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SUMMARY

A solution to second order in thickness is derived for har-
monically oscillating two-dimensional airfoils in supersonic
flow. For slow oscillations of an arbitrary profile, the result is
found as a series including the third power of frequency. For
arbitrary frequencies, the method of solution for any specific
prafile is indicated, and the explicit solution derived for a single
wedge.

Nonlinear thickness effects are found generally to reduce the
torsional damping, and so to enlarge the range of Mach numbers
within which torsional instability 18 possible. This destabiliz-
wng effect varies only slightly with frequency in the range in-
volved in dynemic stability analysis, but may reverse to a
stabilizing effect at high fluiter frequencies. Comparison with
a previous solution exact in thickness suggests that nonlinear
effects of higher than second order are practically negligible.

The analysis utilizes @ smoothing technique that replaces
the actual problem by one involving no kinked streamlines.
This stratagem eliminates all consideration of shock waves
from the analysis, yet yields the correct solution for problems
that actually contain shock waves.

INTRODUCTION

As linearized supersonic-flow theory is increasingly ap-
plied to problems of unsteady motion of lifting wings, the
results are sometimes advanced with the warning that they
may be significantly affected by nonlinear effects of thickness.
Such caution is justified because it is known that even for
steady flow linearized theory is often inadequate for predict~
ing the pitching moment—and prediction of moments is one
of the main objectives of unsteady-flow theory. It may be
anticipated that nonlinear effects will become increasingly
important as the Mach number falls toward unity, particu-
larly for slow oscillations.

In the present work the effects of thickness are determined
for a harmonicelly oscillating two-dimensional airfoil by
calculating the second-order solution. This is the counter-
part for unsteady motion of the well-known steady-flow
result of Busemann (ref. 1). First, for slow oscillations a
golution is found for an airfoil of arbitrary profile. The
result is given as a series that includes terms up to the third
power of the frequency. Second, for arbitrarily high fre-
quencies it is shown that a solution can be found for any
specific airfoil, and the solution is carried out explicitly for a

single wedge. Finally, comparison is made with a previous
solution for the wedge that is exact with respect to thickness
(refs. 2 and 3), in order to assess the effects of nonlinear
terras of higher than second order.

Extensive use is made of a smoothing technique, which
replaces the actual problem by one having no kinked stream-
lines. This stratagem, which has been used previously and
may prove useful in future problems, eliminates all considera-
tion of shock waves from the analysis. It, nevertheless,
leads to the correct second-order solution for the actual
problem, which does involve shock waves.

METHOD OF ANALYSIS
STATEMENT OF PROBLEM

_ Consider a sharp-nosed airfoil flying through still air 2t a
uniform supersonic velocity and executing small harmonic
oscillations. We shall be concerned with calculating the
instantaneous pressure at the surface and, hence, the un-
steady lift and pitching moment. If oscillations in the
flight direction are neglected, a rigid airfoil possesses two
degrees of freedom. The oscillation can therefore be re-
garded as compounded of a rotation (pitching) and a vertical
translation (plunging), which are not generally in phase.
Although the iteration procedure to be employed yields a
formal result for any Mach number greater than unity, the
solution probably breaks down when the flow becomes sonic
ab any point. Since this occurs at a Mach number somewhat
higher than that for bow-wave detachment, the upper and
lower surfaces of the airfoil operate independently in the
probable range of validity of the solution. It is.therefore
sufficient to consider only the half field of flow lying above
the airfoil, and this viewpoint will be adopted henceforth.
It is convenient to seek a solution to second order in the
airfoil thickness, but to only first order in the amplitude of
oscillation. This is sufficient because second-order terms
in the oscillation, although affecting local pressures, have
no effect upon lift or moment since they are equal on the
upper and lower surfaces. Then the pitching and plunging
components of the oscillation can be treated separately, and
the results superimmposed. Furthermore, it is enough to
consider only pitching about an arbitrary pivot, because the
plunging case can be recovered by letting the pivot recede to
infinity and the pitching amplitude tend to zero, their
product remaining finite. Thus, from the point of view of an

1 Bupersedes NACA TN 2082, “Supersonic Flow Past Oscillating Alrfofls Including Nealinear Thickness Effects” by Milton D. Van Dyke, 1053,
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observer moving with the mean speed of the airfoil (or testing
it in 2 wind tunnel) the airfoil is exposed to & uniform super-
sonic stream and oscillating slightly about a fixed pivot
(fig. 1).

Fiqure 1.—Coordinate system for oscillating airfoil.

Choose the origin of coordinates at the mean position of
the leading edge, with the z axis extending in the direction
of the free stream. Then it is convenient to describe the
upper surface of the airfoil in its mean (zero angle of pitch)

position by
y=Y@)=¢@) ®

All symbols are defined in Appendix A. Here ¢ is a small
parameter representative of the airfoil thickness, so that the
function f is of order unity. Now let the airfoil pivot about
a point on the # axis lying a distance b downstream from the
leading edge, and perform harmonic oscillations of frequency
o and amplitude 6,, so that the angle of pitch,? which is the
angle between the instantaneous position of the airfoil and
its original mean position (fig. 1) is given by

=0, cos wt=fet*" ‘ 2)

(Here, as in all that follows, it is implied that actual physical
quantities are given by the real parts of their complex repre-
sentations.) Then, at any instant the moving upper surface
of the sairfoil is described by

=¢f (x) —60*** (x—b) (3

with an error of order (€,e6%), which is of third order and,
consequently, negligible in the present second-order analysis.

PERTURBATION EQUATION

The enfropy changes due to shock waves are of third order
in the airfoil thickness and angle of pitch. Hence, to second
order the flow is irrotational and isentropic. Because it is
irrotational, there exists & potential function @ whose
gradient yields the velocity vector:

— U=
V=grad 2, } @
v,

Bernoulli’s equation for plane unsteady flow can be written
{from eqgs. (14.04) and (9.06) of ref. 4)

2

Here a is the speed of sound, and a, its value in the free

1In the previous literature, both American and British, this is often designated as the
angle of attack a,since the two are equivalent for a fixed plvot. However, it is6butnot ain
$ho general case of 2 moving pivot, acoording to the usual notation of stability analysis. )

stream, where the flow velocity is U. Differentiating this
expression with respect to time ¢, and using the fact that
dld*/(v—1)]=a*dpfp (ref. 4, eqs. (9.03) and (9.06)) gives

2
Qu‘l"wl’/ri'm’z‘i‘%' p:=0 )]

This, together with the corresponding results obtained by
differentiating withIrespect to z and 7, can be used to elimi-
nate derivatives of the density from the continuity equation

' (ref. 4, eq. (7.08.2))

oot (o) -+ (p0)y=0 (7
The result is that the velocity potential satisfies the equation

— Q)+ (P — 1) Q) — 292,05, — 20,0, — 20,9, —
ﬂu= (8&)

where, from equations (4) and (5),
= 2-I—— U*—a— 2Q,) (8b)

Now infroduce a perturbation potential &, normalized
through division by the free-stream velocity U, by setting

2z, y, )=Ule+2(z, y, 1)} (0a)

so that the velocity components are given by

U
—=] —l—@,
v (@b)

i

Then substituting into equations (8) gives

(A=) 8ot B2 2 00 3, =17 [(7—1) (q»,+

2. “”) @t )+ @Be+-8) Bee - 8,y +2 (1+-3,) By
> @atam) | 00

For purposes of a second-order solution (and to higher order
a potential does not exist), the triple products on the right-
hand side can be disregarded. Thus, the perturbation equa-
tion becomes finally

8, — o —2 2L @,,—% -y [(v— 1) (@,-l—%) @t

)+ P BBt @t B | (D)

where gi=M*—1.
PRESSURE RELATION

Dividing the Bernoulli equation (eq. (5)) by a?/(v-1) gives

a@_ ., 71 u*-v*--20¢
1475 M“(l e ) (12)

aoz
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The flow is isentropic to second order, so that
o
b (BN, B 2
P_(5) B =12
1 YM?
Do a‘) _2_ poUg

and it follows that the pressure coefficient at any point is
given by

— — 2 o=t .
0,=2 po_ﬂfp I:l lvleg (1_%2&>]7—1_1

(13)

Substituting the velocity components of equation (9b), R
expanding in series, and retaining only squares and products
of perturbation quantities gives finally

o, P, ®,\?
Cy=—28—2 2 F0.2— 8+ 200, I (ﬁ) (14)

Here the second-order solution is required only for evaluating
the first two terms; the others are given correct to second
order by linear theory.

