REPORT 1188

INTRODUCTION - - o ey

=

NOTATION e

APpPLICATION OF INDIciaL FUNcCTIONS TO THE AERODYNAMIC THEORY OF UN-
sTBADY FLOWSs_ e
Definition of Coordinate System_________________ . _______
Concept of Indicial Funetions_ __________ ...
Application of Indicial Functions to Harmonic Pitching Oscillations_______
Application of Indicial Functions to Harmonic Plunging Oscillations______
Application of Indicial Functions to Harmonic Rotary Oscillations._______
Correspondence Between Indicial Lift and Moment Analysis and Other

Physical Concepts Relating to the Indicial Loading
Dampivg 1IN PirceE oF Low-AseeeT-RAaTio WINGS. . _______
Effect of Static Margin_ . e
Effect of Mach Number_ _ . e
Effect of Aspeet Ratio oo
Effect of Plan-Form Shape. e ____
Effect of Frequeney__________________ e
PART II—WING-TAIL COMBINATIONS. ____ .
GENBRAL CONBIDBRATIONS - o ool e
The Four Components___________________________ .
Boundary Conditions at the Tail Corresponding to a Step Change in Angle

of Attack of the Wing____________ e

TEBE Two-DRMBNSIONAL CASB._ _ e
Boundary Conditions____ e
Simplified Problem___________ S USSR
Method of Solution. - - oo

APPLICATION OF STRIP THEORY.. . o e
SUPERPOSITION OF ELEMENTARY SOLUTIONS. oo
CONSBIDERATION OF THREE-DIMENSIONAL FLow EFFBCTS. oo oo ____
The Flow ¥ield e
Response in Lift of Tail to Normal Velocity of Trailing-Vortex Loop____...._
Case 1: 2meo <8 - o oo e

Superposition of Elementary Solutions_ _ - __________“ ________
APPLICATION OF RBVERSE Frow THEORBM_ ___ . ___ __
AppLICATION OF RESULTS TO DYNAAMIO STABILITY ANALYSIS oo o ____.

PART III—EFFECT OF NONLINEARITIES ___ e
APPENDIX A—RESPONSE IN LIFT OF TWO-DIMENSIONAL TAIL TO
TWO-DIMENSIONAL VORTEX SYSTEM . e
APPENDIX B—RESPONSE IN LIFT OF TWO-DIMENSIONAL, RECTAN-
GULAR, AND WIDE TRIANGULAR TAILS TO TWO-DIMENSIONAL
VORTEX SYSTEM—GUST ANALYSIS. o e
APPENDIX C—RESPONSE IN LIFT OF APEX-FORWARD AND APEX-
REARWARD WIDE TRIANGULAR TAILS TO TWO-DIMENSIONAL
VORTEX SYSTEM e
APPENDIX D—BOUNDARY CONDITIONS AT THE TAIL DUE TO PENE-
TRATION OF VELOCITY FIELD OF TRAILING-VORTEX SYSTEM.___.
REFERENCES e

Page
693
693
694
694

694
695
695
696
697
698

700
702
704
704
706
706
708
709
711
711
711

732

738

734

691






REPORT 1188

ON THE USE OF THE INDICIAL FUNCTION CONCEPT IN THE ANALYSIS OF UNSTEADY
MOTIONS OF WINGS AND WING-TAIL COMBINATIONS

By MuURRAY TOBAK

SUMMARY

The concept of indicial aerodynamic functions 18 applied to
the analysis of the short-period pitching mode of aireraft. By
the use of simple physical relationships associated with the
indicial-function concept, qualitative studies are made of the
separale effects on the damping in pilch of changes in Mach
number, aspect ratio, plan-form shape, and frequency. The
concept 18 further shown to be of value in depicting physically
the induced effects on a tail surface which follows in the wake of
a starting forward surface. Considerable effort 18 devoted to
the development of theoretical techniques whereby the transient
response in lift af the tail to the wing wake may be estimated.
Numerical results for several represeniative cases are presented,
and these are analyzed to reassess the importance of the coniri-
bution to the rotary damping moment of the interference lift at
the tail.

INTRODUCTION

In the classical study of the longitudinal motion of an
aircraft, it is usually found that the motion resulting from s
small equilibrium-destroying disturbance consists of two
modes: one, a lightly damped, low-frequency motion at
essentially constant attitude, called the phugoid oscillation;
the other, a rotary-pitching and plunging oscillation of high
frequency (relative to the phugoid frequency) called the
short-period oscillation. The phugoid oscillation has gen-
erally been described as resulting from a slow interchange of
potential and kinetic energy as the aircraft experiences
periodic variations in airspeed and altitude. The character
of the phugoid motion as influenced by airspeed, altitude, and
aircraft geometry has been well understood for some time
(see, o. g., vef. 1). The short-period motion, on the other
hand, having in the past been found to be highly damped and
of short duration, has been the cause of no concern. Its
characteristics therefore have not been as fully investigated
as those of the phugoid oscillation. As flight speeds have
progressed to the transonic and supersonic domains, however,
the loss of rotary damping occurring in practically all aiveraft
at speeds near the sonic speed has caused renewed interest
in the short-period pitching mode. Unlike the easily con-
trolled phugoid oscillation, the deterioration of damping in
the short-period mode is of serious concern to the pilot, since
the period of oscillation can be of the same order of magnitude
a8 the pilot’s reaction time. The oscillation may therefore
be difficult or even impossible for the pilot to control man-
ually. Furthermore, the additional load imposed upon the

airframe due to & rapid growth of the amplitude of & nega-
tively damped oscillation makes possible the occurrence of
structural failure. It is therefore of considerable interest to
obtain an understanding of the nature of the short-period
mode, parallel to that which has been gained of the phugoid
mode.

One means of viewing the aerodynamic phenomena occur-
ring during the short-period oscillation from a fundamental
standpoint is through application of the concept of indicial
functions. In this approach, the variations with time of the
aircraft angle of attack and angular velocity are replaced by
a large number of small instantaneous or step changes. The
transient aerodynamic reactions to these step changes are
termed ‘‘indicial functions” and have been calculated for
several classes of isolated wings (refs. 2 to 6). By suitable
superposition of these results (refs. 7_to 9) the aerodynamic
forces and moments caused by the given maneuver can be
studied. It will be the primary purpose of this report to
make such a study for the simplified case of an aircraft per-
forming single-degree-of-freedom rotary oscillations, & ma-
neuver which corresponds to the short-period oscillation when
the plunging velocity of the aircraft is zero. To effect this
end systematically the report is organized in two main cate-
gories: First the motion of a tailless aircraft is studied, and
here existing theoretical information and the use of simple
physical relationships associated with the indicial-function
concept enables qualitative studies to be made of the sepa-
rate effects on the aerodynamic forces and moments of
changes in Mach number, aspect ratio, plan form, and fre-
quency. In the second part, the motion of & tailled aircraft
is studied, again by use of the indicial-function concept.
Here, however, additional theoretical information is required
to account for the interference effect of the wing and its
wake on the transient 1ift at the tail, and several sections are
devoted to the development of theoretical techniques where-
by this effect may be estimated. Results of computations
based on these techniques are analyzed, and the importance
of the contribution of the interference lift at the tail to the
rotary damping moment is re-established. In all of the
above work, the aerodynamic forces and moments are those
derived from analyses of the linearized equations of potential
flow. Thus, the usual limitations imposed by the linear
theory on the applicability of the results are in force here
as well. However, in a somewhat different vein of inquiry,
a final section is devoted to consideration of & problem in
aircraft dynamics involving forces of nonlinear character.
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The effect on the rotary damping moment of an aerodynamic
restoring moment containing a common type of nonlinearity
is studied, and conditions are pointed out under which the
development of a self-sustained rotary oscillation may be
possible.

o

NOTATION
aspect ratio, ,l;'

lift coefficient, Lift

S i
pitching-moment coefficient, pite Z o;;oment

moment of inertia

imaginary part

free-stream Mach number, —Z:"
real part

wing (or tail) area

flight speed

speed of sound in free stream

wing (or tail) span

local chord

wing (or tail) root chord

forward wing mean aerodynamic chord,

2 b/3
& f (local chord)? dy

alé\evbg ('aw NNQ Q b__
S f‘dgw 3 N

c two-dimensional lift coefficient, ]:l%:

e base of natural logarithms

? V-1

k reduced frequency parameter, 2V

l distance between moving vortex and leading edge
of tail

m slope of wing (or tail) leading edge

Ap local loading (pressure on lower surface minus
pressure on upper surface)

q angular velocity due to pitching

q free-stream dynamic pressure, % A

t at’

14 time

t . time required following an instantaneous change

in angle of attack or angular velocity for the
transient lift or moment to attain steady state
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w perturbation normeal velocity in plane of wing or
tail

We averaged downwash in the plane of the tail due to
steady angle of attack of forward wing

w, averaged downwash in the plane of the tail due to

steady pitching velocity of forward wing
z,9,2 Cartesian coordinates

Za. e distance from leading edge of MAC to aero-
dynamic center

z, distance from leading edge of M.A.C. to axis of
rotation

‘ AZ,, Za,e.—To

« angle of attack of wing center line with respect to
free-stream direction (fig. 1)

B T | MA—1

© distance traveled, measured in half M.A.C.
lengths, subsequent to an instantaneous change
in angle of attack or angular velocity,' g%i’

i) perturbation velocity potential

A® jump in perturbation velocity potential in plane
of wing or tail

6 angle of wing center line with respect to horizontal
axis (fig. 1)

v acute angle between wing plane of symmetry and
trailing edge (fig. 15)

Po free-stream density

) angular frequency of oscillation

oo distance traveled, measured in half M.A.C.

lengths, in the time interval %, 2V t./¢

When «, &, and ¢ are used as subscripts, & nondimensional
derivative is indicated, and this derivative is evaluated as
the independent variable (a, a, or ¢) approaches zero. Tor

example, ,
. o/ a0

[ ).

PART I-ISOLATED WINGS
APPLICATION OF INDICIAL FUNCTIONS TO THE AERODYNAMIC THEORY OF UNSTEADY FLOWS

One of the most useful tools in the study of unsteady
flows is the concept of indicial aerodynamic functions, which
may be defined briefly as the aerodynamic response of the
airfoil as & function of time to an instantaneous change in
one of the conditions determining the aerodynamic properties
of the airfoil in a steady flow. Theoretical aerodynamic
indicial functions were first derived by Wagner (ref. 2) for
the two-dimensional wing in incompressible flow. More
recently, these results have been extended to cover the com-
pressible case for both subsonic and supersonic speeds (refs.
3 and 4). In addition, theoretical indicial functions have
now been obtained for both wide and slender triangular

wings and rectangular wings, all for supersonic speeds (refs.
4 to 6).

The indicial function derives its usefulness primarily
through the ease with which it lends itself to the powerful
and well-established methods of the operational calculus
(efs. 7 to 9). With the use of these methods, the aerody-
namic forces and moments caused by arbifrary motions of
the airframe can be studied from a fundamental standpoint.
Because of the wide range of applicability of this means of
approach in unsteady flow analyses, a considerable portion
of the succeeding discussion is devoted to the fundamentals
involved.
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DEFINITION OF COORDINATE SYSTEM

In the succeeding analysis the stability system of axes is
used. The origin of the coordinate system is placed in the
airfoil so that the y axis which is perpendicular to the vertical
plane of symmetry is coincident with the axis of rotation of
the airfoil; the positive branch of the z axis is pointed in the
direction of flight; and the z axis lies in the vertical plane of
symmetry, positive downward. The angle of attack « is
measured as the angle between the chord plane of the airfoil
and the zy plane, and is shown as positive in figure 1. The

%

Angle of pitch =8
Angle of attack=0

Here o and 6 are equal, so that the maneuver is defined by
one variable, the time history of either « or §. Let the angle
of attack be « and the angular velocity be ¢ (g=do/d¥’
=da/dt’). At any instant, the normal velocity at any
point on the airfoil surface is composed of two parts, one
due to the instantaneous angle of attack «V,, the other due
to the angular velocity at the same instant —gz (see fig. 3).
These are two of the instantaneous boundary conditions of
the unsteady flow.

Solutions for the aerodynamic forces and moments which
correspond to these boundary conditions may be derived by
a number of methods involving various degrees of approxi-
mation. In succeeding sections, the use of the concept of
indicial functions and the principle of superposition for this
purpose will be illustrated and compared with other current
widely used methods.

CONCEPT OF INDICIAL FUNCTIONS

In order to illustrate this concept, assume that the airfoil
under consideration has been flying a level path at zero angle
of attack. At some time, which is designated time zero, the
wing is caused to attain simultaneously a constant angle of

%

~,—Flight path
%

Angle of pitch =0
Angle of attack=a

Fraure 2.—Maneuvers corresponding to purely (a) angle of pitech and (b) angle of attack variations.

angle of pitch 6 is the angle between the chord plane of the
airfoil and the horizontal plane (an arbitrary reference) and
is also shown positive in figure 1. Forces are measured as
positive upward, whereas pitching moments are positive when
tending to increase the angle of pitch in the positive direc-
tion. When the airspeed V, is constant, which corresponds
to the condition under study, the translatory and angular
motions of the airfoil with respect to any system of coordi-
nates are defined if the time histories of the angle of attack
« and the angle of pitch 8 and their derivatives are known.
For purposes of clarity, two different harmonic motions of the
aircraft are shown in figure 2, illustrating the difference
between a flight path which involves a constant angle of
attack and & varying angle of pitch and one which involves
a constant angle of pitch and a varying angle of attack.
Now consider the case of a wing executing harmonic rotary
oscillations about the ¥ axis while the origin of the coordi-
nate system traverses a lgvel path at constant velocity V..
This case corresponds to that of a wind-tunnel model
mounted to permit single-degree-of-freedom rotary oscilla-
tions, or to the short-period mode of an aircraft in flight
when the plunging velocity of the center of gravity is zero.
308550—66—40

Normal velocity V,a due to
angle of attack g————————

\
“Normal velocity ~gx due to angular
velocity g

Ficure 3.—Unsteady flow boundary conditions at airfoil surface.

attack « and angular velocity ¢. The normal velocity of the
flow next to the surface of the airfoil therefore changes dis-
continuously from zero to a pattern that is constant with
time and identical in shape to the pattern shown previously
in figure 3. The lift and pitching moment that result are of
a transient character and attain their steady-state values
corresponding to these new boundary conditions only after &
significant inferval of time has passed. It should be noted
there exists an essential difference between the length of this
time interval at subsonic and supersonic speeds. At super-
sonic speeds, the vorticity shed into the airfoil wake cannot
influence the flow about the airfoil but at subsonic speeds this



696

influence exists for all time. The result is that the lift and

moment reach steady-state values in & finite time at super- -

sonic speeds but approach these values asymptotically at
subsonic speeds. In either-case, however, the time responses
in lift and moment to the step changes in « and ¢ are termed
“indicial functions.” Figure 4 illustrates typical subsonic
and supersonic indicial lift responses to a step change in
the angle of attack.

GA al

14
ta | f

Figure 4.—Typical indicial lift responses to step changes in angle of
attack.

It is obvious that the time history of the wing motion
during a short-period oscillation may be broken down into
an infinite number of infinitesimally small step changes in
the angle of attack and step changes in the angular velocity.
The summation of the indicial lift and moment for these
steps then yields the total lift and moment at any prescribed
time. In figure 5, the mechanics of the procedure are
illustrated for an arbitrary angle-of-attack variation. Here,
the given angle-of-attack variation is replaced by a number
of small step changes. Within each step the corresponding
response in lift is shown plotted for convenience. It is then
apparent that the total lift at time ¢’ is equal to the sum of
the increments of lift in each step at time #. As indicated
by the leaders, however, it is clear that the increments of

A

]
P
>

o . f.’—>-l Z

e

. —
/!

Figure 5.—Illustration of superposition process.
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lift for the various steps at time ¢’ are equivalent to incre-
ments in the first step at time ¢'—t;. Alternatively, then, the
total lift at time #’ can be written as

O=C OO+ G E— DTG O

After a transformation of variables, ¢’ —¢=r and letting the
increment of time approach zero, equation (1) can be re-
written in & form of Duhamel’s integral (see, e. g., ref. 9)

)= [ Cuatt—ris (2)

A similar procedure is carried out for the angular velocity
variation, whereupon the total lift coeﬁiment at the prescribed
time ¢’ becomes

¢ v =
Clty~35 |, Cratt—nirtzy [ GG at—dr @

It should be pointed out that in this form equation (3) is
applicable to the analysis of arbitrary motions, the only
restriction being that the flight speed is constant. In the
following sections, however, the application of equation (3)
is restricted to harmonic motions having a single degree of
freedom. The reasons for this restriction are two-fold:
first, the motions of a statically stable aircraft in response ~
to a disturbance are most generally of a harmonic nature;
and second, such @ restriction permits an assessment of tho
influence of the time rate of the airfoil motions on tho
aerodynamic forces and moments.
APPLICATION OF INDICIAL FUNCTIONS TO HARMONIC PITCHING
OSCILLATIONS

Consider first & pure sinusoidal pitching oscillation, the

angle of attack being zero throughout the motion. The

flight path for such a motion has been illustrated in figure
2 (a). In this case, the angle of pitch is given by
0(t')=0 g&t wt!

where 6, is the maximum amplitude of oscillation and w is
the angular frequency. The angular velocity is, of course,
q(t')=6=1w e =iwf(t’). Inserting the value for g¢(t)
in equation (3) and performing the indicated operations,
there results

Gty=—g2 o) [ O e tmirt L 00,00 @

Note in figure 6 that Cp (r) is equal to Cp (¥')—I3(7),
and that F,() approaches zero as r approaches ¢’.
Replacing (% (7) in equation (4) by this equality,

Cot)_iwe 75 (o
20 O3 [ Pt (©)

For subsonic speeds, let ¢’ approach infinity. With this
substitution, equation (5) thereby represents the lift coefli-
cient due to the harmonic pitching motion after the transient
loading subsequent to the start of the motion has reached
a steady periodic variation. Then separating equation (5)
into components in phase (real part) and out of phase
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A
cL#

Fp(T)

e — -

a G )

a0

| ‘ .

