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THEORETICAL DAMPING IN ROLL AND ROLLING MOMENT DUE TO DIFFERENTIAL WING

INCIDENCE FOR SLENDER CRUCIFORM WINGS AND

WING-BODY COMBINATIONS !

By Gayxor J. Apaxs and Duaxe W. Dueax

SUMDMARY

A method of analysis based on slender-wing theory is developed
to investigate the characteristics in roll of slender eruciform wings
and wing-body combinations. The method makes use of the
conformal mapping processes of classical hydrodynamics which
transform the region outside a circle and the region outside
an arbitrary arrangement of line segments intersecting at the
origin. The method of analysis may be utilized to solve other
lender cruciform wing-body problems involving arbitrarily
assigned boundary conditions.

In the present report, the application of the method has
shown:

1. That the damping in roll and the rolling moment due to
differential incidence of both pairs of opposite surfaces of the
erueiform wing-body combinations are practically independent
of the body-diameter-marimum-span ratio up fo a Lalue of this
rativ of 0.3.

2. That the damping in roll of the cruciform wing-body
arrangement is only 62 percent greater than that for a corre-
sponding planar wing-body combination.

3. That the rolling moment, resulting from differential inci-
dence of both pairs of the opposing surfaces of the cruciform
wing-body arrangement, is only 52 percent greater than that
for a corresponding planar wing-body combination.

+. That the rolling effectiveness (wing-tip helix angle per
unit surface deflection) of the cruciform wing-body arrangement
having four equally deflected panels is therefore 94 percent of
the corresponding planar wing-body combination.

INTRODUCTION

Little information is currently available which will permit
an evaluation of the stability and control problems associated
with the use of eruciform wing and wing-body combinations.
In some instances (e. g., the important case of lift), the char-
acteristics of these wings and wing-body combinations may
be caleulated from known solutions for planar systems, but
in other cases the effect of interference between components
may be so large as to invalidate the results of such proee-
dures. Additional theoretical treatment is therefore re-
quired to establish the magnitude of these interference effects.

An analysis of slender, lifting, planar wing-body and
erueiform wing-body combinations was presented by Spreiter
in reference 1. Since these results were not applicable to

! Extends the analysis

of NACA TN ﬁﬁ, “Theoretical Damping in Roll and Rolling Effectiveness of Slender Cruciform Wings,” by Gaynor J. Adams, 1951,

the present problem, a theoretical investigation of the

rolling characteristics of slender cruciform wings was under-

taken and reported in reference 2. The present report sum-

marizes these results, and extends the analysis to include

slender eruciform wing-body combinations.

Several other analyses of rolling-rmoment characteristics
of cruciform wing and wing-body combinations have been
made, each of which partially solves the problem. Ribner
(reference 3) has treated the rolling cruciform wing with

subsonic leading edges; Bleviss (reference 4) made an analysis _

for the case of the cruciform wing having supersonic leading
edges; Graham (reference 5) has evaluated the roncr
moments for cruciform wing-body combinations in the
limiting case of an infinite number of fins; and Tucker and
Piland (reference 6) have developed a method for obtaining
approximate linearized solutions for the damping in roll
of wing-body combinations in which the wings have super-
sonic leading edges, and have calculated the approximate
coefficient of damping in roll for configurations having
rectangular and triangular wings.

The present analysis considers the case of a slender

cruciform wing-body combination consisting of an equal-span

cruciform wing mounted on an infinite circular eylinder

(fig. 1). The problem will be treated by the well-known

methods of slender-wing theory,
(reference 7) and extended by Ribner and others to determine

the aerodynamic characteristics of slender wing and wing-

body combinations. In the present report, the method is
applied to the determination of the damping in roll and the
rolling moment due to differential incidence of one pair
of opposite wing panels of a slender cruciform wing-body
combination.

as introduced by Jonesi;f

The use of slender-wing theory reduces the problem to

that of finding the velocity potential defining the two-
dimensional flow of an ideal fluid about a finned cylinder;
solutions satisfying the preseribed boundary conditions may
therefore be obtained by the methods of elassical hydro-
dynamics, in particular, the method of conformal trans-
formation.
boundary, the problem is a Neumann problem in elassical
potential theory; however, it is convenient fo determine

the potential by means of a source-sink distribution on the

circle in the transformed plane.