SMOOTHING OF PROBLEM

From the leading edge and from any subsequent corner
of the airfoil spring shock waves or Prandtl-Meyer expansion
fans that oscillate as the airfoil oscillates. These introduce
serious complications into the second-order analysis. How-
ever, the complications can all be circumvented by solving
o “smoothed” problem in place of the actual problem. The
solution can thereupon be applied to the actual problem,
for which it yields the correct result everywhere except near
the shock waves and Prandtl-Meyer fans.

The nature of the difficulties can be understood by con-
sidering first the special problem of steady flow past a single

wedge (fig. 2).
Y

Figure 2.—Steady flow past a wedge.

The presence of the bow shock wave means that the analysis
must be undesirably complicated by including the Rankine-
Hugoniot relations (in a simplified form). A second com-
plication arises in the differential equation which, for steady
flow, becomes

‘I)w""ﬁaq)n=My[('Y+ 1)‘I>::‘I’zz+ ('Y—l)@,‘i’w-l-Q‘I’,‘I’,,]
In the iteration procedure to be employed, the nonlinear

(15)
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right-hand side is evaluated in terms of the first-order
solution, and the resulting nonhomogeneous wave equation
solved for the second-order potential. However, for the
wedge the right-hand side vanishes (to any order), which
would imply incorrectly that the second-order solution does
not involve the adiabatic exponent 4. More precisely, the
right-hand side vanishes everywhere except along the Mach
lines springing from the apex, where it has the singular
behavior of the Dirac delta function, and only by taking
account of these troublesome singularities could the correct
solution be found.

Both these complications are avoided by the simple device
of solving the problem of flow past a smooth cusp-nosed
airfoil of arbitrary shape and then applying the final solu-
tion to the wedge. It may be imagined that the wedge has
been smoothed by adding a cusped extension to its nose, as
indicated in figure 3. It is clear that this artifice removes

Fiaure 3.—Steady flow past 2 smoothed wedge.

the troublesome singularities from the right-hand side of the
differential equation. Likewise, it eliminates the need for
the shock-wave relations because, as indicated in figure 3,
with sufficient smoothing, shock waves will form only at such
great distance that their effects cannot reach the airfoil
surface. Although shock waves are thus apparently ex-
cluded, the correct second-order result for the wedge is
nevertheless recovered from the solution by imagining the
extension to shrink in size and disappear. The reason is
that to second order a shock wave is equivalent to the limit
of a rapid continuous isentropic compression. This limiting
procedure, which is equivalent simply to applying the solu-
tion for an arbitrary smooth shape to one that is not smooth,
yields the proper result except in the vicinity of the shock
wave (see ref. 5). For an airfoil of general shape, similar

.broad smoothing must be imagined at any concave corner;

whereas at convex corners (since no shock waves form)
the slightest rounding is enough. This smoothing technique
was applied in reference 4 (p. 399) to steady first-order
flow past bodies of revolution, and in reference 5 to steady
second-order plane flow.

‘We turn now to the question of generalizing this smoothing
scheme to an oscillating airfoil. Modification is necessary
only at the leading edge. Consider first the special case of
rotation about the leading edge. Then it is enough to con-
ceive of an extension which is flexible, so that its cusped tip
can be maintained fixed and directed always into the free
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stream while the airfoil oscillates, as indicated in figure
4. (The exact motion of the flexible tip is immaterial,
provided the surface is sufficiently smooth and its slope re-
maeins small.) After the solution has been found, the flexible
extension is again imagined to shrink away, and the correct
result is recovered for the actual airfoil oscillating about its

nose.
—_———
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Fiaure 4.—Smoothing for airfoil oscillating about leading edge.

Finally, consider rotation about an arbitrary point. The
flexible extension must now oscillate in such a way that its
tip is always directed into the relative wind. Hence, as
indicated in figure 5, the tip must lie parallel with the free
stream at the top (and bottom) of each stroke but incline
in the direction of motion for intermediate positions.

FigurE 5.—Smoothing for airfoil oscillating about arbitrary point.

We are accordingly led to consider the motion of an arbi-
trary flexible oscillating surface described by

y=¢ (@) —be"'g ()

where for the smoothed problem the functions f(z) and g(x)
have continuous first derivatives. The smoothed problem
will ultimately be replaced by the actual problem. Accord-
ing to comparison with equation (3), this means that the
function g(z) will eventually be identified with (z—5). The
requirement that the leading edge of the smoothed shape be
always parallel to the relative wind may be written as

(16&)

J (=0
(16b)
£ (0)=1b/U.
as 18 clear from equation (19) of the next section. (These

last conditions, as well as the requirement that f/(z) be
continuous, must be relaxed in recovering the solution of the

actual problem.) ’
BOUNDARY CONDITIONS B

The boundary condition at the surface of the airfoil is that
the normal component of velocity is zero. For any surface
described by S(z,7,t) =0 moving through a velocity field V,
this condition means that the substantial derivative of S

1
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(i. e., its time rate of change for an observer moving with the
fluid) vanishes at the surface (see ref. 6), so that

S+Vgrad S=0 at §=0 ar)
‘With velocity components given in terms of & by equation
(9b), and for the smoothed surface described by equation
(16a), this tangency condition becomes

8= (148 (' — 0" ) g2t g ai y=g—0oe'™ g (18)

where f=f(z), etc. It is convenient to refer this condition
to the axis y=0 by expanding in Taylor series. Keeping only
terms of second order gives

= (142 (¢ — e &) 77 e’ g (ot £)Byy 0 Y=0
(19)

(Here &, and &,, on the right-hand side can be evaluated
from linearized theory.)

The upstream boundary condition requires that in the
actual problem, the Rankin-Hugoniot relations (or at least o
simplified second-order form thereof) be satisfied across an
oscilliating bow shock wave whose position must be deter-
mined. However, shock waves have been eliminated from
the smoothed problem, so that it is only necessary to require
that the perturbation potential & vanish along the oscillating
characteristic line (Mach line) springing from thoe leading
edge. This insures that all disturbances produced by the.
airfoil are swept downstream. An equivalent and still simpler
requirement is that & and its streamwise derivative vanish
on, say, the plane z=0:

. ®=®,=0 atz=0 (20)

TRANSFORMATION OF PERTURBATION EQUATION

It is convenient to separate the time-dependent part of the
problem from the mean steady flow at zero angle of attack
(for which the second-order solution is known). Turther-
more, for harmonic oscillations the number of independent
variables is then reduced to two by separating an exponential
time factor. Finally, the linear portion of the time-de-
pendent equation is reduced to normal form by a transforma-
tion of dependent wvariable. These three transformations
amount to setting

(@, y, ) =0(, y) 0" “ =¥ (z, y) (21a)
where
K=I‘7§ Z_o} (21b)

Here ¢ corresponds to the mean steady, flow, and the term in
T represents the additional flow associated with the oscilla~-
tion through small angle of attack.

