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THE AERODYNAMIC FORCES ON AIRSHIP HULLS.

By MAxM. ?tww.

SUMMARY

T%k report describes the new met~od for ma~~ computations in connection with the
study of rigid airships, which w-as used in the investigation of LTmy’s ZR–i by the special
subcommittee of the 3Tational Advisory CommiLtee for Aeronautics appointed for this purpose.
It presents the generaI them-y of the air forces on airship hulls of the type mentioned, and an
attempt has been made to de-dop the=results from the very fundamentals of mechanics, with-
out reference to some of the modern highly developed conceptions, which may not yet be
thorougldy known to a reader uninitiated into modern aerodynamics, and which may perhaps
for all times remain restricted to a smalI number of speeidiits.

I. GENERAL PROPERTIES OF AERODYNAMIC FLOWS.

The studenk of the motion of solids in air wilI tind advantage in first neglect~~ the
viscosity and compressibfity of the latter. The influence of these two properties of air are
better studied after the student has become thoroughly familiar with the simpIif3ed problem.
The rw.dts are then to be corrected and modified; but in most cases they remain substaritially
valid.

AccordingIj I begin with the discussion of the gener~ properties of =erodwamic flOWS
produced by the motion of one or more soJid bodies within a perfect fluid otherwise at rest..
In order to be abIe to apply the general Iaws of mechanics to fluid motion 1 suppose the air to
be divided into particles so smalI that the differences of velocity at difterent poirts of one par-
ticle can be negjectecl. This is always possible, as sudden cha~~es of -wlociky do not occur
in actual flows nor in the kind of flows dealt with at present. The term “flow 2’ denotes the
entire distribution of veIocitiy in each case.

With aerodynamic flows exte~a~ volume forces (thai is, forces uniformly distributed over
the volume) do no L occur. The only force of this character which couId be supposed to inHu-

ence the flow is gravit~-. It is neutralized by the decrease of pressure with increashg aItitude,
and both gravity and pressure decrease can be omitted without injury to the result. This
does not refer to aerostatic forces such as the buorancy of an airship, but the aerostatic forces
are noi a subject of this pa~er.

The only force acting on a particle is therefore the resultant of the forces exerted by the
adjacenti particles. .% the fluid is supposed to be nonviscous, ii can not transfer tensions
or forces other than at right angles to the surface through -which the transfer takes place. The
consideration of the eqfibrim of a small tetrahedron show-s, then, that the only kind of tension
possible in a perfect fluid is a pressure of equal ma=witude in aU directions at the point considered.

In general this pressme is a steady function of the time t and of the three coordinates of
the space, say x, g, ~d Z, at right a%t4es to each other. COmider now a YerY sma~ CUbe ~~
the edges dz, dy, and dz. The mean pressure act%” on the face cly dz may be p. The mean
presswre on the opposite face is then p + dp@mlr. The A’-component of the resultant volume

fOIce is the difference of these two mean pr=~a ~~@lied ‘b the are~ of the faces d@z,
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hence, it is –~dx dy’ da
2Jp

Per unit volume it is – ~z, M the volume of the cube is dz, dy, dz,

It can be shown in the same way that the other two components of the force per unit volume
dp

~z. Such a relation as existing betweeri the pressure distribution and the forceare –— and – ~p
a?i

produced by it is generally described as the force being the “gradient” of the pressure, or ,
rather the negative gradient. Any steady distribution of pressure has a gradient at each point,
but if a distribution of forces (or of other vectors) is given, it is not always possible to assign
a quantity such that the forces are its gradient.

We denote the density of air by p; that is, the mass per unit volume, assumed to be con-
stant. dr may denote the small volume of a particle of air.” The mass of this particle is then
pdr. The components of the veIocity V ~f this pa.rticIe paraHeI to z, y, and z maybe denoted

by u, v, and w. 13ach particle has then the kinetic energy d! f’=~ dr(u’ +V2 + W2) and the

component of momentum, say in the X direction, is pdrw, The kinetic energy ‘(of the entire
flow is the integral of that of R1lpartic~es,

J
l?=; (~~2+0’+w2)dr ---------------------- .--- .-(1)

Similarly, the componenL of momentum in the ~1’-direction is the integral

pjudr -------------------------------- . . ...(2)

and two similar equations give the components for the two other directions. These integrals
will later be transformed to make them fit for actual computation of the energy and the
momentum.

It is sometimes useful to consider very ~large forces, pressures, or volume forces acting
during a time element dt so that their product by this time element-becomes finite. Such
actions are called “impulsive.” llultiplicd by the time element they are called impulsesj or
density of impulse per unit area or unit volume as the case may be.

After these generaI definitions and explanations, I proceed to estaliish the equations
which govern an aerodynamic flow. Due to the assumed constani density, we have the well-
lmown equation of continuity

g+$+g=o ---.. --_---____(3)-.-.--.------(3)

We turn now to the fact that for aerodynamic problems the flow can be assumed to be
produced by the motion of bodies in air originally at rest. _As explained above, the only f(orce

per unit volume 8cting on each particle is the gradient o~ the pressure. NOTV,this gradient
can only be formed and expressed if the pressure is given as a function of the s~mce coordinates
.T,y, ancl z, The Iaws of mechanics, on the other hand, deal with one pmticular particle, find
this does not stand still but changes its space coordinates continually. In order to avoid
difficulties arising therefrom, it is convenient first to consider t.lie flow (luring a very sllt)rt
time inierval ~7tody, during which the changes of the sptice coordinates of the particles cm be
negIected as all velocities are finite, The forces and pressures, however, are supposed LObe
impulsive, so that during the short interval finite changes of velocity take place. Suppose
first the fluid and the bodies immersed therein to be at rest. During the creation of the flow

the density of impulse per unit area may be P, i. e., P = fpdt. The principles of mechanics

give then
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and similarIy in the two other direcfiions

dP

()‘U’’=ziz –;

Hence the velocity thus created is the gradient of
(
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..-. . . . . . . . . . . . . . . . . . ____ . . . . . -- (4)

P’—
)

