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EXTRAPOLATION TECHNIQUES APPLIED TO MATRIX METHODS IN

NEUTRON DIFFUSION PROBLEMS ‘

By ROBEETR. MCCREADY

SUMMARY

A general ma.lrix method h deoeloped -for b‘ soluiion of
charact8ri8tic-m.h? problem of the type a%ng in many
ph~sz”calappliuzi%nw. The 8cbrne employed ia ewentidy W
oj Qau.wand SeZel with appropti modj’icw%ns needed to
mulceit applicable to charactenktic-wz.lueproblems. An i%a-
tiue procedure produces a 8equ6nc4oj estim.at.e8to the an8wer;
and extrapol.aiionteehnigua, ba8edupon preti behaw oj
iierant8, are uti?i2ed in 8peeding cmwergena. Theorei%ully
sound limits are pikmd on & magnitude of the cxtrapoluiion
that may be toleral.ed.

Tl& matrix method i8 applied to the problem oj jinding
Critical&yand new!.ronjkx8 in a nuclear reacior with control
?’od8. The twodimensional jinii.edijerence approxirnuiion to
tb two-group tirondi&sion eqwztiom L* treated. R&
for i%i8example are indicuted.

The caLwlai50rMwerepenjorm.tyi!on theIBM’card-programmed
calculator.

INTRODUCTION

A general matrix method is developed for the solution of
characteristic-value problems of a type arising in many
physicnl applimtions. The method of this paper is essen-
tially that of Gauss rmd Seidel (ref. 1), which itself is but a
specicd cnse of the method of conjugate gradients (ref. 2).
The adaptation of the Gwss-Seidel technique to the c.harac-
tmistic-value problem calls for a means of computing suc-
cessive estimates of the chmacteristic value m well as the
vector. This calculation is made to rely upon Turner’s
technique (ref. 3) for assigning a meaning to tlm ratio of two
vectors.

Extrapolation techniques me also employed to speed up
tlm convergence of the iterative process. One of the9e is
based on Turner’s original formula (ref. 3), and the other is
Q slightly more complieded modification.

The number of iterations required for convergence is not
studied theoretically here as in the “n-step” methods, but
tho minimization of a suitable form at eaeh step is derived.

Tho method is applied to two-group neutron-diffusion
equations. The calculations Were performed at the IVACA
Lewis l~borntory.

SYMBOLS

The following symbols are used in this report:

A, B, L, U matriow
@ axial leakage
D, E, F, Q, J, X vectors
h grid dimension
i, j, k indices
kti thermal muhiplieation constant
L; average square slowing down length for

fa9t neutrons
L:h average square M7usion length for ther-

mal neutrons
N number of nuclei per cc
P* resonance esoape probability
r radial coordinate
r. core radius

I

1 U>O
Sgn u= –1 U<o

o U=o

t reflector thicknws
W,w weight functions

‘Y oharacterktic value
A#l deviation at ith point of kth iteration (eq.

(80))
difference XLj21-XP.

A actual damping rate
T bulk damping rate

$d#frh#f neutron fluxe9

Parameter groupings:

I Supcmrk NAOA TN 3611, “Estra@atbm Tecbnlques ApplkdtoMatrix Metlmis In Neutron DIUrisbm Probhwm” by RokutR. MoOr@lY,lWS.
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Subscripts :

f
th
lr
o
1
2
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fast
thermal
transport
reactor
reflector
rod

THE METHOD

MATEIX FORMULATION

Consider the matrix equation

where A and B rue nXn matrices, X is an n-component
vector, and the characteristic value of 7 is a scalar to be
determined. A may be separated into the sum of two
triangular mat&es L and U, where L contains all the
diagonal elements of the original matrix A.

