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FLOW PAST OSCILLATING AIRFOILS INCLUDING
NONLINEAR THICKNESS EFFECTS 1

By MILTON D. VAN DYKE
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Tnontiy 08c&’at@ twodi~”d airfoiii in 8uper80nti
$OW, For 81?ow08cihi%n8 of an arbitrary profi, the Teew?.ti8

found m a 8erie8 inclwding tb third power ofjrequency. For
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wedge.

Nonbear th?kk?ux% @eC/x are found generdty to redua th
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This 8trai%gem elimhates all consideration of shock wamx
from the analysti, yet yielok the corned 8oluti0n for protiknu

tha$ adually contain 8hock waves.

INTRODUCI’ION

b linearized supersonic-flow theory is increasingly ap-
plied to preblems of unsteady motion of lifting wings, the
results are sometimes advanced with the warning that they
may be significantly affected by nonlinem efleots of thiclmess.
Such caution is justified bemuse it is lmown that even for
steady flow linearized theory is often inadequate for predic&
ing the pitching moment-and prediction of momenti is one
of the main objectives of unsteady-flow theory. It may be
anticipated that nonlinear effects will beeome increasingly
important as the Mach number falla toward unity, pmticu-
hmly for slow oscillations.

In the present work the effects of thiclmess are determined
for a harmonically oscillating two-dimensional airfoil by
calculating the secondarder selution. This is the counter-
part for unsteady motion of the well-known steady-flow
result of Busemann (ref. 1). First, for slow oscillations a
solution is found for an airfoil of arbitrwy proille. The
result is given as a series that includes terms up to the third
power of the frequency. Second, for arbitrarily high fre-
quencies it is shown that a solution can be found for any
specitic airfoil, and the solution is carried out explicitly for a

singje wedge. IGmdly, comparison is made with a previous
solution for the wedge that is exact with respect to thiclmes9
(refs. 2 and 3), in order to assess the tiects of nonlinear
terms of higher than second order.

Extensive use is made of a smoothing technique, which
replaces the actual problem by one having no kinked stream-
lines. This stratagem, which has been used previously and
may prove useful in future problems, eliminates all considera-
tion of shock waves from the analysis. It, nevertheless,
leads to the correct second+rder solution for the actual
problem, which does involve shock -waves.

METHOD OF ANALYSIS

STATEMENT OF PROBLEM

Consider a sharp-nosed airfoil flying through still air at a
&Morm supersonic velocity and executing small harmonic
oscillations. We shall be concerned with calculating the
instanhneous pressure at the surface and, hence, the un-
steady lift and pitching moment. If Oseilla-tionsin the
flight direction are neglected, a rigid airfoil possesses two
degrew of freedom. The oscillation can therefore be re-
garded as compounded of a rotation (pitching) and a vertical
-lation (plunging), which are not generally in phase.

Although the iteration procedure to be employed yields a
formal result for any Mach number greater than unity= the
solution probably breab down when the flow becomes sonic
at any point. Since this occurs at a Mach number somewhat
higher than that for bow-wave detachment, the upper and
lower surfaces of the airfoil operate independently in the
probable range of validity of the selution. It is. therefore
sufficient to consider only the half field of flow lying above
the airfoil, and this viewpoint will be adopted henceforth.

It is convenient to seek a solution to second order in the
airfoil thiclmw, but to only tit order in the amplitude of
oscillation. This is sficient because second+rder terms
in the oscillation, although affecting local pressures, have
no effect upon lift or moment since they are equal on the
upper and lower surfaces. Then the pitching and plunging
components of the osculation can be txeated separately, and
the results superimposed. Furthermore, it is enough to
consider only pitching about an arbitrary pivot, because the
plunging case can be recovered by letting the pivot recede to
infinity and the pitching amplitude tend to zero, their
product remaining finite. Thus, from the point of view of an
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observer moving with the mean speed of the airfoil (or testing
it in a wind tunnel) the airfoil is exposed to a uniform super-
sonic stream and oscillating slightly about a iixed pivot
(fig. 1).
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FIGUREI.—Coordinate system for oscillating airfoil.

Choose the origin of coordinates at the mean position of
the leading edge, with the x axis extending in the direction
of the he stream. Then it is convenhn$ to describe the
upper surface of the airfoil in its mean (zero angle of pitch)
position by

y= Y(z) =#(z) (1)

All symbols are defined in Appendix A. Bkre e is a small
parameter representative of the airfoil thiclmes, so that the
function f is of order unity. Now let the airfoil pivot about
a point on the z axis lying a distance b downstream from the
leading edge, and perform harmonic oscillations of fiequericy
u and amplitude 00,so that the angle of pitch,* which is the
angle behveen the instantaneous position of the airfoil and
its original mean position (fig. 1) is given by

8=00 cos d=o&t (2)

(Here, as in all that follows, it is implied that actual physical
quantities me given by the real parts of their complex repre-
sentations.) Then, at any instant the moving upper surface
of the airfoil is described by

y=#(z) –e&’”’(z–b) (3)

with an error of order (Al,d?), which is of third order and,
consequently, negligible in the present secondarder analysis.

PRRTUEBATION EQUATTON

The entropy chang~ due to shock waves are of third order
in the airfoil tibiclmesaand mgle of pitch. Hence, to second
order the flow is irrotational and isentropic. Because it is
irrotational, there exists a potential function Q whose
gradient yields the velocity vector:

(4)

Bernoulli’s equation for plane unsteady flow can be written
{horn eqs. (14.04) and (9.06) of ref. 4)

stream, where the flow veloci~ is U. Ditlerentiating this
expression with respect to time t, and using the fact that
~a’/(~–l)]=a’dp/p (ref. 4, eqs. (9.03) and (9.06)) gives

L?gi+uut+vvg+: pt=o (6)

This, together with the corresponding results obtained by
differentiating with~respect to z and y, can be used to elimi-
nate derivatives of the density from the continuity equation
(ref. 4, eq. (7.08.2)) ~

Pf+ W.+ (@L=o (7)

The result is that the velocity potential sabfiea the equation

(a2–Q=~&+ (al–~~Qw–2Q@m–2Q&=, –2Q#,l–

$2”=0 (8rL)
where, from equations (4) and (6),

Now introduce a perturbation potential @, normdizo(l
through diviAon by the free-stream velocity U, by setting

so that the velocity components are given by

(9b)

Then substituting into equations (8) gives

[(
(1–w) @.+@.–2 y %-g %=M (’Y-1) %+3+

; (%%+%%)
1

(lo)

For purposes of a second-order solution (and to higher order
a yotential does not exist), the triple products on the right-
hand side can be disregarded. Thus, the perturbation equa-
tion becomes finally

%)+2@@.+2@@a+;(%%+%%)
1

(11)

where &=W—l.

PR=URE RELATION

Dividing the Bernoulli equation (eq. (6)) by a’/(?’-l) gives

(12)
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The flow is isentropic to second order, so that

and it follows that the pressure coefficient at any point is
given by

(13)

Substituting the velocity components of equation (9b),,
espanding in series, and retaining only squares and products
of perturbation quantitie9 give9 iinally

c,=–
()

2@.-2 $+&@.a-c3e2+2M% ;+M9 ; ‘ (14)

Here the secondarder solution is required only for evaluating
tho first two terms; the others are given correct to second
order by linear theory.