. .& this stat-e of investigation the
P

value of $ is not yet know-n. But the important resuIt is that the How thus created is of the

type havi~~ a distribution of v-eIocity which is a gradient of some quantity, called the veIocitJ
potential 0. @ is the impulse densit,~ which wouId stop the flow, divided by the density p.
.%ccording to (4)

from which follows

.4 second differentiation

m m a~
‘)J=TX’ ‘=&J’ “=F2 ----------------------------(5)

@=~{?/dx +vdy+w’dz) ------------------- _. _-----__(6)

of (5) gives—
h au
w ax—=—2 etc----------------- - _ . . ____________

m
since both are ec[ual to — .axdp The substitution of (~) into the equation of continuity (3] gives

~g+$a+;;=o _________________________

Uiplxee’s equation), which is the desired equation for the potential G. The sum of any
solutions of (8) is a solution of (8) again, as can eedy be seen. This is equhvdent to the super-
position of ffows; the sum of the potential, of the impulsive pressures, or of the veIocity comp-
onents of several potential flows give a potential flow again.

.Kll this refers originally to the case only that the flow is created by one impukive pressure
from rest.. But every continuous and char@ng pressure can be replaced by tiltely many
small impulsive pressures, and the resultant flow is the superposition of the flows created by
each impulsive pressure. And as the superposition of potential flows gives a potential ffo-w

.—

again, it is thus demonstrated that all aerodynamic flow-s are potential flows.
It can further be shown that for each motion of the bodies immersed in the fluid, there

exists only one potential flow. For the integral (6) applied to a stream he (that is, a line
always parallel to the velocity) has always the same sign of the integrant, and hence can not
become zero. Hence a stream Iine can not be closed, as otherwise the integral (6) would give

-.

two d~erent. potentials for the same point., or different. impulsive pressures, which is not pos-
sible. On the contrary, each stream Iine begins and ends at the surface of one of the immersed
bodies. Now suppose that two potentiaI flows exist for one motion of the bodies. Then
re~erse one of them by changing the sign of the potential and superpose it on the other. The
resulting flow is characterized b-y all bodies being at rest. But then no stream line can begin
at their surfacel and hence the flow has no stream lines at all and the two original flows are
demonstrated to be identical.

Ifi remains to compute the pressure at each point of a potential flow. The acceleration
of each particle is equal to the negative gradient of the pressure, divided by the density of
the fluid. The pressure is therefore to be expressed as a function of the space coordinates,

and so is the acceleration of a particle. Each component of the acceleration, say ~, has to

be expressed by the local rate of change of the velocity component at a certain point ~ and

—30~~_~~



by the~’eloeity componmts an(l their loca~ deri-wtives themselves. This is done
tion

(1U du au ?)?1 a’u
–-+ TL-+V-+W —-...-.. -.-------..-.-

Jt = a b by b

hy the equa-

.------- =(9)

Por during the unit of time the pnrticle chmges its coordinates by u, v, and w, respectively,
btL

and therefore retiches a region where tlic velocity is larger by ubx ~ etc. This increase of

Substituting equation (7) in the last. equation, we have

bU dU b bW I ap
Tt+%X ‘v&+wTi=-;57-----------------------~11)

#+@t-v’+?LJ)=-;p ----_------..----.--_:..--(l2)

The actuations for the two other components of the acceleration would give the same oquat ion.
Hence it appears that the pressure can be divided into two parts superposed. The first p~rt,

a+
– P~, is the part of the pressure building up or changing the potential flow. It is zero if tl~e

flow is stea<ly; that is, if
~(~,
-3L =()----------------------------- -_a-_- (131

The secon(l pfirL,
y. P~------- ------ ---- ---- ----- ---- ---- ---- (14)

if the pressure necessary to maintain and keep up the steady potential flow. It depends only
on the velocity and density of the fiuicl. The greater the velocity, the smaller the pressure,
It is sometimes called Be.rnouilli’s pressure. This pressure acts permanently wiLhout c.llanging
the flow, a~d hence without changing its kinetic. energy. It follows therefore that the Ber-
noui]li’s pressure (14) ac~ing on the surface of a moving body, can not perform or consume
any mechanical work. Hence in the case of the straight motion of a body the component of
resultant force parallel to the motion is zero.

Some important formulas follow from the creation of the flow by the impulsive pmssurc
—@P. 1 wiII assume one body only, t,hough this is not absolutel]r necessary for a part of the
results. The distribution of this impulsive pressure over the surface of the bodies or body is
characterized by a resultant impulsive force and a resultant impulsive moment. & further
characteristic there is the mechanical work performed by the impulsive pressure during t.llc
creation of the flow, absorbed by the air ancl contained afterwards in the flow as kinetic energy
of al] pmtic.les.

It happens sometimes th~t the momentum imparted to the lIOW around a body moving
translator is parallel to the motion of the body. Since this momentum is proportiomd to thr
velocity, the effect of the air on Lhe motion of the body in this direction is then taken care of by
impmting to the body an apparent additional mass. If the velocity is not acceIertited, no forrc
is neccssmy to maintain the motion. The body experiences no drag, which is plausible, m no
dissipation of energy is assumed. .~ similar thing ma-y hnppen with a rotating hotly, where



then the body seems to possess an apparent additional moment of momentum. In general,
however, the momentum imparted to the fluid is not parallel to the motion of the body, but it
possesses a lateral component. The body in general possesses different apparent masses with
respect to motions in different directions, and that makes the mechanics of a body surrounded
by a perfect fluid different from that of one moving in a wicuum.

The kinetic enerbgy imparted to the air is in a simple relation to the momentum and the
.

velocity of the body. During the generation of the flow the body has the average velocity ~

(1uring the time dt, hence it moves through the dist ante ~dt. The -work performed is equal

to the product of the component of resultant force of the creati~~ pressure in the direction of
motiou, multiplied by this path, hence it is equal to haIf the product of the -reIocity and the
wnnponent of the impulsi~e force in its direction.

The same argument cart be used for the iinpulsive pressure act~o over the surface of the
body. Let cln be a linear eIement. at right angles to the surface of the body drawn outward.
The velocity at ~~ht angles to the surface is then, – d@/dn and the pressure – p@ acts through

‘+[dndt The work performed aIl over the surface is thereforethe clistanee – ~ .