This separation, -which anticipates the GausA3eidel
process, is effected in the following manner:

A=L+ U (2)

lij=a,j jsi; 2,,=0 j>i (3)

uij=ati j>i; uil=O j<i (4)

If L is a nonsinguhir matrix (always true if 1,,#0 for all i),
equation (l), moditled to

(L+ V) X=YBX (5)

may be multiplied by L–l, giving

(I+L-’V)X=7L-’BX - (6)

For a given X, the quantities L-’UX and L-’BX of
equation (6) may be calculated without the actual formation
of L-l. This fact, which is very helpful for systems con-
taining matrices, arises in the following manner and de-
pends upon the triangular nature of L. Let D be the
vector defined by

D= L-lUX (7)
Then

LD= UX= C (8)
whence

Zlldl=C1 (9)

gives dl, since rdl the C*cm be computed from U and X in
equation (8). Then

l,,d,+&&=c2 (lo)
gives d~,and

Z.ad,+h(lz+ti=c, (11)

gives da, and so forth, so that L-l need not be computed in
order to obtain L–l UX. The same iuwment applies
to L-lBX.

ITERATIVE SCHEME

Equation (6) may be written

X=yL-lBX-L-l UX (12)

which may be interpreted as defl.ning the iterative sclmmo

-l&l = yk~lL-lBXk —L-l UX~ (13)

in which yk+2 is an e9timate to 7 thnt can be calculntecl from
X,. To obtain -yt+,, form the inner product of tho vector
sgn L-lBxk with each side of equation (6); thus,

~t+,_(sgn L-lBXt,(I+L-’U)X,)
– (sgn L-lBX,,L-lBXk)

(14)

Equations (13) and (14) are the basic equations of the
iterative scheme. Given any X., -Yk+lis computed from
equation (14) and Yk+I and xk are placed in (13) to yidd
the next iterant Xt~l. This process is repeated until A“t
and yk+l converge.

Some normalization is necessary in probhxns of a homo-
geneous nature. The simplest method of normalization is
to adjust a permanently speciiied coordinate of X~ to unity
before beginning each iteration. This is accomplished
by dividing each element of the vector by tho speciliod
coordinate.

The ratio defined by equation (14) was chosen for sim-
plicity of calculation on available punched-card equipment.
That ratio can be compared to the Rayleigh quotient
(for eq. (13))

~+l=(Jk, @k)
(Jt, JJ

(15)

where
t7k=L-lBXk (16)

Q,= (I- I-L-’~A”k (17)

by noting that each of the relations (14) and (15) const,iLutes
a weighted sum of local (point by point) values ~i~l of -y;+,.
These local values are defined by

.(o are the ~th Components d Qk ~n~ J~~where gi” and Ik
respectively. The weighted average msocintecl with (16) is

w-here
~p]2

‘i=~[jp]2

while the weighted average associated

where

(19)

(20)

with (14) is

(21)

(22)

Equation (15) selects that value of y~+l which minimizes
the sum of the squares of the residuals of equation (6) when
that quantity is thought of as a function of ~i+,. The sum
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of the squmea of the residuals is not, of course, the only
qundrntic form that is suitnble for minimization (ref. 2).
Consider the expression

which is zero for Xk=X and Yt+l=7. This generally positive
qurmtity cnn be minimized (mnde closer to its ultimate value
zero) by setting

which is equntion (14) expressed in terms

EXAMPLE

(24)

of J nnd Q.

To illustrate the commrgence of this method in a special
case, consider the problem of equation (1) -with

()

A=3–1–1 o
0 2–l–1
o–1 3–1 (25) .
o–l–2 3

and

()
B= 0100

0010
1000 (26)
0000

which has the real solution X(l) =1.020070, X(2) =1.329658,
Xo) = 1.000000, X(~J=l.109886; -Y= O.549429 and two solu-
tions with complex characteristic values. TIIis solution was
found by the ordinnry process of solving the characteristic
equation.

