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THEORETICAL D.431PLNG IN ROLL Mill ROLLING LI031ENT DUE TO I)IFFERENTIAL
INCIDE>TCE FOR SLENDER CRUCIFC)RNI WINGS AND WING-BODY COAIBEFTATiOIW * .. ..

By GAYXOR J. ~D.4MS and DUAXE W. DUGAK

s~i~[\i~R~

.4 rnethudqf analysi~ based on slender-wing theory is dere[opwl
to iiiccstigate the charaetwist ics in roll of slender cruciform u<ng.s
and wing-body combinations. The method makes use oj the
(Wnjormal mapping processes of cia.sw-cal hydrodyna m.ics -which
trang~orm the rqrion outside a circle and the region out~ide
an arbitrary arrangement of line segments intersecting at the
or igiii. The method ~f analysis may be utilized to so[ce other
.dender m uc~forrri wing-body problems in rok=ng arbitrarily
~.sstglied bwndary conditions.

In the prewn~ report, the app[ic~tion of the method has
“}.5tt)WIL.“

1. That the damping in roll and the rolling morr(nt due to
di~-ereiitiai incidence of both pairs of opposite surfaces of tiw
cruc~forrn uing-body combinations are practically independent
t!f the body-d iam(ter-ma.rim urn-span ratio up to a ralue of this
ra~iu qf 0.3.

) That the damping in roll of the cruciform wing-body.- .
arrangement is only 62 percent greater than that for a corr-e-
spunding planar wing-body combination.

3. That the rolling moment, resulting frotn diJererdial inci-
dt nw qf both pairs of the opposing surfaces of the cruciform
)m.ng-body arrangement, is only 52 percent greater thari that

,fcw a. corresponding planar wing-body combination.
~. That the rolling e~ectiwness (un.ng-tip helix angle per

unit surface d<fleefion) of the cruciform u’ing-bvdy arrangement
baring four qual[y dejkted panels is therefore .9.j percent of
the corresponding p[anar wing-body combinatiori.

IXTRODL’CTION’

Lit tle information is currentIy avafia.ble which will permit
a-nenduation of the stabifity and control pro bIems associated
with the use of cruciform wing and wing-bociy combinations.
In some insta.ncw (e. g., the important case of lift), the char-
wterkt ics of thew wings and -wing-body combinations m%y
Iw rtikulated from know-n solutions for pIanar systems, but
in otller cases the’ effect of interference betw-eeu components
may be so large as to inwdidate the resuIts of such proce-
(lures. Additional tkoret icd treatment is tberefore re-
(Luired to establish the magnjtude of these interference effects.

.h analysis of sIencler, Iifting, planar wing-body and
[,rueiforrn w-in<g-bodj- comb iniit ions was presented by Spreit er
in reference 1. Since these resuIts -were not a.ppIicabIe to

the present prclbIem, a theoretiwd in~estigation of the
rolliug characteristics of slencler cruciform wings was under-
taken and reported in reference 2. The present report sum-
marizes these resu~ts, and extends the analysis to incIude””
sIencIer cruciform wing-bodev combinations.

Several other anaIyses of rom~-moment characteristics
of cruciform w-@g mcl w-ing-bcxi~- combinations have been
made, each of which pwtiaIl~- solves the probIem. Ribner
(reference 3) has treated the rolling cruciform wing with
subsonic Ieadinggedges; BIeviss (reference 4) made an mMI@
for the case of the cruciform wing ha~~m supersonic kadin~
edges; G:aIwn (reference 5) has evaluated the roLling
moments for cruciform wing-bed:- combinations in the

~thg case of an infinite number of fins; and Tucker ~d
Piland (reference 6) have developed a method for obhini~~
approximate linearized solutions for & darnpkg in roti
of wing-bod~- combinations in w-hich the wings have super-
sonic Iead ing edges, and have calculated the approximate
coefficient of damping in roII for configurations ha~~~
rectsmguIar and triangular wings.

The present analysis considers the case of a slender
cruciform ~~-body combination consisting of an equal-span
cruciform wing mounted on an infinite circular cylinder
(fig. 1). The probkn VW be treated by the welI-k.nown
methods of slender-ti~~ theory, as introduced by Jones
(reference i) and extended b~ Ribmir and others to determine
the aerodynamic characteristics of sIender wing and wing___
body combinations. In the present report, the method is
appIied to the determination of the damping in roll and tLte
roI1.ing moment due to differential incidence of one pair
of opposite -D panek of a sIender cruciform wing-bodj-
combinatiom

The use of s~ender-wing theorj reduces the problem to

that of finding- the vdocitl- potentitd detlning the tw-o-
dimensional flow of an ideal fluid about w finned cj-linder;
solutions satisfying the prescribed boundar~- conditions may
therefore be obtained by the methods of ekissical hydro-
dynamics, in particular, the method of conforma~ trans-
formation. Since the normaI veIocity is specified on the
boudary, the problem is a Neumann probIem in eksicaf
potential theory; howwer, it is convenient to determine
the potential by means of a source-sink distribution on the __
circle in the transformed pIane.