ST= ;@#dS. -.-_”_.”----------------------(15)

which integraI is to be extended over the entire surface of the body consist,@ of alI the elements
d5’. The expression under the integral contains the mass of the element of fluid displaced
by the surface eIement of the body per unit of time, each element of mass multiplied by the
velocity po tentiaI. The Bernoulli pressure does not perform any work, as discussed abov-e,
and is therefore omitted.

The apparent mass of a body movirg in a pmticular direction depends on the density of the
fluid. It is more convenient, therefore to consider a volume of the fluid haviqg a mEss equaI
to the apparent mass of the body. This voIume is

K=~---.. -.-. -- . . .._---_ -.---- __-- _---(l6)
p e

2

and depends only on the dimensions and form of the body.
The kinetic energy of the flow relative to a mov@ body in an infkite fiuid is of course

infinite. It. is possible, ho-w-ever, to consider the diminutiort of the kinetic energy of the air
movirg with constant veIocity bro~mht about by the presence of a body at rest. This diminu-
tion of energy has two causes. The body displaces iluid, and hence the entire energy of the
fluid is lessened by the kirtetic, energy of the dispIaced fluid. Further, the velocity of the air
in the neighborhood of the body is diminished on the average. The forces between the body
and the fluid are the same in both cases, whether the air or the body moves. Ilence this second
diminution of kinetic energy is equaI to the kinetic energy of the flow produced by the moving
body in the fluid otherwise at rest.

IL THE AEROI)YNAMIC FORCES ON AIRSHIP HJLLS.

-In important branch of theoretical aerod-yntics deals with moments on bodies me-r-
ing through the air -wWe produc~o a potential flow. TIGngs produce a flow dflerent from a
potential ffOW, in the strict mean& of the word. The w@ have therefore to be ~scluded
from the follo~m discussion.

Consider first bodies mov-@ straight and wi@ constant veIocity P’ through air extending
in all directions to intinity. There can not then be a drag, as the kinetic energy of the flow
remains constant and no dissipation of energy is supposed to take place. 7Nor can there be a
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lift in conformity with the remarks just made. Hence the mir pressures can at best produce
a resultant pure couple of forces or rewdtant moment. The magnitude and direction of this
moment will depend on the rnagniiude of the velocity ~ and on the position of the body rela-
tive to the direction of its motion. Ti’ith & change of velocity all pressures measured from a
suitable standard, change proportional to the square of the velocity> as follows from equation
(14). Hence the resultant moment is likewise proportional to the square of the velocity. In
addition it will depend on the position of the body reIative to the direction of motion. The
study of this latter relation is the chief subject of this section. Lt each different position of
the body relative to the motion the flow produced is different in general and so is the momentum
of the flow, possessing diflerent components in the dhection of and at right angles to the direc-
tion of motion. By no .meansj however, can the relation between the momentum and the
direction of motion be quite arbitrarily prescribed. The flow due to the straight motion in
any direction can be obtained by the superposition of three flows produced by the motions in
three particular directions. That restricts the possibilities considerably. But that is not, all,
the moments can not even arbitrar~~y be prescribed in three directions. I shall presently
show that there are additional restrictions based on the principle of conservation of energy
and momentum.

Let there be a component of the momentum lateral to the motion, equal to K, VP, where
p denotes the deusity of the air. Since the body is advancing, this lateral component of the
momentum has continually to be annihilated at its momentary position and to be created anew
in its next position, occupied a moment later. This process requires a resultant moment

~Tf=K,T7’p. ----- ..------ __---- ._---- _--_ --_-(l7)

about an axis at right angles to the direction of motion and to the momentum. In other words,
the lateral component of the momentum multiplied by the ve]oc~ty gives directly the resultant
moment. Conversely, if the body experiences no resultant moment and hence is in equilibrium,
the momentum of the air flow must be parallel to the motion.

Now consider a flow relative to the body with constant velocity 1’ except for the &shn%-
ance of the body and let us examine its (diminution of) kinetic energy. If the body changes
its position very slowly, so that the flow can still be.considered as steady, the resultant moment.
is not affected by the rotation but is the same as corresponding to the momentary position and
stationary flow. This moment then performs or absorbs work during the slow rotation. It
either tends to accelerate the rotation, so that the body has to be braked, or it is necessary to
exert a moment on the body in order to overcome the resultant moment. This work performed
or absorbed makes up for the change of the kinetic energy of the flow. That gives a fundamental
relation between the energy and the resultant moment.

There are as many different positions of the body relative to its motion as a sphere has
radii. The kinetic energy of the flow is in general different for d directions, the velocity J’
and density p supposed to be constant. It has tl.~esame value, however, if the motion of the
immersed solid is reversedj for &hen the entire flow is reversed. Therefore each pair -of direc-
tions differing by 180° has the same kinetic energy, This energy moreover is always positive
and finite. There must therefore be at least one pair of directions, where it is & minimum and
one where it is a maximum. Lloving parallel to either of these clirections the body is in equilib-
rium and experiences no resultant moment. This follows from the consideration that then a
small change in the direction of motion does not give ~ise to a corresponding change of the
kinetic energy; the moment does not perform any work, and hence must be zero. The equilibrium
is stable if the diminution of energy of the entire flmv is a maximum and unstable if it is a mini-
mum, It can be proved that in addition there must be at least one other axis of equilibrium.
This is the position “neutral” with respect to the stable direction and at the same time neutral
with respect to the unstable one. I call these directions “main axes, ”

I proceed to demonstrate that the three main axes of equilibrium are aIways at right angles
to each other. Consider first the motion parallel to a pIane through one of the main axes and
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only the components of the momentum paralIeI to this plane. The direction of motion of the
body may be indicated by the angle a in such a way that a= O is one motion of equilibrium, and
hence without lateral component of momentum. The component of momentum in the direc-
tion of the motion may then (that is, when m= O) be K,P 7. Tfhen mo~~ at the
angle of a = 90”, the momentum may be supposed to possess the components ~ ~ pardIel
and K@ 1’ at right an@es to the mot~on~ and w-e shall prove at once that the only momentum
is the former.