SMOOTHING OF PROBLEM

From the leading edge and fmm any subsequent corner
of the airfoil spring shock waves or Prandtl-Meyer expansion
fans that oscillate as the airfoil oscillates. These introduce
smious complications into the second+rder analysis. How-
ever, the complications can all be circumvented by solving
a “smoothed” problem in place of the actual problem. The
solution can thereupon be applied to the actual problem,
for which it yields the correct result everywhere except near
the shock waves and Prandti-Meyer fans.

The nature of the difficulties can be understood by con-
sidering first the special problem of steady flow past a single
wedge (fig. 2).

u

FIGURE 2.-Skady flow pasta wedge.

The presence of the bow shock wave means that the analysis
must be und&rably complicated by rncluding the Rankine-
Hugoniot relations (in a simplified form). A second com-
plication arises in the differential equation which, for steady
flow, becomes

%,-P’%=M7(’Y+W%+ (T–-l)%%+x,%] (15)

In the iteration procedure to be employed, the nonlinear

right-hand side is evaluated in terms of the &t-order
solution, and the resulting nonhomogeneous wave equation
solved for the second+rder potential. However, for the
wedge the right-hand side vanishes (to any order), which
would imply incorrectly that the second+rder solution does
not involve the adiabatic exponent y. More precisely, the
righ~hand side vanishes everywhere except along the Mach
lines springing from the apex, where it has the singular
behatior of the Dirac delta function, and only by taking
account of these troublesome singularities could the correct
solution be found.

Both these complications are avoided by the simple device
of solving the problem of flow past a smooth cusp-nosed
airfoil of arbitrary shape and then applying the final solu-
tion to the -wedge. It maybe imagined that the wedge has
been smoothed by adding a cusped extension to its nose, as
indicated in figure 3. It is clear that tb.k artiiice removes

I?murm 3.-Steady flow pasta smoothed wedge.

the troublesome singularities from the right-hand side of the
differential equation. Likewise, it eliminates the need for
the shock-wave relations because, as indicated in figure 3,
with SufEcientsmoothing, shockwaves will form only at such
great distance that their dfects cannot reach the airfoil
surface. Although shock waves are thus apparently ex-
cluded, the correct secondader result for the wedge is
nevertheless recovered from the solution by imagg the
extension to shrink in size and disappear. The reason is
that to second order a shock wave is equivalent to the limit
of a rapid continuous isentropic compression. This limiting
procedure, which is equivalent simply to applying the solu-
tion for an arbitrary smooth shape to one that is not smooth,
yields the proper result except in the vicinity of the shock
wave (see ref. 5). For an airfoil of general shape, similar

.broad smoothing must be imagined at any concave corner;
whereas at convex corners (since no shock waves form)
the slightest rounding is enough. This smoothing technique
was applied in reference 4 (p. 399) to steady “first-order
flow past bodies of revolution, and in reference 5 to steady
second~rder plane flow.

We turn now to the question of generating this smoothing
scheme to an oscillating airfoil. Modification is necessary
only at the leading edge. Consider fit the special case of
rotation about the leading edge. Then it is enough to con-
ceive of an exttilon which is flexible, so that its cusped tip
can be maintained tied and directed always into the free
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stream while the airfoil oscillates, as indicated in figure
4. (The exact motion of the flexible tip is immaterial,
provided the surface is sufhciently smooth and ib slope re-
mains small.) After the solution has been found, the flexible
extension is again imagined to shrink away, and the correct
remdt is recovered for the actual airfoil oscillating about its
nose.

i
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Fmmm 4.-Smoothing for 8iIfOfl Oscwathg 8bOUt leading edge.

I?inallyj consider rotation about an arbitrmy po@t. The
flexible extension must now oscillate in such a way that its
tip is always directed into the relative wind. Hence, as
indicated in figure 5, the tip must lie pdel with the frm
stream at the top (and bottom) of eaoh stroke but incline
in the direction of motion for intermediate positions.’
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~cwnm S.+moothing for airfofi oscihtig about arbitrary point.

We rireaccordingly led to consider the motion of an arbi-
trary flaxible oscillating surface described by

‘y=.#(z) –e&f”’g(z) (16a)

where for the smoothed problem the functions ~(z) and g(z)
have continuous first derivatives. The smoothed problem
will ultimately be replaced by the actwll problem. Accord-
ing h comparison with equation (3), this means that the
function g(z) will eventually be identified with (z–b). The
requirement that the leading edge of the smoothed shape be
always parallel to the relative wind maybe written as ~

y(o)=o

1g’(o) =id/u
(16Z))

as ]s clear from equation (19) of the next section. (These
last conditions, as well as the requirement that ~(z) be
continuous, must be relaxed in recovering the solution of the
actual problem.)

BOUNDAEY CO$JDITIONS

The boundary condition at the surface of the airfoil is that
the normal component of veloci@ is zero. For any surface

described by S(z,y,t) =0 moving through a velocity field ~,
this condition means that the substantial derivative of S

(i. e., its time rate of change for an observer moving with tho
fluid) vanishes at the surface (seeref. 6), so that

S,+?grad S’=0 at J$=O (17)

With velocity components. given in terms of @ by equation
(9b), and for the smoothed surface described by equation
(16a), this tangency condition becomes

0.= (l+@=) (#’-e&f”’ <)- e “:~ # g at V=gf-he’”’ g (18)

where ~=j(z), etc. It is convenient to refer this condition
to the axis y=O by expanding in Taylor series. Keeping only
terms of second order gives

.
@,=(l+@=) (#–e@’”’ g’)+ O&t”’g– (.&e@~”’ g)@,ti at y=o

(19)

@ere % and On on the right-hand side can be evaluatad
from linearized theory.)

The upstream boundary condition requires that in the
actual problem, the I&kin-Hugoniot relations (or at least u
simplified.seconddrder form thereof) be satisfied across an
osciUiatiug bow shock wave whose position must be deter-
mined. However, shock waves have been eliminated from
the smoothed problem, so that it is only necessary to require
that the perturbation potential @ vanish along the oscillating
characteristic line (Mach line) springing from the leading
edge. This insures that all disturbances produced by the.
airfoil are swept downstream. & equivalent and still simpler
requirement is that @ and its streamwise derivative vanish
on, say, tie plane z= O:

@=@==O at x=O (20)

TRANSFORMATION OF PERTURBATION EQUATION

It is convenient to sepmate the timedopendent part of tho
problem horn the mean steady flow at zero angle of attack
(for which the second+rder solution is lmown). l?urther-
more, for harmonic oscillations the number of independent
variables is then reduced to two by separating an exponontird
time factor. Finally, the linear portion of the time-de-
pendent equation is reduced to normal form by n transform
tion of dependent variable. The9e three transformations
amount to setting

o(z, y, t)=.+(zj y) +e@i(”’-~w(z, y) (21fL)
where

(21b)

Here # corresponds to the mean steady flow, and the term in
w represents the additional flow associated with the oscilla-
tion through small angle of attack.