Introducing this transformation into the perturbation
equation (eq. (11)) gives for the potential ¢ of the mean
steady flow

bpr— Bbee=M(y— 1) $:A¢+ (6. ¢47).] (22)
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where A is the Laplacian operation 9%/dx*4-0%/03?, and for the
time-dependent part ¥

Ty (20) W= M~ 1) AT+ )+ 2063+
82)1—id | (1) (2¢,~If,+ )+
M2+ 1 95:‘1';"]" ¢::‘I'+ Mx 4’7\1,#>i|

K [2+(’Y—1)M’] $¥ (23)

The tangency condition of equation (19) likewise separates
into the two conditions

dy=e(1+o)f —e ¢uf at y=0 (24)
T — e (1 62)g — i % &% gt (T — i) —
el fHe* gy g at y=0 (25)

For the actual problem the second of these becomes, identi-
fying g(z) with (z—b),

Ty=—e (1 bo) —ix jga &% (2 —b) 4 (T, — ixT)f ' —

€Wy f+e* ¢, (z—b) at y=0 (26)

For pressures at the surface of the airfoil, the relation of
equation (14) can be expressed in terms of values at y=0 by
Taylor series expansion, with the result that to second order
in thickness and first order in angle of attack

Oy, =(—2¢:—2¢¢n f1+8 ¢°— &)+
201~ [ 5, Ut (0 BT ) S
B9t 4o g | @

where all terms are to be evaluated at y=0.

SOLUTION BY ITERATION

Although the equation for ¢ is nonlinear, that for ¥ is
linear, but with nonconstant coefficients depending upon ¢.
This corresponds to the physical concept that because of the
restriction to linear terms in angle of pitch the oscillatory
part of the flow is an acoustic field with, however, the speed
of sound varying from point to point in accordance with the
mean steady flow.

The well-known linearized or first-order theory results from
disregarding the right-hand sides of equations (22) and (23).
Thus, with the first-order potentials denoted by. the lower
case letters ¢ and ¥, the perturbation equations become

— B 0z=0 (28)

Yy— B Ye— ‘9"

=0 (29)

The second-order solution is obtained by iterating upon
the first-order results. Using the linear equations to simplify
the right-hand sides gives for the second-order iteration
equations
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—Bbr=2MF(N—1) 0.’ +0,7: (30)
and

Vyy— F I‘f} T 2MB N~ Dbt oatyli—

22 @N—1)psts+ B Npwstr -+ oy9,] —2N f’" ot (31)

where
v+1 M2
N="5—"g
(Here, following the usual subscript notation for derivatives,
[o,7]. means O¢,2f0x, etc.) The second-order solution for
&, which leads to Busemann’s well-known result at the air-
foil surface (ref. 1), was given in reference 5. It is there-
fore necessary to consider only the second-order problem for
¥. Details of the interation procedure and discussion of
its limitations are given for the steady flow in reference 5 and
apply also to the present problem.

(32)

PARTIAL PARTICULAR INTEGRAL

The solution of the differential equation for plane or
axially symmetric steady flow in reference 5 was simplified
by discovery of a particular integral of the iteration equation
in terms of the first-order solution. It was also shown there
that for steady three-dimensional flow a particular integral
can be found to account for all terms in the iteration
equation except those involving the adiadatic exponent v
in the form'of N. Likewise, here, a partial particular integral
that accounts for all terms on the right-hand side of equation
(31) except those involving N is given by

Uy =M (o) — ko (33)

The complete solution is this partial particular integral plus
2 solution. of the reduced equation whose right-hand side
contains only the terms still unaccounted for:

2
¥y B (5 20N (M ute—irl (ot entid —

e} @0
FIRST-ORDER SOLUTION

The first-order solution for ¢ is known from Ackeret’s
theory to be

¢=—§f(:c—ﬁy) (35)

It is to be understood here and in all similar expressions to
follow that this is the potential only for x>8y, and that ¢
vanishes identically ahead of the bow Mach wave (where
c<BY).

The first-order equation for ¥ (eq. (29)) is most readily
solved by applying the Laplace transformation with respect
to z. We denote the Laplace transform of a function either
by a bar, or by the symbol ., whichever is more convenient
(and the inverse transform by .L™!), so that, for example

etuta =, o @
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Applying this transformation to equation (29), using the fact
that ¥ and ¥, vanish at =0, gives

- (s’+ﬁ%) 7=0 @7

The solution of this equation that represents waves moving
downstream is
T=C(8) e~ FoV 0 (38)

The coefficient O(s) is determined by the first-order form of
the tangency condition (eq. (25)), which transforms to

Yy=—0(8) at y=0 (39a)
where )
w@)=e=[g @) +ix 3 6@ (39b)
is the downwash velocity at y=0. Consequently,
7 1 —, « e~By " TIAE -
R 7 0

The inverse transformation is readily carried out using the
standard tables (e. g., ref. 7) together with the convolution
theorem, which gives as the solution of the smoothed problem

u!f(:v,y)=é ﬁ = Jo (T}VE’—F? w(z—§dt (1)

The solution for the actual problem is now obtained by setting
g(@)=2—0>b, which gives finally ?

voa=3 [, o(FEFT) oo 1in Fa ety o

“2)

in agreement with the known result of linearized theory (see,
e. g., ref. 8).

SECOND-ORDER SOLUTION FOR LOW FREQUENCIES

Because the first-order solution for arbitrary frequencies is
rather complicated, use is sometimes found for an expansion
in powers of frequency, which involves only elementary
functions. The corresponding second-order solution will
now be carried out in detail, including linear terms in fre-
quency. This result will serve, for example, to evaluate the
effects of thickmess upon one-degree-of-freedom torsional
instability, which is primearily & Ilow-frequency effect.
Thereafter, the result of extending the solution to include
third powers of frequency will simply be stated.

POTENTIAL INCLUDING LINEAR TERMS IN FREQUENCY

Expanding the first-order solution of equation (41) in
powers of the frequency parameter x and retaining only linear
terms gives

Yo~ [ o@&+0@=vD+... @)

where z=z—gy. To this order the partial particular integral
of equation (33) is a solution of the homiogeneous equation

3 The smoothing was, of course, unnecessary in this first-order problem.
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(eq. (29)), and can therefore be disregarded. Substituting
the first-order solutions into the right-hand side of equa-
tion (34) and applying the Laplace transformation gives, to
order «,

— B2 =—2eNe# [(M*s—ix) L{f'@¢ ()} —
i LU @@ @)
It is readily found that a particular integral of this equation
is given by an appropriate multiple of ye=#*”. Then, adding

a complementery function representing downgoing waves
gives

T=C@e s+ yero] (35 (5w ) it 191 ] 09)
where the coefficient C(s) is to be evaluated from the tan-
gency condition. Inverting the Laplace transformation

shows that for the actual problem, in which g(z)=z—b, the
solution has the form

‘P=F(2)+%Vy[M§"+i«(2ﬁ’Zf’—ﬁ’bf’—ﬁ] (460)

where f=f(z). The arbitrary function #(2) is determined
from the tangency conditiod of equation (26) to be

