by allowing AJA to
vary from zero h infinity, au conditions on the edge
y= O intermediate between those for an edge simply
supported and those for one perfectly fixed can be
satisfied by a deflection in the form given by (74).

It follows from (73) and (74) that

where

v,=#+ (75)

(76)

In calculating VI for a cohmm of spruce the modulus

of rigidity ~ may be taken as the mean modulus that

would be given by a torsion test on a cylinder of circular “

section. This value may be convenktly taken as

Young’s modulus in the longitudinal direction divided

by 15.6. (Reference 22, pp. 21 and 24, and 1929

annual report, pp. 691 and 694.)

Flange of nonisotropio material,

For nonisotropic material, such as wood, with three

mutually perpendicular planes of elastic symmetry it

follom from (58) and (74) th~t
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LFrom (60) a, d (74)

T-g L~:+A,,b(;-:)+a,b* @-:+$)].
L

From ~
t T=v+ v,

using ‘f Al c’ P
I ~=zj p=~2zandp=—h (77)

it follows t~at

[
2

}[
1 do-f-d@+d2z

Y~= 12(1 – r=uuyz)p co+clz+c#
,; (78)

or 1

p =kE.; (78a)

where for convenience the following notation has been
used:

“-=’’(l-”’’””)+%% ‘7’)

4=;++F~$+::,. s

dl=l
4:8u,z12

()
ALJ1jazuaflz) $ fJ (80)

T#r –;p+
s .

<)
&.(1 – U=ruv.)p :E, pz“&=;–:+., ~–: p+- ~z

2 E=32

34
~-$ cl-i –:+$ and ~=~–;” (81)

Flange of isotropio materiaI.
For isotropic material equation (78) with appropri-

ate values of &, di, & cO,cl, and Q becomes that given
by Timoshenko, ti whom the choice of the form (74)
for the deflection w is due. (Reference 21, p. 401.)

The vahms of the coeilicients &, & aud & are

4do=~+ ~
1 2(1 u p+% .

&=l 4 8 ~ 1–: +P (1–u) l+? 1(821_=+_#_=
() r () T

4=;-+ +P(;–;)+A

where

e=12(:i–u#!&&3. (83)

The constants ~, c1, and G are unchanged.

The critical stress p ia given by
#

( )
1 do+d,z+ d,z’ #

~=12(1–d); Co+clz+tiz’ P
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(84)

(84a)

Application of formuIas.
‘Equations (78) aud (84) are of the sue form as (68] ‘-

and should be used in the same way. For a given e
and a series of values of the ratio c/b a series of critical
stnxses p are determined conxsponding to a suitable
value z. The ratio c/lJ associated with the minimum
criticaI stress (if there is a minimum) determines the
half wave length c that ia ideal for the vahe of e under
consideration.

For the study of a given cdumu it is more conven- .
kmt to proceed in another way. The first step is to
construct a table gi~ k in the fornda for the
criticaI streaa p as a function of the ilzity coeftkient e,

for each of a series of vahes of the ratio c/b of the half

wave length to the width of the outstanding flange. ,
Table XWt wes constructed in this way for fhngw of
spruce and TabIe IUV for flanges of isotropic material.

The rewiks in these tablea me also shown in the curves

of Figur= 23 and 24.
The use of these curves in studying a givem oolumn ___

is discussed in a later section of this appendix. In
interpret~m the ourvea, it must be borne in mind that
the fixity coefficient e depends upon the haIf wave
length c and the outstanding width b ss well as upon

-.

the thickness h and the torsion constant K.

TABLE XIII

THE COEFFICIENT k IllE UATION 7Sa)FOR A
1? $FLANGE OF SPRUCE HAVI G GRO’iVT RINGS AT

AN ANGLE OF 45°‘WITH THE FACES

I
1
1
1
1
5
5
5
6
5

Q
9
Q
9
9

15
15
15
M
15

~
‘Ik

1
alo am
.05
.m :%!.O1\ .=.&ll
.00
.10 .Ils
.05 .ma
.m g
.o?.
.W .U75
.10 J8J
.fm ,
.lm .MO
.01 ~ .UT4-m I -m

.10 .241

.05 .195

.W .K4

.m .099

.U1 .047

@
—

3
3
a
3
8

7
7
7
;

la
S9
19
E
Is

So
91
2)
m
m

—

●

a 10
.a5
.Oa
.O1
.00

.lo

.IH

.In

.01

.m

.10

.05

.03

.O1

.W

.10

.M

.m.01

.W

am
.147
.142
.m
. 1s2

.117

.I02

.091

.073

.059

.lfu

.140

.I.24

.079

.049

.375

;g

.046
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TABLE XIV

THE COEFFICIENT k IN EQUATION (84a)FOR A
FLANGE OF ISOTROPIC MATERIAlj THAT HAS
A POISSON’SRATIO OF 0,25

c/b e

— —

1 f151
1 .lo
1 .m

.............