The kinetic energy for any direction a can be written in the generaI form

and hence the resultanfi moment is

[ I
_E=m/&Y=r’g (AT,-q} sin2 a+lz3cos2a .__..--_.____(18)l8)

This resultant moment was supposed to be zero at a= O. Hence -k&=O, and ik follows that .
a = 90° is a position of equilibrium for motions in the plane com<idered. & for other motions,
it is to be noticed that the third component of the momentum, at right angles to the plane,
changes if the pkme rotates around the axis of equilibrium. It. necessarily changes its sign
dur~~ a re~olution, and -while do~~ it JJ is zero. Thus it is demonstrated that there are ~t
least two axes at right angles to each other where all lateral components of the momentum are
zero? and hence the motion is in equilibrium. ..d as this argument. holds true for any pairof the
three axes of equiIibriurn, it is pro-red that. there me always at least three axes of equilibrium

at ~~ht angles to each other.
13eso1ving the ~elocit.y T’ of the body iuto three components, u, v, w, parallel to these three

main axes, the kinetic energy can be expressed

P
j (K,u’ + K.# -1-E“u~)

The differential of the energ~=
P (~”1Ud!L + @J(h + E&dw)

is identic.dl,v zero in more than three pairs of positions ody if at least. two of the K’s are equal.
Then it is zero in an infinite number of directions, and there are an infinite number of directions
of equilibrium. The body ie in equilibrium in aN directions of motion only if it] three Z7s are
equal; that is? if the apparent mass of the body is the same in all direct iom<. Tkat is a speciid
<,a~e.

In all other cases the body experiences a res~tant moment if mo~~ with the velocity colu-
ponents v, v, and w paraIleI to the three main axes. The component of thk resultant moment
is determined by the momentary lateral momentum and its components., as stated in equation
17.

In most practical problems the motion occurs i~ a main plane; that. is, at ~~hfi angles to a
main axis. Then the entire resultant moment is according to (17) the product of the velocity
and the component of momentum a.t right an@es to it, giting

.ll=l"' ~(1, -K,) tin2a... _.. -_. _---- .--... ---_ ---(l9]

In general, the three main momenta of the flow, para.lleI to the respecti~e motion, do not
pass thro~~h one center. Practical prob~em~ occur chieffy with bodies of re-rolution. with them
as welI as -withbodies with a center of symmetry-that is, such as ha-re three planes of symmetry—
the relation between the motion snd the momenta is simple. It follo-ws then from symmetry
that the body possesses an aerodynamic center through which the three main momenta pass.
This means that the body can be put into an-y straight motion by a.pplying a force at a fixed
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center. The force, however} is not pmallel to the ~otion except in the main directions. The
center where the force has to be applied coincides with the aerodynamic center, if the center of
gravity of the body does so or if the mass of the body itself can be neglected cornpmcd with
any of the three main additional masses.

Jlirship hulls are often bounded by surfaces Qf re~olution. In adtlition they are usually
rather elongated: and if the cross sections are not exactly round} they are afi least approxinifitcly
of equal and symmetrical shape and arranged along a straight axis. Surfaces of revolution
h~ve, of course, equal transverse apparent masses; each tr~nsversc axis at right. angles to the
axis of revolution is a main direction. For ver~~elongated surfaces of revolution a further
important statement may be made regarding the magnitude of the longitudimd and tm~ns~’crse
apparent mass. TVhen mo~ing tra.ns~ersely the flow is approximately two-dimensional along
the greatest part of the length. The a.ppa.rent additional mass of a circular cylinder moving tit
right angles to its axis will be shown to be equal to the mass of the displaced fluid. It follow:
therefore that the apparent transverse additional nmss of a ~ery elongated budy of revolution
is approximately equal to the mass of the displaced fluid. It. is dightly smaller, M near the
ends the fluicl has opportunity to pass the bow and stern. For cross sections other than circular
the two main apparent masses follow in a, s.imilalway from the iipparent mass of tile cross
section in the two-dimensional flow.

The longitudinal apparent additional mass, on the oiher hand, is small whencompared with
the mass of the displaced flnid. It- can be neglected if the body is ~ery elongated or c~n at
least be rated as a small correction. This folIows tiom the fact that only near tho bow and tho
stern does the air have velocities of the same order of magnitude as the -rclocity of nlotit)ll,
~~long the ship the velocity not only is much smaller” but ;ts direction is csse~iitilly opposito to
the direction of motion, for the bow is continually displacing fluid and the, stern makes room
free for the reception of the same. cluantity of fluid. Hence the fluid is flowiug from the bcnv tu
the stern, and as only a comparatively small volume is displaced per unit of. time and the space
is free in all directions to distribute the flow, the a~erage velocity will be small.

It is possible to stud-y this flow more closely znd to prom tinalytically thah the r~tio of the
apparent mass to the displaced mass approaches zero with increasing elongation. This proof,
howe~er, requires the study or knowledge of quite a number of conceptions and theorems, and
it seems hardly worth while to have the student go through all this in order to prm-e such a
plausible and trivial fact.

The actual magnitudes of the longitudinal and transverse masses of elongtited surfaces of
revolution can be studied by means of exact computations made by H. Lamb (refercncc 5),
with ellipsoids of revolutions of different ratio of elongation. The figures of k, and k,, whwx
K= k x volume, obtained by him are contained in Tablti I of this paper, and k, – 7c,is computed.
For bodies of a shape reasonably similar to ellipsoids it can be approximately assumed that,
(k, – k,) has the same -ralue as for an ellipsoid of the same length and volume; th~t is, if T70Z/L3
has the same value.

The next problem of interest is the resul~ant..aerodynarnic force if the body, rot~tes with

constant velocity arouncl an axis outside of itself. That is now comparatively simple, as the
results of the last section can be used. The configuration of flow folIows the body, with constant
shape} magnitude, and hence with constant kinetic energy. The rcsulttnt aerodynamic force,
therefore, must be such as neither to consume nor to perform mechanical work. This leads
to the conclusion that the resultant force must pass through the asis of rotation. In general
it has both a component at right angles and one parallel to the motion of the center of the body.