This problem was solved in 15 iterations starting with an
ini~inl guess of XO= (10,100,1,1000). The values of suc-
ccssivo iterants, together with those of ~, are listed in tb e
following table. The iterants are normalized so that
Xj3) = 1 fLt the start of each iteraticm:

—
L’
—
o
—

;
3
4
6

6

i

II

11
u
13
14
Is

—

10

-0.6?K$’M
.271412

i%
1.mull
L OIW’J
L 024S!4
L 01%7”2
1. o19m
1. Crm30

L@W78

MM
LOZWl
LG20070

xkl) I* X(4)

t

——
100 Nil

LW L W3211
. 433a15 .812771

L&3SL52 LlSS334
1. 3eJml L EXi240
L 292707 L 027M@

LW044 ~~
L 33191S
L 3Z31W L l&Z3@S
L&W48 L 1C9949
L3297S3 L liWJZ!3

L- 1. 10W6
LTZ?W9U L 10EZU3
I.&$@% L 10%W
1. Xi9wl L 1CW3S
1.329358 1. ICFRM

-fk+l

–la @w6s9
-1.3322$3
–. W71as

.3mm

.fmm

.m3&3

. mm

. mm

.649107

.349231

. 649s10

.MOm

.mm22

.4$40432

.W430

EXTRAPOLATION TECEINIQIJB

If, instead of four components, the iterant vector has many
components, techniques of extrapolation are usually desirable
to speed convergence of the process. The technique em- ,
ployed here, which is due to Turner (ref. 3), attempts to

evaluate a bulk damping rate that describes in an average
way the over-all trend of the individual components of the
iterant vectors.

Assume that each iterant X. is made up of the sum of the
solution X and two error vectors Et and FE satisfying the
damping relations

Ek+l+ ,Ek (27)

and
~k+~= —rF& (~s)

Then the following relations hold:

Xo=X+~+Fo (29)

X,= X+ T&–TFO - (30)

I X,= X+?&+2Fo (31)

X3= X+#l&– #F. (32)

One may compute
#=x,–x,

X,–xo (33)

The “vector division” implied in equation (33) is possible
because, under the initial assumption of error behavior
(eqs. (27) and (28)), the vectors X3–X, and X,–X. me
collinear and therefore differ only in length.

If the error vectors are eliminated from equations (3o)
and (32), one obtains.,

x=x,+x,
I—P

(34)

which gives the armver as a linear combination of the alter-
nate iterants XI and X3.

The preceding analysis suggests that a formula analogous
to (34) be used to estimate the answer. The difficulty here
is that equation (33) may be meaningless when equations
(29) to (32) do not hold. To circumvent this diihculty, a
method of computing ? is needed. Toviard this end,
define 6#~ by means of

(35)

and define ? by means of

The direct analogy to equation (14) will be noticed. Equa-
tion (36) permits computation, in an average way, of the
damping of the error vectors. With # available, the mtra-
polated value X’ of X is computed from

X,=X3– #x,
1—2 (37)

In case the error is damping exactly as assumed in (27) and
(28), equation (36) gives the value indicated by (33), and
equation (37) reduces to (34); that is, X’ becomes the
answer X.
‘ Since the ideal damping behavior is rarely an actuality, it
is of interest to examine the effect of the preceding process on
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error components. Suppose that X, is more adequately
represented by

Xo=X+& E:”
i=l

where IZ$” has a damping rate (positive
Then

(38)

or negative) of ki.

(39)

(40)

hold. The extrapolation indicated in equation (37) now
yields the following relation between the estimate X’ and
th~ answer X:

(41)

This interpretation is useful, since it indicates the damping
effect upon the errors of three iterations and one edrapo-
lation.

If, for simplicity, one of the errors IZ$ and its damping
rate xi are designated by E and A, respectively, then

(42)

gives the damping of this error component as a result of j
iterations and one extrapolation. The “extreme” value of
R (actually that value farthest from zero; i. e., farthe9t from
maximum damping) may be found by setting

dR j>j-1–72&z)~j-3

ix= 1—7’
=0

This yields

(43)

(44)

as the equation to be solved for the values of x which are asso-
ciat ed with the errom that receive the minimum damping
from the process of j iterations and one extrapolation.
Equations (42) and (44) give R=, (~), the extreme value of
I?, as a function only of r and J:

(45)

To find the value of # so that this function (l&,) cannot
exceed the bounds + 1 [i. e., so that the slowek damping
component (and hence all components) cannot increase
through extrapolation], ~ must be less in absolute value thim
the least of the roots of

(46)

If only such # are used, the convergence of the process
cannot be impaired by the extrapolation.