Introducing this transformation into the perturbation
equation (eq. (11)) gives for the potential d of the mean
steady flOW

%-B%z=JW(Y MM+ (##+@.?.] (22)
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where A is the Laplacian operation ZF/b&+ &/b&, and for the
timedependent part v

[
4@Q.]-iK.W (wl)(%+&.A$+

1?[2+(’Y-1).ZkPl &v (23)

The tangency condition of equation (19) likewise separate9
into the two conditions

For the actual problem the second of thwe becomes, identi-
fying g(z) with (z–b),

*V= p e{-(z—b)+@=-iKll)j’—‘&(l+I#=) ‘iK =@

6WJ+e{m I&@-b) qt Y=O (26)

I’or pressures at the surface of the airfoil, the relation of
equation (14) can be expressed in terms of values at y=O by
Taylor series expansion, with the result that to second order
in thickness and fit order in angle of attack

where all terms are to be evaluated at y=O.

SOLUTION BY ITERATION

Although the equation for @ is nonlinear, that for w is
linear, but with nonconsts.nt coefficients depending upon @
This corresponds to the physical concept that because of the
restriction to linear terms in angle of pitch the oscillatory
part of the flow is an acoustic field with, however, the speed
of sound varying from point to point in accordmce with the
mean steady flow.

The well-lmown linearized or firw%rder theory rm.ihs from
disregarding the right-hand sides of equations (22) and (23).
Thus, with the fit-order potentials denoted by. the lower
case letters P and #, the perturbation equations become

(W—-P+%=O (28)

()*uU-&+8s–g ‘*=O (29)

The second-order solution is obtained by iterating upon
the &s&order results. Using the linear equations tQsimplify
the right-hand sides gives for the second-order iteration
equations
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4%,—19+#Jr2=2w/3w— u %2+P.qs (30)
and

(Here, following the usual subscript notation for derivatives,
[P,% mm @:/% e~-) me semnd-ordm solution for
0, which leads to Busemann’s well-known result at the air-
foil surface (ref. 1), was given in reference 5. It is there-
fore necemary to consider only the second~rder problem for
V. Details of the intemtion procedure and discussion of
its limitations siregiven for the steady flow in reference 5 and
apply also to the present problem.

PARTIAL PARTICULAR INTEGRAL

The solution of the differential equation for plane or
axially symmetric steady flow in reference 5 was simplified
by discovery of a particukmintegral of the iteration equation
in terms of the first-order solution. It was also shown there
that for steady three-fl.imensionalflow a particular integral
can be found to account for all terms in the iteration
equation except those involving the adiadatic exponent -y
in the form’of N. Likewise, here, a partial particular integral
that accounts for all terms on the righhhand side of equation
(31) except those invol~ N is given by

w*=iw(p#)=-i.@ (33)

The complete solution is this partial particular integral plus
a solution of the reduced equation whose right-hand side
contains only the terms still unaccounted for:

FIRST-ORD~ SOLUTION

The fiM-ordw solution for q is lmown from Ackeret’s
theory to be

P=–;j(z–py) (35)

It is to be understood here and in all similar expressions to
follow that this is the potential only for z >Py, and that q
vanish= identically ahead of the bow Mach wave (where
x<~y).

The tit-ordw equation for # (eq. (29)) is most rendily
solved by applying the Laplace transformation with respect
to z. We denote the Laplace transform of a function either
by a bar, or by the symbol <, whichever is more convenient
(and the inveme transform by ~’), so that, for example

ii(s)
1S

.

X{w(z)} = , ‘-%(z)h (36)
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Applying this transformation to equation (29), using the fact
that ~ and #=vanish at z=O, gives

.

F.–F’ (82+$)%0 (37

The solution of this equation that represents waves moving
downstream is

The coefficient C g) is detmnined b the first-order form of
L Lthe tangency con “tion (eq. (25)), w “ch transforms to

7.:–=(8) at y=O (39a)
where

w(z)=ei=[<(z)+h & g(~)l (39b)

is the downwaih velocity at y=O. Conseqwmtly,

(40)

The inveme transformation is readily carried out using the
standard tabl= (e. g., ref. 7) together with the convolution
theorem, which gives as the solution of the smoothed problem

The solution for the actual problem is now obtained by setting
g(z) =z—b, which giVIM filltiy 3

(42)

in agreement with the known result of linearized theory (see,
e. g., ref. 8).

SECOND-ORDER SOLUTION FOR LOW FREQUENCIES

Because the fi&order solution for arbitrary frequencies is
rather complicated, use is sometimes found for an expansion
in powem of frequenq, which involves only elementary
functions. The corresponding second-ordar solution will
now be carried out in detail, including linear terms in k-
quency. This result will serve, for example, ti evaluai%the
effects of thicknes upon onedegree+f-freedom torsional
instability, which is primarily a Iow-fiequancy effect.
Thereafter, the redt of extending the solution to imdude
third powers of frequency will simply be stated.

POTENTIAL INCLUDING LINEAR TERMS IN FREQUENCY

Expanding the fb%rdsr solution of equation (41) in
powem of the fkequency parameter K and retaining ordy hmar
terms gives

#(z,y)=;f lo(f) @+o(#)=#(z)+ . . . (43)

where z=z-13y. To this order the partial particular integral
of equation (33) is a solution of the homogeneous equation

$Thecan@l@!~afmum&mme@zmry fn tbfa flint-ordermubko.

(eq. (29)), and can therefore be disregarded. Substituting
the firstirder solutions into the righhhand side of equa~
tion (34) and applying the Laplacb transformation gives, to
order K, . . .

?k7.c{f’(z)#(z) }] (44)

It is readily found that a pm%cular integral of this equation
is given by an appropriate multiple of ye-~. Then, adding
a complementary function representing clowngoing vmves
gives

il?=C(s)e-@+$ye- ~(M’–$) t{f’y} –i&C{y+}] (46)

where the coefficient C(s) is to be evahmted from the tan-
gency condition. hwrting the Laplace tnmsfornmtion
shows that for the actual problem, in which g(x) =x–b, the
solution has the form

where j=j(z). The arbitmuy function F(z) is determined
horn the tangency condition of equation (26) to be

w–l
)[

F(z)=fiz( ~ z–g, b +C “N;?- lf+

(~-b)f’ +2K6] . {p–w-v~]J-:f (94+

pv-1)-~] Zf + Z(z–b)j’+

[++1-l)]bf} (46b)

SURFACE PRBSSURE COEFFICIENT

The pressure coefficient at the upper surface of the nctwd
airfoil is found fim equation (27) to be

1}
(MN–2) by +o(k?,#e,&) (47)

wheref=f (x). Here Cm is the value for the mean steady
flow (at zero angle of pit@, which is given by Busemmn’s
Jecond-order theory. A more useful form of the result is
>btained by exhacting the real part and expressing the
wndt in terms of the instantmeous angle of pitch o(t) and
.ts time rate of change d(t). Furthermore, the pammeter e
NMserved its purpose of distinguishing terms of diffenmt
]rders ad can be eliminated (according to eq. (1)). Thus,
m the upper surface of an arbitrary airfoil that is described
it zero angle of pitch by y= ~(x), is pivotid about a point a
iietance b downstream of its leading edge, and performs
Jow angular oscillations described by o(t), tlm prcasure
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coefficient is, to second order in thickness and first order in
angle of pitch,

.2
[

2fw(iV-1) =+(2–W L$?N-1) *y,+
P’

(48a)

Here the value for the mean steady flow is (ref. 1)

c,o=;Y’+~;– 2Y“ (48b)

(A preliminary report of this result was given in ref. 9.) k
this form, the result is not restricted to sinusoidal motion
but applies to any oscillation that is suiliciently smooth and
slow that the pressures depend signitkmtly only upon the
instantaneous angle of pitch and angular velocity.