......-......

a .m
8 .10
a .05

.01
: .“WJ

............-.

6 MJ
5

: ::
6 .04

-----.-------

10 .&l
.10

:8 .05
10 .00

k

L2%7
L27a
Lm

,.-—--
........

.618

:%

:%
,. . . . ..-

. 71m

.m

:%
.4a4

—-—

L040
.676
. 64a
.409

—
ejb

—
a
2
2
2
2

4
4
4
4
4.
4.

7
7
7
7

i

,.-..
----
,----
,---
—

e

.0.50
.10
.06
.O1
.03

.m

.10

.05

:;
,C3

.53

.10

:E
.01
.00

...----
-----.
-------
..-...,

k

o.em
.&m
.&n
.817
.e~

.bw

.m

.476

.467

.45a

.464

LOZ8
.649

%J

.41a

.-------
-------
....--..
.-------

Flange with a simply supported edge, the hniting ease

as the flxity coefficient approaches zero,
As the fix.itycoefficient eapproaches zero in equations

(78) and (84) it is found that the value of z correspond-
ing to a minimum value of p approaches zero. This
should be so for as e approaches zero the edge y= O
becomes more and more nearly simply supported.
The ratio of Al to A in (74) will then approach zero.
By equation (77) this implies that z approaches zero,
as just .notad,

Accordingly the limiting critical stress aq c ap-

proaches zero is found to be

[

7P
1

1 /.4, ~ w
f’= 12(k%,cr#=)* ‘~ (85)

by setting ~= Oand z= Oin (78) and (80). The values
of k given by this formula for a simply supported edge
agree well with those of Table XIII for the &city
coefficient E=O. h p becomes large p decreasas to the
limiting value,

(86)

Using the elastic constants for spruce having the
growth rings at an angle of 45° with the faces of the.
flange, (86) becomes

p= 0.044 E$ (87)

If the growth ringa are perpendicular to the faces of the
I?ange

. .

J//2

p = 0.053 E.K2, (88)

while if they are parallel

p = 0.037 E=;” (89)

kThus for a flange with a simply supper ed edge the

t

critical stress is leaswhen the growth r.in , are parallel
to the &ces of the flange than when t e rings are
inclined to them at an angle of 45°. For ~ flange with
a perfw~~y fied edge, on the contrary, the critical

\

stress was found to be less when the rings are inclined
to the jgces at w angle of 45° than wh n they are
paralIel”to them. The relative variation o the critical
stress tith inclination of the rings is hx.a for flanges
with sbply supported edges than for those with
perfectlj fixed edges. [

—

In practice, the fixity at the bases of tl e flanges is.

&

small. Consequently the variation of ho critical
stress ~th the inclination of the grofi ‘ s may be

expected to be similar to that for ffangcs “th simply
supported edges. /

Frondhis point on the discussion will b;e limited to
flanges with growth rings at an angle of’ 45° to the

dfaces. .The results maybe considered to e applicablo
to flanges with rings at any inclination e~~pt for the
extreme cases of rings nearly parallel to ‘the face9 or
nearly perpendicular to them. In the f!rst case the
calculated criticaI stress should be reduc~ somewhat,
while in the second it should be increasti somewhat. _
These formulas hold for long flanges. I?or short ones
the eff@ of the first term of (85) must .JMincluded.

For isotropic material the equations. ccmrcsponding
to (85) and (86) are

[

2
1

1+ 1 E~P= lz(l–d) p 2= (90)

and

(91)

With u= 0,25 equation (91) bemmcs
.—

P=o.4E: (92)
*

and with e= 0.3

p= o.38’5E& (93)

For short flanges the fit term in (9o) must be re-
tained.

The results expressed by equations (85) to (93) for
flanges with a simply supported edge at ~==O could
have been obtained directly through the approximate
method by assuming, for example, instaad of (74) that

W=Ay.

Thie was done for isotropic flanges by Timoshenko.
(Reference 21, p. 396.)