Suppose now that the previous value of R (A,7) is replaced
by the formula

(47)

In formula (47), j24. The second factor phicea n zero
(maximum damping) at just the points of minimum damping,
that is, at the values of A determined by (44). If now

dfi/dX is taken as zero and the limit + 1 is placed upon tho
resulting RG~(/), the limiting safe values of 72 are obtained
by &ding the least of the roots of

~#–2(j–1)#-2+~-2)t-q d+ [j–2(j-l)#+(j–4)~4]=0

(48)
where r’ satisfies

~=ti-l)(j-2)+J5j2-12 j+4
j’

(49)

The revised formula (47) has both the effect of ensuring that
no component will be impaired in its damping by the extra-
polation and also that the least rapidly damping compommt
receives a zero contribution in the extrapolation.

Since, as before, for some error component E,

Xj=X+NE (60]

Xj_,=X+W2E (61)

Xj_d=X+W4E (62)

in which X represents the answer, the specification of (47)
as a damping formula implies

x,=x+&2(j-y%j-* +&2)T4kf-4 ~
(63)

j–2&l)T’+(j-2)74

where X/ is the extrapolated value of Xj. If AjE,W2.E,and
N4E are eliminated from (53) using the relations (60),
(51), and (52), then

x,=jxj–2(j–l)T2Xj--2+(j-2)74Xj_4
j–2(j–l)~2+(j–2)r4

(64)

Comparison of (42) (with j=3) with (37) on one hand and
of (47) with (54) on the other hand leads to the following
valid rule of thumb to obtain the mtrapolated value of X
for a given damping function: Replace the power Al of x
in the damping function by Xl; the resulting linear combina-
tion of alternate iterants is the formula for the extrapolatwl
X. It is easily verified that the validity of this arises from
the manner in which the error vectors are assumed to bohavo.

The smallest roots of equations (46) and (48) are listocl
in the following tables:

tt t

~ 72
j +

4 0.3234 4 0.Oe87
.Mm .6746

: .W33 .! .8213
10 .m 10 .9427

I I # 1

These are the upper limits of the “safe” values of d within
the framework of the definition.
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APPLICATION TO REACTOR THEORY

GENERALREMARES

Multigroup reactor equations can be solved, in principle,
by the present method. The number of components in the
vector solution, to be discussed in detail later, is approxi-
mately equal to the product of the number of grid points
and the number of groups in the mnltigroup scheme. An
mtreme increase in the number of these elements lengthens
the problom considerably. The calculations here are per-
formed in accordance with two-group neutron-diflnsion
theory.

The two-dimensional reactor with control rods, which is
considered later, is suited to two-group calculations, Bince
the control rods are particularly effective on the thermal
group, and two-group calculations are good for thermal
assemblies.

The following illustration is introduced to show the general
principles of the matrix setup in detail. These principles do
not change for the more complicated two-dimensional prob-
lem that is treated later. A relatively simple one-dhensional
problom has been chosen to illustrate the detailed setup and
the consequent matrix

EXAMPLE OF TWO-GROUP DIFFUSION EQUATIONS

Tho one-dimensional diffusion equations for a reflected
thermal reactor of slab geometry are (ref. 4)

nnd

for the core, and

.
and

for the reflector.

Tho paramete~ a’, b, c’, ~, f’, g’, and m are defied in the
list of symbols; 7 is the characteristic value of the system and
i3quals 1 for criticality. When -f converges to a value other
than unity, the uranium concentration is adjusted and the
process repented.