0 | Iz
T |
f' P

Freure 6.—Definition of the function Fai(r).

(imaginary part) with 6, there is obtained

0[, __(00
RP.(F)=57],

IP. (”L)_ [0,, ()— wf Fg(f)smde]

Introduce the nondimensional parameters,

2V

= 2 r number of half M. A. C. lengths traveled in time 7

F2 (7) cos wrdr
®

(p=

k=2—‘;-,5 reduced frequency.
1]

In terms of these parameters, equation (6) becomes, for M,

<1,
R.P. (U) k’f Fa(e) cos kede

IP. (O) k[C’L w)—k f Fa() mnk¢d¢:|

At supersonic speeds, equations (7) may be simplified
somewhat since the build-up in lift is completed in a finite
number of half M. A. C. lengths of travel s, In equations
(7), therefore, the upper limits of the integrals may be re-
placed by o,, since beyond that point F3(y) is identically zero.

R.P. (0> — f Fa(o) cos kodo

(7)

BN

¢ >0,
M1 )

IP. (0) —F [C’L (o) —k f File) sin k¢d¢:|

Thus it appears from equations (7) and (8) that there are
both in-phase and out-of-phase lift forces associated with the
harmonic pitching oscillation. Notice, however, in equations
(8) that if the trigonometric terms are expanded and the
reduced frequency is required to be small compared to unity
(corresponding to the frequencies encountered in dynamic
stability work), terms containing second and higher powers
of % will be small compared to first-order terms. Thus, for

o

low frequencies, the only force of consequence during the
pitching oscillation is the first order in frequency out-of-phase
liftt force, 1k8C; (ss).! The phase relationships for the
harmonic pitching oscillation are indicated in figure 7. It is
evident that the total lift leads the angle of pitch by nearly
90°.
APPLICATION OF INDICIAL FUNCTIONS TO HARMONIC PLUNGING
OSCILLATIONS

Next, consider a purely sinusoidal variation of the angle of
attack, the angle of pitch being zero throughout the motion.
The flight path for this motion has been illustrated in figure
2 (b). Here, o equals e, where, as previously, «, and
w are the maximum amplitude and angular frequency,

respectively. Applying equation (3) again,
k8
IkGCL (og)—-——
l 1 _~G,(total)
. /"Y‘ o
% /’l %
-ik?8 [ Fsinkpddp-—— \-Gk 2 B (@leoskddd
o )

Figure 7.—Phase relationships for harmonie pitehing oscillation.

OL(t,)= [22] % J;‘ C’La(T)ei @@ =g,

e f O e drtali) O

Now, as in the previous example, let Cp_(7)=C (1) —Fi(7)
so that equation (9) becomes

Ol =alt') O, () —iwalt) f * Fueterdr (10)

Again, introduce the nondimensional parameters ¢ and k,
separate equation (10) into its real and imaginary parts,
and let ¢ approach infinity for subsonic speeds and o, for

supersonic speeds. There results,
RP.(L)=C, 0~k [ Fieysinkede ]
A=, M1
~ - (1)
=0, M,>1

IP. (%)=—k f * Fu(o) cos kody

1 This quantity i, of course, the same lift force in phase with the pitching velocity which
would oceur alone had the wing been executing a steady turn (g constant). One of the chief
advantages of the Indiclal response method, at least for supersonic spees, i3 the ease with
which the relative Importance of the varlous terms contributing to the total lift and moment
can be assessed and the sources of the important contributions identifled.

o
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Notice in equations (11) for supersonic speeds that when the
trigonometric terms are expanded for the low frequency
case, a8 was done in the previous example, there appears an
in-phase term of zero order in k, (%, _(0,), and an out-of-phase
term of first order in ¥, —ika f " Fi(¢)dp. These, then, are

the principal contributions to the lift forces for the low-
frequency angle-of-attack variation. The phase relation-
ships for this motion are shown graphically in figure 8. For
this case, it is evident that the total-lift force can lag behind
the angle of attack because of the negative out-of-phase

contribution, —ike f " Fi(o) cos kode.

rka

9o
/—a/rj/-;(¢)sin/r¢d¢
° ’,-aCLa (og)

L £ o -~
a

-tk
]

Ta
~ikafEg)cos kpdg-y /
0 - —
‘{—cL (total)

Figure 8.—Phase relationships for harmonic plunging oscillation.

APPLICATION OF INDICIAL FUNCTIONS TO HARMONIC ROTARY
OSCILLATIONS

Finally, consider the case of harmonic rotary oscillations.
Here, as previously mentioned, the normal velocity over the
wing surface is composed of contributions from both the
angular velocity and the instantaneous angle of attack, so
that the complete expression in equation (3) must be em-
ployed to obtain the total lift. However, for single-degree-
of-freedom rotary oscillations, « equals 8 and & equals ¢, so
that in this cdse the separate expressions given for the
harmonically pitching wing (egs. (7) and (8)) and the
harmonically plunging wing (eq. (11)) can be combined to
give the total lift for a wing executing harmonic rotary
oscillations. Then, adding the results of equations (7), (8)
and (11), the in-phase and out-of-phase components of the
total lift become

BP.(£)=C, 09—k [ i) sin kodo+1 | File) cos kode
(12a)

7—o, M,<1

A=gqg, M>1

d A A
1. (%)=t{ ;09— [ Futersinipdo— | Fie) coskods |
(12b)
The phase relationships for the rotary oscillation may, of

course, also be obtained by directly adding the results given
in figures 7 and 8. The result of this addition is shown in

figure 9.
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ika
J

A
- asz/‘z'(¢,)cos kepde
(o}

1 = G
ika{CLq()‘)_k_é%(‘#)Sink‘#d‘#}ﬂJ \/\/’:L - a

K \\\47
.-/'ka-/(;F, (p)cosk ¢ qu-—\\ | ¥

(total)

“‘ - I\
\..a{cLu(x)-/r/;ﬁ(@sin k$dd}

Ficure 9.—Phase relationships for harmonie rotary oscillation.

It will be noted in figure 9 that the total-lift force can either
lag behind or lead the angle of attack, depending on the
relative magnitudes of the three terms comprising the
out-of-phase lift. The total lift is shown lagging behind the
angle of attack in figure 9, which situation, for axis positions
ahead of the point of concentration of the total lift, gives rise
to the possibility of the development of divergent rotary
oscillations.

Again, the complete frequency-dependent equations for
the total lift of a wing in supersonic flow due to the rotary
oscillation (egs. (12), A=0,) may be reduced to first order
in % for the low-frequency case in the same manher as was
described in the two previous examples to give

2P.(%)=0;,

1P.(L)=t[ 00— [ Fitorde |

For all three examples, the same procedure may, of course,
be used to obtain the pitching-moment coeflicient. Only
the pitching-moment equations for the rotary oscillation are
presented below, since the correspondence between the lift
and moment equations is obvious. For the rotary oscilla-
tion case, then,

(13)

RP.(%E =0’,,.“()\)—ka Fi(p) sin kedo+

e f * Fi(o) cos kpde
)\= @, Mo<1
A=ay, Mo>1

1P (%) =t] Cn, 09— [ Fi)sinlodo—

> (14)

fo ’ Fy(p) cos k(pdy’]

where, as previously,

F3(¢)=Ca, (M) —Cn (0)
and ’
F(@)=Cn,(N)—Cn (o)
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Again, reducing equations (14) for supersonic speeds (A=u0,)
to first order in frequency, there results

RP.(%)=Cu e

1P. (&)=t [ a0~ [Pt |

The complete frequency-dependent equations for the lift
and pitching-moment coefficients for the rotary-oscillation
case (eqs. (12) and (14)) describe completely the aerody-
namic forces and moments resulting from the single-degree-of-
freedom pitching mode. For the purposes of the present
discussion, however, it is sufficient to limit consideration to
tho simpler first order in frequency results of equations (13)
and (15). The significance of the effect of the higher ofder
terms on the out-of-phase pitching moment will be examined
in a later section of this report.

With regard to the first-order results for the supersonic
lift and pitching-moment coefficients, it is instructive to

noto that tho quantities f “Fi(o)de and f "“Fy(o)de in

equations (13) and (15) are represented geometrically by the
areas of the shaded portions of figure 10.

(15)

a, 4 Cm.A
0 T K -
G Joo) | Gt
%P l ot ||
== I g~
© (0)

Figure 10.—Geometric representation of the functionsJ"GFl(¢)d¢ and
[ r@as.

The manner in which thesge areas are affected by variations
in Mach number, aspect ratio, plan-form shape, and fre-
quency will be used as a guide in later sections of this report
to determine the significance of these parameters.

In the foregoing discussion, no mention has been made of
reducing the complete equations for the lift and moment
coefficients at subsonic speed (eqs. (12) and (14), A=) to
first order in frequency as was done for the equations noted
as applying at supersonic speed. It is evident that if the
same procedure had been applied for subsonic speeds, the

area corresponding to the term f Fi(p)de can either be

finite or can become infinitely large, depending on the
manner in which the indicial lift function (7 (¢) approaches
its steady-state asymptote as ¢—>«. In the latter case,
there exists the interesting anamoly of an infinite out-of-phase
lift force as the frequency approaches zero. As can be seen
from the results of reference 4, such will be the case for the
two-dimensional wing. This result as the frequency ap-
proaches zero is not peculiar to the indiciel analysis alone,
but has been pointed out by a number of authors using
different approaches, As indicated by Miles in reference 10,

however, the anamolous result can be considered to be a
consequence of assuming a two-dimensional flow, and there
is reason to believe that the difficulty as the frequency
approaches zero will not exist for finite-span wings.

As has been mentioned previously, the use of the character-

istic areas f%Fl(go)dgo and f%Fa(tp)dgo will be shown to be of

considerable value in estimating the damping-in-pitch
characteristics of wings at supersonic speeds. For the two-
dimensional wing at subsonic speeds, the singularity as
k—0 prevents the use of such a simplified approach without
further study. However, rather than return to the use of
the full frequency-dependent equations ((12) and (14)), the
reduction of the equations for the out-of-phase lift and
moment to first order in frequency will be made in such a
manner as to preserve the significance of these areas. To
accomplish this end, equation (12b) is reconsidered. It is
evident that the first integral in equation (12b) may be
discarded, since its contribution to the out-of-phase lift is of
third order in frequency. The second integral is divided
into two parts:

L “File) cos kedp= f "Fi(e) cos kedpt
], “Fi(e) cos kedo (16)

where ¢; is chosen such that Fi(¢) is close to zero. The
first integral in equation (16), being bounded, theu causes no
difficulty. Expanding the trigonemetric term and retaining

only the first term in the expansion, there results fﬁFl(qp)d(p,

which is the characteristic area out to the point ¢. Now
for large values of ¢ Fi(p) is approximated in reference 4

by b
1
B@=| st

where the values of u, @, and b are dependent on Mach
number, and are given for M,=0, 0.5, and 0.8 in reference 4.
Inserting this quantity in the second integral m equation
(16), we have

cos lcgadqo
“ato*

Performing the indicated integrations in equation- (17),
there is obtained a term, pb/a-t ¢, from the second integral,
and a term, —uCik(e+¢y)] from the first integral. For
small values of the argument, the cosine integral is approxi-
mated by (see ref. 11),

Cilk(a+en)] =Inlrk(a+ o)
k(a+e)—0

where v is Euler’s cdnstant, 1.78107. Then, through the
first order in frequency,

LTF 1() cos k¢d¢=nﬁl &= k¢d¢+ f

ate a7

L2, (L)=t] G (o)~ [ "Fiordot+Glen B | (50)
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where

Gl k)={#ln[‘7k(a+¢1)]—-a sb

The out-of-phase moment for pitching about the leading edge
follows from the above development, with the added result
of reference 4 that for large values of o,

Fs( ) s — Fl(‘P)

Then, through the first order,
1P, (%)<t [ Cu o) [ "Futardo—; Gl | 15

Thus, after fixing ¢;, choosing a (small) value of %, and
computing G(gy, k), the finite areas correspouding to the

terms — f Fy (o) dpand — f (o) do canbe assessed in the

same manner as will be done for the supersonic case. The

advantages of such a procedure will be evident later.
CORRESPONDENCE BETWEEN INDICIAL LIFT AND MOMENT ANALYSIS
AND OTHER METHODS

Before proceeding further with applications of the indicial
response method, it is appropriate to discuss the relationship
of this approach to other widely used methods.

Following the fundamental papers of Bryan and Routh,
which introduced the basic differential equations of motion
of rigid bodies and their stability criteria, the historical
development of the theory of longitudinal motions of an
aircraft evolved separately in two fields of research: dynamic
stability and flutter.- Workers in the dynamic stability
field soon found that the longitudinal oscillations of a rigid
aircraft in flight were geperally of small reduced frequency.
On this basis, the constants due to thse aerodynamic proper-
ties of the airframe which appear in the differential equations
of motion were considered to be independent of frequency.
As a first approach to the problem of obtaining the necessary
serodynamic coefficients analytically, the instantaneous
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normal velocity distribution at the surface of the airfoil was
assumed to be constant with time. The aerodynamic forces
and moments arising from the fixed boundary conditions
were then calculated using steady-flow theory. Later, this
assumption was realized to be an over-simplification for the
case of wing-tail combinations and an additional term, essen-
tially correct to the first order in frequency, was added which
accounted for the lag in the tail pitching moment caused by
the time required for the vorticity discharge from tho wing
to reach the tail (seeref. (12)). Since atlow speeds the pitch-
ing moment of the tail far outweighs all other contributions,
the results from steady-flow theory together with the term
accounting for the vorticity lag satisfactorily predicted the
dynamic longitudinal motions of wing-tail combinations,
and it was concluded that the major aerodynamic effects
had been taken into account. In recent years, however,
numerous authors (in particular, Miles; see, e. g., rof. 10)
have pointed out that the above-mentioned theory overlooks
important contributions to the aerodynamic forces and
moments which, though still within the first order in fre-
quency approximation, arise from time-dependent boundary
conditions and must be calculated from unsteady-flow theory.
It has been shown by these authors that with proper inclusion
in the equations of motion of these coefficients, the deteriora-
tion of damping in the short-period mode actually occurring
for aircraft flying at speeds near the speed of sound can be
successfully predicted. The consequences of the assump-
tions involved in the classical dynamic-stability theory will
be more evident from a brief review of the equation of
motion and boundary conditions for the single-degree-of-
freedom rotary oscillations of & rigid wing flying at constant
supersonic speed. At the very outset, the assumption is
generally made that the aerodynamic reactions to the motion
of the airframe depend only on the angular position and
angular velocity and not upon angular accelerations or higher
time derivatives. The equation of motion for the change in
pitching moment following a displacement from an equilib-
rium position is then written in the form of & power series
in ¢ and &:

I . ao,,.> N 2C, i
2S¢ \ o/ > az] (

ac

0*Cn

- (19)

2V,
(520.,
ola

(o), [ D’O
ot |
> (37,
It should be remembered that for the rotary-oscillation case,
the airfoil is subjected to changes in both angle of attack «
and angular velocity ¢, and that these motions produce
normal velocity patterns at the airfoil surfece which are
different in character. Thus, although for the single-degree-
of-freedom case, @ and ¢ are equal, nevertheless their sep-
arate effects must be considered and it is therefore necessary
oC.,, o0,

to include both ——==~ FYCPAA) and =25~ RETAS)
Next, if it is assumed that the moments are linearly de-
pendent on their respective variables, the second and higher-
order terms in equation (19) may be discarded and the re-

in equation (19).

:| (ac/2Vo 2 [

2
(ac/ 2V° 4-cross-derivatives and
higher-order terms.

o

2
o (2V.,

maining partial derivatives considered as constants for the .
given wing. There remains, therefore, a linear second-order
system with constant coefficients. In order to calculate the
coefficients (termed stability derivatives) theoretically it be-
came necessary, for lack of more refined theoretical methods,
to assume that the instantaneous normal velocity of the flow
at the surface of the wing was fixed with respect to time.

Thus, the partial derivative qu% could be calculated

as the pitching moment due to a constant pitching rate,
that is, Cn (s0), while the derivative 0Ca/0a becomes the
pitching moment due to & constant angle of attack, that is,
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Cn(0z). As a consequence of fixing the normal velocity
pattern in time, however, it was necessary to assume that

the derivative e Z.).(/:;T was zero. There was therefore no

0,
)
possibility for this theory to predict the occurrence of dy-
namic instubi]ity for 2 wing alone, since the only damping
term remaining is Cp,_(0,), which is always stabilizing. ‘When
the restriction of constant normal velocity with time is lifted,
however, the assumption is then made that the stability
derivatives in equation (19) may be calculated separately
by fixing each of the independent variables «, &, and ¢ in
turn with respect to time. The derivatives Cy (oq) and
Cp,(o,) thus remain unchanged, but the derivative SRV ('b_%V,,)
(or Cn,) can now be included and celculated as the pitching
moment due to a constant vertical acceleration, &V, It
should be emphasized that while Cn (cs) 2nd Cp (v,) may be
calculated from steady-flow theory by virtue of the assumed
invariance with time of the normal velocity pattern, Cn,
must be calculated from unsteady-flow theory since for con-
stant & the angle of attack varies linearly with time, as does
the normal velocity of the flow at the surface.