I confine the investigation to a surface of revolution. .Let an airship with the apparent
masses K,P and lK2P and the apparent moment of inertia K’P for rotation about a trans~erse
axis through its aerodynamic center move with the ~eloci~y 1’ of its aerodynamic center around
an axis at the distance r from its aerodynamic center and let the angle of yaw #1be measured
between the axis of the ship and the tangent of the circular path at the aerodynamic cenfw.

.
The ship is then rotating with the constant anguIar velocity J’/r. The entire motion can be
obtained by superposition of the longitudinal motion T’ cos @_of the aerodynamic centcrj the



tranverse \-clocity J“sin +, and the nngdar -mlocity T’/i-. The longitudinal compo~ent of the
momentum is I-P. cos ~. kl. VOI, and the tranrerse component of the momentum is I-P sin 4.
l:. YOI. Besides, there is a moment of momentum due to the rotation. This can be expressed
by introducing the apparent moment of inertia 37P= k’JP where J is the moment of inertia of
the disphwed air; thus making the anguIar momentum

.1s it does not change, it does riot gi-re rise to any resultant aerod~-namic force or moment during
the motion under consideration.

The momentum remains constant, too, but changes Its direction with the angular ~elocity
~“ir. This requirw a force passing through the center of turn and lmting the tranverse com-
ponent

Ft=K,pcos +T"'/r__ ---- _-. -.-. -... _-_- _-__. ____ -c2o)

:in~f tli{~lonKitu(lin:L1 comp(}nent

~1= KZpsiil @l’’/_________ ------ ________ (21) _____ (2l)

The iirst term is ahnost some khd uf centrifugal force. Some uir accompanies the skip, incre~s-
ing its lo~~itudinal mass and hence its centrifugal force. It wilI be noticed that };ith actual
tiirships this additional cent rifugaI force is sruall, as Z-l is sm:dl. The force attacking fit the
cmter of tile turn can be repIacecI by the same force attacking :~f the aerodynamic center :an(l
a mo[uent ttround this center of the magnitude.

.lf=j(.li2- IiI)psin J@l-'-. -._- _-___ -__-- ._. --.---.---(22)

This rllome~t is equal in direction and magnitude to the m~stabIe molllent found during straight
motion under tl.M same fingle of pitch or Jaw. The longitudinal force is in practice a negative
dmg as the bow of the ship is turned toward the inside of the circle. It is of no great practical
importance as it does not produce considerable structural stresses.

It appears thus that the ship when fluying in a cun-e or circle experiences drnost the same
resultant moment. as when fl-ying straight and under the same angle of pitch or yam. I proceed to
show. hou-erer, .tha.t the transverse aerodynamic forces producing this resultanh moment tire
(list ribut ed differently along the axis of the ship in the tm cases.

The distribution of the transverse fierod~-namic forces along the axis can conveniently
be computed for l-cry eIongated airships. It may be supposed that the cross section is circular,
d tbough it is easy to generalize the proceeding for a more general shape of the cross section.

The folloming investigation requires the knowledge of the apparent additional mass of a
rircular ccylinder meting in a two-d~ensiona] flow. I proceed to show that. this apparent
tlddition:il mass is exactly equal to the mass of the fluid displaced by the cylinder. In the
two-dimensional flow the cylinder is represented by a circle.

Let the center of this circIe coinc~de with the Orieti of z system of polar coordinates R ml
d, moving with it, and let the radius of the circle be denoted by r. Then the -relocit~- poten-
tial of the fiow created by this circle me-ring in the direction d = 0 with the ~elocity 1*is
@ = rd tcos @) ~l?. I?or this potential gives the radiaI ~elocity components

tind tit the circumference of the circle thk velocity becomes v cos @. This is in fact the norma[
component. of velocity of a circle meting with the -velocity u in the specified direct-ion.

The kinetic energy of this flow is now to be determined. In analogy to equntiou (15!,
Lhis is done by integrating along the circumference of the circle the product of (n) the rlements
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that point ( –v cos d.r). The iritegral is therefore

P

J

%

20
COS?dvzrzd~

giving the kinetic energy r2r02~.

This shows that in fact the area of apptirent mass is equal to the tirefi of the circle.
1 am now enabIed to return to the airship.
If a very elongated airship is in trw.datory horizontal motion through air otherwise ai rest

and is sIightly pitched, the component of the motion of the air in the direction of the axis of Lhe
ship can be neglected. The air gives way to the passing ship by flowing around the axis of the
ship, not_ by flowing along it. The air located in a vertical plane aL right angles to ho motion
remains in that plane, so that the motion in each plane can be considered to be two-dimensionfll.
(lonsider one such approximately vertical layer of ail at right angIes to the axis while the ship
is passing horizontally through it. The ship displaces a circular portion of this layer, and this
portion changes its position and its size. The rate of change of position is expressed b Y tin
apparent veIocity of this circular portion, the motion of the air in the vertical layer is desc~ibe~i
by the two-dimensional flow produced by a circle moving with the same veIocity. ‘1’hc mOmen-
twm of ibis flow is Svpdx, where 5’ is the area of tl~e circle, and v the verticaI velocity of tho
circle, and dx the thickness of the layer. ConsicIer first the straight flight of Lhe ship under the
angle of pitch d. The velocity v of the displaced circular portion of the I~yer is then constant.
over the whole lengtJl of the ship and is V sin O, where ~ is the velocity of the airship along the?
circle. Notj so the area S; it changes nlong the ship. At ti particular Iayer it changes with the
rate of change per unit time,

where x denotes Lhe longitudinal coordinate.
Therefore the momentum clmnges with the rate of change

This gives a.down force on the ship with the magnitude

d~=dxl’z$sin 24d~ . . ..-.. ---. ---- . . ..-- . . . . ..(23)
. .