1 IZxrm, fs the MMIYSLSof .V.4C.I T&; MO, “Theoretic-aI Damping in RoII and Rolling Effecti\-enes of Sknder Cruciform Wings,” bx Gaynor J. .+dmm, 1951.
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SYMBOLS

b.’
aspect ratio

()-F-
lxxly radius
local span of wing (28)
maximum span of wing (2s.)
chord of wing at pkane of symmetry

L’

()
rolling-moment coefficient —- -

qSb,

coeflkient of damping in rolI
(*-)

d c,

()
coefficient, of rolIing-moment effectiveness —-

M

Jacobian elliptic functions, argument u and modulus k

elIiptic integral of the second kind, argument t and
IllO(iU]US k

compIete elIiptic integral of the second kind, modulus k
e]]iptic integral of the first kind, srgumcnt t and

modulus L
Jacobi’s eta function, argument u and modulus k

——
y~
modulus of an elliptic integral or fuuction
complete Wip tic integral of the first kind, modu}ns k
liftl
roIIiug moment
strength of a point source or sink
free-strwn hlach number
rate of rolI, radians per second (constant)

(?

Ap
Ioading coefficient ~

difference between pressures on lower and upper sur-
faces

free-stream dynamic pressure
();; P~2

radius of circIe in a plane corresponding to equaI-span

wing-body surface in X plane (;$V$)

IocaI semispan
maximum semispan
are~ of horizontal surface of cruciform wing inrIuding

its hypothetiud extension through the body
velocit.v component in the y direction
free-stream velocity
veIocity component in the vertical direction
comtant va.luc of w
right-hand orthogonal coordinate system
value of y corresponding to value of 00
compkx coordinate (y+ iz)

Z(A,k) Jacobi’s zeta. function, argument, A aml moduk A
polti r coordinate of the I]o[nt, in the ~ plane corres~ond-.

ing to the horizontal wing and body junction in the

(

\
X plane

‘7r~—tan-l~z
)

angle of incidence of wing panel, radians (cT<<l)

Pt— P.

semivertex angIc of a pIane triangular
coordinates in the complex f plane

W-ing

%
80

A

A,)

h

N

‘i
P
u
T>V

f
f,

p

$

—
.+
H
L.E.
1
T. E.
u
T-

-Y

poIar coordinate i]l the a plane
angle betwcwl a source or sink radius vector and a

coordinate axis (u plane)
Heurnan’s form for the incompll~t,c ellipt.i[: integral of

thtI third kind
Heuman’s form for the compleh: ellipLir inhgral of

the third kind
body diameter

,

span
polar coordinate of point in r plfinr eorrmpomling to

the Y’ertical wing and l~ody juncLioll in the .Y plane
{T \

complex coordinate (~+if-)
mass density of air
complex coorclinatti (7 +iv)
coor.dimaks in compkx a plane
complex potential (W+i~)
complex potentiwl due to a combil~ation

sources and sinks
VeIocity potential
stream function

of pfiin L

Subscripts

vaIue for a.plane wing
vaIue for a cruciform wing
horizontal wing
value at Ieading crlge
va.luc on lower surface
value at. trailing edge -
I’a.lue on upper surface
vertical wing
value zt the poin Lwhere O=y

ANALYSIS

GENERAL

Several methods} based on the linearized theory of supGr-
son.ic Howj hwvc been developed for de krmining thc aero-
dynamic chamcteristics of planar-wing systems of finite spa]l.
However, the application of these methods to the cakulfition
of the clwtic t~rlstics of a, cruciform wing-body combination
(fig. 1) leads to considerable math~’matictd difictllLies, since
the effects. of interference Ix2t;veen components cannot be
~eg]ected and it is, in genw-al$ not practicable to construct

solu Lions from the soIu tions for plarkar systems. (An rece-
ptionis the dekrmina tion of lift.) IL is therefore desirable to
introduce simplif~-ing assumptions ~vhich permit cal~:tlhttion
of the characteristics of cruciform wing-body configurations
within reasonable limits of accuracy.