It is clear that since the stability derivatives in equation
(19) are assumed to be independent of the frequency, the
result for the aerodynamic pitching-moment coefficient is
thereby limited to oue that is correct only to the first order
in frequency. For the case of single-degree-of-freedom
harmonic rotary oscillations, then, the in-phase and out-of-
phase components of the total aerodynamic pitching-moment
coefficient, correct to the first order in frequeuncy, become

R.P. (% —Cin. (00
LP. (%>=k[0,,q(0'a)+ Cnyld | - 0

" By comparison with the first-order in frequency result from
_ the indicial response analysis (eq. (15)), it is evident that

|7 Feore
can be shown to be equivalent to Cu,(0s). To show this
equivalence, consider a wing, initially in lével steady flight,
which is suddenly forced down with constant vertical -accel-
eration &V, As seen in figure 11, the angle-of-attack vari-

the two results are identical if the quantity —

0 1(0) (7 1
Figure 11.—Flight path corresponding to sudden uniform normal
acceleration & V.

ation in this case i8 e=at’, where « is a constant. Then
applying the counterpart of equation (3) for the pitching
moment

I
C.) =% Gma('r) alt’—7n)dr
Inserting «(t’—7)=alt’—+], and performing the indicated
differentiation,

Oulty=é: Y (D

Now replace Cr (1) by Cn (') —F;(r) and let ¢’ be greater
than #.
Then

Calt) = alt’) O () —ée f * Fyn)dr

and nondimensionalizing, by replacing ¢’ and {, by ¢¢/2V,
and ¢o,/2V,, we have,

Cnl) =) O (00— f “Bode oo (1)

Thus, the pitching moment proportional to the constant
vertical acceleration parameter «c/2V,, which is synony-
mous with the definition of the stability derivative Ci;, is
found to be equivalent to the pitching-moment contribu-
tion due to &« for the first order in frequency rotary-oscillation
case.? 'Therefore, the results of the indicial response method,
when reduced to the first order in frequency for supersonic
speeds, are identical to the results from the familiar first-
order theory used in dynamic stability work.?

Workers in the field of flutter, who were concerned with
frequencies many times those encountered in dynamic-
stability analyses, required theoretical information showing
the behavior of the forces and moments as affected by the
frequency of oscillation, and therefore discarded the first-
order theory for more precise methods of analysis. One of
the most useful of these has been the “oscillating potential”
theory, which is based on solutions of the time-dependent
linearized equation of compressible potential flow for the
case of harmonic motions. The in-phase and out-of-phase
lift and moments are thereby determined, -generally as
functions of powers of the reduced frequency, aspect ratio,
Mach number, and position of the axis of rotation. The
application of this method, which developed in this country
primarily as a result of Theodorsen’s work for incompressible
flow (ref. 13) has recently produced a number of useful
papers covering a wide variety of wings at supersonic speeds
(see, e. g., refs. 14 to 18). It has been shown by & namber of
authors, in particular, Garrick, in reference 7, that through
the use of superposition methods the results for the aero-
dynamic coefficients obtained from the oscillating potential

2 By the same procedure, the stability derivative CL&(V.) can be shown to be equivalent

.

° Fip)de.

3 Notice In eql'mtlon (21) that if ¢ i3 replaced by Infinity, the results apply to subsonic
speeds. For the two-dimensional wing, the analozy between Cw, and —f wF:(p)dp then
gives only the previously mentioned singularity at infinity as £—0. If the :area correspond-
ing tof wF:(tp)dp were finite, however, the analozy would be equally useful for subsonio

.

as well as supersonic speeds.

to the term —f
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theory are wholly compatible with those of the indicial
response method applied to harmonic motions (eqs. (12)
and (14)).

Thus the indicial response method may be applied with
equal validity to problems in both the fields of dynamic
stability and flutter. In many cases, however, application
of the specialized approaches mentioned above may result
in greater economy of effort. The chief virtue of the indicial
response method is that it represents a fundamental ap-
proach to the problem of unsteady flow, and affords valuable
insight into the physical nature of the aerodynamic phenomens
taking place.

PHYSICAL CONCEPTS RELATING TO THE INDICIAL LOADING

It has been shown that for even small frequencies, the
pitching moment of an airfoil in harmonic rotary motion

can lag behind the angle of attack of the airfoil. The mag--

nitude of the lag depends on the character of the indicial
response to a step change in angle of attack. It is therefore
of interest at this time to re-examine the physical nature of
the flow that contributes this lag.

Cousider first the lift and moment at the instant the angle
of attack changes, assuming that previous to time zero, the
wing has been flying a level path at zero angle of attack.
At t'=0, the wing begins to sink, without pitching, with
constant downward velocity «V, while maintaining its
forward velocity. The angle of attack therefore changes
discontinuously from zero to a constant « At the same
instant, the step change in angle of attack causes the emission
of a compressiou wave from each point on the lower surface
of the wing and expansion waves from points on the upper
surface. In the infinitesimal time during which the starting
action occurs, each section of the wing experiences the same
impulsive force, and by equating the impulse to the momen-
tum transmitted to the mass of fluid affected by the starting
waves, the starting lift coefficient can easily be derived as
40/M, (see ref. 3). During the infinitesimal starting time,
the pressure disturbances from the edges of the airfoil,
propagated at the speed of sound, travel an insignificant
distance and do not influence the remainder of the airfoil.
The lift coefficient is therefore independent of the wing plan
form. This remarkably simple result for the starting lift
coefficient, which is valid for both subsonic and supersonic
speeds, is thus dependent solely on the flight Mach number.
The starting pitching moment follows directly from the
above result, since by virtue of the uniformity of loading the
aerodynamic ceuter is located at the wing centroid of area.

For values of time greater than zero, however, the situ-
ation differs radically for the supersonic and subsonic speed
ranges. Consider first the supersonic cese. As time passes,
the spherical sound waves emitted at ¢'=0 grow in size
with radius a#’. The wing, however, is moving forward at
o faster rate than the rate of growth of the starting sound
waves and thus begins to emerge from the influence of these
waves. This is shown schematically in figure 12. (Note in
fig. 12 that the wing moves away from a coordinate system
that is fixed in space at the origiual position of the wing
leading edge.)

REPORT 1188—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

— Leading edge at 72/

~—Starting sound waves
from leading edge
Envelope of at 1ty
starfing waves T P Leading edge at /&/]
from leading _| S 2N Leading edge af 7«0
edge at 7=7 r:;_(L_,l__\__7 .
Ly o
Oy
I >
(@ f B Hy
od Tre
Y
X
Fieure 12.—Relation of wing position to starting sound waves for
supersonic speed.

At ¢'=0, the starting waves just cover the wing and the
loading is uniform as described previously. At ¢'=t¢, the
starting waves have grown in radius and the wing has begun
to emerge from their influence. On that portion of the wing
which has emerged, region (O in figure 12, the loading has
already reached its steady-state value. Notice that in this
region the characteristic tip Mach cone has already formed.
On the portion of the wing uninfluenced by the starting
waves from the edges, region (® in figure 12, the loading is
still uniform as at ¢’=0. Inregions @ and @ ,the loading is
influenced by the starting waves from the leading and side
edges, and in these regions is thus different from the loading
in either region @) or ®. As time increases still further, the
uniform starting load quickly disappears as the sound waves
from the leading edge grow in size and as the wing moves
forward. Tinally, at time £, the envelope. of the starting '
waves from the leading edge is coincident with the trailing
edge of the wing, and the steady-state loading corresponding

to the new angle of attack « has been completely established

over the wing.

The above relationships can be shown more clearly for the

- entiré time interval zero to ¢, for & two-dimensional wing

by plotting as a function of time the position of the wing
leading and trailing edges and position of the envelopes of
the sound waves which emanate from the leading and trail-
ing edges at ’=0. Such a plot is shown in figure 13.

It is clear that at ¢’=t; the regions of the wing @), @, and
correspond to the same regions at t'=t¢; for the wing
shown in figure 12. For ¢’=0 and in region ® the loading
is uniform and is given by 4a/M,. Note also in figure 13
that disturbances created by the vorticity shed into the
airfoil wake at =0 and all subsequent times cannot in-
fluence the flow over the airfoil itself. For ¢ >t and in
region (D the wing has out-stripped the starting waves from
the leading edge and has attained its steady-state loading.
For ¢’ <t the chordwise loading is composed of combinations
of the loading in each of the three regions shown in figure
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Fiaumre 13.—Relation of wing position to starting sound waves for
supersonic speed.

Fiaurp 14.—Indicial loading on two-dimensional wing &t supersonic
speed.

144 Since the loading on the wing attains its final steady-
state distribution at precisely the time when the wing has
emerged entirely from the influence of the starting sound
waves from the leading edge (or apex), the time to reach
steady state may be easily calculated for any type of wing
by means of the geometric relationships shown in figure 15.
It may be easily verified that ¢, the time required for the
wing to attain its steady-state loading, is given by either of

4'The reader will note the similarity between figure 13 and sketches deplcting the bound-
ary conditions for three-dimensional wings in steady supersonic flow. Many researchers
havo pointed out the analogy and it has been used to calculate the pressure over a wing
impulsively starting from rest (refs. 3 and 4).
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Fiaure 15.—Geometric relationships between wing and starting sound
wave at time 7.

the following relationships:

_ coMo
Vo (d,—cscv)

g 2
elM, M°+‘/1_4_Eb—’ 2c
= %70 5 L, M,<csc v-i—T"cosw

i, M,>csc v+%4cos v, »<

bl H

(22)

.

The second of equations (22) applies to that range of Mach
numbers for which the trace of the starting sound wave from
the apex is not tangent to the trailing edge att'=t%,. Notice
that for wings having straight or sweptforward trailing
edges and straight or sweptback leading edges, equation (22)
reduces to

M, o

YLD )
In terms of the number of half M. A. C. lengths of travel, it
thus appears that for wings having straight or sweptforward
trailing edges and straight or sweptback leading edges,

—Voy_ 200 M,
T T T (M)
whereas for wings having sweptback trailing edges and
straight or sweptback leading edges,

2c, M,

%=7T (d,—csc»)

_BY
0a=2M, 2 (Bﬁ_\/_l_i‘i
¢ g

Now consider the subsonic case. Here the situation is
more complicated in that, since the starting sound waves
travel faster than the wing, the wing never escapes their
influence. Furthermore, the vorticity shed by the wing at
t'=0 can also influence the loading on the wing since the

(24)

T

2

M,>csc v—l—% cos v, ¥ <
(25)

y M,<esc v+2—£3 cos v
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disturbances created by the shed vorticity travel forward at -

a faster rate than the wing. For these reasons, the indicial
loading at subsonic speeds approaches its steady-state dis-
tribution asymptotically with time. The situation for sub-
sonic speeds will be more clearly evident from examination
of figure 16, which shows the relationship of the traces versus
time of the leading and trailing edges of a two-dimensional
wing flying at a subsonic Mach number to the traces of the
envelopes of the starting sound waves.

& |
3 -—

—Shed vorticity M,<i
Ve 7 h
sound waves from

|
/,/< , ‘? r\‘\ “\({railing edge
" /j/ e N\

N,
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’ e Trace of starting sound
™ waves from leading edge

Trace of starting

Trace of—-—/

leading edge /, V,,
Trace of—'
trailing edge

Firaure 16.—Relation of wing position to starting sound waves for
subsonic speed.

Notice in figure 16 that the starting sound waves intersect
the edges of the wing and that each intersection causes a new
sound wave to be emitted, which in turn will intersect an
edge. Furthermore, notice that the vorticity shed from the
trailing edge at time zero can influence that portion of the
wing behind the sound-wave trace labeled a-b. The influ-
ence of each successive sound-wave reflection, however, is
weaker than the last, and as the wing moves away from the
starting vortices their influence diminishes, so that at =«
the loading on the wing attains its steady-state distribution.
The variation of the chordwise loading with time for the two-
dimensional wing flying at a subsonic Mach number is shown
in figure 17. Notice that for #>>0, the chordwise loading is
markedly different from the loading at supersonic speeds (fig.
14). However, for ¢’=0 and in the region corresponding to
region ® of figure 16, the loading is uniform and equal to
4afM,, a8 in the supersonic case.

DAMPING IN PITCH OF LOW-ASPECT-RATIO WINGS

Previously (eq. (20)), it was shown that for single-degree-
of-freedom, low-frequency, rotary oscillations of a wing, the
principal parameter contributing to the damping of the
motion is the damping coefficient Cm,+Ca;. This result
however, is not directly applicable to the case of an aircraft
in flight, since generally additional damping is provided by
virtue of the fact that the aircraft experiences harmonic ver-
tical translatory oscillations as well as the rotary oscillations.
It can be shown, however, that although the effect of the
translatory oscillation is usually to increase the total damp-
ing, nevertheless, the parameter of primary importance in
determining the magnitude and duration of the motion re-
mains the damping-in-pitch coefficient Cn +Cn,. The re-
mainder of this section is therefore concerned with a study of
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Ficure 17.—Indicial loading on two-dimensional wing at subsonio
speed.

the effect on this parameter of certain important variables.
In particular, the effect of the position of the center of
gravity, and the effects of Mach number, aspect ratio, plan-
form shape, and frequency will be examined, principally by
ingpection of the indicial lift and moment responses to a
change in angle of attack.

EFFECT OF STATIC MARGIN

From the previous discussion it will be remembered that
at supersonic speeds the stability derivatives (7, (s,) and

Cny (o) were shown to be equivalent to the indicial lift and

moment expressions, —j;% Fi(p)de and — j; " Fole)de.

Furthermore, it was shown that these were the contributions
which could cause the total lift and moment during the short-
period oscillation to lag behind the angle of attack. Henco,
by inspection of equation (15), it is evident that since
Cn (o) is always stabilizing, when Cn_ (¢.) is negative
(corresponding to a statically stable condition) the possibility

-of dynamic instability in the form of divergent rotary oscilla-

tions arises when Cn,(0.), the shaded area in figure 10 (b), is
larger than C’mq(va). Now since the normal velocity at the
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surface of the wing due to the instantaneous angle of attack
is constant over the wing, the lift derivative Cz, which arises
from this boundary condition is independent of the axis
position and (7, will therefore vary linearly with axis posi-
tion. This variation is illustrated in figure 18, where Az,
represents the distance of the center of gravity from the
aerodynamic center, measured positive forward of the aero-
dynamic center.

1
CIDq ? Cm&
/

Unstable

Frgure 18,—Variation of C», and Cw, with axis position.

The parameter Cf,, on the other hand, is a direct function of
the axis position, since it arises from a normal velocity dis-
tribution that varies directly as the distance from the axis.
The moment coefficient Cp, . will therefore vary as the second
power of the axis position, and describes the parabolic shape
shown also in figure 18. It is evident from figure 18 that
the sum of 0’,,,¢ and Cp, will be 2 minimum at some value of the
static margin, and that the sign of Cn +Cn, at that point
determines whether or not a region of axis positions will
exist over which the wing can experience negatively damped
rotary oscillations. These qualitative statements may be
written explicitly by considering the equation for the damp-
ing in pitch about an arbitrary axis,

Ot On= (o) - (On) =22 ((C2) G2 (55°) G,
(26)

where again Az, refers to the distance of the center of gravity
from the aerodynamic center, and the subscripted terms are
referred to an axis through the aerodynamic center.

Taking the derivative .of equation (26) with respect to
Az,[é, and setting the result equal to zero, there is obtained
the axis location at which the damping in pitch is & minimum

d(Cn,t Cng
(Ot Oma) _ dmﬂ) —[(Co) A+ Cay]—4 22

Az, _ [ (CLq) o+ OL&]
z 4Gy,

OL =0
(27)

When equation (27) is inserted into equation (26), the mini-
mum value of the damping in pitch is given as

(Omit On) s =[(Oo) i+ (Co) i (o)t Gl 29
and hence, & region of instability will exist if

[(Crd st (Cne) g (Ca) HC>0 @9

If equation (29) is gret;.ter than zero, the boundaries of the

region of axis positions over which instability is possible are of

course given by setting equation (26) equal to zero and
solving for Az,fe. -

A%__[(Gbi)é;t%] \/[(CL) +0Lﬁ:| [(O,.q) +(C’-a):|

30

Notice in both figure 18 and equation (30) that for a given
Mach number there will be two axis positions at which the
damping in pitch vanishes. Then if the above procedure
is carried out for a series of Mach numbers, one may trace
out & curve as shown in figure 19 which forms the locus of

A

AO
e

Stable

Unstable

Figure 19.—Typical supersonic stability boundary curve.

Mach numbers and axis positions at which the damping in
pitch is zero. This locus thus delineates the regions of
Mach number and axis position for which dynamic insta-
bility is and is not theoretically possible. Such loci, cover-
ing a wide variety of wings at supersonic speeds, have been
presented by a number of authors. Watkins, for example,
presents supersonic boundary curves for rectangular and
triangular wings in references 15 and 16. At subsonic
speeds, Miles’ reduction of Possio’s development to first
order in frequency (ref. 10) can be used to form a stability
boundary curve for the two-dimensional wing for a given
(small) reduced frequency. Such a curve is presented for
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the entire Mach number range in figure 20, where, here
-z, is the distance of the axis of rotation behind the leading
edge and %, the reduced frequency, is 0.011 for subsonic
speeds and approaches zero for supersonic speeds. Notice
in figure 20 that at both subsonic and supersonic speeds,
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k= 0N, M<]
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° = \
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Fieure 20.—Single-degree-of-ireedom short-period pitching stability
boundaries for the two-dimensional wing at subsonic and supersonic

speeds.

the range of Mach numbers over which dynamic instability
is possible is largest for center-of-gravity positions forward
of the aerodynamic center. Further, the largest range of
axis positions over which dynamic instability is possible
occurs near AM,=1. Both of these characteristics have
been shown to be true as well for three-dimensional wings at
supersonic speeds (see, e. g., refs. 15 to 18).

EFFECT OF MACH NUMBER

Next consider the effect of Mach number on the damping
in pitch of a two-dimensional wing with axis at the leading
edge. The variation with Mach number of the indicial
pitching-moment response to & change in « will first be exam-
ined, using the information given in the previous sections
and the indicial curves given in reference 4. At supersonic

speeds, the manner in which— f - Iy(p)de, the area corre-

sponding to Cp,, is affected can then be assessed and compared
with G, (6). At subsonic speeds, use is made of equation
(18b). It is evident in equation (18b) that by fixing k and

choosing ¢, such that the quantity—lli G(e,k) is the same
at each Mach number, oune is free to compare finite areas
-—f’l Iy(p)de on an equivalent basis.

As has been mentioned previously, the starting lift, at
any Mach number, is 4a/M, and is concentrated at the
midchord. At 3M,=0, therefore, there is an initial infinite
pulse in the pitching moment about an axis coincident with
the leading edge after which the indicial curve drops to
w/4 and begins to grow asymptotically toward its steady-
state value #/2. At low subsonic Mach numbers other
than zero, the initial pitching moment is less than infinite
but very large, being 2/M,, and then falls before growing
toward the steady value =/28. As the Mach number in-
creases toward 1.0, the starting pitching moment falls while
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the asymptotic value grows, until at I,=1.0 the indicial
curve becomes unbounded in asymptotic moment.