EfFect of elastic giving of material at the base of the
flange,

In obtaining the preceding results the lack of ilxity

of the edge y= O was ascribed to the ttiting of the
●
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column, eithm as a whole or in segments, in conse-
quence of the moments appIied at this edge by the
deformation of the flange. ActuaUy, however, the
materiaI at the base of the flange yielda ekstically
under the action of these momenfs so that the angle
of rotation of the section is less than (tho/@)Y= o,
the incIinati(m of the flange at its base. Accordingly
equation (72] ehould be replaced by

b
()4=7 % ,-0

where ~ is some proper fraction. The effect is to
reduce the strain energy VI (equation (73)) resulting
from the twisting of the cohunn. To the reduced VI
shouId be added the energy of deformation of the ma-
terial at the base of the flange. This portion of the
energy is relatiYely small. The resuIt is that VI, equa-
tion (73), which was added to V, equation (58), to eK-

press the whole energy of deformation of the flange

and column in so far as it arises from the load on the

flanges, should be reduced. This is equkdent to say-

ing that e as calculated by (79) from the torsional ri-

gidity of the section should be reduced.

For flanges of wood in which the grain is longitiudinaI,

such reduction in the fixity coe&ient is very great.

This is due to the extrendy smalI relative value of the

modulus of elasticity lZ in the direction paralIel to the

faces of the flange and perpendicular to ita length,

which rangea from X5 of the moduhs in the longitudinal

direction in quarter+awn flanges of spruce to ZOO of this
modulus in flanges in which the growth rings make au
angIe of 45° with the faces. The tests show that, for
calculated coe.flit.ientsof Exity of the order of magni-
tude of 2 and above, the critical stresscorrwponds to an
actual fixity of about 0.01. Corresponding reductio~
in the smaller mlculated fkity coefficients are ob-
served but the law that the reduction fo~ows has not
been determined.

The practical result of the reduction in fi.xitybeoause
of eh.stic giviug is that the ocndit.ion of a simply
supported edge at the base of the flange is oIoseIy
approximated when the calculated tit-y ooefEcient is
small. The material is unable to transmit the bending
moment from the base of the flange to the body of the
column, with the re.dt that the flange itself is incIined
nearIy = if it were merely hinged or simply supported
at its base and ocmsequentIy a condition in whioh
formula (87) is applicable is approached. This
situation will be discussed further in connection with
the study of two flanged columns with the aid of the
curves of Figure 23.

A shniIar but probably not so great a reduction
occurs in the calculated fixity coe.ftlcients of the

fkmges of structud steel cohmms in consequence of
the ehwtio giving of the material at the bases of the ---
flanges. PraoticaIly no data are avaiIable for use in
det~ the extent of this reduction.

Examples of the determination of the criticaI stresses,
neglecting the effect of elastic giving at the bases of
the flanges,

In the following paragraphs wiH be explained the
procedure to follow in applying the results of the
preceding mathematical analysis, using the fixity
ccefti.oient as calculated from the tcreiomd rigidity
of the section aud the dimensions of the flange and ._
neglecting the reduction in this coefficient that should
be made to Wow for the elsstio giving of the materiaI
at the base of the flange. The method can then be
appIied when the reduced coefficients are known by
substituting in each case for the Etity coefficient Ethe
reduced flxity coefficient e’.

The method will be first apphd ta a cohunn of
spruce similar to many of those used in the teats. The
dimensions are shown in F~ure 25. The growth

..-

rings in the single outstmxling flange wiII be assumed
to make an angle of 45° with the faces of the flume.
The fixity coeffi-cient is given by

(71——
E–15.6

it folIows that

KP•=7.58—~p.bh C
(94)

With the given dimensions

where a= C/b. ●=lof3f3; .

It is important to obswe that
the coeflkient e depends upon
the half wave kmgth c. This co-
fioient was computed for a series
of possible half wave lengths, the
Iength of the column being 40
inch% and the quantity k,to which
the corresponding critimdstress is

mm-n .w--rhe m
Sedfcmofawoadtmt
Khmn with a angle
th@ cuktmdhg flmge
thegrewth ringsof
whfchmeke en angle
of 49 with the fame

proportional, was then taken by extrapolation from the
curves of Figure 23. The results are shown in Table
XV. The n-ubers in the last column of the table are
reaIIy estimated, since the values of ~concerned are far
beyond the limits plotted on the curves of Figure 23.
Through inspection of this column and the curves in ~
Figure 23, however, it becomes clear that the ffange will ._
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break into five half wave lengths, the critical stress be-
ing 0.12 E,ha/b2,corresponding to the value 5.33 of the
ratio c/b. These values agree well with those calcu-
lated for e= a. Indeed it is apparent from the be-
havior of the portions of the curvee shown that the
ordinates rapidly approach their limiting values as .s
increases.