The pressure on the lower surface of the airfoil is obtained
from these equations by reversing the sign of O,and taking
Y(z) to be the ordinate of the lower surface, measured
positive downward.

The result for plunging motions can be extracted by
letting o tend to zero and b tend to infinity in such a way
that their product remainstite, say

be(t)=—h(t)=–tiio’ (49)

In the limit, the airfoil simply trsmslateavertically according
to y=– h(t). The pressure coefficient on the upper surface
is’

27i z il@N-2 y, 7i—- ——
0’”=0’” p u p D (50)

OHECKS ON THE I?ESULT

The solution can be tested in several special cases for
which the result can be derived km other considerations.

Of the five terms in equation (48a), the first is lmown
horn Busemann’s steady second+rder solution, and the
second and third from linearized unsteady theory. The
fourth is obtained by using tie i.mtanttmeous airfoil slope
(Y’–o) insted of the mean steady slope Y’ in Busemmn’s
formula and retaining ody linear terms in O. Therefore,
only the last term, which is the essentially new result of the
present analysis, require9verification.

Just at the nose of an oscillating airfoil, the pressure can
be determined exactly if the bow shook wave is attached.
The transition through the moving bow shock is instan-
taneous, md so depends only upon the relative velocity at
that instant (see ref. 4, p. 297). Henee the pressure just at
the nose is instantmeously the same ss on, a wedge of the
same vertex angle in steady flow with the same relative
velocity. In the present problem, the ,relative velocity is
compounded of the horizontal velocity U of the free strm.m

4Not8tba~as ltaboald %tbfnfsjnst tbarsstdtofasing Bamrrman%formals for stasdy
flow (w. (48b)), wfth the IA slope decrsi=d by @ titimns alummnt @ WZ
sw tbe dkadon fa the foTfowfngsectkmof conditions at the nw.

Fmwrm 6.—Velocity relative to leading edge of oscillating airfoil.

plus the instantaneous vertical velocity of the leading edge,
which is given by db (see fig. 6). The effect of the vertical
component upon the equivalent free-strerun velocity and
Mach number is of second order in angle of pitch, but the
equivalent vertex angle of the airfoil is increased by the
apparent dowmvash sngle #b/U. Replacing Y’ by Y’+
#b/U in Busemwm’s formula (eq. (48b)) gives, to first
order in angle of pitch

26
“==c’”+p b P+2

‘;–2 bY’ ; (51)

which checks the part proportional to b of the last term in
equation (48a).

The remainder of the term in question can be &ecked for a
single-wedge airfoil oscillating about its vertex (fig. 7). It

U,M”

Pot P.
-

Mean position of
shock wave-=

\

/
\ P

l?mmm 7.—Wedge oscillating about its vertex.

can be shown using the results of raference 3 that in this
case disturbances reflected”fmm the shook wave are of third
order in the wedge angle (although for other pivot positions
they are of seeond order). Therefore, a solution correct to
second order in thiokness and first order in angle of pitch
can be found by applying linemized theory to the mean
steady flow behind the shock waves For slow oscillations,
the fit three terms of equation (48a) give

JTbls mncapt was ~ to tba ontbor by W. P. lonsa oftha Natfonal Physkd GW
rstary, En@mld.
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where subscript 1 denotes values in the mean steady flow
behind the shock wave. From linearized theory

M,=M [1–p(N–1)6] ‘

[
/%=8 1–$ (N–l)E]

()
U,=u 1–;

“=’”( 1+’%’)

“=@o+%’) .

.
(53)

where e is the semivertex angle. Hence, referring the sur-
faca pressure coefficient to free-stream quantities (and noting
that Z1=Z to second order) gives

Cpu=c,o+ 6+2 +~ z &2 ~;2–2 d+

z !21t@(N-1)+(2–~ @PN-1) ~ ~
P’ u.

(54)

which checks the first two parts of the last term in equation
(48a) when Y(z)= ez.

Recently, Lighthill haa given a further check for the case
of Mach numbers so high that 1/&_Pis negligible compmed
with unity (ref. 10).

= .4NDMoMENT COEI?FICIENTB FOR 8 YMMErRIcAL AmFoIL9

The coefficients of lift and pitching moment (about the
pivot) are given in terms of the pressure coefficients on the
upper and lower surfa~ by

For simplicity,
chord line. In

J-(: ; C,,–CpuJdzcl=– (55a)

sG=.+““(b—z!)(Cpt–Cpw)ax (5ib)

consider only airfoils symmetric about the
this case, the pressure difference is given by

~ ~ =~~ ~ 2—MS

( )-

il
n- % p —p — X+b ~+4

B’
~;–z Y’o–

4
[

21W(N– 1) y+(2–M3&WN–1) ~,+
B’

1

b
‘:–2 bY’ ~ (56)

If the airfoil has a sharp trading edge, substituting into
equations (55) and integrating by parts gives

,,=;o-;[(*g)+’’4N-;~+2 +JYdz]g (57)

and

4

K )

b 1 +MN–2 1 “———
C“=B c 2 /3 s]7“

Ydx 0+

[(

4 2–lLP 2M2-3 b b
7

.LP(N– 1) b
j+2pcc*P ——— — ;X

J
+0 c Yax+2 ‘?–2 ;~ (z–b)Ydz] $ (68)

Inside each square bracket the iimt term is the result of
linearized theory, aud the remainder represents the second-
order effect of thiclmka. Thickwss effects are seen to
appear in the form of the area of the airfoil prdle and its
first moment about the vertical line through the pivot.

If the airfoil has a blunt trailing edge of semiihicknws
Y(c), the following additional secondwrder terms must be
added to the above expressions:
to cl:

(69)

EXAMPLK9: EICONVEX AND DOUBLEWEOGE AIRFOIIS

To second order, a biconvex airfoil of thiclmess ratio
given by the parabolas

(60)

Tis

y=+ Y(z), Y(z) =27 : (c+ (61)

The expressions for lift and moment become

“=;’+[(w:)+M4N~;’@+2Tl$ ’62)

(63)

It happens that for a double-wedge airfoil (with maximum
thickness at midchord), both the mea and first moment are
just three fourths of those for the biconvex airfoil. Conse-
quently, the above results apply to double-wedge airfoils if
T/3 is replaced throughout by r/4.