Since the normal velocity is specified on the
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SYMBOLS
A aspect ratio (b"2>
S
@ body radius
b local span of wing (2s)
b, maximum span of wing (2s,)
o chord of wing at plane of symmetry

. . L
O, rolling-moment coefficient (q—g b;)
r o L C,
€ coefficient of damping in roll (p 5 ‘)
Ciy  coefficient of rolling-moment effectiveness (%%)

Jacobian elliptic functions, argument « and modulus &

E(tk) elliptic integral of the second kind, argument ¢ and
modulus &

complete elliptic integral of the second kind, modulus &

F(t,ky elliptic integral of the first kind, argument ¢ and
modulus £

H(u) Jacobi's eta function, argument # and modulus &

: =t . g

k modulus of an elliptic integral or function

K(k) complete elliptic integral of the first kind, modulus £
L tift

L rolling moment :

m strength of a peint source or sink

A free-stream Mach number

P rate of roll, radians per second (constant)

P loading coefficient <A_q1g)

Ap difference between pressures on lower and upper sur-

faces
. 1 1
q free-stream dynamic pressure { 5 p 1*
R radius of circle in ¢ plane corresponding to equal-span

T4
wing-body surface in X plane (—%\/ 82-[-%)

8 local semispan

8, maximum semispan

S area of horizontal surface of cruciform wing including
its hypothetical extension through the body

v velocity component in the ¥ direetion

v free-stream velocity ,

w velocity component in the vertical direction

W constant value of w

z,4,z right-hand orthogonal coordinate system

Yo value of y corresponding to value of 6,

X complex coordinate (y+1iz)

Z(Ak)dacobi’s zeta funetion, argument A and modulus £

¥ polar coordinate of the point in the ¢ plane correspond-

ing to the horizontal wing and body junction in the
- L 2
A plane <4 tan—ta )

) angle of incidence of wing panel, radians (§<1) -
Ag  or—py :
€ semivertex angle of a plane triangular wing

m¢  coordinates in the complex ¢ plane
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6 polar coordinate in the ¢ plane

8, angle between a source or sink radius vector and =
coordinate axis (¢ planc)

A Heuman’s form for the incomplete elliptic integral of
the third kind

A, Heuman’s form for the complete elliptic integral of

the third kind
body diameter
span
u polar coordinate of point in ¢ plane corresponding to
the vertical wing and body junetion in the .Y plane

T

(2_ )

complex coordinate (3-41f)

mass density of air

complex coordinate (7 +41»)

v coordinates in complex ¢ plane

complex potential (o-+i¢)

complex potential due to a combination of point
sources and sinks

’

ThtSh e g o oew

@ velocity potential

¥ stream funection
SUBSCRIPTS

—~ value for a plane wing

-+ value for a cruciform wing

I horizontal wing

L.E. value at leading edge

{ value on lower surface

T.E. value at trailing edge

U value on upper surface

1 vertical wing

¥ value at the point where =4~
ANALYSIS
GENERAL

Several methods, based on the linearized theory of super-
sonic flow, have been developed for determining the aero-
dynamic characteristics of planar-wing systems of finite span.
However, the application of these methods to the calculation
of the characteristics of a cruciform wing-body ecombinstion
(fig. 1) leads to considerable mathematical difficulties, since
the effects.of interference between components cannot be
neglected and it is, in general, not practicable to construct
solutions from the solutions for planar systems. (An excep-
tion is the determination of lift.) It is therefore desirable to
introduce simplifying assumptions which permit caleulation
of the characteristics of cruciform wing-body configurations
within reasonable limits of accuracy.

The lincarized partial-differential equation for the pertur-
bation velocity potential ¢ in subsonic and supersonic flow is

(1_3‘/{2) ﬁarx'll‘@w—l‘ﬁpzz:o (1)

where the free stream is directed parallel to the positive 2
axis, and 3/ is the free-stream Mach number. If the longi-
tudinal velocity gradient ¢, is sufficiently small and the
Mach number is not excessively high, then the first term in
equation (1) is small compared to the velocity gradients in
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Fin."RE 1.—~Cruciform wing-body eombination.

the y and z directions and may be neglected. Equation (1)
then reduces to ,
‘.-"W':-‘Pzz:O (2)

which is the familiar two-dimensional form of Laplace’s equa-
tion. For slender wings and bodies the veloeity gradient ¢,
is small, so that a satisfactory approximation to the aerody-
namic characteristics of slender wings and wing-body con-
figurations may be obtained by means of equation (2). The
results will be independent of Mach number and will be
valid for both subsonic and supersonic Mach numbers, as was
pointed out in reference 7.

It was pointed out in reference 1, and discussed in greater
detail in reference 8, that equation (1) is still valid if 3/ is re-
placed by unity, in which case equation (1) again reduces to
the two-dimensional form of Laplace’s equation.