The approximate method used in calculating the
curves of Figure 23 gives values of k that are slightly

too large for the higher valuea of e High values of e,

however, do not occur in cases of practical interest, as

will shortly be seen. The approximate method may

therefore be considered entirely satisfactory.

TABLE XV

VARIATION OF CRITICAL STRESS WITH NUMBER
OF HALF WAVE LENGTHS FOR THE M-INCH C(lL-
UMN OF FIGURE 25

I I ,

Nby~ar&f

langth$
c a=cJb a (astl~atad)

Table XV was calculahd on the assumption.that the
effects of the elastic giving of the material at the base
of the flange cadd be neglected. This table indi-
cated a minimum critical stress of 0.12 E&s/b2, corre-
sponding to the value 5,33 of the ratio c/b. Actual
teate, however, show that the flange wrinkles at a
stress of 0.07 EJ#/b’. (Part I, equation (5), p. 9.)

This reduction in the critical stress shouId be attrib-

uted to the elastic giving of the material at the base

of the flange. The curves show that. this minimum

critical stress shouId be attributed to a &xity coeffi-

cient in the vicinity of 0.01 and a ratio of e/bof about 7.
This example is very informing, since it indicates a
reduction in the fixity coefficient from a number of
the order of 20.0 ta one of the order of 0.01.

In the example just considered there was o~y one

outstanding flange. If there are iV flanges, the &ity
coefficient as calculated should be divided by N.

Consider now the section of column T-25, Figure 5.
The hmgth of the column is taken as 120 inches
The growth rings of the wood wiII be assumed to
make an angle of 45° with the faces of the flanges.
In accordance with equation (79)

7.58 Kb2. . 1
‘“7 W2=2.7362 (95)

where a= c/b. Proceeding as before Table XVI was
constructed with the aid of the curves of Figure 23.

COMMI’FFEE FOR Aeronautics

TABLE XVI ‘.

VARIATION OF CRITICAL STRESS WITH NUMBER OF
HALF WAVE LENGTHS FOR COLUMN T-25 OF
FIGURE 5

I&w
17.14
2am
2403
20.m

$H!
no.m

487
li 84
6%
?. 47
Q84

L246
18.a
87.37

asw
.mel
gt$
,cm-!.01’
.mla
.em

, ,
! Ew41m3ted.

am
.119
.Io7
.10s
.la
.102
. loi

I.lm

.—

,—

. The values of k in Table IW1 indicatk that at a
criticrd stress of 0.102 E&’/b* each ffango will break
into thee half wave lengths corrwpondlng to a fixity
coefllcient of 0.0176. The teeta showed that each
flange broke into a single half wave lcn@~ arid the
column twisted at a critical strws of abouh 0,044
E=h2/b’jthe critical stress for a simply supported edge.
This means that the calculated iixity coeflicicut has
been reduced nearly to zero by the elastic giving of the
rnatial at the bases of the flanges.

FaiIure through twisting or wrinkling.

When, as in the example just given, the least critical
stressis associated with a haIf wave hmgth equal to the
le~th of the column, the ccdumn fails by twisting
about its axis. At the base of each flange, M a result
of the beginning of faihue, a torque that is in the same
sense for the entire length of the column is applied to
the cohunn as a whole. If a flange breaks into mvend
half wave lengths, however, tho torques at its base are
in opposite senses in adjoining ha~f wave lengths and
consequently oppose one another.