The ]inewized part ial-difi’cren t.ial cqnation for the p[’rtur-
?.)ation veIocity potential P in subsonic an(I supersonic flow is

(1–M) $o=z+p,, +p., =o (1)

where the free strefim is directed paraIM to tk positive x
axis, and M is the free-stream ilac.h number. If the Longi-
tudinal velocit,j- gradienL pzt is suffkiently small and the
Mach number is not excessively high, then the first term in
equa t.ion (1) is small comparmi to the velocity gradients in



THEORETIC.\L ROLLIN’G CE~RACTERISTICS FOR SLEX-DER CR_CCIFORM WLN-GS .AlN7DWLXG-BODY COMBIX.4TIOXS

FII. 1.RE 1.—Cruciform W@-bO&j- mmbiwrion.

the y and ; directions and may be neglected.
them reduces to

–0+-*-U+ g:z—

Equation (1)

(2)

which is tlw familiar tw-o-dimensional form of LapIaee’s equa-
tion. For slender wings and bodies the veIocit~- gradient p,,
is small. so that a satisfactory approximation to the aerody-
~amic characteristics of slender wings and wi~g-bocl~- con-
figurations ma~- be obtained by mezns of equation (2). The
results will be independent of llach number and will be
vaIid for both subsonic and supersonic Mach numbers, as was
pointed out in reference 7.

It was pointed out in reference 1, and discussed in greater
fletail in refere~ce 8, that equation (1) is still ~alid if X is re-
pIaced by unity, in which case equation (L) again reduces to
the two-dimensional form of Laplace’s equation.

In the present application of the theor~-, no point ou the
trailing edge ma.v lie ahead of the most forward poi~t of
ma.xjmum span. If the latter condition is not satisfied, lift
is indicated off the surface of the w@, W-hiCh vioIates the
boundary conditions. For a more detailed discussion of
slender-wing and wing-body theory, the reader is referred
to references 1, 7, 8, and 9.

‘Nw present probIem k solved b~- finding a soIution
of equation (2) which satisfies the folIow-@ boundary
conditions:

1.’ The perturbtition veIocity components ~+ and ~ vanisha~
at infinity.

2. At all points in the y=O or z=O planes (but. not on the
wing surfaces, or inside the body) AF=O.

3. At all points on the y=o and ~=0 planes A b—p=(l
w

A ‘~= O, respectivel~-.
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and

4. At aII points in the y=O and z=O pIanes, within the

wing plan-form boundaries,
(%),=0 and (%)..0’ ‘espec-

tiveIy, are specified.
be’

()
5. At aII points on the bod~- surface, ~ is specified.

If the region outside a finned cyIinder k mapped conform- .
ally on the region outside a circIe, ~iith points on the cir-
cumference of the circle corresponding to points on the
surfaces of the finned cylinder, a potential function
satisfying the boundary comiitious stated above may be
follnci by ~tegratbg a suitable combination of kfmitesimal

sources and sinks over the circumference of the circle.
If the tw-odirnensional velocity potential for the flow in

transverse planes is gi~en, the Iocal Ioading coefficient may
be written a

For this particular prob~em, the Iast two terms on the right
~anish (cf. boundary conditions abo~-e) and the. loading
coefficient becomes

p=& alJ _-l aq d.:()v a.r i-as dx

which expresses Bernoulli’s equation with the approximation
of small clisturbances in the case of slender wings and bodies.
It follows from equation (3) that the lifb of one fin is —

Similar]>-, the rolling moment contributed by one fin is

Ik the follow~m section a conformaI transformation is
derived which maps the region outside a circle on the region

. outside a cylinder having four fins. It is then shown that,
bj- means of a distribution of infinitesimal sources and sink
on the circumference of the ehde, a velocity potentiaI may
be found having a normal derivative which satisfies arbi-
trarfl~- assigned value> on the surfaces of the &i.

In succeec@ sections the velocity potentials are deter-
mined for the cases of a slender, roIIing, cruciform wing-body
combination and of a sIender cruciform wing-body combina -
tion for which one pair of fins is differentially deflected through
a small angle of incidence. The case whexe the body radius
equals zero (i. e., cruciform wings) is a.ko treated in detaiI.
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CONFORMAL TRANSFORMATION FOR THE CROSS SECTEON OF A

CRUCIFORM WING-BODY COMBINATION

The transformation of the cruciform wing-body cross
sw tion (see fig. 2) may be readily accomplished in t]vo
steps. The .Joukowsky transformation

(6)

tra.nsi’orms the cruciform wing-body cross section into a
cross [fig. 2 (b)} with unequaI horizontal and vertical arms;
twrresponding points are shown in figure 2.