As seen in figure 21, the effect of increasing the Mach
number at subsonic speeds is therefore to increase rapidly the
area corresponding to the destabilizing moment contribu-

tion, — f " Fy(o)do.

, M,=0

Cma(@: MO-BO
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G 50
. )
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$y,M,20 b, Mp=50 . b, , Mp=80
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Figure 21.—Variation with subsonic Mach number of the indicial
pitching-moment response ¢, (¢) for the two-limensional wing.
Axis at leading edge.

In figure 21, & was chosen to be 0.011 and the values of ¢,
were picked such that -—-% G (o1,k) was 4-4.88 at each Mach
number. In the following discussion, the damping moment
~LP1F3(¢)d¢+4.88 will be referred to as Cn, for convenience.

At supersonic speeds, the initial value of the pitching
moment 2/M, continues to drop with increasing Mach
number, but here the steady-state pitching moment also
begins to fall and at a faster rate than the starting moment,
being 2/8. Even more important, as the Mach number
increases, the number of half-chord lengths traveled to reach
steady state decreases rapidly, being 22, for example, at
M,=1.1, as compared to 4 at M,=2. As seen in figure 22,

‘the area representing C,, therefore shrinks rapidly with

increasing supersonic Mach number and becomes relatively
unimportant at Mach numbers greater than 2. The trend
of Cn, with Mach number through the range 0<<MM,<2 is
more clearly evident in figure 23. It is seen that C, is
positive, or destabilizing, throughout the Mach number
range and that its effect is most important at Mach numbers
near 1.0. Also shown plotted for comparison in figure 23
is the variation of (, with Mach number. When the
parameters are added, it is evident that the damping moment
0.,4+0,,.& for the two-dimensional wing with axis at the
leading edge is destabilizing in the Mach number range
0<M,<1.414.

EFFECT OF ASPECT RATIO

To illustrate the effect of aspect ratio, it is convenient to
compare the supersonic damping-in-pitch characteristics
of a group of triangular wings having subsonic leading edges.
The wings are of equal area and differ only in aspect ratio.
As was done previously, the indicial lift responses to a change
in angle of attack will first be examined. The effect of aspect
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Figure 22.—Variation with supersonic Mach number of the indicial
pitching-moment response ca,(¢) for the two-dimensional wing,
Axis at leading edge.

-10

20

3L
F'1guRE 23.—Variation with Mach number of the damping in pitch of
the two-dimensional wing. Axis at leading edge.

ratio on the characteristic area representing (i, can then be
assessed.

As has been mentioned previously, the starting lift
coefficient after a step change in « is independent of aspect
ratio and is therefore equal to 4«/M, for each wing. The
parameter o,, the number of half M. A. C. lengths required
to reach steady state, is also the same for each wing, being
o function only of Mach number. The steady-state lift
coefficient, on the other hand,is a function of aspect ratio

Crq

CLa(o;,)'

— ¢

0

Fiaure 24.—Effect of aspect ratio on the indicial lift response Cr_(¢)
of triangular wings having subsonic leading edges. :

and decreases as the aspect ratio is reduced. Thus, as shown
schematically in figure 24, as the aspect ratio becomes
smaller, the characteristic area representing Cp, decreases
rapidly.® For the wing of smallest aspect ratio, Cz, may be
positive since the area below the steady-state lift coefficient
is more than compensated for by the area above. It is
evident, therefore, that a reduction in aspect ratio has a
highly stabilizing effect on the damping in pitch, since for
positive values of the static margin, the development of a
destabilizing damping moment is possible only when C;, is
negative. This result is shown in figure 25 where, for an
axis of rotation located at 0.25 ¢ and A{,=1.2, the damping
parameters are presented as functions of aspect ratio. Since
for triangular wings the lift due to « is concentrated at
5/8 €, Cn, is equal to —3/8 Cy,. The variation of Cn, with
aspect ratio shown in figure 25 then follows directly from the
trend of (7, shown in figure 24. Also plotted in figure 25
is the variation of C with aspect ratio (ref. 19).

ﬁ —

F1eure 25.—Variation with aspect ratio of the damping-in-pitch
coefficients of triangular wings. Axis at 0.25¢ and Mach number
1.2 .

It is apparent that although C, becomes more stabilizing
with increasing aspect ratio, the destabilizing effect of Cp,
predominates, and the trend of the net damping moment is
seen to become highly destabilizing as the aspect ratio is
increased.

By the same reasoning, the variation with aspect ratio
of the damping moments of other types of wings can be
shown to be similar (see, e. g., refs. 10, 20, 21, and 22). A
notable exception, however, is the triangular wing with
supersonic leading edges, whose damping in pitch has been
shown to be independent of aspect ratio (see refs. 17 and 18).
This characteristic may be anticipated from a study of the
indicial response curves, since not only are the initial pitching
momeut Oy (0) and the half M. A. C. lengths traveled to
reach steady state (s,) independent of aspect ratio, but,
unlike the subsonic-edged triangular wing, the steady-state
pitching moment C,_(o,) is also independent of aspect ratio,

3 Theoretical indicial carves have not yet been calculated for the triangular wing with sub-
sonlcleading edges. The curves drawn in figure 24 are estimates of the true shapes, and are

intended only to indicate the trend of the characteristic area with aspect ratlo. The exact
variation of Cr., with aspect ratio can be compated from the results of reference 19.
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being —= ( I") Inspection of the regults of reference 4

then revea.ls that the indicial variation Cn_(¢) between zero

and o, and the steady-state parameter Cn (0s) are likewise
independent of aspect ratio.

EFFECT OF PLAN-FORM SHAPE

Next, consider the effect of plan-form shape on the super-
sonic damping in pitch of & group of wings having the same
aspect ratio. For this comparison, three wings of aspect
ratio 3 are chosen, having the triangular, swept, and rec-
tangular plan forms shown in figure 26.

A
3T Ar3.
A = 531° =45° .
=4
F1oURE 26.—Wings used in study of effect of plan-form shape.

SR>

As has been shown in the section entitled ‘“Effect of Static
Margin,” the tendencies of the wings toward dynamic
instability can be compared comprehenswely by plotting
their stability boundaries. For this comparison, then, use
is made of equation (30). The stability derivatives which
appear in equation (30) were computed from the theoretical
results of references 10, 19, 21, and 22. Results of these
calculations are shown in figure 27 wherein the stability
boundaries for the three wings are shown as a function of
axis position and Mach oumber. (Note that the axis posi-
tion for each wing is measured as the distance from the
leading edge of the M. A. C. of the wing, and that the
dimensions are nondimensionalized ou an equivalent basis

by referring them to the M. A. C. of the triangular wing.)

It is clear from inspection of figure 27 that at any Mach
number the triangular wing has the smallest range of gxis
positions over which dynamic instability is possible and the
rectangular wing, the largest.

The differences in the damping characteristics of the
trinngular and rectangular wings will be more clearly under-
stood by a qualitative study of their indicial lift respouse
for & Mach vumber of 1.2, and an examination of the dis-
tribution of loading due to & for the two wings. Consider
first the indicial lift responses.

Again, the starting lift coefficient is independent of plan-
form shape and is 4a/M, for each wing. For the rectangular
wing, the lift drops abruptly after time zero due to the loss
in lift in the regions of the wing influenced by the formation
of the tip Mach coues and the starting waves from the side
edges (see fig. 12). Then, as the wing begins to emerge from
the influence of the starting waves, the lift begins to recover,
rises toward its steady-state value (given by eq. 6.3-2 of ref.
10), and attains this value after 12 half-chord lengths of
travel (eq. (24)).
isredrawn in figure 28. Asmentioned previously, theoretical
indicial lift results have not yet been developed for triangular
wings having subsonic leading edges. However, the varia-
tion shown in figure 28 is considered to be a reasonable esti-

The variation is shown in reference 4 and -
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Fiaure 27.—Comparison of single-degree-of-freedom short-period
pitching stability boundaries at supersonic speeds for three wings of
aspect ratio 3, having triangular, swept, and rectangular planforms.
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Fiaure 28.—Comparison of indicial lift responses at Mach number 1.2
of rectangular and triangular wings of aspect ratio 3.

mate of the true shape, being based on knowledge of the
steady-state lift (vef. 19), the time to reach steady state (eq.
(24)), and the assumption that the shape of the variation
would be similar to that of the wide triangular wing (ref. 4).
The curve was adjusted within the known end points until
the area corresponding to Cr, agreed with that given for
this parameter in reference 19. It is evident from examina-
tion of figure 28 that because of the initial loss in lift and the
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larger steady-state lift for the rectenguler wing, Cp, for

this wing is significantly more negative than that for the
triangular wing. Next, it is shown in references 10 and 20
that with the exception of regions influenced by tip Mach
cones, the loading due to & (for ¢ > ¢,) for wings having
sweptback leading edges increases linearly from zero along
rays from the apex; whereas for rectangular wings the load-
ing due to & increases linearly from zero along chord lines.
These characteristics place the center of loading due to «
at % ¢, for the triangular wing and approximately % c, for
the rectangular wing.® Then for an axis of rotation passing
through the aerodynamic centers of the wings, the moment
arm for the lift due to & for the triangular wing is ¥s ¢, or
1£ ¢; whereas for the rectangular wing it is approximately %
¢, 'Thus, not ouly is the negative out-of-phase lift countri-
bution Cy, for the rectangular wing significantly larger than
that for the triangular wing, but the destabilizing damping

moment —%:0,,& is larger yet, due to the larger moment arm.

Calculations for the steady pitching parameter U, for an

axis through the serodynamic center (refs. 10 and 19) then
roveal that C,,_ for the triangular wing is more negative than

for the rectangular wing. The net result is therefore a con-
siderably larger damping momeunt for the triangular wing
than for the rectangular wing. The result of this compari-
son, however, should not be interpreted as a recommendation
that the triangular rather than the rectangular wing be used
ou aircraft from a dynamic stability standpoint. To obtain
adequate static stability, the rectangular wing would gen-
erally be employed in combination with a tail surface; whereas
the triangular plan form may be sufficiently airworthy with-
out the use of a tail. The addition of a tail surface in effect
reduces the aspect ratio of the rectangular wing, which re-
duction, as noted previously, has a highly stabilizing effect
on the damping in pitch. The tailless trinngular wing may
therefore experience more difficulty at Mach numbers near
1.0 than a rectangular wing-tail combination.

EFFECT OF FREQUENCY

The previous discussion has been restricted to the analysis
of a harmonic motion that is of vanishingly small frequency.
This limitation arose as & consequence of discarding all but
first order in frequency terms in the expaunsions of equations
(12) and (14). The question arises: When the frequency
can uo longer be cousidered small, what effect has the
frequency on the damping in pitch?

Previously, the trigonometric terms in. equation (14) were
expanded and, assuming %k to be very small, terms of
order k* and higher were eliminated. It was then found
that the loss in damping from that provided by the steady
damping parameter C, (¢;) was associated with the de-
stabilizing moment contribution corresponding to the term

—J;h Fy(¢)de. Now, however, we discard the restriction
of small & and perform graphically the integrations evident

¢ Due to the Influencs of the tip Mach cones, the conter of loading due to & i3 shifted for-
ward somewhat from the position it has for the two-dimensional wing. Calculations for the
Am3 rectangular wing at Af,=1.2 show that the center of loading is at 0.605¢c,.

7 Again, due to the influence of tip Mach cones, the asrodynamic center is shifted forward
from 34 ce 10 0.443 ¢o. The moment arm Is therefore 0.162 c,.
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Fraure 29.—Tllustration of graphical integration procedure for finding
effect of frequency at supersonic speed.
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Figurre 30.—Effect of frequency on the single-degree-of-freedom short-
period pitching stability boundaries at supersonic speeds for a
triangular wing of aspect ratio 4. .

in equation (14) for supersonic speeds for several values of %.
The procedure is indicated in figure 29.. It is apparent
from figure 29 that the effect of increasing %k is to
reduce the area corresponding to the destabilizing moment

contribution —J;“ Fy(p)coskede. There appears another
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destabilizing contribution, —k J; ﬁF;(go)Si‘[l]cgodgo, but quite
evidently its effect is small compared to the reduction in
the term — j; “Fa(qo)coskgodqa. Notice further in figure 29

that the effect of increasing k& becomes of marked impor-
tance when the half-period of oscillation is the same order of
magnitude as the time for the indicial response to reach
steady state. As showo in figure 29 for the frequency ks,
the area b then begins to subtract from @, so that the de-

stabilizing contribution —LU.F3(¢)00%M¢ can be very
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Fraure 31.—Effect of frequency on the single-degree-of-freedom short-
period pitching stability boundaries at supersonic speeds for a
rectangular wing of agpect ratio 4.

small. We may therefore expect that increasing the fre-
quency of oscillation has a stabilizing effect on the damping
in pitch. This conjecture is substantiated in figures 30
and 31, where the supersonic stability boundary curves
for aspect-ratio4 triangular and rectangular_ wings are
shown plotted for various reduced frequencies. These
curves were obtained from calculations based on the results
of references 15 and 16. Notice that for both wings the
region of possible instability is diminished as the frequency
is increased.-

From the results of the analysis for supersonic speeds, we
mey further expect that the stabilizing effect of increasing
the frequency will be of even more importance at subsonic
speeds, for here the indicial variation Fi(o) dies out at
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Fieure 32.—Ilustration of graphical integration procedure for finding
effect of frequenocy at subsonic speed.
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Figure 33.—Variation with reduced frequency of the single-degree-of-
freedom rotary damping-moment coefficient for the two-dimensional
wing at Mach numbers 0, 0.50, and 0.80. Axis at leading edgo.

infinity. The half-period of oscillation is therefore always
smaller than the time to reach steady state. The situation

for the term —j; Fy(e)cos kedp is shown in figure 32.
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It is evident in figure 32 that the destabilizing momeunt
~ L Fy(@)coskode diminishes rapidly as the frequency is

increased. The effect of this reduction on the damping in
pitch can be illustrated by plotting the subsonic damping-
moment coefficient against reduced frequency for the two-
dimensional wing (with axis at the leading edge) for Mach
numbers 0, 0.5, and 0.8. The results, which were ob-
tained from reference 4, are showun in figure 33. It is seen
in figure 33 that the large destabilizing effects of the mo-

ment contributions —J; Fy(p)coskedp and —k f mFQ(ga)sin
0

kode are confined to a relatively narrow range of reduced
frequencies. Notice further in figure 33 that the range of
frequencies for which instability is possible is small at
M,=0 (0<k<0.04) and grows with increasing Mach
number. This is believed to be the primary reason why
unsteady lift effects were found to be unimportant at low
speeds but are of great importance at speeds near the
sonic speed.

PART II—WING-TAIL COMBINATIONS

In the historical development of the field of dynamic
stability, there has been general agreement among researchers
that for conventional tail-aft aircraft, the primary source of
pitch damping is that provided by the tail. In fact, several
ecarly investigators concluded that the tail contribution was
the only one of consequence and, hence, that the contri-
butions of the wing and fuselage to the total damping in
pitch could be neglected with little error (c. f., ref. (12)).
It was also recognized that a major portion of the lift de-
veloped by the tail arose from the influence on the tail of the
vorticity shed by the forward wing, and, in particular, that
a finite time was required for this vorticity to reach the tail,
thereby creating a lag in the development of tail lift behind
the motion of the aircraft. These considerations led to the
formulation of a simple tail damping factor which took into
account the time lag in vorticity in terms of the configuration
geometry and the effective angle of attack at the tail, and
which alone proved to be adequate for predicting the
dynamic-stability characteristics of low-speed aircraft.

It has already been shown in previous sections of this re-
port that for higher speeds, the damping moment provided
by the wing surface itself (and, analogously, the tail surface)
can be highly significant. In subsequent sections the im-
portance of the influence of the vorticity shed by the forward
wing on the damping moment provided by the tail is re-
examined. Again, the indicial-function concept is used,
and proves to be of valuable assistance in illustrating the
physical nature of the problem.

GENERAL CONSIDERATIONS
THE FOUR COMPONENTS

For each of the three harmonic motions considered earlier,
the full frequency-dependent equations for the lift and
moment developed for a single wing and their first-order in
frequency counterparts are still applicable for a wing-tail
combination, with the following reinterpretation of the in-
dicial functions Cp (¢), Cm (¢), Cr(¢), and Cn(p): each
of the above functions must now be considered to rep-
resent the combined responses of the wing and tail plus
interference effects between the wing and tail. Obviously,
however, since the theory is linear, the combined function is
equal to the sum of its components. In the general case,
four such components for each of the indicial functions may
be enumerated. These are listed below for the indicial
function Cy, (v), that is, for the response in lift of the wing-
tail combination to a step change in angle of attack of the
combination.

(1) The response in lift of the forward wing to a step
change in angle of attack of the forward wing, the tail being:
at zero angle of attack.

(2) The response in lift of the tail to a step change in
angle of attack of the tail, the forward wing being at zero
angle of attack.

(8) The response in lift of the tail to a step change in angle
of attack of the forward wing, the tail being at zero angle of
attack.

(4) The response in lift of the forward wing to a step

change in angle of attack of the tail, the forward wing being
at zero angle of attack.
The situation is entirely analogous for the other three in-
dicial functions. It should be noted, however, that the
components of the indicial functions due to pitching velomt.y,
Cr (¢) and Cn (), must all be referred to the same axis
of rotation. In the following discussion regarding the four
components, the use of the indicial lift response to a step
change in angle of attack for illustrative purposes is continued.
It will be understood that the remarks apply as well to the
other indicial functions.

For supersonic speeds, the component (1) is exactly
equivalent to the response in lift of an isolated wing, and

- may be calculated on that basis, utilizing the theoretical

results noted previously as applying in the supersonic speed
range (rvefs. 3, 4, 5, and 6). Likewise, component (2) may
be computed on the same basis. Furthermore, since at
supersonic speeds, the disturbances created by the tail can
never overtake the wing, component (4) is zero. There
remains to consider, therefore, only component (3), for
which there are as yet no theoretical solutions.