In the present application of the theory, no point on the
trailing edge may lie ahead of the most forward point of
maximum span. If the latter condition is not satisfied, lift
is indicated off the surface of the wing, whieh violates the
boundary conditions. For a more detailed discussion of
slender-wing and wing-body theory, the reader is referred
to references 1, 7, 8, and 9.

The present problem is solved by finding a solution
of equation (2) which satisfies the following boundary
conditions: '

o1

1. 'The perturbation velocity components g—; and —a—~ vanish
14
at infinity.
2, At all points in the y=0 or z=0 planes (but not on the
wing surfaces, or inside the body} Ae=0.

.outside a cylinder having four fins.

3. At all points on the y=0 and z=0 planes A g—;=0 and
d¢

> =0, respectively. .

4. At all peints in the y=0 and z=0 planes, within the

A

wing plan-form boundaries, (a—@> and (a—@) s respec-
AU Jy=s Oz /g
tively, are specified.
5. At all points on the body surface, (?T‘:—) is specified.

If the region outside a finned eylinder is mapped conform-
ally on the region outside a circle, with points on the cir-
cumference of the ecirele corresponding to points on the
surfaces of the finned eylinder, & potential function
satisfying the boundary conditions stated above may be
found by integrating a suitable combination of infinitesimal
sources and sinks over the eircumference of the circle.

If the two-dimensional velocity potential for the flow in .

transverse planes is given, the local loading coefficient may
be written .

For this particular problem, the last two terms on the right
vanish (cf. boundary eonditions above) and the loading
coefficient becomes

2 ds\ _ 4 deds
Pepal5:)=75s de
which expresses Bernoulli’s equation with the approximation
of small disturbances in the case of slender wings and bodies.
It follows from equation (3) that the lift of one fin is

L[ T.E. ag:’
L—pTﬁ dny'E.A $2)dx

. 4
=pr (Aer.s.—Agr r)dy
3
Similarly, the rolling moment contributed by one fin is
L'=—pV [* Gere—seez)ydy (5)
&

In the following section a conformal transformation is
derived which maps the region outside a ecircle on the region
It is then shown that,
by means of a distribution of infinitesimal sources and sinks
on the circumference of the circle, a velocity potential may

be found having a normal derivative which satisfies arbi-

trarily assigned values on the surfaces of the fins.

3)

In succeeding sections the velocity potentials are deter-

mined for the cases of a slender, rolling, cruciform wing-body
combination and of a slender crueiform wing-body combina-
tion for which one pair of finsis differentially deflected through
a small angle of incidence. The case where the body radius
equals zero (i. e., cruciform wings) is also treated in detail.
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CONFORMAL TRANSFORMATION FOR THE CROSS SECTION OF A
CRUCIFORM WING-BODY COMBINATION

The transformation of the cruciform wing-body eross
section (see fig. 2) may be readily accomplishdéd in two
steps. The Joukowsky transformation

a2

2E=X 45

(6}
transforms the cruciform wing-body cross section into a
cross (fig. 2 (b)) with unequal horizontal and vertical arms;
corresponding points are shown in figure 2.

Darwin (reference 10) has given a function which trans-
forms the region outside a circle into the region outside an
arbitrary arrangement of line segments intersecting at the
origin. By applying Darwin’s formula to the cross of

figure 2 (b), it is found that the required transformation is

&

4
22‘2:(:2-%—1:2—2}?2 cos 24 (7
where R is the radius of the cirele in the ¢ plane, ¢ is the
radius of the eylindrical body, and u is the polar coordinate
of the point in the ¢ plane corresponding to the vertical
wing and body junction in the X plane. It can be shown
that the vertical and horizontal spans of the cruciform
wing-body combination may be taken unequal with no
change in the form of equation (7}; in this case the radius
- of the circle is given by the expression

2 2y @ 2y @
SR*=8l+ 587+ 5
'qh Sv

where s, is the semispan of the horizontal wing and s, is the
semispan of the vertical wing. The angles u and v are then
given by the relations

e at
2R? cos 2p=(su~+~q—§>—<g,‘2-{-s_2>_a2
2, N
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If s,=s,=s, equation (7) may be written