Darwin (reference 10) has given a function which trans-
forms thti region outside a circle into the region outside an
arbitrary arrangement of line segments in tersccting at the
origin. By applying Dar~vilt’s formulm to the cross of
figure 2 (b), it is founcl that the required transformation is

R’
252=u2~ .—2R2 COS2P (7)

u-

where R is the ;adius of the circle in the r plane, a is the
radius of the [’ylindricaI body, and p is the polar coordinate
of the point. in the a plane corresponding to the vertical
wing and body junction in the X plane. IL can be shown
that the vertical and horizont.a.l sptins of the cruciform
wing-body combination may be taken unequal with no
cha.r~ge in the form of equation (7); in this case the radius
of tll~’ [rircle is given by the expression

rvhtire s~ is Lhc semisptin of t.hc horizontal }Ving and SOis the
semispan of the vert.icid wing. The angles ~ and y are then
given hy the relations

and
2

(.!0s2y—cos 2/4=:–RZ

If Sj=s,=s, cquatiorl (7) nmy be writtw

and from equation (6) and the latter cquatioll it follows
that the transformation from the pl]YsicaI plalw to tile
circle is given by

(8)

For simplicity, the horizontal and vertical spans llavc I.we[l
assumed equal in the present report.

A generalization of equation (8) is

F=2(”’’2+S)
3/2+ a“

where

For a cruciform wing (a=O) the equation

2X= g’+; (9)

transforms the equal-span cruciform N-ing having scmispan
s into a cil’cle of radirfs s ill the r plane. A gem’ralizntion of
equation (9) is

(lo)

where n is a positive integer. Equation (10) maps con-
forrnally the region outside a circle a=seto in th[’ r plane on
the region outside a symmetric figure in the X plane, con-
sist ing of n line segrrients of length s having a corn mon poirlL
at the origin. This transformation t.ogeth(’r lvitl} the method
of this report, may be used LO study the rollirlg-rrlolllt’]~t
characteris~ics of a sIender symmetric wing consisting of n
plane fins having a common root chord.
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I“I12URE!2.- Conformal transformation for the cruciform wfud.body combhmtion.



TEIEORETIC.4L ROLLIX”G CHARACTERISTICS

DERIVATION OF THE VELOCITY PoTm’rIAL

The cornpIex velocity in the physical pl~ne is

FOR SLENDER CRUCIFORM WE%-GS AND WLN7G-BODY CO-MBLVATIOS’S 607—

(11)

Through the use of eqnatiou (11) the boundary ~o~ditions
given in the X plane can be transformed into the correspo~d-
ing boundary conditions in the : plane. The probIem is thw
to find a potentiaI function satisfying these transformed
boundary conditions in the transformed pIane.

If i source ami z sink of strength m are Iocated & the
{.k-conference of a circle as shown in figure 3, then the circIe
k a streamline of the resulting flow. If the flow is trans-
formed into the f plane b~- means of equation (F), the source
and sink w-N be transformed into s “doublet” located in the
positive part of the line segment. (See fig. 3 (a).) As
show-n in this figure, the doublet is charsicterized by a flow
normal to the segment. at the point Ea. At all other points
on the segments the normal velocity is zero and the segment
surfaces are streamlines. In the a pIane the compIex poten-
tial for the source-sink combination is

(12)

ln the corresponding flow in the ~ pIane there is an intlow-. of
m/2 units per second above the real atis and an outflow- of
m~2 uuits per second %elow the real axis. The flow from m
infinitesimal source of strength drn (located on the arc ele-
ment Rd6a in the r plane) is, of course, dm units per second.
ln the t plane the flow across the corresponding element

dto is ]w&,\ units per second, where w=is the ~erticaI velocity
component attthe point & By the principIe of continuity of
flow, it is seen that

where w: may be any function of $., anti d[e is obtained from
equation (7). ‘l%e complex potential corresporlding to t-my
assigned distribution of q ma-y then be found by replacing
m by dm in equation (12) and integrat~~ over the proper
range of -dues of &. This procedure w-ill be folIowed in the-
succeeding sections

It is evident from the preceding discussion that the present
method of analysis may also be applied to nou~teady flow
problems by making the doublet strength a function of time.

APPLICATIONS
ROi.J3XG X1OMEXT DVE TO ROLLING

Equal-span cruciform wing-body combination.-The case
of a s~ender equaI-span cruciform wing-body combination
rolling about. its Longitudinal axis -with constant angular
-reIociLy p will now be considered. The complex potential
for the source-sink combination show-n in figure 4 is

Replacing m by din =2wdyo=—2 ~ G?yO=—2d#, and in-

tegrating from 6,= O to @o=-Y, the compIex potential is

\

=---

–K

(b)

—.