In the expression for pitching moment, the term propor-
tional to o repr~ts an aerodynamic stihess or rdming
moment in phase with the angular displacement, while the
term”proportional to # corresponds to an aerodynamic damp-
@ moment in phase with the angular velocity. Tho effects
of thicknw upon
moments are shown
double-wedge or a

aerodynami~ restoring ‘and damping
in figures 8 “and9 for a 6-percent-thick
4j&percent-thick biconvex airfoil with
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Fmurm 8.—Effect of thicknw upon restoring-moment coefficient for
4j&percent-thick bicormex or 6-percen&tbick double-wedge airfoil.
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FIGURE 9.—Effect of tbiokness upon damping-moment coefficient for

4~percen&tbiok biconvex or O-percent-thick doublwvedge airfoil.

two different pivot positions. The figures have been labeled
with both the usual American notation (e. g., ref. 11) ~d the
British notation (e. g., ref. 12) for flu~er d~vativ~, defied
for hmrnonic oscillations of arbitrary frequency by

Here k and Aare the reduced frequency in the American and
British notations, respectively, related by

For slow oscillations, the flutter coefficients are obtained
from equation (63) according to

(and, indeed, this was originally the debition of me and nu,
that given by equation (64) being a later extension to the
case of rapid harmonic oscillations). “

It should be noted that according to second-order theory
the nonlinem effects of thickness are themedves linem in
thickness. This means, for example, that doubling the air-
foil thickness ratio would double the distance between the
linearized and second-order curves of figures 8 and 9.

NEUT~ DAMPZNG BOUNDARY

Linearized theory indicates the possibility of instability
of pitching oscillations for low frequencies. For a range of
Mach numbers below ~= 1.58 and pivots ahead of two-

thirds of the chord, the aerodynamic damping moment
bqcomes negative, and so tends to destabilize. (Whether
or not the motion is actufdly umtable depends, of course,
upon the other dynamic parametem in the problem.) This
zone of possible instability shri.nb and eventually disappears
as the frequency of oscillation increases. The present 10w-
frequency solution is therefore adequate for determining
how the region of instability is modified by nonlinem thick-
ness effects.

Figure 10 shows the bound~ of neutxal aerodynamic
damping for slow oscillations of a 4%percen&thiok biconvex
or O-percent-thick double-wedge airfoil. The aerodynamic
damping is destabilizing for Mach numbers and pivot posi-
tions lying inside the loops. Within the region where linear-
ized theory predicts a destabilizing moment, thiclmess is
seen @ exert a further destabilizing effect except for pivots
near midchord. The second-order solution becomes unreli-
able when the bow shock wave detaches, at about iM= 1.2.

CO~A131SON WZTH PREVZOUS ZNVE9TZQATIONS

Two previous investigators have sought a second-order
solution for slowly osdlating airfoils in supersonic flow.
Their results agree neither with each other nor with the
present solution.

h 1947, W. P. Jones obtained an estimate of the thickness
effect by assuming that the ratio of secondader to linearized
pressure disturbances is the same for slow oscillations as
that given by Bnsemamn’s formula for steady flow (ref. 13).
That this assumption ie not altogether correct is indicated
by the fact that the results do not check those obtained for
a wedge oscillating about its vertex by applying linearized
theory to the mean steady flow behind the shock wave.
However, the assumption is correct at the leading edge, and -
ak (as noted by Lighthill in ref. 10) in the limit of high
Mach number. It is seen in @e 10 that this estimate
fails to give a useful prediction of the actual effects of thick-
nem, except for pivots near midchord.

In 1951, Alexander Wylly attacked the problem by

1.8

Stabilizing

1.6

/wl.4

Linearized thearyn

12

.— -—-
. . .

I .0’
,, //////,, . —

~
-1.5 -1.0 -.5 0 1.0

Pivot position, b\c

Fmurm 10.—Neutrsd damping boundary for 4Kpercen&thiok biconvex
or O-pcrcentitbick doubk+wedge airfoiL
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.

methods similar to those used here (ref. 14). Uidortunately,
it appears that the smoothing was not carried out with
suiiicient care; as a consequence, the solution satiaiiesnone
of the three checks discussed previously. In contrast to
the present rcsuh, the effect of thickness upon aerodynamic
damp&~ was predicted to be stab- and so great that
for airfoils of the thicknesses shown in figure 10 the zone of
possible instability would have disappeared altogether.

Concurrently with the original appearance of the present
work, Martin and Gerber have published an independent
investigation of the Second+rder effects of thicknees on the
stability derivatives for airfoils in constant vertical acc&.ra-
tion and constant pitching (refs. 15 and 16). Their results
agree completely with those given above.

COMP.4EISON WZTH EXPEEZMENT

The firsb md second+rder theories are compared in
figure 11 with the results of recent English experiments car-
ried out at the National Physical Lab oratory.” The aeiv-
dynamic damping at low frequencies was measured for
bkonveix airfoils 5 and 7.5 percent thick at Mach numbem of
1.42 and 1.61 with various pivot positions. For the points
shown the amplitude of angular oscillation was 1.5°; increas-
ing the amplitude to 3° was found to affect the results only
at the lower Mach number. Ihcluding second-order thickness

o Experiment, 7-V270 section
D Experiment, 57’ section /l/

I

I
---%5

I I I I I
o .25 .50 .75 IJX)

Pivot pasition, blc

(a) 3f=L42

FIQTJEEI1l.—Comparimn of experinmdd and theoretical damping-
moment coefficients for biconvex airfoils.

~The antbar Is fndebted to W. P. Jonw, J. B. BratQ rmd W. E. A. Amrn of the Natfonal
Physfral Laboratory for ktndly n@irw tb- data available fn advrmw of PnblIcatfon.
The work fs te k pnblfshed under the tftle ‘W eamrwnmts of Pltebfng Moment D6rIva-
Ur@ for l%o-Dfmemionrd Models at Snbsonfoand SmMZWnfoS- and for a Rwtan-
@ar Model of ~ IMio 4 at &lbS3Df0 S=” by Brat& Ifaymsr, and Townsmd.
(Itmayb3noted tb8tearlkz ezrdmentd redts from the Natfond Phydcal Laboratory
that were dted fna prevfom verdon of tbfspam (NACA TN 2M2) erenow tdfeved by the
axmrimentera to be mrdfebh) \
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effects in the theory is seen generally to improve the ~greo-
ment with experiment. The lower Mach number is close to
the limit of purely supersonic flow —M= 1.38 for tho 7,6-
percentithick section-at vihich the theory presumably
breah down.

EXTENSION TO CUBE OF PREQUENCY

The dependence of thiclmess effects upon frequency of
oscillation can be estimated by extending the second+rder
solution to include higher powers of frequency. This has
been carried out for an arbitrmy airfoil by including mcond
and third pow-em, which is enough to show an effect of
hequency upon both aerodynamic stiflneas and damping.
The computation, though cumbersome, is a straightforward
extension of the previous analysis, so that only the final
resultwill be given here.