The differential equations (55) to (58) are replaced by
finitdifh.mence equations; the operation d’v/d& is estimated
by means of the approximate formula

(59)

where the points of the region are numbered in order as grid
points of a fl.nite-difference net, and h is the distance between
successive points. b the following, rc is the core radius,
r,+~ the complete reactor radius, and point 6 lies on the
interface:

TO MATRJX METHODS IN NEUTRON DIJ?FUSION PROBIJNJS 751

0 : 1:

. .

.

012345 ;789
o Te rc+t

The boundary conditions are that the fast and thermal
fluxes have zero current acroes the plane of symmetry (z= O).
This condition

—~t, !4?
dz ..O=O

can be approximated by

n—w—=0
h

(60)

(60a)

for both pf and pm. The condition of continuity of currents
at the interface is met by approximating the derivatives in
the expression

–A,ro *(rC–O)=–X,,, ##c+O) (61)

for both the fast and thermal fluxes. The remaining condi-
tion is that the flu be zero at the outer boundary. If the
fast flux is designated by p and the thermal by ~, the system.
becomes:

Equation

j

o

1–5

6

7

8

>
n—m—=0

h

Pj+l+w.1-%q

h’
—a’v,= —~b~j

Y’,,jo-~=h,,,n ~+-

-+%%-%7
h’

–f’*=o

~~ &*=Owhichinccrporates*=O
Ib- 61

for the fast-balance equations and, for the thermals:
Equation

i

o +,–+,=0

1–5 +f+l+$i-l–wt_c,*, +–&=o

h’

6 ~t, ~ $A6=A,,, *1 $7–%

h h

7 ti8+#’c-~7

h’
–g’*,+m~=O

~ #T–~8 I
——g #8+m%=0 which incorporates +~=[

h’

(63)
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The variables ~ to ~ and *Oto *Smay now- be written as XO to
.& and Z to X17, respectively. The matrix formulation of
these equations is presented in figure 1. The following
symbols have been introduced:

1,=1/h’ (64)

&=2/h’+a (65)

F,=2/h’+f (66)

Cb=2/h’+c (67.)

Q,=2/h’+g (68]

L=? (69]
tr,

~_Atr, ,M
(70)

-b
-b

-b
-b

-b

Fmmm l.—~ldrkx formulation of equations (62) and (63).

RECAPITULATION

cadmium control rods are inserted in the com; one, a cylin-
drical rod of 2-centimeter radius, is centered along the axis
of the renctor. The remaining eight rods are equally spaced
on a radius of 24 centimeters and me shaped so as to be
bounded by coordinate surfaces. Each of these rods extcmds
over a radial distance of 4 centimeters and subtends a centrnl
angle of 9°.

The symmetry of this assembly is an important factor in
making solution of the reactor problem feasible. The flux
in the 45° sector indicated in figure 2 is adequate to represent
the flux in the entire reactor; iu fact, additional symmetry
within the sector implies that only half the sector need be
considered. The three-dimensional problem is mado two-
dimensional (computation-wise) by estimating the neutron
leakage in the axial direction due to the iinite height of the
reactor. This is based upon an axial cosine distribution
similar to the bare pile solution (eq. (75)).

COMPOSITION AND NUCLEAR PARAMETERS

The core volume is proportioned between the water
(density, 1 g/cc) and aluminum by assuming a volume ratio
of aluminum to water of 0.76. The nuclear diffusion con-
stants for the wre and reflector are listed in the following
tables. The subscripts O, 1, and 2 refer to the core, reflector,
and rod regions of the reactor, respectively:

Im
Fast

%ne L; +
— ——

0 3. 7s
% 3.43

; .-.. 4.3.5

Parametem for the rod regions are unnecessary because of
the simplified treatment of the rod, in which the thcrmnl

To review the general application of the method to two- I neutron-flux is assumed to vanish on the rod bounclary oncl

group reactor eq~ations, c~~lder the followhyg broad out-
line of this process:

(1) Write the two-group equations with the parameter ‘Y
introduced as a multiplier of the production term of the fast-

‘ balance equations.
(2) ExTress the differential equations by their fl.nite-

difference approximations so that they become a linear
algebraic set of the type associated with equation (l).