-m

/’
/ ‘f// 6./

.-’
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‘\
/7”

\

\
8.

\
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./
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m

F I,,CRE 3.—Doub1et fiow in: pkme corresponding to sonrce.sink flow in. plane.
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iz

is

-?$ -o

(0)

(d X plfme.

!71G[’RE4.—R01ling cruciform

(b) u pIanc.

wing-body combination,

Integrating by park yiclcls

WIWLWtln imtlgill~ry constant has been omitted. Substituting
u= Rc*@ into equatiou (14), and evaluating the real part,
yields for the surface velocity potential

~=k,> *og sin 2(T — d)

f

Y
—+ sin 40 -–

+(oo)doo , (l ~,
r sin 2(7+8) 7r , 0 Cos 46 —COS400

for all values of e (– T S O S 7). Equation (15) gives the
veloei ty pot[Ill tial for tiny symrnet ric distribution of normal
ve!ocity cornpmwn ts on tile fins of an equal-span cruciform
iving-body configurtltioll. The principal value of the
inh’gml must, of course, be taken if cos 4L9=cos 400 in the
interval of iutcgration. For the present problem i is equal
to *pyOz on the real axis (it is assumed thtit the unsteady
flow condition is approximate ed b~- fins with linear twist} and
from equation (8)

&’=llcos 2t70-cos 2~+,/bos Zi. +-cos 27 ‘(1 6)

Substitution of these equations i~~to~qufit.ion (15) yields

q= ~tg lQg sin 2(7—6) 4pR2 sin 48 Y cos 2&d%a_—
sin 2(7+0) 7r f, 0 GS 49— COS4oo—

4pR2

J

-y~l~oszZOO—COS22-Y’~$o (17)
— sin 40
T o Cos 4b’-cos 4%0

Evahmtion of the ktegrals in equation (17) yields for the
surf arc velocity pohm tial on the horizonttil wing surface

2k1 (’0s A,. K(k,)z(A1,k,)] (18)

()‘sin 28
.41=sin-’ —

sin 27

and Z is Jacobi’s zeta function. TIN derivative of ~~ with
respect to s is z

From equations (3), (18), and (1’9) it follows tlML W loading
on a spanwise strip for the slenderj rolling cruciform Iving-
bocly combination is given by

1
{

~=: k, [kl+E(kl)]+kl’*K(k,)z(A1,/cl)

()
(l+~i)# g r tan 20 Cos Al 1 —

(20)
This load distribution is shown in figure 5.

—

y/s

FIGITRE 5.—La~d distributions on spanwke strips for rolling cruciform wiug.hly
combinations.

The rolling monmn t due to rolling for rach fin maj IN
found by substituting equation (18) ink cqtration (5) nml
integrating. Tlw results, as obttiintd by numeriral integra-
tion, are pr{esentcd in coefficient. form in figure 6, as a fulkr-
tion of body -diamet er-maxirllllnl-s~}all ra tio. m urea Ikwd
in defining the aspect ratio and the moment coe[!ici~int is
the area of the horizontal surfaces of the crucifcyn?. wipg,
including its h~-pothet ical extension through ~[Lc body. For
purposes of comparison, figure 6 includes the eocfflcient of
damping in roll for a slender planar wing body as given in
reference 12. ~t.is evident that for these cases the body has
little effecL on tho damping momrnt up to A=O.4.

Equrd-span cruciform wing,-lf a is plawd equa] to zero
(A=r/4, R=s/2) then equation (18) reduws to

oy’%=+2 ‘@’sech-l ~
Z-

which agrees with the result, giwn, in rcfcwnccs 2 and 3 for
the surface velocity pohmt.ial of a rolling cruciform lving.

—

Similarly, equat~on (20) reduces to
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If thfi velocity potent M for a sIencler, roll-irg planar ving
(refeience 131 is substituted into equation (3), it is found
that the loading on a spanwise strip is given by

Figure 7, w%irh presents these load distributions, shows tlw

etie[’t of the ];-in: interference in reducing tk load dis-

tribution which opposes the roll@ motion.

Suktitutin~ equation (21j into equation (5) jiekls tk

to [al rolling moment due to roII for a sIender cruciform wing

Horizontal surface

[“
s

(b) Cruciform wing.

The coefficient of dampi~~ in roII is therefore simply

(Cl,)+=–+

A—_——
?--n

609

where the coeflikien t is based cm the area of the horizontal
-wing only.