The expressionfor pressurecoefficient on the upper surface,
corresponding to equation (47), is found to be

[

F, 3(3M’–2)N–2(5M’–3)
Wp s

f+%’ !f+

(16–7il@)N+4(2il@-3)
Wp qf+N~ b@+

(2+&~–4 ~]+
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~@e (17M4–10ik@-4)N-(5i142-2)(4M’-l) ~+
[ 2M4fP J

6ilZ’-(5M’-2)N
~~’

s
b f+

J

7M2(2~M2–1)–(12M4-3M’-4)N ~ ~+
2M4@2

2(M2+ 1)–(M’+8)N ~zj+
~’

(3M2+2)–(3M’+4)N ~+
4M4p’

2(M’+ 1)–3M%V
4M4

bdy’+

5M’+2-M’(4+M’)N ~Y
12M4f?2 1

(67)

whorej=f(z) and ~f= ~~~(t)c%,etc. (ThOfirst four terms are

the result of linearized theory.) This result meets the three
tests discussed previously, and also checks the solution given
later for a wedge with general pivot location at arbitrary
frequency. The remdting expressions for lift and moment
involve the airfoil thickness in the form of the area of the
profile and its fit three moments about the vertical line
through the pivot.

EXAMPLE: BICONVEX AIRFOIL

These rather formidable results simplify considerably for
specific airfoils. For example, for a bicenvex airfoil of tbick-
neaaratio ~ oscillating about midchord, the pitching~moment
coefficient is given by

o
~=iA~+@$-ih3~V+. M’;-2-~tiiut

~ASrW 2(4w4–61 M’+1)-(37iW+26M’- l6)N
1440p

(68)

Tho first three terms are the result of linearized theory.
Tho component of this moment that is out of phase with

tho angle of pitch gives a parabolic approximation for the
variation of aerodynamic damping with frequency as shown
by dashed lines in figure 12 for a .5-percent-tick biconvex
airfoil. The accuracy of the parabolic approximation for
linearized theory is indicated by comparing it with the exact
result (solid line). In this tnmmplethe linearized and second-
ordor curves run almost parallel, which means that the non-
limmr effects of thiclmess vary only slightly with frequency.

Recently, Jones and Skan have treated biconvex airfoils
at arbitrary frequency by a numerical procedure (ref. 17).
Their result is shown in figure 12. It fails to give the initially
parabolic form of the curve that is implied by the fact that
the second-order solution, like the fkn%rder result, can be
expanded in powers of tho square of the frequency. Their

.16
M=I.5 I I I I
~ * J@nes El Skcm-.. ‘ ‘ ,/’

.12 I ~ I I , ‘/

Destabilizing

-.040 I I
.1 .2 .3 .4 .5 .6 .7

Reduced frequency, A=2k=uc/U

I?mww 12.—Effect of frequency upon damping-moment coefficient for
3-percent-thick biconvex airfoil pivoted at midchord.

solution involves several doubtful assumptions, in particular,
that the effect of the bow shock wave can be disregarded.
It has already been remarked here that, actually, the bow
shock has a second-order effect unlem the pivot lies at the
leading edge.

STABILITYDEIUVA~VES

The oscillating motion of the airfoil has heretofore been
described in terms of its angle of pitch 8 and (negative)
elevation h, as is customary in flutter analysis, and the
flutter derivatives have been calculated. k stabili@ analy-
sis an alternative pair of coordinates is usually employed:
the angle of attack a with respect to the relative wind and
the rate of pitching g=d. The motion is then no longer
reaticted to harmonic oscil.latiomj so that there are actually
an infinite number of stability derivatives. However, only
the first thre~=, Cma,cti-for moment, and their counter-
parts for lift, are ordinarily considered significant.

Steady-flow theory gives cm=. It is shown in Appendk
B (eq. (B12)) that the combination (%~+cn~ is given by the
solution for low frequencies, but that cmaand Cmaseparately
can be found only bm the solution that includes the square
of the flequency. For this purpose, only the solution for
plunging is required, and this can be -acted from equation
(67) as before by letting the pivot recede to infinity and the
angular amplitude diminkh according to equation (49),
which giVe9

(69)

Integrating for the moment according to equation (55b),
replac~j by Y according to equation (1), and then extract-
ing %&according to equation (B12) gives

The combination (C.a+Cma)is given, according to equation
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(B12), by twice the coefficient of (d/U) in equations (58)
and (60). Together with equation (70), this gives

‘~Q=;[*(’+)+&2Y-2*x

J
; :(z–b)mt–~;–z (1+)’ ~] (71)

These remdts have been derived independently by Martin
and Qerber (refs. 15 and 16). The agreement serves as a
further partial check on equation (67).

SECOND-ORDERSOLUTIONFOR ARBITRARYFREQUEN~S

For some purposes the previous solution for slow oscilla-
tions may be inadequate. In principle, the secondader
solution can be extended to include still higher powers of
frequency, but the labor required is clearly prohibitive.
Alternatively, one can attack directly the problem for arbi-
trary frequencies.

The second+rder solution can, in fact, be carried out for a
general airfoil at arbitmuy frequencies. However, the result
is formidable, involving multiple integrals of products of
Bessel functions, and the reduction b simpler form for
specific profiles appears to be &tEcuIt.

A more practical approach is to choose a specific airfoil
shape in advance. Then the secmd+rder solution involves
only functions of the @pe encountered in thelinemized theory.
In particular, it is found that (at least for the simplest shape)
the final expressions for lift and moment involve only func-
tions which have been already studied and tabulated, so that
numerical results are readily obtained.

MODIFIKD SMOOTEINQ PROCEDURE

The smoothing discussed previously must be dropped at
an earlier stage of the solution when a specific airfoil shape
is chosen. It is therefore necessmy first to modify the
diih.rential equation and boundary conditions so that no
singular terms appear.

Consider tit the diilerential equation (eq. (31)). Apply-
ing the Laplace transformation of equation (36), and envision-
ing the smoothed problem, so that # and 4Z vanish at z=O,
reduces it to .

In this form, all tiublesome second derivatives have dis-
appeared horn the righ&hand side, so that the smoothing
can now be dropped.

Consider next the tmgency condition of equation (25),
which mntains second derivatives of both q and. x. These
cause no difficulty when, as in the solution for slow oscilla-
tions, the tangency condition is imposed as it stands. How-
ever, its Laplace transform will be used here, and then the
Dirac delta functions associated with the second derivatives
would affect the integration implied in the inversion of the
transformation These troublesome second derivatives can

be eliminated by tit expressing them in terms of z deriva-
tives only through the firs&order equations:

Vvu=@%Z

}

(73)
#.=d (#=+&#)

and then applying the Laplace transformation while envi-
sioning the smoothed problem (so that p, ~, l=, and p=vanish
at z= O), which givfs

Zr=–i5(s)-iS@t{ e’-pz}+6il@<{ #j’} –ti~.C{ ~ } –

@@.c{#.j} –Pe &C{*.fl +

fl’(s-h)~{e’%=( z–b) } at y=O (74)

Again, all second derivatives have disappeared, so that the
smoothing can be dropped.

Consider My the upstream condition. For the smootlmcl
problem, one stitement of the condition was seen to be that
the solution represents downgoing waves. This moans thot
the complementary function for the itaation equation should
have the same form as the linearized solution, and this stata-
ment of the upstream condition applies as well to the actuol
problem.