(U o P
@b [rine]] 2- @0 2L " pgaet
[20v—0-Z = |+ 2e—tr+

7~ @1 Jor}

SURFACE PRESSURE COEFFICIENT

F(z)

(46b)

The pressure coefficient at the upper surface of the actual
airfoil is found from equation (27) to be

2M“_M’N2

fl

0,,__0,0+2008‘“‘{——-l-u G

oo S g 1,

@£N—2) bf’:l}+0(x’,e’0,0’) )

where f=f(x). Here Cp, is the value for the mean steady
flow (at zero angle of pitch), which is given by Busemann’s
second-order theory. A more useful form of the result is
obtained by extracting the real part and expressing the
result in terms of the instantaneous angle of pitch §(f) and
its time rate of change 6(f). Furthermore, the parameter e
has served its purpose of distinguishing terms of differont
orders and can be eliminated (according to eq. (1)). Thus,
on the upper surface of an arbitrary airfoil that is described
at zero angle of pitch by y=Y(z), is pivoted about a point a
distance b downstream of its leading edge, and performs
slow angular oscillations described by 6(f), the pressure
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coefficient is, to second order in thickness and first order in
angle of pitch,

2 —
Cri=Cr~ 2032 o48) 2 T2 v

2[2M(N— Dy +(2—M’) BLN—D oy y

MN—2 N 25 ]U+0(o 20,69 (488)
Here the value for the mean steady flow is (ref. 1)
0,0=§-Y’+M 1;_217'2 (48h)

(A preliminary report of this result was given in ref. 9.) In
this form, the result is not restricted to sinusoidal motion
but, applies to any oscillation that is sufficiently smooth and
slow that the pressures depend significantly only upon the
instantaneous angle of pitch and angular velocity.

The pressure on. the lower surface of the airfoil is obtained
from these equations by reversing the sign of ¢, and taking
Y(z) to be the ordinate of the lower surface, measured
positive downward.

The result for plunging motions can be extracted by
letting 6 tend to zero and b tend to infinity in such a way
that their product remains finite, say

bo(t) = —h(t)=—hee*** (49)

In the limit, the airfoil simply translates vertically according
to y=—nh(). The pressure coefficient on the upper surface
is 4

2K MN-—2_, k

52 g Yy (50)

CHECKS ON THE RESULT

Cp,=Cpy—

The solution can be tested in several special cases for
which the result can be derived from other considerations.

Of the five terms in equation (48a), the first is known
from Busemann’s steady second-order solution, and the
second and third from linearized unsteady theory. The
fourth is obtained by using the instantaneous airfoil slope
(Y’—0) instead of the mean steady slope Y’ in Busemann’s
formula and retaining only linear terms in 6. Therefore,
only the last term, which is the essentially new result of the
present analysis, requires verification.

Just at the nose of an oscillating airfoil, the pressure can
be determined exactly if the bow shock wave is attached.
The transition through the moving bow shock is instan-
taneous, and so depends only upon the relative velocity at
that instant (see ref. 4, p. 297). Hence the pressure just at
the nose is instantaneously the same as on & wedge of the
same vertex angle in steady flow with the same relative
velocity. In the present problem, the relative velocity is
compounded of the horizontal velocity U of the free stream

+ Note that, as It should be, this is just the resalt of nsing Busamann’s formula for steady

flow (eq. (48b)), with the local slope decreased by the instantaneous apparent angle A/U;
eee the discussion in the following sectlon of conditions at the nose.
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Fraure 8.—Velocity relative to leading edge of oscillating airfoil.

plus the instantaneous vertical velocity of the leading edge,
which is given by 6b (see fig. 6). The effect of the vertical
component upon the equivalent free-stream velocity and
Mach number is of second order in angle of pitch, but the
equivalent vertex angle of the airfoil is increased by the
apparent downwash angle 6b/U. Replacing Y’ by Y’
6b/U in Busemann’s formule (eq. (48b)) gives, to first
order in angle of pitch

0y~ 0,0+§ 5 %+2 3—4’% Y -%. | (51)

which checks the part proportional to b of the last term in
equation (48a).

The remsainder of the term in question can be checked for a
single-wedge airfoil oscillating about its vertex (fig. 7). It

Mean position of
shock wave——
~

UM
BLorPy

Figure 7.—Wedge oscillating about its vertex.

can be shown using the results of reference 3 that in this
case disturbances reflected-from the shock wave are of third
order in the wedge angle (although for other pivot positions
they are of second order). Therefore, a solution correct to
second order in thickness and first order in angle of pitch
cen be found by applying linearized theory to the mean
steady flow behind the shock wave.® For slow oscillations,
the first three terms of equation (48a) give

2(2 M12)

P—h
50+ o

(52)
%_ P1U12 ﬁl

§ This concept was suggested to the author by W. P. Jones of the National Physieal Labo-
ratory, England,
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where subscript 1 denotes values in the mean steady flow
behind the shock wave. From linearized theory

Mi=M [1—pN—1)d
si=p 1= @v—1)¢]
U,=U (1-%) . 53
P1=Do (1-]—‘)’IM—B—2 e>

()

where ¢ is the semivertex angle. Hence, referring the sur-
face pressure coefficient to free-stream quantities (and noting

s

that z;=x to second order) gives
2 2—M3 & _MAN-—2
0,“=0,0'—-E 0+2 T x ﬁ'—'z T GB+

OMIN—D+@—MHBLN—1) 8§

which checks the first two parts of the last term in equation
(48a) when Y (z)=-ex.

Recently, Lighthill has given a further check for the case
of Mach numbers so high that 1/342 is negligible compared
with unity (rvef. 10).

LIFT AND MOMENT COEFFICIENTS FOR SYMMETRICAL AIRFOILS

The coefficients of lift and pitching moment (about the

pivot) are given in terms of the pressure coefficients on the
upper and lower surfaces by

,__ (558)

(0,‘ -G, )dx
g [, 0—2)(C—0y,) 82 (55b)

For simplicity, consider only airfoils symmetric about the

chord line. In this case, the pressure difference is given by
23
0y —Cy, = ; 42— M $+b>_+4.M’N 2

2M(N——1) , @=MHDLN—-1) -,
4[ e ot g X7

MN—2 .., 8
2w :| z (56)
If the airfoil has a sharp trailing edge, substituting into
equations (55) and integrating by parts gives
4 2—M? | b\  M*N—3M*4-2 1
l— 3 232 lc l Bg,

and

Yd ]U &7)

REPORT 1183—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

.M"N 2 1
=5 2 ) de] o+
(2—M’ 2M’—3 b ¥\ MAN—1)b
' ¢ c? 8 c X
M2N—2 1

1 (-
3| Taet2 25 "D 69
Inside each square bracket the first term is the result of
linearized theory, and the remainder represents the second-
order effect of thicknéss. Thickness effects are seen to
appear in the form of the area of the airfoil profile and its
first moment about the vertical line through the pivot.