For subsonic speeds, as usual, the situation is more com-
plicated. The component (1) is no longer rigorously equiv-
alent to the lift response of an isolated wing, since the
disturbances created by the wing by its own motion cause
disturbances to be created at the tail which travel forward
at the speed of sound, overtake the wing and, in turn, in~
fluence the development of lift on the wing. Likewise, the
reverse situation exists for component (2), so that the re-
sponse in lift of the tail is no longer that of an isolated tail.
Further, component (4) is not zero, again by virtue of the
fact that disturbances propagated at the tail are able to
overtake the wing. Kor subsonic speeds, therefore, all
four components require new solutions. It may be expected,
however, that the secondary coupling effects between the
wing and tail, as exemplified by component (4), are of amall
magnitude, and may usually be neglected. If it is assumed
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that component (4) is zero, it is within the same order of
approximation to assume that the coupling effects on com-
ponents (1) and (2) are also zero, so that the subsonic
interference problem is then reduced to the same form as that
of the supersonic problem. In the interest of brevity,
however, in what follows the subsonic ease will not be
considered, except to note that the general procedures to
be undertaken for obtaining numerical solutions for the two-
dimensional supersonic case would be the same for the
subsonic case, albeit, considerably more complex.?

In the next section, therefore, an heuristic discussion i3
devoted to the remaining new function, componént (3) for
supersonic speeds; that is, the response in lift of the tail to
a step change in angle of attack of the wing.

BOUNDARY CONDITIONS AT THE TAIL CORRESPONDING TO A STEP

CHANGE IN ANGLE OF ATTACK OF THE WING

The boundary conditions corresponding to component (3)
may be illustrated clearly by plotting as functions of time
the traces of the wing and tail leading and trailing edges,
and the traces of the sound waves emitted at the wing
leading and trailing edge at the start of the motion. No
sound waves are propagated at the tail at ¢’=0 since, under
the conditions of the problem, the tail remains at zero angle
of attack throughout the motion. The plot is shown in
figure 34.°
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Fraure 34.—Boundary conditions at tail corresponding to step change
in angle of attack of wing.

It is clear from examination of figure 34 that at the start of
the motion and until time ¢;, the disturbances propagated
at the wing as a consequence of the change in angle of attack
have not signaled their presence to the tail. During this
time interval, obviously no Lift is developed by the tail. For
time greater than ¢, the tail begins to penetrate the upwash
field created by the vorticity shed by the forward wing, and
thereby begins to develop positive lift on that portion of its
surface which has penetrated the field. As tiine increases

$It Is to be noted that Jones and Fehlner have treated the Incompressible case (ref. 23)
by a method very similar to that described in a subsequent section of this report entitled,
“Application of Methods of Gust Analysis.”

* It is implied in figure 34 that the wing and tall are coplanar or nearly coplanar surfaces.
‘This restriction, while not a necessary one, ts advisable from the standpolnt of stmplicity,
and will herelnafter presumed to be in fores. i
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beyond # the tail penetrates the field of shed vorticity
itself and experiences combinations of both upwash and
downwash on its surface. As the tail penetrates further into
the field of vorticity, the region of downwash will predom-
inate, so that it may be expected that the lift developed by
the tail will eventually change from positive to negative. At
time #; the wing has completed its build-up in lift which
thereafter remains constant with time. The build-up in lift
at the tail, however, continues until #,, beyond which time
the pressures on the tail are no longer influenced by the
disturbances created by the wing at the start of the motion.
For time greater -than ¢,, therefore, the lift on the tail
remains constant with time and is equal in magnitude to the
steady-state interference lift on a tail immersed in the non-
uniform but steady downwash field created by the
forward wing.

From the above qualitative considerations, one may an-
ticipate that the variation with time of the interference lift
of the tail in response to a step change in angle of attack of
the wing will resemble the variation shown in figure 35.

A

g
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Figure 35.—Qualitative prediction of variation with time of tail lift
response to step change in angle of attack of wing.

For wings and tails Hz;,ving straight trailing edges, the values

. of time #; and ¢, in figure 35 may be computed exactly from

the geometric relationships shown in figure 34. They are,
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Furthermore, theoretical solutions exist for the steady-state
downwash behind wings of & wide variety of plan forms
from which the final value of the interference lift Oba,. ()
may be computed. It remains, therefore, to fix with a
greater degree of certainty the variation C’I,dr(t’) between
¢ and ?,. In view of the paucity of information concerning
the nature of this variation, the succeeding six sections
of this paper are devoted to the development of theoretical
techniques from which results for certain representative
cases can be obtained.

THE TWO-DIMENSIONAL CASE
BOUNDARY CONDITIONS
Consider first the problem of calculating the growth in

lift at supersonic speed on a tail surface of infinite span in
response to a step change in angle of attack of a coplanar
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forward surface, which is also of infinite span. This problem
in two dimensions is chosen as a starting point since, here,
use can be made of a valuable theorem; namely, that any
unsteady-flow problem involving only two spatial dimensions
can be related to and solved as an analogous problem in &
supersonic three-dimensional steady flow. The basis for
this statement can be made clear by a comparison of the
governing linearized perturbation velocity potential equa-
tions referred to fixed-space axes for unsteady two-dimen-
sional flow and steady three-dimensional supersonic flow.
The former is written as,

1
'I’:::'l“I’xs:'_g
)

B0y (32)
and is transformed to the canonical form of the wave equa-
tion by the substitution t=at’:

q’::'l“i’u:q)u (33)

For the steady three-dimensional supersomc case, the
potential equation is

(I)”—]-<I>u=ﬂ2§)n. (34)

It is then apparent that simply by replacing z, ¥, and 8 in
equation (34) by ¢, 2, and 1, respectively, equation (34) can
be made identical to equation (33). Thus, a solution to
equation (34) for a Mach number of /2 (8=1) can likewise

be taken as a solution to equation (33) with proper reinter-
pretation of the variables z, 9, z. A complete development
of this analogy can be found in references 3 and 4 along with
several applications to problems of isolated wings. It
suffices here simply to state that the theorem may be applied
with equal validity to problems of wings in combination.
Tu the light of this result, figure 34, which depicts the bound-
ary conditions for the two-dimensional unsteady flow
problem, takes on the following interpretation for the
analogous three-dimensional steady-flow problem: the time
axis becomes a spatial coordinate alined with the free-stream
direction; the z axis becomes the spanwise coordinate, normal
to the free-stream direction. The z axis is normal to the
zt’ plane and again is taken as positive downward. The
. ttaces of the wing and tail leading and trailing edges and the
projections of their chords on the x axis become in the steady-
flow problem the projections outo the x#’ plane of the physi-
cal outlines of a pair of semi-infinite sweptback wings with
tips normal to the free-stream direction. In the unsteady-
flow problem the forward wing is caused to attain at #'=0
an angle of attack « which remains constant for all time
thereafter. This boundary condition is interpreted in the
analogous steady-flow problem to mean that a uniform
normal velocity of magnitude V,«x exists everywhere over
the surface of the forward wing. The traces of the sound
waves which are emitted from this wing at #=0 as a conse-
quence of the change in angle of attack become in the steady
supersonic problem the characteristic Mach lines which
emanate from the foremost extremities of the wing. The
rear wing, being at zero angle of attack in the unsteady
problem, remains so in the analogous steady problem, and
thus no Mach lines appear at the extremities of this wing in

the steady-flow analogy. The procedure for calculating the
lift at the tail in response to the change in angle of attack of
the wing is then theoretically clear. By any of the known
methods available in steady three-dimensional supersonic
flow theory one computes in the region occupied by the tail
the perturbation-velocity field caused by the presence of the
forward lifting wing. In the plane of the tail surface, this
field contributes a normal-velocity flow component which is
canceled by the development of loading at the tail. A
‘““spanwise’’ integration of the loading over the tail then
yields the desired result — tail lift as a function of time.

SIMPLIFIED PROBLEM

The procedure outlined above in principle constitutes a
straightforward exercise in the application of the three-
dimensional linearized supersonic steady-flow theory. Un-
fortunately, in practice, the multiple integrations that arise
in the course of the computations are exceedingly complex,
and have thus far defied solution. These computations were
therefore discontinued in favor of a simpler approach which,
in itself, retains the essential nature of the problem and has
the additional advantage of lending itself readily to exteusion
and further refinement. The simplification consists of
replacing the forward wing by & single two-dimensional
vortex which, just as the wing, starts impulsively from rest
at =0 and moves forward in the z=0 plane with constant
supersonic velocity V,. In addition, in satisfaction of the
condition that a vortex cannot end in & fluid, there must be
placed at the point of departure of the moving vortex, a
stationary or starting vortex of equal and opposite strength.*®
It is well-known that the boundary conditions for a lifting
surface may be satisfied by an appropriate distribution of
vortices; thus the result to be obtained from this simplifica-
tion may be viewed as a fundamental one in the sense that
the solution to the original problem may in principle be
recovered by an appropriate superposition of elementary
solutions. A procedure for accomplishing this task is de-
veloped in a later section of this paper.

The boundary conditions for the simplified problem are
illustrated in figure 36. Here, “true time” ¢’ has been re-
placed by its spatial analog #, the relationship being t=a,t’.
The boundary condition for & closed vortex system is that the

e e W

Trace of moving . x=l- M?
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Freure 36.—DBoundary conditions for simplified problem.

© The extremities of the moving and starting vortices must, In general, be connected by
two tralling vortices to form the usual closed loop. However, for the two-dimensional prob-
lem, it 18 supposed that the trafling vortices are so far away from the centers of the moving
and starting vortices that their effect on the flow there may be neglected.
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jump in potential is & constant within the loop formed by the
moving, starting, and trailing vortices. For the two-
dimensional case this condition translates in figure 36 to the
stipulation that the potential difference A® across the z=0
plane be & constant within the shaded region bounded by the
traces of the moving and starting vortices. The problem
of calculating the induced velocity flow field associated with
the vortex-pair may now be related to the analogous three-
dimensional steady-flow problem; namely, that of calculating
the induced flow field due to the presence in & supersonic
stream of a yawed triangular wing, one edge of which is
parallel to the free stream, the other being swept ahead of the
Mach cone from the apex, and whose surface is warped in
such a way that the potential difference across it is a constant.
This problem has been solved by Lomax, Heaslet, and Fuller
in reference 24, wherein it is found that the induced vertical
velocity in the z=0 plane for supersonic speeds is given by
the relation,
AP JP—2?

wiz)=M, 5 Py 7
Thus, the problem of calculating the lift at the tail in response
to the step change in angle of attack of the forward wing has
now been reduced to one which can be stated in terms of the
steady-state anelogy as follows: Find the section lift as a
function of ¢ on the semi-infinite sweptback plan form shown
in figure 36 which rests at zero angle of attack in a supersonic
stream and which is subjected to 2 vertical-flow distribution
given by equation (35) on that portion of its surface lying
within the region —t<z<i.

—t<z<t 35

METHOD OF SOLUTION

The problem stated above may be solved by any of 2
number of methods available in steady supersonic flow
theory. One that immediately suggests itself, however, by
the conical nature of equation (35) is the method of super-
position of elementary sectors. If in equation (35) the
substitution is made, a=z/t, we get,

AtI: 1—a?
= 2(a+24)

The quantity e of course, defines a ray emanating from the
origin of the ¢ coordinate system, and by equation (36) it is
seen that along a given ray, the normal velocity varies
inversely as 2. Then if the normal-velocity distribution is
decomposed into infinitesimal steps of magnitude dw along
rays from the origin, it can be specified that within each semi-
infinite sector of the tail formed by the tail leading and trail-
ing edges and a ray from the origin, the normal velocity

—1<aX1

w(a,2)= (36)

over the sector varies only as% where £ is a constant for the

sector, given by,

= [M 4% ﬂ] da—y'(a)da.

o7 @F D) (87)

It is then a relatively simple problem to solve for the loading
on a single sector caused by the normal-velocity distribution :—lv,

.
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and thence by the superposition of elementary solutions, to
find the loading and integrated loading caused by the given
normal-velocity distribution. This superposition procedure
is briefly outlined in the following paragraph.

The boundary conditions for an elementary sector formed
by an arbitrary ray e are illustrated in figure 37.

-

_—Arbitrary 1ay @

e

Y
b4
Figure 37.—Boundary conditions for elementary sector.

~03 (%)

Within the shaded region shown in the figure the normal

velocity varies as %:; elsewhere on the plan form it is zero.

Presuming now that the loadiﬁg coefficient %Q (x,t,@) at the

point z,¢ for the elementary sector has been calculated, it is
desired to sum the effects of all sectors that influence the load-
ing at the fixed point. A confribution to the loading at the
point z,t will be made by each sector within whose zone of in-~
fluence the point lies. As seen on figure 37 this region ex-
tends from the sector defined by the ray a=1 to that sector

.whose trailing Mach line from the apex of the sector passes

through the point. On figure 37 this sector is defined by the
ray a=a(z,t). The total loading at z,t is then expressed by
the formula

A2 (o) f V0L @radt0 L @) 69

where ¢ (@) is given by equation (37) and % (z,t,a) is the
loading coefficient at a point on the elementary sector due
to a normal-velocity distribution é

equation (38) accounts for the effect of a possible jump in w
at the ray a=1. However, in the present problem, y¥(1)
is zero so that this term disappears. The section lift at the
station ¢ is then found simply by an integration of the loading
in the z direction,

The second term in

= [ 22 @ao=t [ [** 0 22 pidade (30

There remains to discuss the calculation for the sector
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loading % (z,t,a) at the fixed point 2. This calculation,

however, involving as it does a wing having all supersonic
edges, is straightforward and does not require elaboration.
An interesting sidelight arising as a result of this work was
the discovery that the loading is zero at a point on the sector
whose forecone includes only the sector leading edge and
intersects the line 2=0.

The section lift was found to vary in form in each of the
five time intervals designated in figure 38.

o]
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Fraure 38.—Regions used in analysis of lift response of two-dimen-
slonal tail.

Unfortunately, difficulties of integration prevent the presen-
tation of solutions in closed form for the section lift in all but
the first time interval. It was always possible, however, to
reduce the integrals to single quadratures, so that numerical
or graphical methods can be employed to obtain results for
specific cases. The results in integral form for the section
lift in the intervals 1 to 5 are somewhat lengthy and therefore
are presented in Appendix A.

DISCUSSION

In order to illustrate the nature of the result, the variation
of section lift at the tail with ‘“‘time’” ¢ has been computed
for the following case: a tail of unit chord, tail length I of 3.2
units, and Mach number 1.7. The result is shown on figure
39, together with a sketch of the boundary conditions corre-
sponding to the particular case under study.
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Fraure 39.—Response in lift of two-dimensional tail to normal velocity
of two-dimensional vortex system. M,=1.7.

It is to be noted first in figure 39 that the section lift becomes
infinite when the leading edge of the tail reaches the position
of the starting vortex ((=B in fig. 39). This is not unex-
pected, since at the instant before the leading edge penetrates
the vortex there exists on the tail an infinity in upwash;
whereas just after the penetration the effect of the infinity
in upwash is just canceled by an opposite effect caused by
the infinity in downwash. It is interesting to observe, how-
ever, that a like result does not occur as the tail trailing edge
leaves the position of the starting vortex ((=D). This can
be explained by noting that the sound wave emitted when
the leading edge penetrates the starting vortex serves to
broadcast the existence of the infinite discontinuity in normal
velocity over a finite region of the tail. The distribution of
the effect of the discontinuity thereby modifies its influence
at any one point. Next, observe that the lift changes sign
at ¢=C, which is very closely the time when the tail chord is
situated symmetrically with respect to the starting vortex.
As can be seen on the figure, the tail chord experiences very
nearly equal amounts of upwash and downwash at this time.
Finally, note that at i=F the lift on the tail disappears as
the tail moves completely beyond the region of disturbances
created by the moving vortex at t=0. This fact is consistent
with the statement made earlier that the final value of the
lift on the tail should be that due to the steady-state down-
wash field of the forward wing, for the downwash behind a
moving two-dimensional vortex in steady supersonic flow is
zero. It is insfructive to remember that the same fact is
true for the lifting two-dimensional wing in a steady super-
sonic flow, so that no inconsistency arises from this source by
a superposition of solutions of the type shown in figure 39 as
a closer approximation of the response of the tail to a step
change in angle of attack of the forward wing. The develop-
ment of such a procedure will be outlined in a later section of
this paper.

APPLICATION OF METHODS OF GUST ANALYSIS

It will no doubt have been noted by the reader that the
subject of inquiry in the preceding section, namely, the prob-
lem of calculating the growth in lift at the tail caused by its
penetration of a region of disturbed flow created by a forward
lifting wing, bears in many respects a marked resemblance
to another more familiar problem. That problem is the
calculation of lift on a wing which penetrates a gust of pre-
scribed spacewise normal velocity distribution. Indeed, the
two problems are identical with one exception: in the gust
problem it is generally assumed that the normal velocity of
the gust at each station in space remains constant with time;
whereas in the wing-tail interference problem this is not the
case. If it can be shown in the wing-tail problem, however,
that at each station in space the variation of normal flow
velocity with time can be safely ignored during the time
interval required for the tail to pass the station, then the use
of a gust-type analysis is valid, and an important advantage
accrues. One can then calculate in g relatively simple man-
ner the growth of interference lift on any tail surface for
which the response in lift to a sharp-edged gust of uniform
intensity is known. The so-called gust-function has been
calculated for the two-dimensional case (ref. 3), the rectangu-
lar plan form (ref. 6), and the triangular plan form having
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supersonic edges (ref. 5). Thus, although it is still necessary
to retain the two-dimensional nature of the downwash field
created by the forward wing, the gust analysis, if valid, pro-
vides 2 means whereby two important classes of three-
dimensional tail surfaces can be treated. The object of this
section will therefore be to investigate the validity of the use
of a gust-type analysis in place of an exact analysis.