SOLUTIONFOBWKDGE

The simple case of a single wedge illustrates the method of
solution that can, in principle, be applied to any profile
formed of piecewise analytic mm. For a wedge of semivertex
angle e, the fit-order solution for p is given by equation (36)
s

~ (X–py)~=> (79

and the first-order solution for # is given by equation (42).
Substituting into the right-hamd side of
for the transformed iteration equation 7

[
%-P @+&) E=–2@4%- ix) 1+

equation (72) gives

(N–lp-+KN/

-J%Fm@7 43(8)e-@==’ (76)

A particular integral of this equation is given by an appro-

priate multiple of ye-~~, and adding a complemen-
tary function that represents downgoing waves gives tho
solution

ii=c(8)e-~-+

a

(77)

The coefficient C(s) is evaluated by imposing the tangency

?Intti *pie ~ the pattful pertimlar Intqral of eQUotlon (S3) Oflel% lltt10aotlld @inl-

Puac’atim.
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condition of equation (74), with the result that the Laplace
transform of the second-order solution is found to be

The invemion can be carried out using the standard tables
(o. g., ref. 7) together with the convolution theorem. For
calcukding surface pressures, it suflices to obtain the solution
in the plane v=O, which is found to be

(79a)
whore

w(z)=e{ti l+i. ~ (z–’)
[ M’ 1

(79b)

With the pivot at the nose (b= O), this agrees with the result
of applying linearized theory to the mean steady flow behind
the shock wave. Also, when expanded in powers of fre-
quency, it agrew with the previous lo-iv-frequency solution”
up to terms in 2.

The surface pressure coefficient can now be calculated
from equation (27) and the lift and moment coeiiicients
from equations (55).

EXAMPLE: WEDGE PZVOTED AT NOSE

l?or simplicity, the results will be given only for the special
case of rotation about the nose. Then it is found that the
lift and moment coefficients are given by

H$6v-f”-f’+J+
L(

M’ 3M’+1
~$, ~+e 4~– ~

)1
N (fI-f,+,)–

C*(N–l+&) [(l+v)j,–6-@f~J”(MA/pq]–
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where V= Ofor the lift and v= 1 for the moment. The func-
tions js, given by

f=(ilf,~)=~de
()

-i?@zl#Jo ~ ti G?X
@ (81)

arise in linearized theory for n ranging from O to 3. They
have been studied sad tabulated by von Borb61y (ref. 1S),
Schwarz (ref. 19), and Garrick and Rubinow (ref. 11). They
can all be eqmmed in terms of f“ by a recurrence relation
due to von Borb61y (see, e. g., eq. (A.87) of ref. 12), so that
the additional j~ required here is easily computed.
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FIQUEE 13.—Damping-moment inefficient for lo-percentithick wedge

oscillating about its vertex at lK=10/7.

Figure 13 shows the variation of aerodynamic damping
moment, according to first- and second-order theories, for a
10-percent-thick single wedge oscillating about its nose at a
Mach number of 10/7. Also shown for comparison are the
parabolic approximations of the low-frequency analysis. It
is seen that the thickness effect is reversed at high flutter
frequencies, as is suggested by the parabolic approximation.

DISCUSSION
EuGZnZRomEEEFFEcrs

The moderate magnitude of second-rder tiects would
suggest that the influence of third- and higher~rdw terms is
of no practical importance, except perhaps in the transonic
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range ‘near shock detachment. This supposition can be cOn-
firmed in the case of the single-wedge airfoil, for which a
solution exact in thiclmess (but linearized with respect to
angle of pitch) has been derived in references 2 and 3. Figure
14 compares the boundaries of neutral aerodynamic damping
for ~ slowly oscillating wedge of 5° semivertex angle as pre-
dicted by the linearized, secondader, and exact theories.
The second+rder solution lies close to the exact result down
to the Mach number for shock detachment (which is ahnost
the same as the Mach number at which the flow teas@ to be
purely supersonic)S

APPLICATIONT.OFH41Tl?-sP~WINGS

Extension of the second-rder solution to wings of finite
aspect ratio do= not seem possible at present. No second-
order solution has yet been found even for steady flow past
the simplest lifting wing.

Fortunately, the main conclusion to be drawn from the
present analysis is that nonlinem thickness effects are quite
moderate in magnitude. I?ractical supersonic wings will,
therefore, probably be so thin that nonlinear effects are neg-
ligible, so that reliance can be plwed ~ the pred.ictio~ of
linearized theory. Only if the wing is unduly thick, or if
the Mach number is close i%unity, or if unusual accuracy is
required, may the engineer be forced to estimate the effds
of thiclmws. In this event, he might assume that the effects
of thickness are in some sense additive to those of aspect
ratio, provided the aspect ratio is high and the frequency low.
For esample, the two-dimensional correction might be ap-
plied stripwise to the spanwiseloading predicted by linearized
theory. Some indication of the extmt to which such an as-
sumption would be justified can be obtained by considering
other pairs of effects whose combined influence is known.
Figure 12 shows that the eilects of thiclmws and frequency
are roughly additive for the frequencies of usual practical
interest in dynamic stability analysis (say X< O-2). Like-
wise, figure 15 shows that the effects of aspect ratio and fre-
quency, determined from Watkins’ linearized solution for the

6InSguro14 the mrve dmfgneted mcond@der theory fnabxles df -nd*rdm eff~
, and &a mm (but not df) of the tbfrd-orda eff- It tbemfore dws not rofnwmt the

semndorder wlntfon of this refmt. T& arm for that mlnthr (mlcnlated from EW- (J@
md (a)) canM plotted from the fohwfw *H

b/c: –L5 -Lo -0.5 0 a33 as a6
~ L21 L% L34 LE2 L133 L52 L%

The mvfs?d arrm hIls slgnfllmntly Wlew tb.et shmn for the eract theory. Hence the
concludonrcmhed fn the df=mfon of Mgher-orderetlectaOnpages023end @4 mast M rn~-.
tla tbfrd- and hfghmmler term can ~ of mme predcaf sfgrddmnce. The author Is
indebted to Dr. Oeorg Drmgge for pofntfng out tbfs df.$ueww.
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FIGURE 15.—Effect of rispect ratio upon damping-moment coeflioiont

for rectwvgular wing aocording to linearized theory.

rectangular wing (ref. 20), are nearly additive in tho some
range of frequencies.

Martin and Gerber have calculated the second-order effects
of thickness upon damping in roll for wings of infinite spcm
(ref. 21). They then estimate the effect for a finite rectan-
gular wing by increasing the result of linearized theory in
the same ratio as for the infinite wing. Agreement with ex-
periment is thus considerably improved, which gives further
assurancethat superposition of thiclmms effcots may bo justi-
fied also for oscillating wings.

Recently, Acum has estimated the aerodynamic clamping
of pitching oscillations of rectangular wings at supersonic
speeds by assuming that the thlckncss effects of the prcsont
theory can be added to the aspect-ratio effects predicted by
linearized theory (ref. 22).

FUR~lZ ANALYSIS

If thiclmess effeci% of the magnitude indicated by tho
present analysis are judged to be significant at fluttw fre-
quencies, extension of the high-frequency solution to more
practical profiles would be warranted. The solution given
for a single wedge at arbihary frequency should be extended
next to the biconvex or double-wedge airfoil. Although con-
siderable computation is involved, it does not appear that
the labor would be prohibitive.

