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DAMPING IN PITCH AND ROLL OF TRIANGULAR WINGS AT SUPERSONIC SPEEDS

By CuintoN E. Browx end Mac C. Apaus

SUMMARY

A method 13 derived for calculating the damping coefficients
in pitch and roll for a series of triangular wings and a restricted
series of sweptback wings at supersonic speeds. The elementary
“ supersonic source’ solution of the linearized equation of motion
s used to find the potential function of a line of doublets, and
the flows are obtained by surface distributions of these doublet
lines. The damping derivatives for triangular winge are found
fo be a function of the ratio of the tangent of the apex angle to the
tangent of the Mach angle. As this ratio becomes egual to and
greater than 1.0 for triangular winge, the damping derivatires,
in piteh and in roll, become constant. The damping derivative
in roll becomes equal to one-half the value caleulated for an
infinite rectangular wing, and the damping derivative in pitch
for pitching about the apex becomes equal to 8.8375 times that of
an infinite rectangular wing.

INTRODUCTION

In reference 1, a straightforward method was found for
calculating the lift and the drag due to lift of triangular
wings. The present paper extends the method to the cal-
culation of rolling and pitching motions of the wings. The
damping coefficients in roll and pitch for the limiting case of
very slender wings have been calculated (reference 2). The
present theory is not limited by the size of the apex angle,
and triangular wings with leading edges ahead of and behind
the Mach cone originating at the apex of the wing are treated.

In the present theory, based on the linearized equations of
motion, the wing is represented by a doublet distribution
which can be shown to be equivalent to a vortex distribution.
An integral equation is found which can_be easily solved by
analogy with known relations for two-dimensional incom-
pressible flow. The pressure distributions presented may be
used to caleulate the damping coefficients of a limited series
of wings for which the trailing edges are eut off so that they
lie ahead of the Mach cone springing from their foremost
point.
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doublet-line-distribution function
angular velocity of roll
angular velocity of pitch

incremental velocity component in z-direction

z-component of velocity
coordinates of field point (see fig. 1)
coordinates of a source or doublet
point about which the wing pitches
source or doublet strength
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half of apex angle of wing
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density of fluid

disturbance-potential function

potential of supersonic source

potential of supersonic source distribution
potential of supersonic doublet distribution
potential of a line of doublets
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ANALYSIS .
Solutions must be found that satisfy the linearized differ-
ential equation of a nonviscous compressible fluid written

D’ ' % _

290 09 O¢

B ozt 3yt ozt =0 )]
where x, 9, 2 are Certesian coordinates (see fig. 1), and ¢ is
the disturbance-potential function created by the wing. An

z

Figure 1.—Coordinate system.

elementary solution of this equation known as the polential
of & supersonic source may be written

o= —4 e

Ve—a)—BPy—v)—FG—=)y

The quantity A is the strength coefficient of the source.
New solutions may be obtained by superposition of such

==(2)

potentials as shown in reference 3. For example, a distribu-
tion of sources over a portion of the zy-plane would give the
potential

ag as
¢B=f f /
as oy
where the limits chosen must be such that all sources will be
located within the forward Mach cone from the field point
" (2, ¥, 2).” Another solution may now be obtained by differ-

entiation with respect to any of the coordinate dlrectmns,
that is,

‘—A(J)'l Lyl) dl'l dyl
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This solution, however, may be considered the vertical or
z-component velocity of the source-distribution potential ¢g
and as shown in reference 3

o =ErA@Y) (5)

The step taken in equation (4) also corresponds to the forma-
tion of a doublet potential; that is, ¢, represents a distribu-
tion of doublets over the zy-plane with strengths
proportional to A(x,:). For any known doublet distribu-
tion, the velocity component parallel to the surface in any
direction ¢ may immediately be obtained from equation (5)
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=t > . - {6)
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The foregoing results are analogous to incompressible-flow
relations and it may be stated in general that for cvery doub-
let distribution there is a vortex distribution which will
produce a similar flow. The vortex distribution and doublet
distribution are directly related by equations (5} and (6).
These simple concepts, given first by Prandtl (reference 4),
may be used directly to obtain the solution of problems in
which the pressure distributions are given, such as airfoils of
uniform loading. If the equation of the surface is given and
the pressure distribution is required, integral equations must
be solved. In certain cases, the problem may be simplified
if the form of the final potential is known. Inreference 2 the
disturbance potential for wings of very low aspect ratio was
found to be in the form

socaf (L, f.) )

This. form of the potential appears quite logical from the
. standpoint of satisfying the boundary conditions for steady
rolling or pitching. In the following ana]ys1s, the assump-
tion of a potential in the form of equation (7) is shown to be
correct; however, it should be pointed out that the potential
of this type must be restricted to the linearized theory and is
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not of the same general nature as that of a coniecal field which
exists even in the nonlinear problems.
From equation (7) the doublet distribution over the surface

will be in the form
sma (2

and under the assumptions of the linearized theory the
lifting-pressure coefficient is now