The extent of the approximation involved in the gust-type
analysis can be best visualized in the two-dimensional case.
Further, since the exact solution for this case has been ob-
tained in the preceding section, a comparison of the two re-
sults provides a means of assessing the magnitude of the
error introduced by the approximation to the flow. Compare
first, then, the boundary conditions at the two-dimensional
tail for the exact and approximate cases. On figure 40
these conditions are shown schematically for the Mach num-
ber, tail chord ¢, and tail length ! which correspond to the
numerical results given in figure 39 of the preceding section.
For the exact case, the normal velocity at the tail is seen to
vary inversely as z or ¢ along rays from the original position

X

<=\

i
<<

Figure 40.—Comparison of exact and approximate normal velocity
distributions at the tail location.
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of the moving vortex. For the approximate case, we fix the
correct variation of normal flow velocity at the tail leading
edge and require that at each station z the normal velocity
existing at the leading edge remains the same for all time
thereafter. It then is clear from inspection of figure 40 that
at least for the particular conditions chosen for study, the
differences in normal velocity experienced by the tail for the
two cases are not excessive.

By virtue of the approximation, which fixes with respect
to time the normal flow velocity at each station in space, the
problem of calculating the lift at the tail is reduced simply
to a superposition procedure entirely analogous to that
already described in the first part of this report for the case
of a wing performing arbitrary maneuvers. Here, however,
rather than responding to a series of step changes in angle of
attack or pitching velocity, the tail respoads to a series of
sharp-edged gusts, so that the Duhamel integral, expressing
lift at the tail as a function of time is written as,

0,,(t)=gt- fo 'l(g—/%(r) 2 @—nir (40)

In equation (40) the quantity Tg/éV'—) () is the gust funection
for the two-dimensional surface, given in reference 3, and w(?)

is the variation of normal flow velocity experienced by the

tail leading edge. Substituting z=I—M, in equation (35),
2. (l—
w(ty=M, A2 VE—C—M} (41)

°2r  1(—My)

With the use of equations (40) and (41) and the results of
reference 3 the interference lift at the tail may be computed
In a straightforward maoner. Asin the exact problem, how-
ever, integration difficulties prevent the presentation of a
solution in closed form in all but the first time interval

l I+

M AT =M
in Appendix B. These results have been utilized to compute
the variation of tail lift with time for the same set of condi-
tions chosen in the preceding section, namely; Mach number
1.7, tail chord of unit length, and tail length of 3.2 units.
Results of these computations are compared with the exact
results in figure 41.

The solution in quadrature form is given
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Ficure 41.—Comparison of exact and approximate tail lift responses.
M,=1.17,
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It is readily apparent from inspection of figure 41 that at
least for the conditions chosen, the gust-type analysis pro-
vides an excellent approximation of the variation of tail lift
l l+e
' MAL SIS AT
We may therefore proceed to the three-dimensional cases
with reasonable expectation that the solutions resulting from
the gust approximation will be of acceptable accuracy —
again, at least for sets of boundary conditions corresponding
to those used above.

The analysis for the rectangular and triangular tail plan
forms proceeds exactly as that for the two-dimensional case
just discussed. For the rectangular plan form, in fact, the
two-dimensional solution constitutes a major part of the
total lift, and it is only necessary to add to the results given
above the contribution of the tail tip regions. The gust
function for the tip regions of the rectangular plan form is
presented in reference 6 and is of such simple form that the
integration of equation (40) may be done quite easily. Not
so0 for the triangular plan form (ref. 5) ; for this case graphical
or numerical techniques are again necessary to obtain results
for specific cases. Solutions for both the tip regions of the
rectangular tail and for the triangular tail are given in
Appendix B. Numerical results, illustrating the nature of
the solutions, are given in figure 42. The boundary condi-
tions for these results have been chosen to be identical to
those picked for the two-dimensional results of figures 39
and 41, so that the results of figure 42 for the rectangular
tip regions may be directly added to those of figure 41 to
give the total lift for the rectangular tail. Note in figure 42
that aspect ratio .4 appears simply as a multiplying factor,
g0 that these results are applicable for tails of any aspect
ratio, subject only to the limiting conditions presecribed in
the figure. The condition on the rectangular tail insures
that the Mach line from one edge does not intersect the
opposite edge; that on the triangular tail insures that the
leading edge is supersonic. Note also in figure 42 that unlike
the case of the two-dimensional tail, no infinity appears in
either the lift contribution of the rectangular tip regions or

with time over the entire time interval
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Fiaure 42.—Approximate response in lift of wide triangular tail and
tip regions of rectangular tail to normal velocity of two-dimensional
vortex system. M,=1.7.

the lift of the triangular tail when the tail first penetrates
the position of the starting vortex. This, of course, is attrib-
utable to the fact that the first penetration in either case
is made by a surface of infinitesimal span.

APPLICATION OF STRIP THEORY

In the preceding section it was shown that approximate
response functions could be obtained for those three-dimen-
sional tail surfaces for which the indicial gust function was
known. There is still another method by which the responses
of certain other classes of three-dimensional tail surfaces
may be derived, and that is by the use of strip theory."
It has been shown by a number of authors (refs. 4, 25, and
26) that the use of strip theory is exact in calculating the
lift, pitching moment, and rolling moment of surfaces having
all supersonic edges and straight trailing edges normal to the
free-stream direction. Further, no restriction need be placed
on the generality of the normal-flow-velocity distribution
encountered by these plan forms. Thus, for example, in the
present connection, the lift on the wide triangular tail in
response to either the two-dimensional or three-dimensional
vortex field can be computed exactly if the responses of the
two-dimensional teil to these fields are known.

When restrictions are placed on the nature of the normal-
flow-velocity field, still other types of plan forms may be
treated without approximation by the use of strip theory.
An obvious example is the response of the apex-rearward
wide triangular tail to the two-dimensional vortex field.
Clearly, since the loading at no point on the tail can be
influenced by disturbances from the edges of the tail, the
integrated lift at every section is just the lift on a two-
dimensional tail having the same tail length and chord as
the section. The same would be true for any tail having
supersonic edges and & straight leading edge normal to the
stream direction, so long as the normal flow velocity is
invariant with the spanwise diréction.

As simple examples of the use of strip theory in the present

problem, formulas will be developed from which the exact
responses in lift of apex-forward and apex-rearward triangular
tails to the two-dimensional vortex field may be obtained.
Consider first, however, the more general plan form pictured
in figure 43, in which the dimension [ is defined as the distance
between the moving vortex and the foremost point of the
tail, and the 2y coordinate system is fixed in space.
The use of strip theory (which, it should be cautioned, is
not exact for the plan form shown in fig. 43) enables one to
formulate immediately the lift on the finite-span tail in
terms of the two-dimensional response as follows:

NEX(; =3 f f:::;?(%)g(x, t; y)dz 42)

-where (f) (z,t; v) denotes the loading at a point on a two-
0/2

dimensional tail which is subjected to the same normal flow
velocity varistion 28 & section ¢(y) of the three-dimensional
tail. The inner integral in equation (42) is recognized,
however, as being just the two-dimensional section lift

11 The term “strip theory’ is used here In its usual sense; that s, tﬁe Integrated lift at &

spanwise statlon of the three-dimensional surface is assumed to be the same as that on a
two-dimensional surface having the same chord length and undergoing the same motlon,



718

Moving vortex

Fiaure 43.—Definition of notation used in strip theory analysis.

coefficient multiplied by the local chord ¢(y), so that equa-
tion (42) becomes,

a5 [ cwatti@, cw, 08 @3)

where the quantities I+ £(y), ¢(y) replace I and ¢, respectively,
in the two-dimensional-tail lift response previously derived.
The formulas for the apex-forward and apex-rearward tri-
angular tails are simply special cases of equation (43). For

the former case, ¢(y) is given by % 9, and after a change in

variables, y=g 7, equation (43) becomes,

CL)=2 f ner(-Feo(1), nco, §) dn (44)

For the apex-rearward triangular tail, £(y) is zero, so that,

1
C.(t) =2f nci1(l, nc,,0) dny

Equations (44) and (45) have been utilized, together with
the results for the two-dimensional-tail lift response to
compute the responses in lift of apex-forward and -rearward
triangular tails to the two-dimensional vortex field. Results
in integral form are given in Appendix C, and numerical
results for tails of unit chord, tail length 3.2 units, at Mach
number 1.7, are shown on figure 44.

The result for the apex-forward triangular tail is compared
with the approximate result derived for this wing in the
previous section by use of a gust-type analysis. Again, as
in the two-diménsional case, it is evident that the gust<type
analysis provides an accurate estimate of the tail lift response

(45)

l I+e
<t 2
M1 S M1
SUPERPOSITION OF ELEMENTARY SOLUTIONS
It has already been noted in a previous section that the

over the entire time range

response in tail lift to the normal-velocity field created by a

single vortex loop could be viewed as a fundamental result
in this sense: The solution can, in principle, be used as the
elementary function in a superposition procedure designed
to determine the response in lift of the tail to the normal
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Fiaure 44—Exact response in lift of apex-forward and apex-rearward
wide triangular tail to normal velocity of two-dimensional vortex
system. M,=1.7.

velocity field created by a forward wing of finite chord. In
this section a procedure for accomplishing this end is de-
veloped and the result of the analysis applied to a special
case. For the sake of simplicity, the analysis is again
restricted to one dealing with two-dimensional forward
surfaces, so that the normal-velocity field encountered by
the tail is uniform in the spanwise direction. However, no
restriction is placed on the span of the tail.

In the previous sections solutions have been obtained for the
lift at the tail in response to a single vortex pair. The
boundary conditions for the vortex pair are exhibited in the
z¢t plane as a triangular sector having a uniform potential
difference A® within the sector (see fig. 36). We wish now to
distribute these sectors over the region traced out in the ¢
plane by the forward wing and its wake in such & way as to
build up the variation of A® in these regions corresponding to
prescribed normal-velocity patterns over the wing. The
sum of the responses in lift of the tail to each of these slabs of
A® is then the response to the normal-velocity field created
by the wing. It is convenient to treat the effects of the wing
and wake separately, and we consider the wing first. Place
a vortex pair at an arbitrary chordwise position of the wing
with origin at £=0. The response in lift at the tail to the
single vortex pair is a function of time ¢ and a characteristic
distance, chosen to be the distance p between the moving
vortex and the tail leading edge. This of course is the solu-
tion derived previously with [ replaced by p. Now place
another vortex pair of opposite strength with origin at the
same position in space as the first pair, but shifted an incre-
mental time Ay later. As shown in figure 45 there remains
a strip of chord AZ,Ay having unit A® within the strip.

The response in lift at the tail to the remaining strip at a
fixed time ¢ is,

AC:(, t)=Cr(p, 1) — Cp(u—M,An, t—Ax) (46)

Letting the changes in x and ¢ approach zero, equation (46)
may be cast in the form of the directional derivative,

ACL, . 00 18
'A_n' (.”': t)—Mo a_p (F‘) t)+ atL (F‘J t) (47)
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F1gure 45.—Boundary conditions for response in lift of tail to an
elementary strip of unit A®.

This is the response in lift to a strip of unit A% situated a
distance p from the tail. The response to any other strip
starting at a later time but at the same distance u from the
tail will of course be identical to this result. We may there-
fore build up the response to an arbitrary variation of A® in
the strip simply by use of the Duhamel integral; that is,

AO‘@, ‘)iuf [Maw”(u,t to+a§0’;)(n,t tl)]Am,tlzg

Let t—#,=r, and perform the indicated differentiation, noting
from physical considerations that A®(u, 0)=Ci(g, 0)=0.

8% G, 9= [ [ 4. 52 )+°0’*@,T)]Aé>@,t—r>dr
)

The influence of the wing on the lift at the tail is then ob-
tained simply by & summation of incremental strips as p
goes from [ to I4-c,,. Note that the increment Ap is M,Ax.

OL (t) WING™

flz+c., f I:M oG, (, H_OO'L &, ):I 5, () dr
(50)

Now consider the influence of the wake. The potential dif-
ference AP in the wake has the characteristic that at each
station in space the A® existing at the trailing edge of the
wing remains the same for all time thereafter. The distribu-
tion of A® in the wake may therefore be built up by elemen-
tary vortex pairs whose origins are placed at the trailing edge
of the wing. Since these elementary sectors are all the same
distance ! from the tail, the response in lift at the tail to each
of the sectors is of the same form, and the sum of these re-
sponses at a fixed time ¢ may again be found by use of the
Duhamel integral,

0,,(t),mg=% f "0l ) AB(, t—7)dr

=f‘ Cu(l, nA®({, t—7) dr (51)

‘wake.

The sum of equations (50) and (51) is then the desired re-
sponse in 1ift at the tail to a prescribed A® distribution on the
forward wing.

o= [ [ 52 G iy 3 ) | 1=

f l C,(l, AD(, t—1)dr (52)

We consider next a special case for which the form of equation
(52) may be simplified considerably. For this case the
loading on the forward wing is prescribed to be uniform
in the chordwise direction and to remain constant with
time. The specified boundary condition may be interpreted
either as the exact case for a forward wing which starts to
deform at t=0 in such a way as to give rise to a uniform
loading over its surface, or as an approximation to the res-
ponse of a flat forward wing to a step change in normal
velocity over its surface. It is the latter case which is of
real interest here, and of course the approximation introduces
some error into the variation of A® on the wing and in the
However, as can be seen on figure 46, 8 comparison
of the exact and approximate A® distributions shows that
the differences between the two are not great for the case
chosen, and would be even smaller for higher Mach numbers.
It is expected that the approximation should yield acceptable
results for Mach numbers greater than about 1.4.

X
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\ w on wing
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loading on wing

Figurs 46.—Comparison of distributions of A® for two-dimensional
wing and wake due to uniform loading and uniform normal velocity
on wing.

The prescription of uniform loading on the forward wing is
seen on figure 46 to amount to the following conditions on
A% on the wing:

AB(u,t)y=kt 0<t<?
(63)
=kt t>1
where )
l+cov_l-‘
=3

It follows that the condition on A® along the trailing edge
of the wing must be,
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2B Y=kt 0<t< ;4'
Co,, Co,
=]C:n—-/{o ‘ i 2 E (54)

Performing-the required differentation of A® with respect to
(t—7) and substituting in equation (52), we get

(= (T2 1 oG,
Cu)=F fl dy ﬁ _Z[D# GLEP,T)+Z| 3= (#,T)] drt
l .
k ﬁ e 0., 7)dr (55)

The inner integral I; in equation (55) may be evaluated
immediately and gives

ﬁfﬁﬁ aLm,@—ﬂiL Culit—D) (56)

For the inner integral I;, we make use of the definition for
the differentiation of a definite integral, that is,

¢ ¢
[} s Cutmrdr—s | Culirir— a0+ 37 st
(57)

Substituting equations (56) and (57) in equation (55) we
have,

ay=k [ “du[ 2 Gt

1 L
2z Ooout) [+ . oGl s (69
Let )
e mdr=F

Then in equation (58)
Ites, ) FluDdum I t|t+c._
[ Futdu=Fw| =

f Cullteoydr— [ o Clde  (59)
4 t—-lE

Substituting equation (59) in (58) there remains only,
. k tteo,
C'z,(t)=E ' Crlp)dp (60)

This result may be easily verified by interpreting the integral
in equation (60) physically. The integral specifies that we
sum the effects of elementary sectors, all of the same strength
in A®, and whose origins are at t=0 within the boundaries of
the wing leading and trailing edges. A graphical summation
of several such sectors will show they do indeed build up the
A® distribution over the wing and wake prescribed in figure
46. .
Equation (60) has been utilized along with the results of
the previous sections for Cp(u,t) for the two-dimensional tail
and the rectangular tail tip regions to approximate the
response of the tail to a step change in angle of attack of a
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forward surface of finite chord. Results of computations
for a wing chord of 2 units, tail chord of 1 unit, tail length
1 of 3.2 units, and Mach number 1.7 are shown in figure 47.

1.0
Two-dimensiona)
| A =%
-~ 1 Rectangular fail
- @\ﬁpreglons,
1 2l
%I_(Z -cﬁm) o _ /\ \ Ba

//

12 3 4 5 6 7 8 9
a .

F1gUrE 47.—Approximate response in lift of two-dimensional tail and
tip regions of rectangular tail to step change in angle of attack of
two-dimensgional wing. M,=1.7.

Note that the main difference for the two-dimensionsal result
from the result for the response to a single vortex pair is the
disappearance of the infinity in lift when the tail penetrates
the position of the first starting vortex. Reference to figuro
46 will show that this is attributable to the fact that the
first vortex penetrated by the tail is of infinitesimal strength.
Again, as in the single-vortex example, the response in lift
for & finite-span tail satisfying the restriction B4 >1 may be
obtained: from the results of figure 47 by direct addition of
the two variations shown in the figure.

It should perhaps be noted that the form of equation (52)
permits of still other simplifications which should yield
acceptable results for special cases. For instance, when the
chord of the wing is small compared to the tail length, it may
be expected that the influence on the build-up in lift at the
tail of disturbances on the wing should be minor compared
to the influence of disturbances in the wake. It is seen in
equation (52) that this condition is equivalent simply to
ignoring the first integral in comparison to the second. The
simplification, of course, represents a considerable reduction
in computational labor, and, in addition, the form of the
remaining integral is simple enough so that the exact varia-
tion of A® at the trailing edge of the wing corresponding to
the prescribed normal-velocity distribution on the wipg may
be used with relative ease. For example, for the case of
uniform normal velocity on the wing, the variation of A®(l,?)
at the wing trailing edge may be derived from the results of
reference 3, and is given by

. Coy,
MbAH=Vie,  0SISpr
Voa —~1 Mot_co Co Co
— Yo o) o<t o
™ T )M i1 ©
Co
—o, o <t
M—1 )
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Upon substitution of these expressions in equation (51) and
performance of the required integration, the solution yields
in any case the exact response of the tail lift to the influence
of the wake, and, in cases where the tail length is large
compared to the wing chord, a reasonable approximation of
the total response in lift of the tail. The response in lift
of the tail to, say, indicial pitching motion of the wing, or
for that matter, to any indicial motion of the wing for whick
the variation A®(lt) is known, can be approximated by
the same technique.