Practical rules for determining the m“tical stress, al-
lowance being made for elastic giving of the material
at tie bases of the flanges.
In i cruciform section having equal arms and no

fillets it appears from equation (95) that-a change in
the dimensions, b, the outstanding width, and h, the
thichess of the flange, will not greatly alter the cal-

culated fixity coeflkient e, since K, the torsion constant
is nearly proportional to b’ and to ha. (Part I, p. 7,)

Much the same situation exists in other sections,
such as L, U, Z, and T, made up of component rect-
angle+ all parts being of equal thickness and having
no fiUets. It appeara from the data at our disposal
that the flanges of such sections may be treated as
having their bases simply supported. The critical
stress for long columns of spruce of such sections may

then be taken as 0.044 E. lL*/bz,provided that this

stress iE leas than the one tht would cause primary



7+EMS C INSTABILITY OF MEMBERS EATT??G SECTIONS COWLON IN AIRCRAFT CONSTRUCTION 409

faihre. If fiuets are added to any of these seotions
or if the thic$ness of the back of a channeI is increased,
for example,] the critical stress will increase. The
exact EIfhounbof this increase can not be stated, since
the law by $rhich the cakdated &ity coticient is
reduced through the giving of the material at the

.bases of the flargee is not known. Tests indicate,
however, th~t the criticaI stress is increased approxi-
mately in the ratio of the t.oraiond rigidity of the
changed section to that of the original section. This
relation may be taken to hold for spruce until the Iimi&
~g cri~ ~t.~ 0.07 ~Jt/& iS at~~ed.” From M
point as the trnsional rigidi~ increases the critiid stress
remains unchiged.

As the critical stres incre- with increasing co-
e ficient of Rxity at the base of the flange, the type of
faikre changes from one through twisting to one
through wrinkling. The distinction between these
externally clifferent typea of failure does not appear to
be important, since the one goes omx gradually to the
other.

For ffang& on short cohmms the critical stresses
wilI be higher than those for the long cohmns just
considered.

As previousl.v stated, the foregoing discussion applies
to flanges of spwce in which the growth rings make au
tingle of 45° with the faces of the flange. FIanges of
steel or other kotipic materiel can be treated in a
similar way through the use of Table ~ and the
curves of F~e 24. SufEcient experimental data for
steel columns, to enable the authors to estimate the
effect of the reduction in the calcxdatd coefEcient of
tixity, have not been found in the literature.

CONCLUS1ONS

I. Under a compressive loadj the critical stress for a
moderately long flange of spruce, perfectIy &d aIong
its base and of thickness h and width 6, is given by

p = 0.228 E,~P

when the growth rings are perpendicular to the faces
of the flange (fig. 21], by

p=o.117 E=;

when the rings make an angle of 45° with the faces
(fig. 22), and by

p= O.164 E$

when the rings are para~el to the faces. Ii these
forrmdas E= is Young’s modulus in the direction of the

wsoo-mq

grain of the wood, which is taken as the direction of the .—
length of the flange.

For a flange of steel the base of which is perfectly
tixed the critical stress is given by

p=l.16 Z#

when Poisson’s ratio is taken as 0.3.
2. If the base of the flange is simply supported the

corresponding .criticaI stresses are

p=o.053 E.:

and

p= O.044 E,;
i

and

p =0.037 Ez~,“ f?
for a flange of spruce and

p =0.385 E; . .1

for a flange of steel. Such a condition at th~ base of
the flanges is found, for example, in the case of cohmma
of L, U, Z, T, and + sections without Nets and
having parts of the same thickness ..——

3. The condition of perfect fity is not realized in
practice because of the elastic giving of the materiaI
at the base of the flange. Tesda indicata that the
upper limit of the criticaI stress for moderately long
flanges of spruce is given by

p= O.07E$ .

This is an average vaIue from tests of specimens in
which the growth rings were at vmious inclinations
to the faces of the ffanges. For strictly quarter-sawn
flanges the critical stress wouId be ●somewhat higher
and for plain-sawn ones somewhat lower. The re-
duction from the vahms given for flanges w-ith per-
fectIy Exed edges shouId be attributed to the eIastic
gitig of the material at the bases of the flmges.

Because of the samo elastic gitig the fity of
flanges with partially fixed bases is greatIy red~ced.
For such ffanges the cMtical shwss ranges from

p= 0.044E$

to the upper hmit

p=o.07E,~.

Both biting stresses can be increased somewhat for
striotly quarter-sawn flanges and should be reduced
somewhat for phin-sawn ones.

——

.—
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Tests on steel flanges were not made. As a result
of the elastic giving of the materiaI at the base of the
flange, however, it is probable that the upper limit of
the critical stress will be found to be considerably less
than that calculated for a flange with a perfectly
fixed edge.

4. The critical stresses for short flangm are greater
than those given by the prece@g formulas.

5. The critical stresses obtained through use of
these formulas will be of interest only if they are less

than those that would cause a primary: failure of the
column under consideration.

;.
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