(8)

5 [y ()2 ()]

The formation of the integral equation follows the method
of reference 1. A potential that represents a line of doublets
in the zy-plane at an angle tan~!¢ to the z-axis is derived in
the form of equation (7). Use is made of the boundary con-
ditions to set up an integral equation that introduces the
unknown distribution function f(¢). The potential of the
doublet line may be obtained by following a procedure
similar to that used in obtaining equations (3) and (4), and
by substituting the expression for A given in equation (8)
into equation (4). The expression obtained in the following
equation may be seen to represent a line of doublets along
which the doublet strength increases as z*:

@

—x,%dr,
e e =
Bz(z— oy} iy 282/ — B+,
gt (3 comrir—pl ) +2EEE =
(10)
where : oy
= z—foy
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and #’ is the value of 2, for which the denominator of the
integrand vanishes. The potential of the complete wing
may now be obtained by an integration with respect to the
dimensionless parameter o

[#
o=[° J@r0sdo 1)

where tan~'C=e¢, the half-apex angle, and f(s) is &n un-
known distribution function. The z-component velocity w

can be written for g8 g- approaching zero
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where 6=% for convenience. The boundary conditions for

rolling may now be written

w=—py
or .
w
For pitching about the y-axis, there is obtained
W=—qx _
or
z= ¢ - (4

Introduction of equations (13) and (14) into equation (12)
provides integral equations which theoretically can be solved
for the unknown function f(¢). Simpler relations, however,
may be obtained if equation (12) is differentiated twice with

b’(w/ :z:). The method for

differentiating is indicated in the appendlx and gives

respect to @ to obtain the quantity

*(wfz) _ 1. ——m [P B (o) d(B )
oF —];‘4'3{6"1“529& o Go—pg
—— [P £Y(a) d(Bo)
6 VI~ setn (Bo—BO*
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The boundary conditions require the foregoing quantity to
be zero for both rolling and pitching with the additional

‘requiretnents' orf f(s) that, for rolling, at the point =0

w
(E)f 0
and, for pitching, _

Equation (15) now yields, for ro]]ing;

¢ f(0), do ¢ flo)s d"'_4 [ﬂw%)—ﬂ]}=0
7

-C ("'_9)4 849 (0'—3)‘

m{s +6

and, for pitching,

oo el G

(19)

Equations (18) and (19) are identical to the equations that
would be obtained for similar boundary conditions on a two-
dimensional flat plate if an analogous process of distributing
the doublets were followed. (See appendix.) The analogue
for the rolling motion of a triangular wing would be a

(15)

a6

(18)
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two-dimensional flat plate rotating about its midchord point
in o stationary stream. The surface potential distribution

and therefore the doublet distribution would be . . .

f("')p ,a.\/—cﬂ—._a-z o e L‘(,?:o)

For the pitching condition the analogue would. be a &wo-
dimensional flat plate in a stream flowing normal to the
surface. The potential or. doublet dJst,nbublon Would be

f(0) =K, C?—&* e

These potentials, which can be found jn references 2 and 5,
satisfy equations (18) and (19) by analogy; however, the

conditions of equations (16) and (17) must be shown to be .

a(’wll’)c and
the evaluation of K, and K,, only one value of 6 need be.
considered. This value may conveniently be set equal to
zero. For rolling motion, equation (20) indicates the doublet
distribution to be antisymmetric. Therefore the value of
w/x at 6=0 must be zero, and the condition of equation (16)
is satisfied. For the pitching motion, the doublet distribution
is symmetrical about #=0 and thercfore the quantity
d{wfz)
ds

satisfied. For the calculations of (w/z), and

must be zero at §=0, and the condition of equa-

tion (17} is satisfied.

The constants K, and K, may now be evaluated from the relationg obtained in the appendix; for 8=0
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—,80(1 Bz 2)5/2
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Equations (22} and (23) may be integrated by use of tables
(reference 6) to give

_ 2= o RO ,
p=xK, I_—WE (ﬂO)*mF (ﬁo)] (24)

e B e +iigm e @

F' (BC) and E’ (BC) are complete elliptic iniegrals of the first
and second kind.