(3) Perform such iterations and extrapolations as neces-
sary to obtain well-converged values of ‘Yand X.

(4) Adjust the uranium concentration and repeat step (3)
using the original answer from (3) for the initial guess XO.
The concentration should be changed so that ‘Y+l.

(5) Repeat (3) and (4) until y converges. If criticality is
desired, change the concentration so that the converged
mdues of 7+1.

TWO-DIMENSIONAL REACTOR WITH CONTROL RODS

GEOMETRY OF REACTOR

The reactor (see fig. 2) is cylindrical and water-reflected
with a core composed of aluminum, water, and uranium,
which are assumed to be homogeneously nixed. The
height of the reactor is 70 centimeters, the outside radius 50
centimeters, and the core radius 32 centimeters. IWne

the radial and asial leakagea are assumed to bdrmce h the
absence of fast-neutron absorption processes. The th ermnl
parametem in the preceding table are those as.socifited with
an atom ratio of W/iV” of 35o; these, of course, change for
dif?erent uranium concentrations.

FIGURE2.—Two-dimensional reactor.
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B
2

D

A

FIGURE3.—22* Sector of reactor.

EQUATIONS AND BOUNDARY CONDITIONS

Tlm two-group equations (ref. 4) for the core are taken to
be

“’”-(k+B’)’”=-’*kf”&”” ‘7’)
and

““”’-(&+B’)’’”+*’’’’k’”=”’72)
All the pnmmetws of equations (71) and (72) are the ordinary
nuclear ones, except the arbitrarily inserted -Y, which is a
mensum of the criticality and is equal to 1 for a critical
assembly.

In the reflector the two-group ditlusion equations take the
form

“’”-(k+B’)”’l=O (73)

‘%lhl -(’zk+B’)’”’+*’”’&=”’74)
while tho fmt-ditlusion equation for the rods is taken to be

V2WS—B2%OD=” (75)

by change in rod boundary conditions would not affect the
general principles of the numerical scheme. As will be seen
from the boundary conditions, the thermal neutrons do not
require a difhsion equation within the rods. The region
considered in the problem is a 22jf0 sector (of the circle of
fig. 2), one side of which passes through the center of one of
the outlying rods. This is illustrated in @we 3. The
symmetry of the over-roll reactor implies that the normal
derivatives of the flux across the surfaces A and B are zero.
This implies that the fhm at dl points of the circle of iigure 2
can be found by solution for the flux only in the sector
indicated in figure 3. The condition of continuity of fluxes
and currents is involved at the core-reflector interface, in-
dicated by 0 in figure 3. The vanishing of the fast and
thermal flux at the outer boundary (D) is also required. The
thermal fhm is taken as zero on the edge of the control rod,
and the continuity of the fast flux and current is considered
to hold on the core-rod interfaces. The details of the
mathematical formulation of these conditions are deferred
until the general discussion of the difference equatiops.

PINITBDIFFERENCE EQUATIONS

In order to write the renctor equations as iinite-difference
approximations, the sector of ilgure 3 is divided into a grid
net of points, The flux is determined by solution of the
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cm

o

2

4

6

8

10

12

14

16

18

20

Caltrold-2—2-.