4
pp=ott Tt
and from equation (6) and the latter equation it follows
that the transformation from the physical plane to the
cirele is given by
. a_'i R R&
Xrt- =2 (o) (®)
For simplicity, the horizontal and vertical spans have been
assumed equal in the present report.
A generalization of equation (8) is

a® R
. T l2 — nf2
X +‘Yn/2_2 (‘7 +a””2
where
aTl

4er/2:_§n/2+,,

8?2/2

For a cruciform wing (¢=0) the equation

- 4
2X2=¢24-2 (9)

transforms the equal-span cruciform wing having semispan
5 into a circle of radius s in the ¢ plane. A generalization of
equation (9) is :

gn
PREYE

2X 2= g2 (10)

where n is a positive integer. Equation (10) maps con-
formally the region outside a circle o=4ge' in the ¢ plane on
the region outside a symmetric figure in the X plane, con-
sisting of n line segments of length s having a common point
at the origin. This transformation together with the method

and of this report, may be used to study the rolling-moment
08 Dy COS ? 4 a’ characteristics of a slender symmetric wing consisting of n
ol F=pe plane fins having a common reot chord.
iz it v
b 3
D
D!
EJ|C
/ Fh‘
G F B A _6' F ele’ B Iy G
NP Ry T
1
LK ; H
d . .
DY PRV L. 2. 2,87, 2
= X+ sty
(@) 2e=Xty (b) = (©
v (a) X plane, (b) & plane, (¢} ¢ plane.

FravRrE 2.—Conformal transformation for the cruciform wind-body combinution,
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DERIVATION OF THE VELOCITY POTENTIAL
The complex velocity in the physical pldne is

df _df di_
IX=de ax (v WE)JY

p—ti= {11}
Through the use of equation (11) the boundary tonditions
given in the X plane can be transformed into the correspond-
ing boundary conditions in the £ plane. The problem is then
to find & potential funection satisfying these transformed
boundary conditions in the transformed plane. )

If a source and a sink of strength m are located on the
circumference of a circle as shown in figure 3, then the eircle
is a streamline of the resulting flow. ‘If the flow is trans-
formed into the £ plane by means of equation (7}, the source
and sink will be transformed into a “doublet’ located in the
positive part of the line segment. (See fig. 3 (a).) As
shown in this figure, the doublet is characterized by a flow
normal to the segment at the point &. At all other points
on the segments the normal velocity is zero and the segment
surfaces are streamlines. In the ¢ plane the complex poten-
tial for the source-sink combination is

m ‘ a—Rf“a)

fim—gtios (g 02)
In the corresponding flow in the £ plane there is an inflow, of
m/f2 units per seeond above the real axis and an outflow of
mf2 units per second below the real axis. The fow from an
infinitesimal source of strength dm (located on the arc ele-
ment Rdé, in the ¢ plane) is, of course, dm units per second.
In the £ plane the flow across the corresponding element

il £ plane.

dt, is |wedt,| units per second, where wy is the vertical velocity
component at the point . By the principle of continuity of

flow, it is seen that

dm

w:dfo (l 3)

where w; may bg any function of &, and d%, is obtained from
equation (7). The complex potential corresponding to any

assigned distribution of w; may then be found by replacing

m by dm in equation (12) and integrating over the proper

range of values of &,.

succeeding sections.
1t is evident from the preceding discussion that the present

This procedure will be followed in the

method of analysis may also be applied to nonsteady flow

problems by making the doublet strength a function of time.
APPLICATIONS
ROLLING MOMENT DUE TG ROLLING

Equa.l-spa.ﬁ cruciform wing-body combination.—The case
of a slender equal-span cruciform wing-body combinstion
rolling about its longitudinal axis with constant angular

velocity p will now be eonsidered. The complex potential

for the source-sink combination shown in figure 4 is

o ____R{exiﬂ
Iog ( — Rte ) ' .
oY
a—ya dy,=
tegrating from 6,=0 to 8,=+, the complex potential is

9.—7 ot Rietit,
f=_ﬁ - g( R4e~4i6

Replacing m by dm=2wdy,=—2 2dy, and in-

(b}

(b)  plane.

FieURE 3.—Doublet fiow in £ plane corresponding to source-sink flow in & plane.
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z v

(0}

—is

(a) X plane.

(b) o plane.
FiaURE 4.—Rolling erueciform wing-hody combination,

Integrating by parts yields

’1!/‘)‘ O.<O_, — Retiv éi’ g [‘Y —%)dﬂa
f="o 7% ~> = 0= | R 9 R, cos 48,

(14)

where an imaginary constant has been omitted. Substituting
a=Re"? into equation (14), and evaluating the real part
vields for the surface velocity potential

Yy sin 2(y—8) 4 . ¥

ga‘:-‘;‘r‘ log ml~— sin 44 L
for all values of § (—xr=<8=7). Equation (15) gives the
veloeity potential for any symmetrie distribution of normal
velocity components on the fins of an equal-span cruciform
wing-body configuration. The prineipal value of the
integral must, of course, be taken if cos 48=cos 44, in the
interval of integration. For the present problem ¢ is equal
to fpy.,t on the real axis (it 1s assumed that the unsteady

(L.