Next, consider the ship when turning, the angIe of yaw being d. The momenhm in each layer
is again

Vs’pdx

represents the ae.rodyuamic center, Hence the rate of change of the momentum fwr unit.
length is

1-$ sin 24d# + p: cos &(.rLV

gi~ing rise to the trans~erse force per unit length

‘s+ ’72:”0s’P+’a
l“; sin 245

or otherwise written

-- ( )iF=d~ V2~ sin2@#+~”’~ cos@ S’+ V2~ cos 4.x$; -.- . . . . ..-. -_-(24)
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The first term agrees with the moment of the ship flflng straight h~ving a pitch c). The
direction of this trmcmense force is opposite at the two ends, and gives rise to an unstable
moment. The ships in practice have the bow turned inward when they fly in turn. Then the
trans~erse force represented by the first term of (24) is directed inward near the bow and out-
ward near the stern.

The sum of the second and third terms of (’24) gives no resuItant force or moment. The
second term alone gives a transverse force, being’ in magnitude and distribution almost eqwd to
the tranwerse component of the centrifugal force of the displaced air, but reversed. This latter
becomes cIear at the @i.ndrieal portion of the ship, where the two other terms are zero. The
front part, of the cylindrical portion mhws to-ward the center of the turn and the rear part
moves a-way from it. The inward momentum of the flow has to change into an outward mo-
mentum, requiri~~ an out~ard force acting on the air~ a~d givi%~ rise to an in~ard force
reacti~o this charge of momentum.

The third term of (24) reprsents forces almost concentrated near the two ends and their
sum in magnitude and direction is equaI to the transverse component of the centrifugal force of
the displaced air. They are directed outvmrd.

Ships cmIy moderately elongated have resultant forces and x distribution of them differing
from those given by the formtias (23) and (24). The assumption of the layers remaining plane
is more accurate near the. middIe of the ship than near the ends, and in consequence the trans-
verse forces are diminkhed to a greater extent at the ends than near the cylindrical part. when .
compared Nith the very elongated hulls, In practice, however, it will often be exact enough
to assume the same shape of distribution for each term and to modify the transverse forces by
constant diminishing factors. These factors are logically to be chosen different for the different
terms of (X). For the first term represents the forces giving the resuIt ant moment proportional
to (1:,– 21), and hence it is reasonable to diminish this term by multiplying it by (1, – Irl). The
secc]nd and third terms take care of the momenta of the air flowi~~ transverse with a velocit~-
proportiomd to the distance from the aerodynamic center. The moment of inertia of the
rnornentfi really comes in, and therefore it seems reasonable to diminish these terms by the
fmtor 1’, the rztio of the apparent momenti of inertia to the moment. of inertia of the displaced air.

The transverse component of the centrifugal force produced by the air taken along with the
ship due to its longitudinal mass is negIected. Its magnitude is smaII; the distribution is dis-
CU~sedin reference (3) and maj- be omit~e(~ in this treatise.

The entire transverse force on an airship, turning under an angIe of yaw with the veIocity
1- and a radius r, is, according to bhe precedirg discussion,

This expression does no~ contain of course the air forces on the fins.
In the first two parts of this paper I discussed the dynamical forces of bodies mo~ing

a[ong a straighk or curved path in a perfect fluid. In particular I considered the case of a very
dcmgated body and as a special case again one bounded by a, surface of revolution.

“The. hulls of modern rigid airships are mostly surfaces of revolution and rather elongated
ones, too. The rat io of the Iength to the greatest diameter -mries from 6 to 10. with this
ckmgation~ particuIa.rly if greater than 8, the reIations valid for infinite elongation require
nni.v a smaI] correction, OnIY a few per cent, which can be estimated from the case of eUipsoids
for which the forces are known for any elo~~ation. It is true that the transverse forces are
not on] y increased or deereased uniformly, but also the character of their dist ribut ion is sLight,ly
changed. But this can be neglected for most practical applications, and especially so since
there are other differences between theoretical and actual phenomena.

Serious diHerences are implied by the assumption that the air is a perfect fluid. It is not,
and as a consequence the air forces do not agree -with those in a perfect fluid. The nw.diing
air force by no means gives rise to a resulting moment only; it is w-eIl known that an airship
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hull model without fins experiences both n drag and a lift, if inclined. The discussion uf the
(lmg is beyond the scope of this paper. ‘1’he lift. is very small, less than 1 per cent of tile
lif~ of a wing with the same surface area. But the resulting moment is comprwtitively small,
too, and therefore it happens that the resulting moment about the center of volume is only
n~mut 70 per cent of that expected in n pe~fect fluid. Tt appears, however, that the actual

resulting moment k. at Icast of the same rungc of magnitude, :UMIthe cw)tmnplaii(n] of tl)e
perfect fluid gires therefore an cxphmrttion of the phenmnerion. ‘Me (Iifi’crcnce cnn l)c
(mplained. ‘llc ffow is not perfectly irrot:ttional, for there arc free vortices near the hull,

cspeciall,y at its rear encl, where the air Ieavcs the hull. They give a lift acting tit the rear
cn(! of the hull, an(I henw (Ieereasing the unstable moment lvith rmpwt [0 the center of volntnc

r
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\Yhat is perhaps more imporLanL, they pmducc a kin{l of inducw[ (lo~~]~trasl~,diminkl~ing (Ilc
cfl’ecti~c angle of attack$ fincl hence the unstable rnomenL

This refers to airship hulls withou~ fins, which are of DO practical interesL .~irship 111]11s
}rith fins must be considered in a. differenk way. _The- fins <u-e mkind of wings; and the ilo}r

:~round them, if they are inclined} is f m from being even approximately irrotational m(l thei r
lift is Dot zero, The circulation of the inclined fins is not zero; and as they me arranged in tl~c
rear of the ship, the -rertictil flow induced by the fins in front of them around the hull is directc(l
upward if the ship is nosed up. Therefore the effective angle of aLt:~ck is increasedl_an(l~l lU

influence of the lift of Lhc Ilull itself is counteracted. For this reason it is to be expccte<l tllNL

[he tramwcrse t’orces of nulls with fins in air agree better with these in a perfect fluid. Sonle
model tests to be discussed now confirm this.
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These tests give the lift and the moment with respect to the center of ~-olume at different
a@es of attack and with two different sizes of fins. If one computes the difference behveen
the observed moment and the expected moment of the hull alone, and divides the difference
by the observed Lift., the apparent center of pressure of the lift of the fins results. E the center
of pressure is situated near the middle of the fins, and it is, it can be inferred that the actual
HOW-of the air around thehulI is not -rery different from the flow of a perfec~ fluid. It foilows,
then, that the distribution of the trans-rerse forces in a perfect fluid gives a good approximation
~~fthe actual clistributio~, and not only for the case of straight ~~ht under consideration, but
tdso if the ship moves along a circuIar path.