CONSIDERATION OF THREE-DIMENSIONAL FLOW EFFECTS

In all of the analysis presented thus far, attention has
been focused solely on problems in which the flow field
caused by the forward wing is two-dimensional. This
effectively limits the results to cases wherein the plan form
of the forward wing is essentially rectangular, with span
sufliciently large so that the flow from the tips of the wing
does not significantly affect conditions in the vicinity of the
tail. In order to treat more general cases, including cases
wherein the plan forms are of nearly equal span, it becomes
necessary to consider in detail the effects on the tail of the
remainder of the vortex loop — the trailing vortices.
Inevitably, the admittance of spanwise variations of normal
velocity into the flow-field picture complicates the analysis
considerably, and it appears that exact solutions for the
tail lift response will be exceedingly difficult to obtain.
However, the change in the physical situation caused by the
addition of the trailing vortices can be fully described, and
this description will be seen to suggest simplifying approxi-
mations which serve, in turn, to make the problem of cal-
culating the tail lift response more tractable.

THE FLOW FIELD

Consider first the flow-field caused by the motion of the
complete vortex loop. The boundary condition character-
istic of the vortex loop is that within the confines of the
moving, starting, and trailing vortices, the jump in potential
Ad is a constant across the plane containing the vortices,
and zero elsewhere in the plane. Thus it is clear that the
two-dimensional vortex system considered earlier can be
converted to the three-dimensional system by subtracting
off regions of constant A% of semi-infinite spanwise extent,
a8 shown in figure 48.

/,—Two—dimmsional

i_ s —i /  moving vortex
/8 /
—o— v —————
A A
L P D 4

\»-Two-dimensional

starting vortex
Ad

] LTI T
< | Section A-A T

Fiaure 48.—S8uperposition procedure for converting vortex system
from two- to three-dimensions.

Obviously, by reason of symmetry, we need consider the
effect of only one of the added trailing-vortex loops, and,
further, it is sufficient to consider the effect only within the*
shaded region of figure 49.

TN B
“x=-M,t
X+ Mot
e B
puis
N
_— -

“xs~t %

I
Y2+ x2at2

I

Fiaure 49.—Boundary conditions in the z=0 plane for a trailing
vortex loop.

In figure 49 the circular region, denoted region I, is the
domain in the plane of the vortices within the sound wave
emitted at ¢=0 by the motion of the trailing vortex. Tbis
region extends from values of z between ¢ and —t¢, and
constitutes the interval within which the flow is both un-
steady and three-dimensional. For values of z<—t, the
flow has reached its steady-state distribution, and is therefore
stationary with respect to an observer traveling at the speed

of the moving vortex. The lines y=F :c—l—;Mat) setting off

this steady-flow regime are of course the Mach lines
emanating from the juneture of the moving and trailing
vortices. All points to the left of the shaded region are
clearly unaffected by disturbances from the trailing vortex
itself, and hence the flow there is just the mirror image of the
two-dimensions) flow considered earlier. Points to the right
of the shaded region are completely unaffected by the action
of the trailing-vortex loop, and there the fluid is undisturbed
by the addition of the loop. '

The problem of calculating the potential and velocity
field associated with the trailing-vortex loop has already been
considered for the subsonic speed range by Lomax, Heaslet,
and Fullerinreference 24. Itis a relatively simple matter to
extend these results to the supersonic range, and since the
procedure for doing so is plainly developed in reference 24,
only the final results that are of interest here will be given.
Thus, for the regions marked I, II, III in figure 49, the
normal velocity w induced in the plane of the vortices by the
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addition of the trailing vortex-loop is given by:

5 0@yl [ MelP=F_ e T —FF
V2004 2et iy yetdL)

V&t l
xy
— (D)= AD /(x+AM A —FY
27 yla+ALD)
0B MAB—2% A8 M, JP—2
"2x z(z+ MDY 4w z(z-+MR)

@+ MH =% | VZFLF |
yat+MtY) T ay
—w(IT)= _l_ﬁ MAE—2*_ A® /(x+Mt)*—F%
27 2(z+ M) 27 ylz+ALD)

_ 2 e+ M—FY
—wD= " T+ M J

Several points of interest may be deduced from inspection of
“equation (62). First note that, as it should, the solution
reduces to the two-dimensional normal velocity with just a

change in sign along the left-hand boundary (y=—1ﬁ2_——_x2,
ot (zEME\ —t _ )

>z> oK Y= ( 8 ); M>x> M

and to zero along the right-hand boundary <y=—l—xli.2—a:’,

-

~—

y<0;—wl)= (62)

> = y=+(E2E), T >a> ),

Second, it appears that the contribution to the normal
velocity made by the trailing-vortex loop may be viewed as
being composed of two distinct parts: one, a two-dimensional
contribution, equal but opposite in sign to the normal velocity
contribution of the original two-dimensional system and
existing everywhere within the region ¥ <0, —t<z<t, and
second, a three-dimensional contribution that is antisym-
metric with respect to the axis y=0 and that exists only
within the confines of the starting sound wave and Mach line
traces, that is, within the shaded region of figure 49. It
should be noted that the antisymmetric contribution is zero
along both the left-hand and right-hand boundaries, and
contains no singulerities other than at y=0, 2<0, the path
of the trailing vortex itself.

In order to obtain the normal-velocity distribution due to
the complete vortex loop, it is now only necessary to combine
the results given by equation (62) with the two-dimensional
contribution (eq. (35)), and with the contribution of the
trailing-vortex loop originating at y=s (see fig. 48). How-
ever, we are interested in the effect of this complete loop on
the lift at the tail and, inasmuch as the response to the two-
dimensional vortex system has already been investigated in
previous sections, it is more to the point simply to continue
by investigating separately the effect on the tail of only one
trailing-vortex loop. The resulting solution for tail lift re-
sponse can then be doubled to account for the influence of
both trailing-vortex loops, and directly added to the result
found previously for the response to the two-dimensional
vortex system.
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RESPONSE IN LIFT OF TAIL TO NOLBOLC{)AL VELOCITY OF TRAILING-VORTEX
P

In view of the complicated nature of the flow caused by
the trailing-vortex loop, it appears that analyses leading to
exact solutions for general tail plan forms will be confronted
by formidable difficulties. Thus, for practical purposes,
simplifying approximations will no doubt become necessary.
There is one type of plan form, however, which can be
treated with a minimum of approximation and that is a
class of supersonic-edged wings. It has already been men-
tioned in a previous section that for the supersonic-edged
plan form having a straight trailing edge normal to the free-
stream direction, the use of strip theory is exact in calcula-
tions for the lift due to arbitrary deformations of the surface.
Hence, for this type of plan form one can calculate the lift
at a given spanwise station as though the station were o
two-dimensional surface undergoing the same motion., The
reduction of the problem to one involving only two spatial
dimensions then opens the way for use of the three-dimen-

| sional steady-flow analogy to solve the problem in the same

manner 28 was done previously for the response of the
two-dimensional tail to the two-dimensional vortex system.

As an illustration of the use of these principles, we con-
sider two cases involving the response of & tail of triangular
plan form; first to a vortex system having a span greater
than, and second a span less than the span of the tail.

Case 1; 2me,<8.—

Referring to the notation of figure 50, let us fix attention

to a spanwise station %, and examine the normal velocity
distribution encountered by chord ¢;(y) of the tail as it passes
through the region of disturbed flow caused by the left-hand
trailing-vortex loop. For the particular chord chosen, the
geometry of its experience in time and space is illustrated
in figure 51.
As seen on the figure, in virtue of fixing 7, the boundaries
of the sound wave appear &s one branch of & hyperbols.
Within the hyperbola, the flow is of the type defined by
w(I) of equation (62); whereas to the left of the hyperbola
but within the trace z=8y— M, the flow is constant along
lines parallel to the leading edge of the section, being of
type I of equation (62). Elsewhere, the flow is zero.
Now, in view of the validity of the strip-theory formulation
we consider the chord ¢,(y) as being the chord of a two-
dimensional tail, subjected to the normal-velocity distribu-
tion w(z, t; y), where y is treated as a& constant. Then,
invoking the three-dimensional steady-state analogy, the
problem is to find the steady-state section lift as & function
of ¢t (the coordinate ¢ is now the streamwise axis) on the
equivalent sweptback tail shown in figure 51, which is sub-
jected within the shaded boundaries to » normal-velocity
distribution given by equation (62).

Up to this point, the formulation of the problem has
involved no approximations. Now, however, rather than
attempt to solve the above problem exactly (which is in
truth even now a formidable exercise in integration) we
introduce a simplifying approximation based on the nature
of the normal-velocity distribution. It has been mentioned
that the antisymmetric part of the normal velocity caused
by the trailing-vortex loop contains no singularities other
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Figure 50.—Definition of notation used in calclul'at-ing section lift
regponse fo normal velocity of trailing vortex loop.
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Fioure 651.—Boundary conditions at a spanwise section of the tail.

than those on the path of the trailing vortex itself. It can
also be said that with respect to an observer moving with the
chord ¢,(y) the magnitude of the antisymmetric flow grows
uniformly from zero at one boundary of the sound wave
to the steady-state value at the other boundary. These
statements are illustrated in figure 52 for the region in z,
t, occupied by the tail chord ¢;(y) of figure 51.

Thus, from inspection of figure 52 it can also be stated that
the response in lift ¢;(I+4,(y), ¢.(¥), {) must start from zero
ot time #,(y) (see fig. 51), and also grow uniformly to its
steady-state value, which is attained at time #(y). More-
over, it can be shown that if w is continuous along lines

w X

Frqgurs 52.—Normal velocity distribution due to trailing vortex loop
at a spanwise station of the tail.

parallel to the leading edge the slope of the response curve
must be zero at both times ¢, and .

The steady state lift ¢;(I+£(¥), ¢;()) which is attained at
time #; can be computed exactly, and the times ¢; and %, are
obtained easily from the geometry of figure (51). It there-
fore seems reasonable simply to approximate the response
curve by a variation that grows uniformly with time and
fits the end conditions correctly in magnitude and slope.
One such curve can be written in the form of a cubic equation
in ¢, and gives,

cl(l+sl(y):cl(y);t)=

e+ [l T {s—of (540 Th 69

where, for the conditions of figure (51),

PR ) S G0

M(l+ca)+ (l"l"ca)z_ﬁ“.y2
H) o

cl+&(y), ay)= Vo,Bc @ 21!‘2/{ Vi+te)—

- (B ITE0PF—F7 -1_By
By cos™ { oy c,,) I 8@P—FY By cos™ T &(y)}
The form of equation (63) can be viewed as being typical
of the response of any section ¢(y) of the tail. ‘However, asy
takes on all values from one tip to the other, the equations for
i1, t, and ¢; may change from type to type in different span-
wise intervals, depending on the Mach number and con-

. figuration geometry under consideration. Referring, for

example, to figure 50, it is clear that a section of the tail near
the right-hand tip may be completely untouched by the
normal velocity caused by the trailing vortex; whereas sec-
tions closer inboard may be touched on only a portion of
their length. All told, there are five such possible variations
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in the boundary conditions and these are listed in Appendix
D, together with the corresponding values of #; ,&, and ¢;.
Having determined an expression for the response in lift
at an arbitrary section of the tail, we may now integrate
and find the combined response of all sections of the tail to
the given normal-velocity distribution. Thus, in & manner
similar to that described previously in connection with cal-
culations for the response to the two-dimensional vortex
pattern, we may write, for the response to one trailing vortex,

Cil)=% { [

[T cattuw,a), t)dy} 64)
me +R

a@)el+&®@),a®),)dy+

where the symbols in equation (64) have been defined in
figure (560). In order to illustrate the nature of the result for
the response in lift to the trailing-vortex loop, calculations
based on equations (63) and (64) have been carried out for
the triangular tail shown on the side of figure 53. The
results account for the effects of both exterior trailing-vortex
loops and may be directly added to the response to the two-
dimensionsl vortex system to give the response to the com-
plete loop shown in figure 53. The separate responses and
their combination are shown for comparison on figure 53.
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Figure 53.—Response in lift of wide triangular tail of aspect ratio
4 to normal velocity of complete vortex loop. Af,=1.7.

Case 2: 2mc, >8.—

When the span of the trailing vortices is smaller than that
of the tail, the development outlined above must be amended
slightly. The effect of the antisymmetric part of the normal
velocity-distribution may be accounted for, however, by the
seme technique as described previously, and referring to
figure 54 for definition of the notation, the response in lift of
the tail to this contribution may be written immediately as,

Cule= S{ =

fm ‘_o; e@)e (l-l‘fa(y);ca(’.l/),t)dy} (65)

o

a@al+60),a@),)dy+
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where the variation c;(I4+£(y), c(y),) is again given by
equation (63).
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Ficure 54.—Definition of notation used in calculating seotion lift
response to normal velocity of trailing vortex loop.

Now, it is also necessary to consider the influence of the two-
dimensional contribution o the normal velocity which exists
in the region y<{0, —t<z<+¢. But note, the response in
lift of the tail to this contribution is simply equivalent to
minus one half the response of a triangular tail of chord

% and teil length l+co—% to the two-dimensional vortex

pattern, and, inasmuch as the exact result for this case has
been obtained in a previous section, it is sufficient to indicate
the result in coefficient form as

Clt=—3 s G, (1o £, t) (66)

where the subscript 2 indicates that the response to the two-
dimensional vortex pattern is to be taken. The sum of
equations (65) and (66) then gives the total response of the
tail to one trailing-vortex loop. To obtain the response to
the complete vortex loop, this result is then doubled and
added to the response to the two-dimensional pattern in the
same manner as was done for case 1.

SUPERPOSITION OF ELEMENTARY SOLUTIONS

Finally, having obtained a solution for the lift at the tail
induced by the normal-velocity distribution of the complete
vortex loop, we wish now to use the solution to build up the
response to the downwash caused by a three-dimensional
forward wing. The analysis for accomplishing this task
closely parallels that described previously for the case of the
two-dimensionsal forward wing, and therefore only the final
result will be given here. Thus, denoting the elementary
solution by Cg(u,s,t), where p is the distance from a moving
vortex to the tail leading edge and ¢ is the semispan of tho
vortex loop, we get, (see figure (55) for definition of notation)
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Freunre 55.—Definition of notation used in caleulating response in lift
of tail to prescribed A® distribution on three-dimensional forward
wing.

As in the two-dimensional case, the first term in equation (67)
accounts for the variation of A% on the wing, the second,
for the variation in the wake. It is to be noted that in the
development leading to equation (67) it is assumed that the
treiling edge of the forward wing is straight and normal to
the free-stream direction. However, wings having. other
than straight trailing edges can be freated by the same
equation by considering as part of the wing points in the
wake between the ‘wing trailing edge and the rearmost
spanwise axis passing through the wing. .

APPLICATION OF REVERSE FLOW THEOREM

We have devoted several sections to the derivation of
methods whereby the tail lift response can be calculated for
certain restricted cases. The possibility still exists, however,
that these results can be extended to include still other cases
which do not lend themselves as readily to analysis. The
question may be asked, for instance, whether a relationship
exists between the response in lift at the tail to the essentially
two-dimensional normal-velocity field shed by s large-span
rectangular wing and the analytically more difficult reverse
situation; that is, the effect of a small-span forward wing of
fairly general plan form (for which the downwash field is far
from being two-dimensional) on a large-span rectangular
tail. Such a relationship can be sought for the more general
case, involving wing-tail configurations of arbitrary size and
shape, by application of the reverse-flow theorems for un-
steady motion developed in reference 27. It will be the pur-
pose of this section to investigate this possibility.

To begin, we adopt the notation used in reference 27 and
also specify that the motion of the wing-tail combination be
indicial; that is, the combination is made to start from rest
at (=0 with uniform velocity V, in forward and reverse mo-

tion, and boundary conditions for the flow over the surfaces
are specified only for £>0, being zero for {<0. After the
combination has moved for a time T in both forward and
reverse directions, the relationship of the wings and their
respective coordinate systems are as shown in figure 56.
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Fiaure 56.—Coordinate systems in forward and reverse motion.

In figure 56, the subscript 1 denotes the axis system in for-
ward motion, the subscript 2, the axis system in reverse
motion, and the wing, wake, and tail have been given the
symbols @, b, and ¢, respectively. As may be verified
from examination of the figure, the z and ¢ axes are related
by the equalities,

=—z+ I—MOT} 68)

t2='—‘t1+T

and we further specify that y;=—y,. The general reversal
theorem may then be written in the form (see again, ref. 27),

T
f dt‘ff [Pa, (@1, Y1, 8) s, (21,91, 81) +
0 Py

Do, (@1, Y1, 80, (21, Y1, 8) FPe, (21,91, 810, (21,91, 1)] dsdyr =
T —
[Tan ] o 0+
0 Pyt

Do, (T2, Y2, 1) W, (T2, Y2, ta) Do, (2, Y2, 1) W, (22, Y2, &) d2adys  (69)

where P is the plan form of the combination in the z=0
plane. It may be noted the normal-velocity - functions,

Wy, Wy, are implicitly dependent on 7, the full relationship
being,

E.il(a:"-d Ya, t2) =wil(—x‘z+§‘—MoT,—'?/2;_t2+T)
Et,(xh Y, b) =W (—2,+—M,T,—y,—t+T) (70)
1=a,b,¢

Notice further that, since the wake cannot sustain a pressure
difference, the products p,W,, and p, W, in equation (69)
may be set to zero. Then taking a derivative with respect
to T of both sides of equation (69), we get,
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It is easily verified that a sufficient condition for the disap-
pearance of the triple integrals in equation (71) is that the
normal-velocity distributions on the surfaces be restricted to
those defined by the relations,

wy(z1,h; Y1) =F (@ +Msh; yr)

(72) -

W3 (2,t5; Ys) =g(@a+Mobs; Ys)

Another such condition is simply that wi=0, or wy=0.
Assuming henceforth that either or both of these conditions
are in force, the flow reversal relationship for the wing-tail
combination becomes,

[ [ st Ty o100

Poy ()
f pcl(zl:ylx I')Ecg (zlylyl: ndxldyl
P (T)
. (73)
= f Pay (2,2, T)a, (22,92, T) dxdyst+
Py (T
ff pcg (932;'3/2; Dwtl (xﬁyyﬁ) 1’)dx2dy2
P,y (T)

Now in the present problem, the boundary conditions for the
flow on the wing and tail are simply that in forward motion
the normal.velocity on the forward wing is uniform while on
the tail it is zero, and in reverse flow we specify that the same
situation be true. Obviously, these conditions satisfy the
restrictions imposed by equation (72), and setting w, and
W, equal to unity, equation (73) becomes,

[[ puwnDindy= [[ paynDinds, @9

P, (T) Poy(T

Thus, the response in lift induced on the tail by the
indicial change in angle of attack of the wing is exactly the
same as the lift response of the wing due to indicial change in
angle of attack of the tail in reverse motion. It will be noted
that the above result applies for wing-tail combinations
flying at either subsonic or supersonic speeds, and that no
restriction has been placed on size or shape of the plan forms.
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bwa'

+
T2

- pag(x‘-': Yz, T)Eal(x‘b Yz, T')d%dyrl-
o

btl

a{") deody: - (71)

APPLICATION OF RESULTS TO DYNAMIC STABILITY
ANALYSIS

The preceding sections have been concerned with the
development of methods whereby the variation with time of
the lift developed at the tail in reaction to the normal
velocity shed by a forward wing could be estimated. Now,
having arrived at a fairly rigorous physical understanding of
the nature of the variation, we will attempt in this section to
assess the significance of its contribution to the over-all
dynamic stability of an aircraft. For simplicity, attention
is devoted to the single-degree-of-freedom rotary-oscillation
case.