cos 460—cos 448,

flow condition is approximated by fins with lincar twist) and

from equation (8)

j{? =+/cos 26,— cos 27 -++/cos 26, - cos 2v (16)

Substitution of these equations into equation (15) vields
4pR? . I' __€os 20,d6,
. 4
sin 2(y-+6) s o0 B_

cos 46—cos 46,
2
4pR” sin 46f7
m a

Evaluation of the integrals in equation (17) yvields for the
surface velocity potential on the horizontal wing surface

‘FH:j'_‘HpR [cos 26 tanh™? (Sl g% —_

+cos? 20,—cos? 2y
cos 46—cos 44,

8, (17)

_; (tan 28 pR? .
9 1 £ - J—
cos 2+ tanh o ,)7)] =+ — [K (k) sin 44
2Fk, cos AI'K(kl)Z(AI; "1)] » (18)
where
ky=sin 2+

{ =sin-! <siu 26
e sin 2y

and Z is Jacobi’s
respect to sis

b‘PH E)GD;; E)R a(r[,r b'y o] b4 56
D —OF s T oy ds 1 08 os (19)

zeta function. The derivative of ¢x with

From cquations (3), (18), and (19) it follows that the loading
on a spanwise strip for the slender, rolling cruciform wing-
body combination is given by

P:égkl e+ E ()]
ds = =l
x

tan 28
This Joad distribution is shown in figure 5.

+

kI’QK (kl)Z(Alj lfx)}
cos A, B

a+vh (L
(20)

6
By 4
—_
3R
%
* B4
= 2 e e e T =
0T et /
4 - \,_._5/
S o s~ e R B I
A=0.|~.\ ' bl |——
o .2 4 6 8 1.0
)74
FIGURE 5.—Load distributions on spanwise strips for rolling crueiform  wing-body
combinations,

The rolling moment due to rolling for each fin may be
found by substituting equation (18) into cquation (5) and
integrating. The results, as obtained by numerieal integra-
tion, are presented in coefficient form in figure 6, as a funec-
tion of body-diameter-maximum-span ratio. The arca used
in defining the aspect ratio and the moment coceflicient is
the area of the hovizontal surfaces of the cruciform wing,
including its hypothetical extension through the body. For
purposes of comparison, figure 6 includes the coefficient of
damping in roll for a slender planar wing body as given in
reference 12. It is evident that for these cases the body has
little effect on the damping moment up to A=0.4.

Equal-span cruciform wing,—1f a is placed equal to zero
(h=m/4, =4/2) then cquation (18) reduces to

1P e (7Y
<P3—ity sech (S> (21)7

which agrees with the result given in references 2 and 3 for
the surface velocity potential of a rolling cruciform wing.
Similarly, equation (20) reduces to

_ 8 (yls)?

1
(Pb)é‘fi ST 1-(y/s) @2
2V /dx
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1S
;}/ Vd \
2 Cruciform wing-body,
>SN
-2 08 =
p/: j \ \
Planar wing»bédy \
(TN 1954)
04 \\\
Q 2 4 6 8 i0

A(Body diameter/span)

Fravre §,—CoefHelent of damping in roll for cruciform and planar wing-body combinations.

[f the velocity potential for a slender, rolling planar wing
freference 13) is substituted into equation (3), it is found
that the loading on a spanwise strip is given by

1 P = 2(?3{/,8)

phy ds
(QAV) dr

Figure 7, which presents these load distributions, shows the
effect of the wing interference in reducing the load dis-
tribution which opposes the rolling motion.

Substituting equation (21} into equation (5) yields the
total rolling moment due to roll for a slender cruciform wing

Ral” 2 ’ 2
(L. = _8plp f y? sech™! 2) dy
Jo S

"

(23)

9
- —;—’ pVpsot

Horizontal surface

5 \
v
A 1 | §
s A -s i
Ws

\ s
Vertical
_~"surface

{0

(a) Planar wing. (b} Cruciform wing.

Fraore 7.—Load distributions on a spanwise strip for rolling wings.

2724%3—54—-46
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The coefficient of damping in roll is therefore simply

2 tan e .
(Olp)-li-: e — .

"

P

| V]
=)

where the coefficient is based on the area of the horizonial
wing only.

For a slender planar wing it is known (reference 13) that
the coeflicient of damping in roll is

= tan e

(€)== | *

77411
32

The ratio of the damping moments for the rolling eruci-

- form wing and the rolling planar wing is therefore

(L) 16
(-~ =

=1.62

The damping in roll for the slender cruciform wing is
therefore only 62 percent greater than that for a planar wing
having the same aspect ratio.