24

26

28

30

32

34

36

38

40

Reflector- ---
42--

44

46

48

261

---titer ccmtml md

K
\*

137 ● . *4

134
“&

ra
“ %

,=4

43‘
\a*&

X*

261

104
2

243
---

237

231

86

225 ‘ 2% --Core-reflector

2%

se ,

62
201 ‘

qx:g
E-2 x ,~6 x ,g-r

165’

2 ‘

151

1
14d 141

0Z25

FIGUZE 4.—hactor grid points.

linear algebraic system of equations that results from writing
the finite-cliflerence approximation to the fast- and thermal-
diffusion equations at each poimt. The grid arrangement
used iD the present problems is indicated in figure 4. The
thermal flwx (components 1 to 139 of the vector solution) has
the following breakdown into groups of components: reflector
(1 to 73), core-reflector interface (74 to 79), core (80 to
139). The fast flux (140 to 291) has the following break-
dowm: reflector (140 to 212), core-reflector interface (213 to
218), core (219 to 284), control rods (231, 232, 237, 238, 243,
244, and 285 to 291).

The number of components associated with the thermal
apd fast flues, respectively, differs because of the w&n-
ment of boundary conditions at the control rods, which
brings the fast flux into a larger area of definition.
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For two-dimensional cylindrical geometry, the operation
of the form v$p is givenpby

(76)

This form is to be replaced by a difference operation that
relates each point to its four nearest neighbors. If the point
in question is designated by the subscript zero and the others
are

1

3

where h, and heme the grid widths in the r and e directions,
respectively, then at P=* the following approsirnation is
used:

(77)

With this designation (and barring certain exceptional
points to be discussed later), one may move from point to
point on the grid and write equations of neutron balance
for each of the two neutron groups.

The following equations may be taken as typical illustra-
tions:

Thermal-balance equation 93 (see fig. 4):

Fast-balance equation 234:

In contradistinctionto equations (78) and (79), there are
certain special equations that hold at the exceptional points
referred to earlier. These equations result from one or more
of tlm following conditions:

(1) Continuity of currents at interfaces
(2) Zero fhm at the outside boundary
(3) Zero current across planes of symmetry
(4) Change in grid dimensions
Condition (1) is treated by matching a suitable ratio of

normal derivatives from either side of the interface. Each
of these derivatives is evaluated by a five-point ditlerentia-
tion formula. Condition (2) is treated by writing the
difference appro.simation to the difTusion equation for points
adjacent to the outside boundary with zero replacing the
flux at the bounda~ point.

Condition (3) is accounted for by writing the diffusior

equation of a point on the plane awuming the same flu

at grid points on eitherside of the plane. I?orcondition (4}
th-ise interpolation formulas are used to define fhme,
at the points marked X on figure 4, and these are utilized
where needed, in writing dfision equations in the iiner net
If each equation of the set is written in order and the pro
duction terms are isolated as illustrated in equation (71)
then the matrix equation constructed from the approtiat(
finite difference may be written in the form of equation (l).

The matris B is singular, largely consisting of zero elc.

ments with an essentiallydiagonal group of nonzero term

somewhat off the leading diagonal. The matrix A has ~
substantial number of nonzero elements crowded quit ~
close to the leading diagonal. This latter situation is nu
merically desirable, as elements far from the leading diagona
tend to slow the convergence of numerical processes.

If criticality is desired, the concentration of fissionabk
material is adjusted, after ‘Y and X have converged, and &
whole new set of calculations is run until a new value fol
Y is reached. This process may be continued until Y= 1.

The method can also be used to compute reactivity
changes; the calculation time is again shortened consider-
ably if flux distributions are not demanded.

SOLUTIONS OF TWO-DIMENSIONAL PROBLEM

The results of the calculations of the supercritical
(~=0.948) case are show-n in figures 5 to 7. Figure 5 give.
the fast flux as a function of ~ for 0=0°, 9°, and 18°. The
control rods have no substantial effect on the fast flux
Figure 6 gives the corresponding thermal flux and shows the
localized effect of the control rods. Figure 7 presents iso-
flux contours of the thermal flux. The 0.19 contour in the
reflector and the 0.234 contour in the core represent relative
maximum9.