For a slender pIana~ w-@ it is known (reference 13) that
the coefficient of damping in roll is

The ratio of the damping moments for the roliing cruci-
form -C and the rolling pIanar -wing is therefore

‘J%e dampi~~ in roll for tl.w slender cruciform wing is

therefore only 62 percent greater tlnm thfit for a. p!anar wing

having the same aspect ratio.

ROLLfXG MOMENT DCE TO DIFFEREXTTAL WXG IxaDExcE

Equal-span cruciform wing-body cornbination.-The case
considered here consists of a sIender. equal-span, cruciform

w-in~-b~d:- combination in which the horizontal ~M are

diRerentiall>- cleflected tluwu@ a srmdl angle 8. The verticaI .=
velocity component on th~’ surface of each hwizontrd fin is
constant, and is wo= & l’~; on the surfaces of the vertical

fk the lateral velocity component must be zero, and the

radial velocity component on the lxxlj- surface must be zero.

The compIex potential for the source-sink combination
shown in figure 8 is

t A

is

\ w =Wo

~’ o

m -m

IIIIM;IIIIII a
Q:’., ,,y’~

–s –g Illlllllllll;+’

~

i
_R ~o,;, \\\ g-” -- T

\
\ > W“.w.~o

m

(b) I
(d X plane. (M . PLW.

FIGrBE S.—C%aciform wing-bodj- combination with d!flwemtid incidenca of che lmziz.cmtai
SXrzfwes.

2724? 3—54—-4



610 REPORT 1088—NATION.4L ADVISORY COMMITTEE FOR .4ERONA1.TTICS

Replacing m by dm = 2W dye= –2% dyO= – 2d+, and inte-

grating from 0,= O to L90=Y,the complex potential is

Integration by parts yields

, &?_ R2e2f7

.f=+loE(=2p7)-:
J

‘@4_r4j ‘ ‘ +(60) doo
o U4+R4—2R22COS 200

(24)

!vhere an imaginary constant has kn omitted. Substitut-
ing F=Rc*U into equation (24), and evduat.il~g the reaI part
~-ields for the surface ~elocit.v potential

~=h~og sin(7–0 _2s~ rJ@ ‘
J

v(d,) de,
(25)

T sin (7+ 0) 3r o Cos 213-cos 2L90

for all values of o (—ms 8s r). Equation (25) giws Lhc
surface velocity potential for a cruciform wing-body combi-
nation having any specified rmtisymmet.ric distribution of the
vertical veIocit.y component, on the horizontal surfaces. The
principal value of the inLegral must, of course, be taken if 0
is such that cos 219=cos 200 in the interval of integration.

For t.hr present problem ~ is equal to wOyOon the real
axis; substitutioli of this equation and ~quation (16) into
equation (25) yiekk

—— ———

y log
sin (7 — 6) 2WOR

J

~>~c”os290—COS 27
q= ——sjn20 — dt?.–

sin(y +6), 7r ~ cos 20-COS 200

?w~oR .
sm 20

J

‘-fljcos 260+COS 27
d 0.

T . c0s2e —c0s280

for the surfwe velocity potential for [he cruciform wing-
bwl.v configuration with differ~’utial incidence of the horiz-
ontal surfaces. By replarin,g the upper limit in tb[’ integral
of equation (26) by an appropriate value determined from
oquat.lon [8); the velocity potential iuay be obtained for a
rruciform wring-body combination having different.iaI iri-
(’iclcnce of the outer portions of the horizontal fins.

Tbe first and seconcl integrals occurring in equation (26)
are complete and inconlplet[’ elliptic integrals of the third
kind, respectively; these intt’graIs may be reduced to Jacobi’s
nnrr~)al form by the respective elliptic substitutions

sin @@=sin -f sn(u, k2): k2=sin 7

sin O.=cos T sn(u, k3); lc3=cos 7

‘rhe surface Velocit}- poLential may then be Jvritt.en in the’
form

Equation (27) gives the surfaw veIocity potential for alI
values of 0 (— rs 0s 7r); the explici~ evacuation of the in-
tegrtils, of Course, depends upon the range of valuw of the I
pammet ers occurring in tll~’illtegrands (references 14 and 15).

Evaluation of the integrals in equation (27) for 2= O,
a ~ y ~s ~orizontal fh, positive real axis) Jtiehls .

and the modulus of His k3.

(.28)

Equations (27) and (28) defil}t’ the surface vclority po-
ten tial p.g on the deflect cd surfaces of the cruriform wing-
body combination.