Aams A~RON~UTICALLABORATORY
NATIONALADVISORYCOM~EE Fon AERONAUmCS

MOFFETTFIELD, CALIF., Apr. W, 195$



APPENDIX A

SYMBOLS

j(x)

f.
g(x)

h(t)

110

1:

mhl m8j’

mh,mb
M
Mlj Maj

MS, M, }

i’?

P
!Z

;(Z, y, t)
t
u, v

u
;
w(x)

speed of sound
aspect ratio of wing
downstream distance from leading edge to pivot
airfoil chord
constant of integration
section lift coefficient
section moment coefficient

stability derivatives (See eq. (B5).)

flutter derivatives (See eq. (B6).)

prwsure coefficient
surface pressure coefficient in mean steady flow
pressure coefficients on upper and lower surfacea

of airfoil, respectively
function defining upper surface of airfoil at zero

angle of pitch
See equation (81).
function deii.ning amplitude of oscillation of

upper surface of smooth airfoil
elevation of plunging airfoil, positive downward
amplitude of harmonic plunging oscillation

British flutter coefficients (See eq. (B9).)

free-stream Mach number

Amerimn flutter coefficients (See eq. (B8).)

‘r+lw——
2 @

static presmre
rate of pitch@, O
Laplace transformation variable
function defining moving surface
time
velocity components parallel and perpe@icuIm

to free stream
speed of flight

velocity vector
dowmmsh velocity at y=O

coordinates parallel and perpendicular to ilight
direction, moving with mean steady velocity
of airfoil ,

ordinate of upper surface of airfoil at zero angle
of pitch

Z—py
angle of attack-angle of airfoil with kespect to

<dative wind at pfvot

m
adiabatic exponent of gas

Laplacian operator, ;+$

small parameter representative
ncss

of airfoil thick-

angle of pitch-angle of airfoil with re-spect to z
axis

angulm amplitude of harmonic pitching oscilla-
tion

M%l
&U

f%?kreduced frequancy, ~

constant that is Oor 1 in equation (80)
density
airfoil thicknew ratio
first-order mean steady perturbation potential
secondarder mean steady perturbation potential
complete perturbation potential .
firs&order tinwdependent perturbation poten-

tial
secondarder timedependent perturbation potan-

tial
partial particuhw integral of timedependent

iteration equation
anggar frequency of oscillation
complete velocity potential
free@mam conditions
conditions in mean steady flow behind bow shock

wave on wedge
d.i.flerentiationwith respect to time

Laplace iiramform

626



APPENDIX B

CONNECTION BETWEEN FLUTTER AND STABILITY DERIVATIVES

h fluttar analysis the motion of the airfoil is described by’
the @e of pitch o and the (negative) elevation h, whereas
in stabili@ analysis it is described by the angle of attack a
and the rate of pitching g. From figure 16 it is seen that

. tan e+E/z7
‘m a=l–(qu) tan e

@l)

—-

T
.—

/-
8

a

L/1-
1
I

1
I ——————————————————— —

fi

FImnE 16.—Alternative coord.kmtea for describing motion of oscillating

tiOil through still air.

and by definition q= 8. Hence to second orde~in the anglea,
these alternative coordinate systems are related by

@2)

For a given prdile,
moment coefficient at

~=~ )
gas, Mach number, and pivot, the
anv instant depends on the entire

previous history of the &foil motion: Thus in stabilib
coordinates —

Cm(t)=cm[cl(t), !2(01 (B3)

Here the heavy brackets are used to emphasize that this
is not m ordinary function, but a functional of the two
coordinates, which are themselves functions of past
time. Now if a and q are analytic functions (for all past
time), they can be resolved into their successive time deriva-
tives. Then cmrssumes the nature of an ordinary function of
these infinitely many variables, each of which depends upon
time as a parameter:

C=(t)=cm[a(t), a(t), . . ., q(t), ~(t), . . . ] m)

Finally, if cmis analytic in each of these variables, Taylor
series expamion givess

1 Brftlsb miters nfa Z &&ad of A Both Aumimn and BrfWb wrftars hnvo previously
X a fnstead of 0, but 0 Is Prefemble for the rmson gfmn fn fmtioto Z md b 8PrmiwntlY
now being adoptd by the Brftt?h.

2!rhereadm mayrhmcato _tbkrestdtas ixJngobvionsfrorn Phmkd mmfderatfm$
h Whicha the mvmiing rnathornatfralforrmlfmn lasmeranolm
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where ordy linear tm have been retained. H,em the
coefliciemk have been made dimensiorikaausing the charac-
teristic time c/2 U’, in accorduce with the usual American
notation. h stability ualysis the motion is usually assumed
so slow and smooth that the three terms shown explicitly
are sufficient. The coeilicients c==, Cmq,c.&, etc., which me
(aside tim factors of c/2U) the first partial derhwtivm
of the function o., me the stability derivative.

I?roceeding simikwly in flutter coordinate would lead to a
corresponding expmsion in terms of flutter derivatives:

Here the fit term has been omitted since it is clear physi-
cally that %k vanishes identically-the moment depends
on changes in elevation but not on the elevation itself.
However, it is customary in flutter analysis to considw only
harmonic oscillation:

e(t) =eoe~”’, h(t) =k+”’ (B7)

and then the infinite series for cm colhpses to just four
terms. In the usual Americfm notation for flutter cdlicients
(ref. 11)

.,

( )6=–W 2 ~ M,+& Mg+OM3+& W (B8}

and in the usual British notation (refs. 12, 13), with (0, h}
in place of (a, z)

Comp@ng these expressions with equation
special case of harmonic oscillationsshows that

—2iPM1= mh= –iPcm~+

—2k Mz=2mi=cm~—lPcm;+

—2PM3=2m8=cm8—Pc~ +

—2k W=47W=C4-PC.7+

. . .

. . .

. . .

. . .

(m)

(136) in the

I (I31O}

The relations between derivativ& in the two coordinate
systems axe found by regarding each system as consisting
of an iniinite number of coordinates that are related by
equation (132) together with all the relations obtai.md by



differentiating
time. Hence

.

SUPERSONIC FLOW PAST OSCILLATING AIRFOHk3 INCLUDING NONLINEAR TIZICIQW3SSEFFECTS 627

equation (B2) repeatedly with respect to

. . . . .

Finally, combining these relations
(139)gives the omnibus relations

(ml)

with those of equation

‘!2p~I= mb=—&m~+ . . . ‘–k%.&+ . . . )
—2k Mz=2m~=c.i— . . ., =C==— . . .

)

@12)
—2PM3=2m8=cmo- . . . =Cm=— . . .

—2k M4=47ni=cma— . . . = (c=,+cmJ– . . .
J

Tlm corresponding relations for lift can be found in the
same way.

Equation (3312) shows that the combination (%, +
%&) is proportional to the first term in the expansion
of the flutter coefficient m or M4 in powers of frequency.
It is therefore given theoretically by the solution linear in
frequency, and experimentally by measurements at low
frequency. However, to determine ~& alone, and hence
cm;, squares of frequency must be retained. For this
reason, it is dif3icult to find %q and && by oscillating an
airfoil in a conventional wind tunnel. It would be nece.samy
to perform the experiment at various frequencies and so to
determine the initially parabolic variation with frequency
of the component of moment that is out of phase with the
angle of pitch.
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