ROLLING MOMENT DUE TO DIFFERENTIAL WING INCIDENCE

Equal-span cruciform wing-body combination.—The case
considered here consists of a slender, equal-span, cruciform
wing-body combination in which the horizontal fins are
differentially deflected through a small angle & The vertical
velocity component on the surface of each horizontal fin is
constant, and is wy=-+178; on the surfaces of the vertical
fins the lateral veloeity component must be zero, and the
radial velocity component on the body surface must be zero.

The complex potential for the source-sink combination
shown in figure 8 is
2 2,218
m a?— R%e*%
Sz log (=)

iz fv

T a s
B TGN 4
“sfr:wo

/s )
@ “t ®)
(8) X plane. (b) & plane,

Fiarre 8.—Cruciform wing-body combination with differential incidence of the horizontal
sarfaces.
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Replacing m by dm=2w dy,= _2§y£ dy,=—2dy¢, and inte-

grating from 6,=0 to 8,=1, the complex potential is
1 ("0=7 o2— R2e%8,
s=).m) e (g ) v
Integration by parts yields

. 'Rt
T—yf/?lor‘l’( a' e »—2:{7

29 5y (8, d8,
(R‘ Ué)f 4+R4-—~2R20'2 cos 24,
(24)

where an imaginary constant has been omitted. Substitut-
ing e =Re' into equation (24), and evaluating the real part
vields for the surface velocity potential

_h sin (7_9) _2 f ( o} daa
p="_"log sin {(y+6 = n 26 o cos 268—-cos 26,

T

for all values of 8 (—x£8=<7). Equation (25) gives the
surface veloeity potential for a cruciform wing-body combi-
nation having any specified antisymmetric distribution of the
vertical velocity component on the horizontal surfaces. The
principal value of the integral must, of course, be taken if 6
is such that cos 28=cos 26, in the interval of integration.

For the present problem ¢ is equal to w,y, on the real
axis; substitution of this eguation and equation (16) into
equation (25) yields

- (25)

sin (y—#)| 2w, }? f Eos"ﬁﬂvcosQ'y
T n26 , Cos 28-—cos 26, d8—

w,a o
Slen (v Fo.

™

p=

ds, (26)

2w, R ) QGJ 74/cos 26,-+cos 2y
T s €0s28—cos 28,

for the surface velocity potential for the cruciform wing-
body configuration with differential incidence of the hori-
zontal surfaces. By replacing the upper mit in the integral
of equation (26) by an appropriate value determined from
equation (8), the velocity potential may be obtained for a
erueiform wing-body combination having differential in-
cidence of the outer portions of the horizontal fins.

The first and second integrals occurring in equation (26)
are complete and incomplete elliptic integrals of the third
kind, respectively; these integrals may be reduced to Jacobi's
normal form by the respective elliptie substitutions

sin, f,=sin. y sn(u,k,); ky=sin v
sin 8,=cos v sn{u,k;); ky=cos ¥

The surface veloeity potential may then be written in the
form

4 3
W, sin{y—#) 2wa J ) s
= — sin 26
T s1n('y—{— e) ( 177 2)
where
ko (0 K (ko) enfudu
I E“‘f g s, w=snu, k - (27
2, ky?sn?u—sin%g’ n(uks) )
7 kffsn‘%an*r) enfudu . I
=7 ey an U = Sn(u, k
=2, Eyfsn®u—sin?6’ (w, 3)J

Equation (27) gives the surface velocity potential for all
values of § (—r<0=7); the explicit evaluation of the in-
tegrals, of éourse, depends upon the range of values of the
parameters occurring in the integrands (references 14 and 15).

Evaluation of the integrals in equation (27} for z=0,
aSySs (horizontal fin, positvive real axis) yields

I~ [K(A — 2k, (‘OS =) )Z(Az.ihz)]
F(As, F( A k) cos A,
== o (524 12wk~ 61}
where
. _,(sin @
A‘.’ESID I(SiT’); \ (28)

Az=sin~! (tan v)
Ay=sin~! <S}{lj>
cosy

1

- H[F(Ag,ky)+F( Ay k)]
2F(Ayks)

G= H[F(As, ) —F{ Ag )]

log

and the modulus of 77 is k.

Equations (27) and (28) define the surface velocity po-
tential ¢z on the deflected surfaces of the cruciform wing-
body combination.