For values of @ corresponding to points on tbe vertical
surfaces, in.tegratlion of equation (27) yields

where

A., =Sin-’ (l’I-IN y—cos~ 6

cos y sin 6 ) J
and & is Heuman’s form (refererwe 16) for LIIIIemnp]ete
eIlip tic integral of tbe third kind. Tly second in tegrxl is

()&~ sin-l Co?.e.
sm 7

and A is Heuman’s form for the incomplete ellip Lic integral
of the third kind.

Equations (27), (29), and (30) define the surface velocity

potential @lTon the v crticaI surfaces of the eruciforrn’ wing-
body combination with differential incidence of the hdrizontd
surfaces.

The rolling moment due to differcnLiaI incidence of one
pair of fins may be found by substituting the preceding
equations for ~K and P~, in cquaLion (5) and integr~ting.
The results, obtainod by numerical integration, arc prcsenkl
in coefficient form in figures 9 an(l 10 as functions of k. Tlm
aspect ratio and coefficients are based on the area of the
horizontal surfaces of the. cruciform wing, including its
hypothetical extension through the body.
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-.08

-.16

k ( Body diometer/span)

Fn;, EE iJ.-C’aeticient of roILing-momenteffectiveness ~orcruciform wing-body combimitions
wIch ,iiffwentid incidence of the hwizonkd wfm?es.

Figure 9 gives the coefficients of rohg--morneut effective-
tless for both the deflected and the unreflected surfaces. as
weII as tht~irtilgef)raie sum, that is, the total rolling-moment
efft’ctiveness for the configuration. Figure 10 also gk-es the
{wfi~ffirient of rolling-moment effecti~-enes.s for % sdender
planar wing-body combination -with di.fTerential incidence of
the Iving surfac~s; the velocity potentiaI for this case was
clerked by mapping the configuration cross section on a
circle by means of two successive applications of the Jou-
ko~vsky transformation, that is:

wkre the .1” plane is the physictd plane and the win@ody
cross section is transformed into a circle of radius S1in &
a plane. The velocity potentia~ on the wing surface is
giren by

+“I@ ~

[
()sin 6

( )1
‘sin 6—=—

]75s, r
cos 6 tanh-l —COSy tanh-l —

..SZ sin ‘y +

K(k) .in~6—2AA”(k)2(A, k) COS.4. (31)
r T

where in this case
. .

k=sin y, .-i=sin-’ (Y#J
,*

The angle o is defined by U=sleiff where u is a point on the
circIe in the a plane corresponding to a point on the wing-

I

.[6 \ .
I

\
,/

Planar wing-body

.1’2 t

I ;/>

1

_~

w ‘( ~

II
I H

A
.08

.1,
ruciform wing-body

t

F \

.“Q

k

c1 .2 .4 .6 .8 1,0
k”( Body diameter\span )

FIGCEE lo.—ctitie~t ti mu.momex effwtireness [or cruciform and plmw wing.bwiy

eombinstiom~ with differential incidence of the horizontal amrfaees.

\

body surface in the X phme; the angle 7 is the due of O
corresponding Lo the wing and body juncture. It will be
noted tliat equation (31) is identical in form to equation
(18), the potential for the rolling cruciform ting-body
combination.

It is seen from fi=wes 9 and Io that, .dthough the rolhrg
momen~ supplied b~ the loading of the deflected surfaces of
the cruciform wing-body combination is larger than for the
pIanar -wing-body combiriation, the counter rolIing moment.
induced on the unreflected surfaces reduces the total roIIing
moment of tht former to approxinla.teIy 75 percent of that
for the pIanar wing-body combination. If both pairs of
opposite surfaces of the cruciform wing-body combination
are deflected, the rokng moment can be found by the method
of superposition to be twice that for one pair, “in which c~~e
the roIIing moment of the cruciform fig-body combination
is approximate~y 1.5 times that of the planar wing-body
combination. It can also be seen from these f@res that the
body has little effect on rolling momeni up to a value of
k= 0.3 for the cruciform wing-body combination.

Equal-span cruciform wing.-~f the body radi~~s is ,set
equal to zero (cruciform wing) in equat irms (27) to (30), the
giren velocity potentials reduce to

knd

ii, =Cos-’ (2/s)
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and the modulus of the elliptic int egrmls rind fund ions is in
all cases i= l/~fi.

These equfitions agree with those given in reference 2 for
the velocity pokntiak for a cruciform wing with clifferential
iuciclence of the horizonta] surfaces.