The modeI tests -which I proceed to use were made by Georg Fuhrrnann in the old Goet-
t ingen wind tunnel and published in the Zeitschrift f fir FIugt-echnik und 310torIuftschiff&rt,
191Q. The modeI, represented in Figure 3, had x length of 1,145 milhmeters, a maximum
dinrneter of 1SS mdhmetersl and a voIume of ~.~1~~ cubic meter. Two sets of fins were
attaehe[i to the huli, one after another; the smaller fins were rectangular, 6..5 by 13 centimeters,
and the larger ones, S bcr 15 centimeters. (J’olume)’p = 0.069 square metrr. In Figure 3 both
fins are shown. The diagram in F~ure 2 gives both the observed Iift and the moment expressed
by means of absolute coefficients. They are reduced to the uni~ of the dynamical pressure,
and also the moment is reduced to the unit of the dume, and the Iift to the unit (of (volume) 2i3.

—.

Fw. <.-Center of pressure of fin forms.

Diagram Figure 4 shows the position of khe center of pressure computed as described
before. The two horizontal lines represent the leading and the trailing end of the fins. It
appears that for both sizes of the fins the curves nearly agree, particularly for greater angles
(If attwk at. u-hieh the tests me more accurate. The center of pressure is situated at about
10 per cent of the chord of the tins. I concIude from this that the theory of a perfect fluid
(yive~ ~1good indication of the actuaI distribution of the transverse forces. In view of the*
small scaIe of the model, the agreement may be e-ren better viith actual airships.

IiL SOME PRACTICAL CONCLUSIONS.

The Iast. e’lamination seems to iudicate that the actual unstable moment of the hull
in air agrees nearly -with that in a perfect ffuN. ~~ow the actual airships with fins are statically
uust abIe (as the -word is generaly undershxxl, not aerostaticdly of course): but not much so,
and for the present general diwm~sion it can be assumed that the unstable moment of the hull
is nmrly neutralized by the transverse force of the fins. I have shown that this unstable

mome[lt is .M= [-rohne) [L-z—1-1) ?’~~ sin 2+, where @ —11) denotes the factor of correction

due to finite elomgatiun. Its magnitucIe is discussed in the first part of this paper. Hence the
If

tranw-erse force of the fim mud be about ca~,where a denotes the distance between the fin and

the center of gratit>- of the ship. Then the. effecti~e a.reti of the fins-that is, the area of a wing
giring the same lift. in a two-dimem~ionaI ffo—w-foIlows:

~l~olume) (k, – k,)
ffii
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Taking into account the span 6 of the fins-that is, the distance of two utmost points of a pair
of fins-the effective fin area S must be

_(Volme) (}2- Q ~ 1+ 2 ~
a 7i-

This area A’, however, is greater than the actual fin area. Its exact size is uncertain, bu~ a far
better approximation than the fin area is obtained by taking the projection of the fins and the
part of the hull between them. This is particularly true if the diameter of the hull between
the fins is small.

If the ends of two airships are similar, it follows that-the fin area must be proportional
to (k%– kl) (volume) /a. For rather elongated airships (k, – k,) is almost equal to 1 tmd con-
stant, and for such ships therefore it follows that the fin area must be proportional to (volume) /a,
or, less ex%ctly, to the greatest cross section, rather than to (volume)z’s. ~omparati~ely short
ships, however, have a factor (kj – kl) rather variable, and with them the fin area is more nearly
proportional to (volume) 213.

This refers to circular section airships. Hulls with elliptical section require greater fins
parallel to the greater plan view. If the greater axis of the ellipse is horizontal, such ships tire
subjected to the s-ame bending mome?ts for equal lift and size, but the section moduIus is
smaller, and hence the stresses are increased. They require, however, a smaller angle of attack
for the same lift. The reverse holds true for elliptical sections with the greater axes vertical.

If the airship flies along a circular path, the centrifugal force must be neutndized by the
transverse force of the fin, for ordy the fin gives a considerable resultant transverse force. At
the same time the fin is supposed nearly to neutralize the unstalie moment. I have shown
now that the angular velocity, though indeed producing a considerable change of the distribution
of the transmrse forces, and hence of the bending moments, does not give rise to a resulting
force or momenti Hence, the ship flying along the circuIar path must be inclined by the same
angle of yaw as if the transverse force is produced during a rectilinear flight by pitching. From
the equation of the transverse force

7 VOI(k2 – k,) l“; sin 24
1?01p ;.2 = —

a

it follows that the angle is approximately

This expression in turn can be used for the determination of the distribution of the transverse
forces due to the inclination. The resultant transverse force is produced by the inclination
t}f the fins. The rotation of the rudder has chiefiy the purpose of neutrahzmg the damping
moment of the fins t.hemsel~cs.

From the last relation, substituted in ecluation (25), follows approximately the distribution
of the trans~erse forces due to the inclination of pitch, consisting of

dS P 2adz-p2y . . .._.. - . . . . . . ..-. ----.(26)
dx

This is only one part of the trans-rerse forces. The other part is due to the angular vclocit-y;
i~ is approximately

~,2x”ds
172~dr+k’~~PSdz----- (27) -_. ----. -.-. ---. -... (27)

r dz r

The first term in (27) together with (26) gives a. part of the bending moment. The second
term in (27), having mainly a direction opposite to the first one and to the centrifugal force,
is almost neutralized by the centrifugal forces of the ship and gives additional bending moments
not very considerable either. It. appears, then, that the ship experiences smaller bending moments
when creating an air force by yaw opposite to the centrifugal force than wheg creating the same
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transverse force during a straight fright by pitch. For ships with dliptictd sections this can not
be said so generalIy. The second term in (27) wiII then less perfectly neutralize the centrifugal
force, if that can be said at alI, and the bending moments become greater in most cases.