For values of 6 corresponding to points on the vertieal
surfaces, mtcglatlon of equation (27) vlelds

. k2K(ks) msm- §— sin’y ;
[I—_\E{— sin? @ sin 28 (1 A"(As’;w)l
where (29)
/ 2 0 Al
A,=sin-" (\oos y—eos 6‘)
cos v sin #

and A, is Heuman’s form (refercnee 16) for the complete
elliptic integral of the third kind. The second integral is

2/10 A
]2——‘—" F(‘{& 3) CO;Q BA(F‘;AS:AB)J (30)
Y 2 309
where
Ag=smn™! (COS?
’ sin v

and A is Heuman’s form for ‘the mcompletg elliptic integral
of the third kind.

Equations (27), (29), and (30) define the surface velocity
potential ¢r on the vertical surfaces of the cruciform wing-
body combination with differential incidence of the hérizontal
surfaces.

The rolling moment due to differential incidence of one
pair of fing may be found by substituting the preceding
equations for ¢4 and ¢y in equation (5) and integrating.
The results, obtained by numerical integration, are presented
in coefficient form in figures 9 and 10 as functions of .  The
aspect ratio and coefficients are based on the area of the
horizontal surfaces of the cruciform wing, including its
hypothetical extension through the body.
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_ ——Contributien of
T horizontat surfaces
16

\‘\
.08 =
Total, cruciform wing bodfr

AN

(.7[3 \
z © =
e
-08 e
'/;Confribuﬁon of vertical
surfaces
// '
-.16 |
t 1
0 2 4 3] 8 1.0

. {Body dicmefer/span)

FrsrrE 8.—Coetficient of roBing-moment effectiveness for eruciform wing-body combinations
with Jdifferentisl incidence of the borizontal surfaces.

Figure 9 gives the coefficients of rolling-moment effective-
ness for both the deflected and the undeflected surfaces, as
well as their algebraic sum, that is, the total rolling-moment
effectiveness for the configuration. Figure 10 also gives the
coeflicient of rolling-moment effectiveness for a slender
planar wing-body combination with differential ineidence of
the wing surfaces; the velocity potential for this case was
derived by mapping the configuration cross section on a
eirele by means of two successive applications of the Jou-
kowsky transformation, that is,

3

az 82
z.. 25___5+_1_
g

X’

25=.X+

where the X plane is the physical plane and the wing-body
cross section is transformed into a eirele of radius s, in the
o plane. The velocity potential on the wing surface is
given by

¢

¢ 2 ‘sin /sin @
Fu_ -1 2 5 S 1
1 [cos § tanh (ks 7) cos v tanh ( = 7)] 1

AR o

T

29_.2_"";&—(1") Z(A, F) cos A (31)

where in this case

k—sin v, A=sin~ (220

sIn 7)

The angle 8 is defined by o=#.¢"® where ¢ is a point on the
cirele in the ¢ plane corresponding to a point on the wing-

e N

N O

T Planar wing-body

ps Nk
N

Ve
ST
_33_ .mum
A \
.08

|Cruciform wing-body

A\

04 | \\
(|

SN~
o] .2 .4 6 .8 1.0
A (Body diameter/span}

Fravee 10.—Coefficient of rolling-momeat effectiveness for cruciform and planar wing-body
combinations with differential incidence of the horizontal surfaces.

.

body surface in the X plane; the angle v is the value of ¢
corresponding to the wing and body juncture. It will be
noted that equation (31) is identical in form to equation
(18), the potential for the rolling cruciform wing-body
combination.

It is seen from figures 9 and 10 that, although the rolling
moment supplied by the loading of the deflected surfaces of
the eruciform wing-body combination is larger than for the
planar wing-body combination, the counter rolling moment
induced on the undeflected surfaces reduces the total rolling
moment of the former to approximately 75 percent of that
for the planar wing-body combination. If both pairs of
opposite surfaces of the cruciform wing-body combination
are deflected, the rolling moment can be found by the method
of superposition to be iwice that for one pair, in which case
the rolling moment of the cruciform wing-body combination
is approximately 1.5 times that of the planar wing-body
combination. It can also be seen from these figures that the
body has little effect on rolling moment up to a value of
A=0.3 for the cruciform wing-body combination.

Equal-span cruciform wing.—If the body radius is set
equal to zero (cruciform wing) in equations (27) to (30), the
given veloeity potentials reduce to

0=+ 22 (BT (e — 2y /)R Z( 4, 2] (32)

"

{ K1 (2]sy—+2(2/)(E— K) F(A3,1 32y + K E(A3, 1/, 2)] }
' (33)
where :

Az;=cos™! (y/s)

Ag=cos~t(z/s)
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and the modulus of the elliptic integrals and functions is in
all cases k=1/4/2.

These equations agree with those glven in reference 2 for
the velocity potentials for a cruciform wing with differential
incidence of the horizontal surfaces.