It has been noted that the oscillatory lift and moment
equations developed previously for & single wing are still
applicable for the wing-tail case with proper interpretation
of the indicial functions. For supersonic speeds, this re-
definition was seen to reduce for each indicial function simply
to the sum of the indicial functions of the wing and tail
considered as isolated wings and an interference function
which accounts for the influence of vorticity shed by the
wing on the development of lift at the tail. Then, denoting
the interference functions by primed quantities, we conform
to the notation-used in Part I by letting

€. (=0}, (&)~ Fi(x)
O =Cl )= Fi(s)

Gt ()= () —F3(r)
Ol () =Cl (&) — Fi(r)

(75)

Again introduce the parameters,

¢=sz7 number of half M. A. C. lengths traveled in
time 7
wC
—o7, reduced frequency
.2V, .
== °t number of half M. A. C. lengths for inter-

ference function to reach steady-state,

where the characteristic unit of length ¢ is taken as the wing
M. A. C. The in-phase and out-of-phase lift and moment
coeflicients for the harmonic rotary-oscillation case then
follow directly from the form of equations 12 and 14.
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~

a, ,
RP.(E)=0u, (00.) 4 Cro (007) + Crold—
E[* (P Flo)) sin oot
B[ (P Fulo+ Fio) cos bode
o - (16)
1p. (%)= k{OL (@) G, (Gur) O (0D~

k f * [Fo()+ Fs (0)-+ Fi(e)] sin kpdo—

ff 71 (0)+Fi,(0)+Fi(#)] cos z.:m} J
k.P. (077 =Cn, (98,)FCn, (9a;) +Cu (00—

kf:: [Fs5,(0)+ Fo (0)+ Fa(o)] sin kedo+

¥ fo [Fi (@) FFi(0)+Fule)] cos kpde
7

LP, (%‘):k{ O, (702)+ Oy (025)+ O (0

E[ 0+ P+ il sin kodo—

[ B P+ Fi @ cos ko | |

Tn the same way, the reduction of the above results for
k<1 to first-order in frequency follows directly from the
form of equations (13) and (15). There results,

RP. (% =0, (00,)+Cr, (0e5) +Ch. ()
Lp._(%)=k{oL,_(m,,)+0Lqr(aa,)+oz¢(a:)— - (79)
" (F o)+, (T (¢)]d¢}

RP. (% =Ch, (00,)+Cn, (907)+Cl (oD

LP. (%)=k{0,,.%(%)+0,,,qr(wa,)+0:.q(a:)— - (79)

[ Eort PP

With the aid of the first order in frequency results (eq.
(79)) it is possible to assess the importance of interference
effects on the damping moment of a wing-tail combiaation.
Inspection of equation (79) for the out-of-phase pitching
moment reveals that the interference effects are contained

in the term O (s;) and the integral, -—fﬁaF;(qa) de. The

13 It I3 presumed In equations (75) to (79) that all of the coefficlents have been nondimen-
slonalized with respect to the same characteristic area and length.

868585—66——A47

term O, (¢.) is generally relatively small, and may be
approximated by replacing the steady nonuniform downwash
at the tail caused by the pitching velocity of the wing by an
appropriately averaged effective angle of attack at the
tail. The term C, (¢;) may then be related to Gﬂa,("ar)

by the expression,

O (60~ O () 2 2, (80)

The downwash functlon @ = has been plotted for certain cases

in reference 28. For other cases, Ribner indicates in refer-
ence 29 that a generally suitable expression in terms of the

more fully investigated quantity % is

w, CL (O—‘w) w
2.7 w’
01; (0’4) (81)
Thus, combining equations (80) and (81),
’ ’ t.,( w)
Cu (00, (92r) [0 o) |27, (82)

For pitching in the positive sense the effective angle of
attack at the tail will in most cases be increased, so that
equation (82) represents a small but stabilizing damping
moment.

Consider now the term — f Fy(p)de. For axes of rota-
tion well ahead of the tail, the form of the pitching moment
variation O, (¢) will vary closely as-—f C; (¢), where lr

may be taken as the distancs from the steady-state center
of pressure of the tail to the axis of rotation. Then, recalling
the general nature of the curves found for tail lift in previous
sections, a typical variation C,_(¢) can be drawn as shown
in figure (57). )

I\

)
i

/-ﬂ(f;b')/

| TFrgome 57.—Typical response in pitching moment of tail to step

change in angle of attack of wing.

The term—f Fy(¢)de is then seen to be equivalent to

the net shaded area in ﬁgure (57). Plainly, it can be of
significant magnitude, and since the steady-state ordinate
C..(¢2) will most generally be positive, it represents a
potentially large stabilizing damping moment.

It is interesting to compare the interference damping
moment given by other theories in terms of the result given
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by the integral f ™ Fi(¢)de. Most of these theories (c. ., refs.

12, 28, and 10) are similar in that they recognize that an
out-of-phase lift at the tail is caused by the fact that a
finite time is required for the normal velocity shed by the
wing to reach the tail. The normal velocity at the tail,
which is usually taken to be the normal velocity in steady
flow, is then usually averaged to form an effective angle of
attack, and the damping moment cast in & form which may

. . 2l W,
. be represented in the present notation 8= O,aT (dap)-
Now this result may also be interpreted as an area, being
in fact the area of a rectangle having as ordinate the quan-
. We . . )
m’y—W, 0’"% (0s)- But note that this ordinate is equal to
the ordinate C._(¢7) in figure 57. Thus, it can be said

that the classical “lag in downwash factor” is essentially
correct but depends for its accuracy almost entirely on the
{4

proper choice of the effective tail length 2?5 In reference

12, the length !’ is chosen to be the mean distance between
the tail and the wing. Thus, for rectangular plan forms,
(4

and in the notation of figure 34, the effe¢tive length Z‘f__ is
Cw+0_r+2§'
c

The damping moment is then equal to

179.,0

aVo ﬂ'lar

pared with the areaf% Fi(p)de in figure 58.

CW+CET +2§>, and its equivalent area is com-

A

Cn P

A

il

ok N

S

Lo

HHIIHHMINII

«f
Fieure 58.—Comparison of areaf' Fi(¢)d¢ with classical lag-in-
downwash factor. T

It can be seen from examination of figure 58 that the simple
representation of the tail length is in this case surprisingly

4
accurate, since the length 2]'? is so situated that the area

marked a representing a stabilizing contribution is in large
part canceled by the destabilizing contribution, area b.
Further, it may be argued that this will be true for 2 large
number of cases. The reasoning is as follows: Referring to
figure 58, we see that the use of the simple tail length  will
be essentially correct so long as the number of half-chord

14
lengths glb—.- is close to the value of ¢ at which the pitching-

moment variation changes sign, for then the areas ¢ and b

. tend to cancel.
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But the pitching moment will be near
zero when the tail is so situated in the normal velocity field
from the wing that it experiences equal amounts of upwash
and downwash over its surface. Reference to figure 59
shows that this will occur when the tail is approximately
midway between the starting vortices from the wing lead-

ing and trailing edges.

C..——-|-————C———-I~‘-€r-i —r

xe=bpt’ ==

x=Gr=ot=
\

Y \__x,q"*_§+or_%fi
A

‘o xag LY

. i
Fiaure 59.—Sketch showing time at which tail experiences approxi-

mately equal amounts of upwash and downwash.

The time # when this occurs'may be calculated to be
Z’zT—]}- (;—I%V—l-gzz » and, after converting to half-chords

o (Bt tes

of travel, we get > which is just the value

of the effective tail length, -2%—,

It should be remarked that the above conclusion regarding
the validity of the ‘‘lag-in-downwash” factor differs somewhat
from that of Martin, Diederich, and Bobbitt (rof. 28).

; These authors treat several wing-tail cases by direct considera-
1 tion of the effect on the lift at the tail of the downwash shed

by a forward wing which is plunging downward with uni-
form acceleration &V,. For values of ¢> o}, their results for
CLér and 0,,.&1' due to Interference should therefore be

equivalent to those of this report for the areas —-f’aF{ (p)de
N 0

and — fo %F;(go)dqa. It is found in reference 28 on compar-

ison of some of the results with those derived from the
simpler lag-in-downwash theory that the latter thoory
generally gives accurate results when the axis of rotation is
near the wing centroid of area. On examination of the
equations used for the simplified theory in reference 28,
however, it is noted that the effective tail length (denoted'

-’ in this paper) is taken to be the distance between the tail

center of pressure and the axis of rotation, which we have
called lr. .With this representation, the out-of-phase tail.
lift and moment coefficients due to interference may be
written (in the notation of this paper) as,

lp Wa
(GI","I_‘) ;:—2 % aV, OL"T

- (83)
l\? D,
(Orar) 22 (2) 25 ey
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whereas, by the results of the present analysis, they are,

U W,

(OL&T int 2_ V

'l ® (84)
( m“T){m Er a LT

The two sets of expressions agree when I’ and I, are equal,

and, as noted in reference 28, the simple theory gives good.

results for just the conditions corresponding to this case.
For other cases, however, it is believed that equations (84)
are more representative of the physical situation, and should
extend the range of validity of the simple theory beyond
that indicated in reference 28.

Another case is pointed out in reference 28 for which the
sunple theory breaks down, that is, when the forward wing
is two-dimensional, or of la,rge‘spa.n The results of this
analysis tend to confirm this conclusion, since for the large-
span wing, the downwash in steady flow is near zero. Cor-
respondingly, the steady-state interference lift of the tail
is near zero, which means that the relative magnitudes of the
peaks of the detailed indicial response curve (which are
ignored in the simple theory) play a promment. role in

determining the magnitude of the area f Fi(o)deo.

PART 10
EFFECT OF NONLINEARITIES

In this final section we depart from discussion of the use of
the indicial-function concept in dynamic-stability analyses
to consider a problem which may have pertinence to per-
formance characteristics under certain nonlinear flow con-
ditions. The problem is: given a flight condition in which
the variation of the airfoil’s static restoring moment is non-
linear with respect to the aungle of attack, what effect has
the nonlinearity on the rotary damping-moment coefficient?
The question is of especial pertinence to dynamic-stability
problems of aircraft operating under separated-flow condi-
tions, since it is well known that one effect of flow separation
is often to cause significant departures from linearity of the
static-restoring-moment curve. A common type of non-
linear pitching-moment variation is that shown by the family
of curves in figure 60, and it is this type which will be con-
sidered here.

Cm
A

Fiaure 60.—Family of nonlinear static pitching-moment curves.

In order to attack the problem, we again require that the
plunging velocity of the aireraft center of gravity be zero and,
furthermore, assume that the nonlinear restoring moment
is 2 function only of the instantaneous angle of attack. The
characteristic differential equation governing the motion may
then be written as,

Ia+¢ (e, &)a+tx(a)a=0 (85)

where I is the moment of inertia, { («, &) represents the damp-
ing coefficient as a nonlinear function of angle of attack and
angular velocity, and x(e) is the restoring-moment coefficient
as a nonlinear function of angle of attack.

Next, we contend that the departures from linearity of the
restoring moment curves x(a) are caused primarily by flow
separation, so that in the absence of separation the curves
would be nearly linear. In any case, however, a given
restoring-moment varistion can be broken into two parts;
one linear, and given, say, by the results of linearized-flow
theory, the other, a nonlinear variation of such magnitude
as to combine with the linear variation to give the observed
curve. These statements are illustrated in figure 61.

variation {b)

- Non-linear variation (c)

Fiaur®e 61.—Breakdown of pitching-moment curve into linear and
nonlinear components.

It must be noted that the restoring-moment curves shown
in figures 60 and 61 are presumed to be taken from the
results of static wind-tunnel measurements, where the angle
of attack is simply the angle between the chord-plane of
the wing and the free-stream direction. When the wing is
oscillating, however, each point £measured from the axis of ro-

tation experiences an additional angle of attack I—f-, due to the

angular veloclt.v Then if the steady-state pitching-moment
variation presumed to be caused by flow separation (curve
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(¢) in figure 61) is approximated in the operating angle-of-
attack range by, ,
Culd)=aa—bd®

in the unsteady case it is

UGG

where now £ is assumed to be the distance from the axis to
the point'at which the additional lift due to separation is

S\
—b (a+70 (86)

concentrated Now, since for slow frequencies, V& is much

smaller than e, all but first-order terms in & are neglected
so that equation (86) becomes

Co=cala— b+ (a—3 bah) (87)

The characteristic equation of motion then becomes

. 2k
Ti—g7| (CagtCa) +5 (@—3ba) |~a[Cu,+(@—bad] =0
(88)
where (Cn,+C.;) and (C.,) are the (constant) stability
derivatives which would be present alone in the absence of

separation. Thus it appears that even if the nonlinearity in
the static restoring moment is of small magnitude, neverthe-

less the possibility still remains that the damping moment
can be profoundly affected in the event that (Cn +Cw,) is

sufficiently small. Notice that when (U,.¢+0,,,&)+2£a i

greater than zero, and if the nonlinear term in the restoring
moment can be ignored in equation (88), that equation then
takes on the form,

&—286(1 — po®) + Kla=0 (89)

Equation (89) is then recognized as being the well-known
Van Der Pol equation of nonlinear mechanics. It is evident
that for small values of « the damping term is negative, lead-
ing to a divergent oscillation, whereas for larger « the damp-
ing term is positive. A stable regime therefore will exist

near a=1/il-7, and oscillations of either large or small ampli-

tude will converge to that regime.

Hence, the result of this analysis would appear to indicate
that nonlinearities in the variation of restoring moment with
angle of attack of the type shown in figure 60 may have the
effect of promoting self-sustained rotary oscillations of small
amplitude in cases where the damping moment existing
under unseparated flow conditions is small.

Arrs ABRONAUTICAL LLABORATORY
NaTioNAL Apvisory COMMITTEE FOR ABRONAUTIOS
Morrert Fievp, Cavrr., Aug. 16, 1954



APPENDIX A

RESPONSE IN LIFT OF TWO-DIMENSIONAL TAIL TO TWO-DIMENSIONAL VORTEX SYSTEM

The results for the section lift response to the two-dimen-
sional vortex field are listed below, together with the limits
of the intervals of “time” ¢ within which the results are-

applicable. The intervals have been illustrated graphically
in figure 38 of the text.

l l+e
Interval 1, Y S M1

—I&—a cos"(M—%)—l—cos“‘ (l_—?—l% } '

I+e l c
M+ Sl”Szua+1 M1

0, o, hy=es, 22 f I, da— f 1L, da
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A7 e v

0,0, 0= 0 047 | 37 log<_‘v/lx_l|_§)+

Interval 2,
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¢ M—1—""M,—1"M,+1
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1 +K1M
K1 'I"M
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Interval 5,

—cos™ (k) } —

_lﬂlda— sza
where
HF@T—M cos™(—ea)
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=Gri 1°g( loFal
_(@+M)(Mit—c)—M.l
(a+DMo)t—1

_(14+M,)(—M) +Moc
t1+M,)—

(=M (—Mt)—M.e
T M) Fe

2AD
7V

These results may be transformed in terms of either true
time ¢’ or number of half-chord lengths of travel ¢ by the

substitutions t=a.t’ or i= i 4

and

g——

» respectively.
]
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APPENDIX B

RESPONSE IN LIFT OF TWO-DIMENSIONAL, RECTANGULAR, AND WIDE TRIANGULAR TAILS TO TWC-DIMENSIONAL YORTEX
SYSTEM—GUST ANALYSIS

Approximate solutions for the responses of two-dimension-
al, rectangular, and wide triangular tails are listed below.
Solutions were obtained by means of a gust type analysis,
explained in the text. The indicial gust functions used in
the analysis are those obtained froi references 3, 5, and 6.

TWO-DIMENSIONAL TAIL

l I+c .
Interval 1, M1 <t< MI1
2 ,0=x(,9)
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The response for the rectangular tail may be formed by
direct addition of the solutions given above.

WIDE TRIANGULAR TAIL
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APPENDIX C

RESPONSE IN LIFT OF APEX-FORWARD AND APEX-REARWARD WIDE TRIANGULAR TAILS TO TWO-DIMENSIONAL VORTEX
SYSTEM

Exact solutions for thé responses of apex-forward and '

apex-rearward wide triangular tails are listed below. Solu-
tions were obtained by the application of strip theory.
The section-ift response used in the analysis has already
been presented as Appendix A.

APEX-REARWARD TRIANGULAR TAIL
.
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The integral f “ II,da may be evaluated easily, and gives,
%
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APEX-FORWARD TRIANGULAR TAIL

The form and intervals of the results for the apex-rearward
tail also apply to the apex-forward tail. The terms IL,
10,, I0,, are, of course, different, and these are listed below.
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APPENDIX D
BOUNDARY CONDITIONS AT THE TAIL DUE TO PENETRATION OF VELOCITY FIELD OF TRAILING-VORTEX SYSTEM

The boundary conditions at a spanwise section of the tail
due to the tail’s penetration of the normal-velocity field
created by a trailing-vortex loop are illustrated below. The
five types of conditions are those possible at various sections
of the tail due to its shape and its position with respect to
the moving and trailing vortices.
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