If the airfoil has & blunt frailing edge of semithickness
Y(c), the following additional second-order terms must be
added to the above expressions:

to Cye

4 MEN—2 Y(c) M"N 26, @—M)(M*N—1) Y(c) ca
B B ¢’ 8
. (59)
10 Cxm:

i nTa,

B
SR Sl (LT

EXAMPLES: BICONVEX AND DOUBLE-WEDGE AIRFOILS

To second order, a biconvex airfoil of thickness ratio = is
given by the parabolas
y=+Y@, T@)=2r(c—a) (61)

The expressions for lift and moment become

c,=§ ) _% Kzgﬁzlf}z { M4N—3§,GZIP+2T z_c; (62
B[(b 1 LM"I;; 2 ]0+,3[(2 Mlzw_of;z—w b’)+
M“’N 2(1 2b) —M’I\;;slz o )

It happens that for a double-wedge airfoil (with maximum
thickness at midchord), both the area and first moment are
just three fourths of those for the biconvex airfoil. Conse-
quently, the above results apply to double-wedge airfoils if
7/3 is replaced throughout by +/4.

In the expression for pitching moment, the term propor-
tional to 6 represents an aerodynemic stiffness or restoring
moment in phase with the angular displacement, while the
term ‘proportional to § corresponds to an aerodynsmic damp-
ing moment in phase with the angular velocity. The effects
of thickness upon aerodynamic restoring and damping
moments are shown in figures 8 and 9 for a 6-percent-thick
double-wedge or a 4X-percent-thick biconvex airfoil with
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Fiaure 8.—Effect of thickness upon restoring-moment coefficient for
4%-percent-thick biconvex or 6-percent-thick double-wedge airfoil.
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Figure 9.—Effect of thickness upon damping-moment coefficient for
414 percent-thick biconvex or 6-percent-thick double-wedge airfoil.

two different pivot positions. The figures have been labeled
with both the usual American notation (e. g., ref. 11) and the
British notation (e. g., ref. 12) for flutter derivatives, defined
for harmonic oscillations of arbitrary frequency by

—é IE(My+iML) (American)
Cm 69)
40 oeiwl

—é (me+ixmg  (British)
Here £ and X are the reduced frequency in the American and
British notations, respectively, related by

A=2k =2

T (65)

For slow oscillations, the flutter coefficients are obtained
from equation (63) according to

_ —10cm
mo=—kMs=5 <,

U 20,
2¢ 06

(66)
k
mi=-—z M=

(and, indeed, this was originally the definition of ms and ms,
that given by equation (64) being a later extension to the
case of rapid harmonic oscillations). *

It should be noted that according to second-order theory
the nonlinear effects of thickness are themselves linear in
thickness. This means, for example, that doubling the air-
foil thickness ratio would double the distance between the
linearized and second-order curves of figures 8 and 9.

NEUTRAL DAMPING BOUNDARY
Linearized theory indicates the possibility of instability
of pitching oscillations for low frequencies. For a range of
Mach numbers below +/5/2=1.58 and pivots ahead of two-
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thirds of the chord, the aerodynamic damping moment
becomes negative, and so tends to destabilize. (Whether
or not the motion is actually unstable depends, of course,
upon. the other dynamic parameters in the problem.) This
zone of possible instability shrinks and eventually disappears
as the frequency of oscillation. increases. The present low-
frequency solution. is therefore adequate for determining
how the region of instability is modified by nonlinear thick-
ness effects.

Figure 10 shows the boundary of neutral aerodynamic
damping for slow oscillations of a 4}4-percent-thick biconvex
or 6-percent-thick double-wedge airfoil. The aerodynamic
damping is destabilizing for Mach numbers and pivot posi-
tions lying inside the loops. Within the region where linear-
ized theory predicts a destabilizing moment, thickness is
seen to exert a further destabilizing effect except for pivots
near midchord. The second-order solution becomes unreli-
able when the bow shock wave detaches, at about M=1.2.

COMPARISON WITH PREVIOUS INVESTIGATIONS

Two previous investigators have sought a second-order
solution for slowly oscillating airfoils in supersonic flow.
Their results agree neither with each other nor with the
present solution.

In 1947, W. P. Jones obtained an estimate of the thickness
effect by assuming that the ratio of second-order to linearized
pressure disturbances is the same for slow oscillations as
that given by Busemann’s formula for steady flow (ref. 13).
That this assumption is not altogether correct is indicated
by the fact that the results do not check those obtained for
a wedge oscillating about its vertex by applying linearized
theory to the mean steady flow behind the shock wave.
However, the assumption is correct at the leading edge, and
also (as noted by Lighthill in ref. 10) in the limit of high
Mach number. It is seen in figure 10 that this estimate
fails to give a useful prediction of the actual effects of thick-
ness, except for pivots near midchord.

In 1951, Alexander Wylly attacked the problem by

Stabilizing

1.6 —
Second-order theory-«/

. \
M4 //"/ ‘\
Linearized fheory-—-\ /

/ Destabilizing| |
-3
—/ y \

—_— >——-W.P.Jones | //

-15 -10 -5

0
Pivot position, &/c

Fiaurs 10.—Neutral damping boundary for 4%-percent-thick biconvex
- or 8-percent-thick double-wedge airfoil.
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methods similar to those used here (ref. 14). Unfortunately,
it appears that the smoothing was not carried out with
sufficient care; as a consequence, the solution satisfies none
of the three checks discussed previously. In contrast to
the present results, the effect of thickness upon aerodynamic
damping was predicted to be stabilizing and so great that
for airfoils of the thicknesses shown in figure 10 the zone of
possible instability would have disappeared altogether.

Concurrently with the original appearance of the present
work, Martin and Gerber have published an independent
investigation of the second-order effects of thickness on the
stability derivatives for airfoils in constant vertical accelera-
tion and constant pitching (refs. 15 and 16). Their results
agree completely with those given above.

COMPARISON WITH EXPERIMENT

The first- and second-order theories are compared in
figure 11 with the results of recent English experiments car-
ried out at the National Physical Laboratory.®! The aero-
dynamic damping at low frequencies was measured for
biconvex airfoils 5 and 7.5 percent thick at Mach numbers of
1.42 and 1.61 with various pivot positions. For the points
shown the amplitude of angular oscillation, was 1.5°; increas-
ing the amplitude to 3° was found to affect the results only
at the Jower Mach number. Including second-order thickness

° | | | /

!

————"LlInearized theory /
el — Second-order theory, 7-1/2%, y
: section 7
o Experiment, 7-1/29, section /
D Experiment, 59, section /
4 /
\\ /
\ /
< \ /
~5|N 2 7
L)
-Ec:
0

\\
AN 7/
\ ] /
\_/

_.2
(a)
-.4
=25 0o .25 .50 .75 1.00
Pivot position, b/c
(a) M=1.42

Figure 11.—Comparison of experimental and theoretical damping-
moment coefficients for biconvex airfoils.

§ The author is indebted to W. P. Jones, J. B. Bratt, and W. E. A. Acum of the Naticnal
Physleal Laboratory for kindly making thess data available in advance of publication.
The work is to be published under the title “Measurements of Pitching Moment Deriva-
tives for Two-Dimensional Models at Subsonic and Supersonic Speeds, and for a Rectan-
gular Aodel of Aspect Ratlo 4 at Subsonic Speeds,” by Bratt, Raymer, and Townsend.
(It may be noted that earlier experimental results from the National Physical Laboratory
that were clted in a previcus version of this paper NACA TN 2432) are now believed by the
oxperimenters to be unreliable.) 3
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Figure 11.—Concluded.

effects in the theory is seen generally to improve the agree-
ment with experiment. The lower Mach number is close to
the limit of purely supersonic flow —3£=1.38 for the 7.5-
percent-thick section—at which the theory presumably
breaks down.

EXTENSION TO CUBE OF FREQUENCY

The dependence of thickmess effects upon frequency of
oscillation can be estimated by extending the second-order
solution to include higher powers of frequency. This has
been carried out for an arbitrary airfoil by including second
and third powers, which is enough to show an effect of
frequency upon both aerodynamic stiffness and damping.
The computation, though cumbersome, is a straightforward
extension of the previous analysis, so that only the final
result will be given here.