COMMENTS ON APPLICATION OF THE METHOD

A number of numerioal quantities maybe mam.ined in an
attempt to evaluate the degree of convergence of a system.
One of the most natural of these quantities is the sum of the
squares of the residuals. Another may be formed by con-
sidering the fact that, as the limit is approached, the ratio
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FIGURE G.—Fast-neutron flux for azimuth angles of 0°, f)”, and 18“.
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FIOIJIVJ6.—Therm&neutmn flux for azimuth anglesof 0°,9°, and 18°.

T411/’Yz+l mmt tend toward unity. This means that the
dovintion defined by , .

(80)

must tend toward zero. The average absolute value of the
dm-iation, summed over all points of the feactor, is

where n is the number of reactor points.
An illustration of the behavior of this

the following table:

I k+l l–lb~,l 1bs,]mm.

(81)

quantity isgiven in

0.02169
. 02b51
.ooz.w
. Oom
.0007E3
.oOm

o.lm
.8166
.0147
.Oils
.am
.W27

The itorants listed are those which just precede the extra-
polation proce9s. These are chosen so as to minimize the
effect of fluctuations introduced by the extrapolation
teohnique.

These illustrative values come from the second general
process; that is, after ~ h;d converged to 1.2064, the con-
cmtration (and hence elements of the matric~ A and .@
was changed and a new series of iterations begun. This
converged (more rapidly than the first run) to a value of 0.948.
_To estimate the value of uranium concentration needed for
the new run, the equation

1.2064 kti (old)=kti (new) (82)

vm.s used to compute a new kmhorn which to obtain a new
concontrntion. This formula is an approximation, since the
influence of n change in concentration upon L~k is appre-

ciable. The better rate of convergence of tbe second run is

duo to the fact that the fhm isrelativelyindependent of the

clIaracteristicvalue,so that the initialeknmt e forthe second

run was a relativelygood one.

The quantity lAj~llreflectsthe convergence of ~, which is

faatorthan that of the vector X.

In order to determine the degree of convergence of X,

consider the quantities

(83)

ml=+
and the maximum l~j~ll designated by
value9 of the9e quantitie9 are as follows:

(84)

16i~11_. Typical

7-LZQ3 I

m O.Cma CLmm-i (lCmm
.0cE3 .m .Cmliw

% .0049 . m17 . M0167
144 .lxEa .Cm310 .aoCw4
1ss .arfa .m .mxlml

7=0.918

t+l &, m 14%1...

6 a2J9&Ja001m clmle
.000735 .00530

E .m
:% :%% .01Cw&!3

z .CmO .Co0007 .CmCm46

The sums of the sauares of the residuals for the two cases.
y=l.206 and ~=0.948 are as follows:
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FIGURE7.—Chrkour lines for thermal flux.
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Severnl general observations can be made about the process:

(1) The number of iterations in this problem starting from
an initial guess to a viell-converged value of X was about
150 to 175.

(2) In general, 8 to 10 iterations between extrapolations
seem desirable, as the use of too few iterations does not allow
the establislunent of a fairly uniform damping rate.

(3) The extrapolation formula of equation (37) seems best
for rough estimates where error components are being damped
rapidly; that of equation (54) seems to be superior for later
extrapolations where one is closer to the solution.

(4) When computed values of + exceed the upper limit,
they may be replaced by the limit from the tables giving
roots of equations (46) and (48) and then the extrapolation
may be carried out, or two more iterations performed with
+ recomputed untiI it falls within prescribed limits.

The following table gives the sum of the squares of the
residuals for (a) direct iteration from Xa to X,g, (b) eight
iterations from X31 followed by extrapolation with “+ safe”
when ‘lP computed” was too large, then iteration to X4,
(c) eight iterations horn XU followed by two iterations and

a test until “+ computed” was less than “+ safe, ” tlmn
extrapolation followed by iteration to X49:

1.36X1C-7
~~ 3.44xlc-9

1.SSXIHI
I I I

LEWIS FLIGHT PROPULSION LABORATORY

NATIONAL ADVISORY COMMITTEE FOR &RONAUTICS

CLEVELAND, OHIO, iila~ 12, 1956
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