If equations (32) and (33) are subst.i~ut,ed in equation (3), it
is found tlmt the loading on a spanwise strip of the hori-

zontal surface is

and that the loading on a spanwise strip of the vertical surface
is

where f?= 1/IE in boih equtitions.
Likewise, if ihe velocity potential z for a pkmar wing with

differential incidence of the w-ing surftrces is substituted into
equation (3) ~the loading over. a span-wise strip obt aired is

Figure ‘11 sho}vs the loading over the horizontal anfi vertid
surfaces of tk cruciform wing in comparison to that o rer a
planar }ving when the horizontal wing ptmels are differentially
deflected.

Horizonfol surfac~

(n)Plmiw wing.

-s
s

+--

(b) Cruciform wifig.

FIG1’RE 11,—I,ow1 distrihntions on a spanwisc strip for wings with dif?crcntisl incidence
of the horizontal surkcw.

If the veIocit.y pokntia.1 for the Lrorizontd surface is sub-
st itut ed int)o equat:ion (5) and int,egrat ed, the roIIing moment
due to tht’ horizontal surfaces is seen to he

=—1.128 pv%sos
J

similarly, the rOIIifLg moment, due to the vertical surface is

=0.620 pmsoz
J

The total rolIing moment is therefore

and the coefficient of rolling-momenb effectiveness is

(Ch).=- 3T432 E–K); k= 1/1~

=–O.127A ‘

based on tk horizontal ]ving area.

From reference 17, the roliing moment for R slw)der piar~~~r
wing having t)Ilepanels differentially t~effe(’tc~~is

L’= –0.667 ‘TT2&s~

and the cocfflcient, of rolling-moment 14f(v,tivcncss is

(C,J.=-O.1G7A

The ratio of the rolhng moments produced by the kmizont al
panels of the slender cruciform wing aod slender plfintrr wing
is

so that tl~c total rolIillg moment. of the cruciform Ivirlg with
one pair of opposite panels deflectwl is 24 pmccnt less Lhhtl
for the planar wing.

If both pairs of surfaces of the cruciform wing w-ere de-
flected through a small tingle 6, t.hc coefilcicnt. of rolling-
momenk effectiveness (based on the horizontal wing men)
would be doublrdj or

(CI$)+=–0.254J1

and the total roIIing II”LOIUf?nt ~t-ould lx only ,52 percent
greater t}lan tlmt of the planar w-ing.

ROLLING EFFECTIVENESS

AL partimeter ofterl wed iu e~vduating the rollillg effective-

ness of a lateral-control system is the rate of change of the

wing-tip helix angle pbJ21’ with differel}t.ia~ con t.rol-surface
deflection. This pararnpter is obtailwd from thr relationship

From the previous results, the h<’lix angle gellerate(l by
unit incidence of u cruciform wing havi~lg four panels
equaIIy deflected is

c

=1.594

~The velocity potential for this case may be easily deri~-ed hy applyfng the Joukowsky transformation and tbe method of this report.
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TtItI ratio of the heki rmgk per unit wing deflection for a
cruciform ~ing to tltti.t for a. planar wing is therefore

i %F’lP)+=~.94

/“fi - //7 \
(~c*/~lp)-

It is seen that, the rolhg effectiveness ‘of a planar wing is
rwluced 6 percent hy the introduction of a wing with identical
plan form an(i surface incidence iri the vertical pke of
s~mmetry.

CONCLUSIONS

The application of slender-wing theory to the estirmttion
of the characteristics in roII of slender cruciform W-k,gs and
wing-body combinations has sho~rn the following:

1. That the damping in roll and the rolling ntome~t due
to ditlerential incidence of both pairs of opposite surfaces of
the mneifoem wing--body combinations are przcticaIIy inde-
p[~ndent of the lJI~dy41ian>e~er-maximtIm-span rat io up to a

valup of this ratio of 0.3.
2. That the damping in roll of the cruciform wing-hotly

arrangement is onIy 62 percent greater than thbt for a corre-

s~l~nd~g pIanar ~~-ing-body combinatio~-
:]. That the rolling moment, resuIt ing from differential

incidence of both pairs of the opposing sw faces of the c1uci-
form wing-body arrangement, is only 52 percent greater
than that for a corresponding pIanar wing-body combinatiori.

-t. That the rolling effectiveness (wing-t ip helk angIe per
unit surface deflection) of the cruciiorm w&w-boJy mrarge-
meut having four equalIy deflected paneIs is therefore 94
percent of the v.orresponding pIanar vi-kg-body combination,

It is of int.eresi to point out that the method of anaIysis
~nay be a,ppIied to the investigation of the characteristics of
sIender cruciform wing-body combinations which ha}-e any
specified clistribut ion of normal -reIocity on the surfaces of

the wings an(l body.
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