The expression for pressure coefficient on the upper surfaco,
corresponding to equation (47), is found to be

%;%E 1, 'ix<2—M3 +M,b> s 2+M3 +ﬁb)
x,(M’+4 MN MN—2,,
m[z P fLM’ZA}T, 2 b4
(2—M;)}§§N—1) ”f:l n

. [3(3M’-—2)N—2(5M’ 3) f Ik L.

(16—7M7)422}74;i—;(2M*—3) 93f+1§-4—~21 Baf '+

CHION—4
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2| (67)

where f=1(x) and ff = J:f(&‘)’ dt, etc. (Thefirst four terms are

the result of linearized theory.) This result meets the three
tests discussed previously, and also checks the solution given
later for a wedge with general pivot location at arbitrary
frequency. The resulting expressions for lift and moment
involve the airfoil thickness in the form of the area of the
profile and its first three moments about the vertical line
through the pivot.

EXAMPLE: BICONVEX AIRFOIL
These rather formidable results simplify considerably for
specific airfoils. For example, for a biconvex airfoil of thick-

ness ratio = oscillating about midchord, the pitching-moment
coefficiont is given by

(o N 2—M? 2 A2 e M6M?—1) MN—2
40" =1 128 " 168 ¢ 16087 T 35
L MN—1) 122—M)+(MP—4N
e =g TR 2406° +
32 ZUSMA—61 M+ 1)—(B7TM*+-25M*— 16N

14406°
(68)

The first three terms are the result of linearized theory.

The component of this moment that is out of phase with
the angle of pitch gives a parabolic approximation for the
variation of aerodynamic damping with frequency as shown
by dashed lines in figure 12 for a 5-percent-thick biconvex
pirfoil. The accuracy of the parabolic approximation for
linearized theory is indicated by comparing it with the exact
result (solid line). Im. this example the linearized and second-
order curves run almost parallel, which means that the non-
linear effects of thickness vary only slightly with frequency.

Recently, Jones and Skan have treated biconvex airfoils
at arbitrary frequency by & numerical procedure (ref. 17).
Their result is shown in figure 12. It fails to give the initially
parabolic form of the curve that is implied by the fact that
the second-order solution, like the first-order result, can be
expanded in powers of the square of the frequency. Their
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Figure 12.—Effect of frequency upon damping-moment coefficient for
5-percent-thick biconvex airfoil pivoted at midchord.

solution involves several doubtful assumptions, in particular,
that the effect of the bow shock wave can be disregarded.
It has already been remarked here that, actually, the bow
shock has a second-order effect unless the pivot lies at the

leading edge.
STABILITY DERIVATIVES

The oscillating motion of the airfoil has heretofore been
deseribed in terms of its angle of pitch 8 and (negative)
elevation h, as is customary in flutter analysis, and the
flutter derivatives have been calculated. In stability analy-
sis an alternative pair of coordinates is usually employed:
the angle of attack « with respect to the relative wind and
the rate of pitching ¢g=§. The motion is then no longer
restricted to harmonic oscillations, so that there are actually
an infinite number of stability derivatives. However, only
the first three—cm,, ¢n , Cms—for moment, and their counter-
parts for lift, are ordinarily considered significant.

Steady-flow theory gives ¢x,. It is shown in Appendix
B (eq. (B12)) that the combination (¢m,+¢x,) is given by the
solution for low frequencies, but that ¢, and ¢, separately
can be found only from the solution that includes the square
of the frequency. For this purpose, only the solution for
plunging is required, and this can be extracted from equation
(67) as before by letting the pivot recede to infinity and the
angular amplitude diminish according to equation (49),
which gives
;;ga w’.{ﬂ: .Lﬂf [ 2 p -1 25 (a:):l}

(69)
Integrating for the moment according to equation (55b),
replacing f by ¥ according to equation. (1), and then extract-
Ing Cnm, uccordj:n.g to equation (B12) gives

SI1 15 M(N l)bl
Cmg=— £lL3 2¢ de:c——-

M1 ﬂz[’(N —1) N Y(e)

The combination. (¢x +¢m;) i8 given, according to equation

Co,—Cp=




622

(B12), by twice the coefficient of (ef/U) in equations (58)
and (60). Together with equation (70), this gives

o[- (2120
3 ﬁ ) (z—b)de—MIF (1--%)2 Zc("—)] (1)

These results have been derived independently by Martin
and Gerber (refs. 15 and 16). The agreement serves as a
further partial check on equation (67).

SECOND-ORDER SOLUTION FOR~ARBITRARY FREQUENCIES

For some purposes the previous solution for slow oscilla-
tions may be inadequate. In principle, the second-order
solution can be extended to include still higher powers of
frequency, but the labor required is clearly probibitive.
Alternatively, one can attack directly the problem for arbi-
trary frequencies.

The second-order solution can, in fact, be carried out for a
general airfoil at arbitrary frequencies. However, the result
is formidable, involving multiple integrals of products of
Bessel functions, and the reduction to simpler form for
specific profiles appears to be difficult.

A more practical approach is to choose a specific airfoil
shape in advance. Then the second-order solution involves
onlyfunctions of the type encountered in the linearized theory.
In particular, it is found that (at least for the simplest shape)
the final expressions for lift and moment involve only func-
tions which have been already studied and tabulated, so that
numerical results are readily obtained.

MODIFIED SMOOTHING PROCEDURE

The smoothing discussed previously must be dropped at
an earlier stage of the solution when a specific airfoil shape
is chosen. It is therefore necessary first to modify the
differential equation and boundary conditions so that no
singular terms appear.

Copsider first the differential equation (eq. (31)). Apply-
ing the Laplace transformation of equation (36), and envision-
ing the smoothed problem, so that ¥ and ., vanish at =0,
reduces it to :

T (1) =209 [ FOV—D.{ ot} +

Lot —i G Lot} | @

In this form, all troublesome second derivatives have dis-
appeared from the right-hand side, so that the smoothing
cen now be dropped.

Consider next the tangency condition of equation (25),
which contains second derivatives of both ¢ and-y¥. These
cause no difficulty when, as in the solution for slow oscilla~
tions, the tangency condition is imposed as it stands. How-
ever, its Laplace transform will be used here, and then the
Dirac delta functions associated with the second derivatives
would affect the integration implied in the inversion of the
transformation. These troublesome second derivatives can
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be eliminated by first expressing them in terms of 2 deriva-
tives only through the first-order equations:

=P’ Pz
b=t (Yt 1 w)} “

and then applying the Laplace transformation while envi-
sioning the smoothed problem (so that ¢, ¥, ¥., and ¢, vanish
at 2=0), which gives

T, =—b(8) — ML { 0.} + ML {Yaf' } —ixeL{ '} ~
Beal (¥} —Be 1 LLUf +
B (s—ix) L { € 0:(c—b)}

Again, all second derivatives have disappeared, so that the
smoothing can be dropped.

Consider finally the upstream condition. For the smoothed
problem, one statement of the condition was seen to be that
the solution, represents downgoing waves. This means that
the complementary function for the iteration equation should
have the same form as the linearized solution, and this state-
ment of the upstream condition applies as well to the actual
problem.

aty=0 (74)

SOLUTION FOR WEDGE

The simple case of a single wedge illustrates the method of
solution that can, in principle, be applied to any profile
formed of piecewise analytic arcs. For a wedge of semivertex
angle ¢, the first-order solution for ¢ is given by equation. (35)
as

o= —% (z—BY) (75)

and the first-order solution for ¢ is given by equation (42).
Substituting into the right-hand side of equation (72) gives
for the fransformed iteration equation ?