Xost airship pilots are of the opinion that severe aerodpsmic forces act on airships
flying in bumpy weather. b ~xact computation of the magnitude of these forces is not possible,
as they depend on the stre@h and shape of the gusts and as probably no two exaet.ly eclud
gusts occur. Nevertheless, it is worth while to reflect on this phenomenon and to get acquairited
with the underlying general mechanical print.ipIes. It will be possibIe to determine liow the
magnitude of the velocity of flight influences the air forces due to gustsi. It even becomes
possible to estimate the maatitude of the air forces to be expected, though this estimation will
necessarily be somewhat vaawel due to ignorance of the gusts.

The airship is supposed to fly not through stilI air but through an atmosphere the different.
portions of which have velocities reIative to each other. This is the cause of the air forces in
bumpy weather, the airship coming in contact with portions of air having different velocities.
Hence, the cotiguration of the air flow around each portion of the airship is ehanggng as it
always has to conform to the changing relative velocity between the portion of the airship and
the surrounding air. ~ change of the air forces produced is the consequence.

Iih-en an airship at rest experiences aerodynamical forces in bumpy weather, as the air moves
toward ii. This is very pronounced near the ground, where the shape of the surrounding
objects gives rise to violent local motions of the air. The piIots have the impression that at
greater ahitmdes an airship attrest does not experience noticeable air forces in bumpy weather.
This is plausible. The hull k struck by portions of air with relatively small velocity, and as the
forces ~ary as the square of the velocity they can not become Iarge.

It will readily be seen that the moving airship can not experience considerable air forces
if the disturbi~~ air velocity is in the direction of flight. Only a comparatively small portion
of the air can move with a horizontal velocity relative to the surrounding air and this -velocity
can only be small. The effect can onIy be an air force parallel to tine axis of the ship which is
not likely to create Iarge structural stresses.

There remains, then, as the main problem the airship in motion co”ming in conh-ict with air
moving in a transverse direction reIative to the air surroundi~m it a moment before. The
stresses produced are severer if a larger portion of air mows with that reIative velocit~~. It is
therefore logicaI to consider portions of air large compared -with the diameter of the airship;
smaller gusts produce smaller air forces. It is no-iv essential to realize that their effect. is exactly
the same as if the angle of attack of a portion of the airship is changed. The air force acting

on each portion of the airship depends on the reIative velocity between this portion and the

surroundiq~ air. A relative transverse velocity u means an effective angle of attack of that
portion equal to u./V, -where ~ denot= the velocity of flight. The airship therefore is now to
be considered as having a variable effective a@e of attack aIo~a its axis. The magnitude of
the superposed angle of attack is u/ F, where u generaIIy is variabIe. The air force produced at
each portio~ of the airship is the same as the air force at thab portion if the entire airship would
have that particular angle of attack.

The magnitude of the air force depends on the conicit.y of the airship portion as described in
section 2. The force is proportional to the angIe of attack and to the square of the velocity of
fight. In this case, however, the superposed parh of the angle of attack varies inverseIy as the
veIocity of flighb. It results, then> that the air forces created by gusts are directIy proportional
to the velocity of flight. Indeed, as 1 have shown, they are proportional to the product of the
velocity of flight and the transverse velocity reIative to the surromdi~~ air.

.< special and simple case to consider for a cIoser investigation is the probIem of an airship
immersing from air at rest into air with constant transverse horizontal or vertical -relocity.
The portion of the ship ah-eady tiersed has an angIe of attack increased by the constant
amount, u/~. Either it can be assumed that by operation of the cent.roIs the amship keeps its
course orl better, the motion of an airship with fi.ed controls and the air forces acting on it
under these conditions can be investigated. & the fins come under the influence of the increased



transverse ve]ocity later than the other pzwts, the airship is, as it were, unstable during the time
t)f immersing into the air of greater transverse vdocit,~- and the mOt ion of the tiirship rggrtivfit es
the stresses.

In spite of this the actual stresses will he of the same range of magnitude m if the airship
[1ics un(ler MI angle of pitch of the magnitude VJ~~,for in general the clmnge from smaller to
gre%ter transverse velocity will not be so sudden md complete as supposed in the lnst para-
graph, It is necessary chiefly to investigate the case of a vertical transverse rel~tive velocity u,
for the severest condition for the airship is a considerable angle of pitch, and a vertical velocity
ILincreases these stresses. Hence it would be extremeIy importan L to know the maximum
value of ~his vertical velocity. The velocity in question is not the greatest vertical velocity of
portions of Lhe atmosphere occurring, but (differences of this velocity within distances smaller
Lhan the length of ihe airship. It is very difficult to make z positive statement as to this
vcdocity, but it is necessary to conceive an idea of its in.agnitude, subject to a correction after
~he question is studied more closely. Studying the meteorological papers in the reports of the
British ~ldvisory Committee for Aeronautics , chiefly those of I909–10 and 1912–13} I should
venture to consider a sudden change of the vertical velocity by 2 m./sec. (6.5 ft.jsec.) m coming
near to what to expect in very bumpy weather. The maximum dynamic lift of an airship is
produced fit Iow veIocity, and is the same as if produced at high velocity at n comparatively
low angle of attack, not more than 5°, If the highest velocity is 30 m,/see, (67 mi./hr.), the .

57.3x2
angle of athck u/~, repeatedly men~ioned before, would be 30 =3.8°. This is R little

smzller than ~“, but the assumption for u is rather -vague. It can only he said that the stresses

due to gusts are of the same range of magnitude as the stresses due to pitch, but they fire prob-
ably not larger.

-+ method for keeping the stresses down in bumpy weather is by slowing down the speed
of the airship. This is a practice common among experienced airship pilots. This procedure
is particularly recommended if the airship is developing large dynamic liftj positive or negativel
as then the stresses are already Iarge.
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