If equations (32) and (33) are substituted in equation (3), it

iz found that the loading on & spanwise strip of the hori-
zontal surface is

R 46v2 ds [K+QE—K)(y/s)
IH+=:!E T

o LT iy

and that the loading on a spanwise strip of the vertical surface

is

45\[9(178
+ =+ r dr

K—(QE—K)(z/s)f’]

Py et
‘ V1—(z/s)}

where k=1/1/2 in both cquations.

Likewise, if the velocity potential ? for a planar wing with
differential incidence of the wing surfaces is substituted into
equation (3), the loading over.a spanwise strip obtained is

85 ds y/ls
o= L —
£ it

Figure 11 shows the loading over the horizontal and vertical
surfaces of the cruciform wing in eomparison to that over a
planar wing when the horizontal wing panels are differentially
deflected.

Horizontal surfoc\e

— s ~

Vertical
surface.

{a) -s {b)
(a) Planar wing, (b} Cruciform wing.

Fievre 11,—Load distribations on a spanwise strip for wings with differential incidence
of the horizontal surfaces.

If the veloeity potential for the horizontal surface is sub-
stituted into equation (5) and integrated, the rolling moment
due to the horizontal surfaces is seen to be

Ly=m— 4\’21_.[& (2 1)-—]—E]pT 2580 ‘=1/\/_2_

=—1.128 pV2%s,*

(34)

Similarly, the rolling moment due to the vertical surface is

, _4VeTK/ . 5
1, =2V [5 (g+ 1)-1«:] Vi k=1/y3

=0.620 pV258,°

(35)

The total rolling moment is therefore
(L), = — \’2(2E —K)eV%sd k=1/43

=—0.508 p1728s,°
and the coefficient of rolling-moment effectiveness is

Ay2 Y
3 (2E—K): 'I""]-/‘vZ

(Cr) =~

=_0.127[1

based on the horizontal wing area.
From reference 17, the rolling moment for a slender planar

wing having the panels differentially deflected is

L'=—0.667 pV?%s}
and the coefficient of rolling-moment effectiveness is
(Cy) _=—0.1674

The ratio of the rolling moments produced by the horizontal

panels of the slender cruciform wing and slender planar wing

is : '
L)y

2
(). = ‘ (2E —K)=0.762

so that the total rolling moment of the cruciform wing with
one pair of opposite panels deflected is 24 pereent ]LbS than
for the planar wing.

If both pairs of surfaces of the cruciform wing were de-
flected through a small angle 6, the coefficient of rolling-
moment effectiveness (based on the horizontal wing area)
would be doubled, or

(Ch) =

and the total rolling moment would be only 52 pereent
greater than that of the planar wing.

—0.254.4

ROLLING EFFECTIVENESS

A parameter often used in evaluating the rolling effective-
ness of a lateral-control system is the rate of change of the
wing-tip helix angle pd,/217 with differential control-surface

deflection. 'This parameter is obtained from the relationship
d pb Oza
ds C

From the previous results, the helix angle generated by
unit incidence of a cruciform wing havmg four pancls
equally deflected is

(9‘—‘) 42 o g kT

#The velocity potential for this case may be easily derived by applying the Joukowsky transformation and the method of this report.
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The ratio of the helix angle per unit wing deflection for a
eruciform wing to that for a planar wing is therefore

(C!}/Cyzp)-!-
(Cuaf Cry)

It is seen that the rolling effectiveness of a planar wing is
reduced 6 percent by the introduetion of a wing with identical
plan form and surface incidence In' the vertical plane of
symmetry.

=0.94

CONCLUSIONS

The application of slender-wing theory to the estimation
of the characteristies in roll of slender cruciform wings and
wing-body combinations has shown the following:

1. That the damping in rell and the rolling moment due
to differential incidence of both pairs of opposite surfaces of
the erueciform wing-body combinations are practically inde-
pendent of the body-diameter-maximum-span ratio up to a
value of this ratio of 0.3.

2. That the damping in roll of the cruciform wing-body
arrangement is only 62 percent greater than that for a corre-
sponding planar wing-body combination.

3. That the rolling moment, resulting from differential
incidence of both pairs of the opposing sutfaces of the cruci-
form wing-body arrangement, is only 52 percent greater
than that for a corresponding planar wing-body combination.

4. That the rolling effectiveness (wing-tip helix angle per
unit surface deflection) of the cruciform wing-body arrange-
ment having four equally deflected panels is therefore 94
percent of the corresponding planar wing-body combination.

It is of interest to point ouf that the method of analysis
may be applied to the investigation of the characteristics of
slender cruciform wing-body combinations which have any
specified distribution of normal velocity on the surfaces of
the wings and body.
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