V,,—B (s’-i-ﬂ—t;;) T=—2¢(M3s— ix) |:1+

(N—1)s—ixN/
NS+ L

A particular integral of this equation is given by an appro-

priate multiple of ye #V**+</™? and adding & complemen-
tary function that represents downgoing waves gives the
solution

B(s)e VAT (76

L

T=C(g)e ArVo eI

1, (N—1)s—ixlV/.
VEFEAL &AM

E(s)ye""’\’"""’/m

@n
The coefficient C(8) is evaluated by imposing the tangency

-E(Ms—'ix)

7 Tn this simple case, the partial particular integral of equation (33) offers littls actusl sim-
plification.
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condition of equation (74), with the result that the Laplace

transform of the second-order solution is found to be

T 6-ﬁuvs’+x’l
Py

(N—1)s—ixN/M?
&2+ 3[M3

1 2 4o pep—f L
m)]—ﬁﬂ/s + &M dsw(s) Beb 5 —ix} (78)

The inversion can be carried out using the standard tables
(o. g., ref. 7) together with the convolution theorem. For
calculating surface pressures, it suffices to obtain the solution
in the plane y=0, which is found to be

w(s) [1+ey(Ms~fi«)+

€ .
& (Ms—ig (ﬁy+

\I'(a:,O)=é f zJo (ﬁz)w(x—s)ds+exw(x)+
ﬂﬁ]p;\-:—l)m(O)Jo (zTKJ a:)—eb Jo (ﬂilx)+

éfoz']" (fll{—l E) { £ I:M (N—1w'(z—8)—

’iK(2N—1)w(x_E)_Kg %ﬁz_ew(ﬂ)dﬂ _ “(’_a}dé
(79a)
where

wa)=ets [l—l-ix ﬂ% (a:—b):l

With the pivot at the nose (h=0), this agrees with the result
of applying linearized theory to the mean steady flow behind
the shock wave. Also, when expanded in powers of fre-

(79b)

quency, it agrees with the previous low-frequency solution"

up to terms in &3,

The surface pressure coefficient can now be calculated
from equation (27) and the lift and moment coefficients
from equations (55).

EXAMPLE: WEDGE PIVOTED AT NOSE

TFor simplicity, the results will be given only for the special
case of rotation about the nose. Then it is found that the
lift and moment coefficients are given by

Ct
4008“”
—cm

4006““

=(5+E {ﬂ‘,"z)f,+(2—v>ix(§+f (o fas)—

2+V<E+M >(fo—f2+v)+
b .

o (N—125) - fy—em " 1 ) —

m(sm i Mﬂg’ - N>f1+.+

e i+ (EE T (80)
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where y=0 for the lift and v—1 for the moment. The func-
tions f,, given by

M\ = fo gng—nacIg (%{ M:) dx (81)

arise in linearized theory for » ranging from 0 to 3. They
have been studied and tabulated by von Borbély (ref. 18),
Schwarz (ref. 19), and Garrick and Rubinow (ref. 11). They
can all be expressed in terms of f, by a recurrence relation
due to von Borbély (see, e. g., eq. (A.87) of ref. 12), so that
the additional f, required here is easily computed.
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Freure 13.—Damping-moment coefficient for 10-percent-thick wedge
oscillating about its vertex at M=10/7.

Figure 13 shows the variation of aerodynamic damping
moment, according to first- and second-order theories, for a
10-percent-thick single wedge oscillating about its nose at a
Mach number of 10/7. Also shown for comparison are the
parabolic approximations of the low-frequency analysis. It
is seen that the thickness effect is reversed at high flutter
frequencies, as is suggested by the parabolic approximation.

DISCUSSION
HIGHER-ORDER EFFECTS

The moderate magnitude of second-order effects would
suggest that the influence of third- and higher-order terms is
of no practical importance, except perhaps in the transonic
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Figure 14.—Neutral damping boundary for wedge of 5° semivertex
angle.
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range near shock detachment. This supposition can be con-
firmed in the case of the single-wedge airfoil, for which a
solution exact in thickness (but linearized with respect to
angle of pitch) has been derived in references 2 and 3. Figure

14 compares the boundaries of neutral aerodynamic damping
for a slowly oscillating wedge of 5° semivertex angle as pre-

dicted by the linearized, second-order, and exact theories.
The second-order solution lies close to the exact result down
to the Mach number for shock detachment (which is almost
the same as the Mach number at which the flow ceases to be
purely supersonic).?

APPLICATION TO FINITE-SPAN WINGS

Extension of the second-order solution to wings of finite
aspect ratio does not seem possible at present. No second-
order solution has yet been found even for steady flow past
the simplest lifting wing.

Fortunately, the main conclusion to be drawn from the
present analysm is that nonlinear thickness effects are quite
moderate in magnitude. Practical supersonic wings will,
therefore, probably be so thin that nonlinear effects are neg-
ligible, so that reliance can be placed in the predictions of
linearized theory. Only if the wing is unduly thick, or if
the Mach number is close to unity, or if unusual accuracy is
required, may the engineer be forced to estimate the effects
of thickness. In this event, he might assume that the effects
of thickness are in some sense additive to those of aspect
ratio, provided the aspect ratio is high and the frequency low.
For example, the two-dimensional correction might be ap-
plied stripwise to the spanwise loading predicted by linearized
theory. Some indication of the extent to which such an as-
sumption would be justified can be obtained by considering
other pairs of effects whose combined influence is known.
Figure 12 shows that the effects of thickness and frequency
are roughly additive for the frequencies of usual practical
interest in dynamic stability analysis (say A<{0.2). Like-
wise, figure 15 shows that the effects of aspect ratio and fre-
quency, determined from Watkins’ linearized solution for the

8 In figuro 14 the curve designated gecond-order theory includes all second-order effects
and also some (but not all) of the third-order effects. It therefore does not represent the
second-order sotution of this report. The curve for that solution (calcnlated from eqs. (58)
and (60)) can be plotted from the following values:

bfe: —L5 —1.0 —0.5 0 033 @5 0.8
Af: 12 1.26 134 152 168 1.52 1.2
The rovised curve falls significantly below that shown for the exact theory. Hence the

concluston reached in the discussion of higher-order eflects on pages 623 and 824 must be modi-_

fled; third- and higher-order terms can be of some practical significance. The suthor Is
indebted to Dr. Georg Drougge for pointing out this discrepancy.
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Fioure 15.—Effect of aspect ratio upon damping-moment coefficiont
for rectangular wing according to linearized theory.
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rectangular wing (ref. 20), are nearly additive in the same
range of frequencies.

Martin and Gerber have calculated the second-order effects
of thickness upon damping in roll for wings of infinite span
(ref. 21) They then estimate the effect for o finite rectan-
gular wing by increasing the result of linearized theory in
the same ratio as for the infinite wing. Agreement. with ex-
periment is thus considerably improved, which gives further
assurance that superposition of thickness effects may be justi~
fied also for oscillating wings.

Recently, Acum has estimated the serodynamic damping
of pitching oscillations of rectangular wings at supersonic
speeds by assuming that the thickness effects of the present
theory can be added to the aspect-ratio effects predicted by
linearized theory (ref. 22).

FURTHER ANALYSIS

If thickness effects of the magnitude indicated by the
present analysis are judged to be significant at flutter fre-
quencies, extension of the high-frequency solution to more
practical profiles would be warranted. The solution given
for a single wedge at arbitrary frequency should be extended
next to the biconvex or double-wedge airfoil. Although con-
siderable computation is involved, it does not appear that
the labor would be prohibitive.

AMES ABRONAUTICAL LLABORATORY
NaTIoNAL ApvIsoRy COMMITTEE FOR ABRONATUTICS
Morrerr Frewp, Cavir., Apr. 20, 1963



APPENDIX A

SYMBOLS
Y

speed of sound

aspect ratio of wing

downstream distance from leading edge to pivot
airfoil chord

constant of integration

section lift coefficient

section moment coefficient

stability derivatives (See eq. (B5).)

flutter derivatives (See eq. (B6).)

pressure coefficient

surface pressure coefficient in mean, steady flow

pressure coefficients on upper and lower surfaces
of airfoil, respectively

function defining upper surface of airfoil at zero
angle of pitch

See equation (81).

function defining amplitude of oscillation of
upper surface of smooth airfoil

olevation of plunging airfoil, positive downward

amplitude of harmonic plunging oscillation

we 1

reduced frequency, T3 b

British flutter coefficients (See eq. (B9).)

free-stream Mach number
American flutter coefficients (See eq. (BS8).)

100
2 g

static pressure

rate of pitching, 6

Laplace transformation variable

function defining moving surface

time

velocity components parallel and perpendicular
to free stream

speed of flight

velocity vector
downwash velocity at y=0

Y(x)

QW

B Rw™

bo

>

W S e s Vo v

32 ZZ2R® ¢

h

- o

~

(S
N~

~

coordinates parallel and perpendicular to flight
direction, moving with mean steady velocity
of airfoil !

ordinate of upper surface of airfoil at zero angle
of pitch

z—Py

angle of attack—angle of airfoil with ‘respect to
relative wind at pivot

ME—1
adiabatic exponent of gas
. 22 | 0°

Laplacian operator, b—zg—l-ﬁ

small parameter representative of airfoil thick-
ness -

angle of pitch—angle of airfoil with respect to x
axis

angular amplitude of harmonic pitching oscilla-
tion

Mo

U

reduced frequency, %=2]c

constant that is 0 or 1 in equation (80)

density

airfoil thickness ratio ,

first-order mean steady perturbation potential

second-order mean steady perturbation potential

complete perturbation potential

first-order time-dependent perturbation poten-
tial

second-order time-dependent perturbation poten-
tial

partial particular integral of time-dependent
iteration equation

angular frequency of oscillation

complete velocity potential

free-stream conditions

conditions in mean steady flow behind bow shock
wave on wedge

differentiation with respect to time

Laplace transform
625



APPENDIX B
CONNECTION BETWEEN FLUTTER AND STABILITY DERIVATIVES

In flutter analysis the motion of the airfoil is described by !
the angle of pitch 6 and the (negative) elevation h, whereas
in stability analysis it is described by the angle of attack «
and the rate of pitching ¢. From figure 16 it is seen. that

tan 6--k{U
1—(@AfU) tan 6

(B1)

tan «

U -

Fiaurn 16.—Alternative coordinates for describing motion of oscillating
airfoil through still air.

and by definition g=6§. Hence to second order in the angles,
these alternative coordinate systems are related by

a=0+%}

a=0

(B2)

For a given profile, gas, Mach number, and pivot, the
moment coefficient at any instant depends on the entire
previous history of the airfoil motion. Thus in stability

coordinates
Ca()=CaLa®, ¢(H1 (B3)

Here the heavy brackets are used to emphasize that this
is not an ordinary function, but a functional of the two
coordinates, which are themselves functions of past
time. Now if « and ¢ are analytic functions (for all past
time), they can be resolved into their successive time deriva-
tives. Then ¢, assumes the nature of an ordinary function of
these infinitely many variables, each of which depends upon
time as 8 parameter:

enl®) =Cula®), &), . - ., g, 4®,. . .1 B

Finally, if ¢, is analytic in each of these variables, Taylor
series expansion gives *

1 British writers uss z fnstead of & Both American and British writers have previously
used « Instead of 6, but 6 Is preferable for the reason given in footnote 2, and is apparently
now being adopted by the British.

2 The reader may choose to regard this result as being obvious from physical considerations,
in which case the preceding mathematical formalism s superfluous.
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eall)=eon+(557) d0onH(557) &Ocmt . . . BB
where only linear terms have been retained. Here the
coefficients have been made dimensionless using the charac-
teristic time ¢/2U, in accordance with the usual American
notation. In stability analysis the motion is usually assumed
so slow and smooth that the three terms shown explicitly
are sufficient. The coefficients cum,, Cm,, Cmy, otc., Which are
(aside from factors of ¢/2U) the first partial derivatives
of the function ¢y, are the stability derivatives.

Proceeding similarly in flutter coordinates would lead to a
corresponding expansion in terms of flutter derivatives:

nO=00cugt 5 MO it (557) 0 cmit 5 (57) BOmi - -
B6)

Here the first term has been omitted since it is clear physi-
celly that cm, venishes identically—the moment depends
on changes in elevation but not on the elevation itself.
However, it is customary in flutter analysis to consider only
harmonic oscillations:

() =0,6"**, h(t) =hee™ B7)

and then the infinite series for ¢, collapses to just four
terms. In the ususl American notation for flutter coefficients
(ref. 11)

and in the usual British notatmn (refs. 12, 13), with (0, k)
in place of (a, 2)

Cn=2 (% mh+% mi,‘l"ﬂ”‘&'l‘% ma) (B9}

Comparing these expressions with equation (B6) in the
special case of harmonic oscillations shows that
—2BM,= my= —Fem+ ...
—2k My=2mi=cmj—kcnz+ . . .
— 2 My=2ms=Cmy—k’Cmz+ . . .
—2k My=dmj=cm;—Fcaz+ . . .

B10)

The relations between derivatives in the two coordinate
systems are found by regarding each system as consisting
of an infinite number of coordinates that are related by
equation (B2) together with all the relations obtained by
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differentiating equation (B2) repeatedly with respect to

time. Hence
c,,,a=c,,,a c,,a=c,,,,;.
Cmj,=Cm, Cm;=Cmj—Crmij
11
Cog=Cm,FCrm Cmy™=Com; (B11)
Cmi=Cm; . e ...

Finally, combining these relations with those of equation
(B9) gives the omnibus relations

—2My= my=—Femt+ . . . =—Fem,+ . . .
—2k My=2mj=cCmj— . .. ~ =Cm,— ...
(B12)
—2BPMy=2ms=Cmy— . ..  =Cm,— ...
—2k My=4mi=cmy— . . . =(c,,.q—l—c,,,6)- ..

The corresponding relations for lift can be found in the
same way.

Equation (B12) shows that the combination (6m, +
Cm,) 18 proportional to the first term in the expansion
of the flutter coefficient my or M, in powers of frequency.
It is therefore given theoretically by the solution linear in
frequency, and experimentally by measurements at low
frequency. However, to determine ¢, alone, and hence
Cmy, 8quares of frequency must be retained. For this
reason, it is difficult to find ¢, and ¢, by oscillating an
airfoil in a conventional wind tunnel. It would be necessary
to perform the experiment at various frequencies and so to
determine the initially parabolic variation with frequency
of the component of moment that is out of phase with the
angle of pitch.
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