==K,

The pressure disfribution for the roiﬁng wing may now be

obtained from equations (9), (20), and (24), and the pressure
coefficient is

P 1@ 4J:p020 -—(26)

Integration_of the pressures over the wing surface gives the.

forces and moments. acting on the wing. The nondimen-
sional derivative €, may then be found

—11'0

Oy=- ; — - @])

In the analysis the pitching axis has been taken at the
wing apex; however, in application it is desirable to obtain
the pressure distribution and the force and moment co-
efficients for pitching about any point. A superposition of
motions is therefore required. The pitching motion sbout
any' point Z, can be made up of a pure pitching motion

about the apex of the wing combined with a vertical

BOFZ 5 B0
T C5 A )

translational motion of velocity gxo. The pressuredistribution
for this translational motion corresponds to that of a wing

at a constant angle of attack of ——% (See references 1
and 7.) The pressure distribution for the constant angle of
attack — V is

—4C%x,

P=vweovom -

Combining equations (9), (21), (25), and (28) g1ves for the_
pressure distribution in the pitching case -

Pe 4gx [ - 20— 02 2 CF ]
VVC—6 | 1—26 ’ , E(R0)

v T—gor £ (ﬁo)'i‘i__’sEZﬁF 8C)
(29)

’

Integration of the pressures over the wing surface and for-
matlon of the nondimensional derivative yields

6 C 41!'0-1'0

05«*1‘?2‘5%? T Fat 0
and ' _
To
Om —6xC ("""'& 41!'03.'0 (1 —"'E-)

= —+——=z

@)

where ¢ is the mean aerodynamic chord.
Celculations of these derivatives for triangular wings
having their leading edges outside the Mach cone are most
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easily made by the source distribution method. In this
method, the upper and lower sides of the wing may be con-
sidered independent of each other. The source distribution
function for the rolling wing is

ga(21, Y1) <Ky, (32)
whereas that for the pitching wing is _
9ol 1) < Kxy (33)

The calculation of the pressure distribution is not presented,
since the subject of the integration of source distributions
has been well covered in reference 3.

The pressure distribution for rolling wings outside the
Mach cone has been calculated to be

nTTWipCm—_Ole)sﬁ I:(l +ﬂ109) cOs

. , 1—82Co
—82CH) cos 800—0)

L 14808

P= BCTH

(34)

Integrating the pressures over the wing and expressing the
derivative in nondimensional form gives

1
0;’= —%

- (35)

For the pressure distribution due to pitching about the
point 2,, a combination of flow patterns must again be used.
The pressure distribution of a wing at uniform angle of

attack — V is (reference 3)

po 4l 5209 o1 1800 (36)
=V /80— B(C’ 5) B(C+9)
The pressure distribution for pitching then becomes
dgz [280/1—FF ,329° B —280—p8 145208
P=VEl"Fo—1 + @o—D" % gore T
(% —230—[—,36 ot 1— 13200]__
EC—1" % Bo—9
_ 4gxn80 _; 14-82C8 _ 1—p2Cs
Ve f__ﬁ? cos IT( )-[-cos Iﬂ__(O—G) 37
The nondimensionel derivatives O’L and 0,.¢ then become
8 8
Cee=p5—"5¢ (38)
gl -
¢ To
Cny=— 3 +43—E° (1—§) (39)
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DISCUSSION AND CONCLUSIONS

Expressions for the Iifting-pressure coefficients over

triangular wings in roll are given in equations (26) and (34)
and in piteh, in equations (29) and (37). Equations (26)
and (29) are for wings inside the Mach cone and eguations
(34) and (37), for wings outside the Mach cone. Typical
pressure distributions are shown in figure 2 in which the
pressure distributions for the two wings in pitch are for
pitching about the apex.

Expressions for the quantities C, Cp, and Oy . &re given
in equations (27), (30), and (31), respectiyely, for the case
of the wing inside the Mach cone and in equations (35),
(38), and (39) for wings lying outside the Mach cone. It

will be seen that the parameters 8Cy, 8C, and BCa, may

be expressed as functions of gC where

tan e
tan p

sO=

The stability derivatives may therefore be plotted against

this parameter to give curves which will hold for all triangular

wings at any Mach number. These curves are given in
figures 3 to 5. For values of 8C approaching zero the values
of the derivatives closely approach those given in reference 2
which were based on the assumption of very low aspect
ratio.

For values of pC21 (that is, for the wing lying outside
the Mach cone), the guantities BC:, and 8Cx, become con-

stant and equal to—% and —1, respectively (the pitching_

being about the % ¢ point). In comparison, the values of

BCy and BCr, for infinite-span, rectangular wings are ——?,;

and —§: respectively (the pitching being about the Iead__'u_lg _

edges).
It should be pointed out that the pressure dlstnbutlons
given in this paper may be used directly to calculate the

damping in pitch and roll for wings having trailing edges

cut off ahead of the Mach cone, the most interesting of this = _

series heing the so-called “arrow wings.”

It is apperent that a suction force exists at the leading
edges of wings in pitch and roll whenever the leading edges
are swept behind the Mach cone. A method for obtaining
the values of these suction forces was derived in reference 1.

Laxgrey MEMORIAL AERONAUTICAL LABORATORY,
NarroNaL Apvisory COMMITTEE FOR AERONAUTICS,
Lanerey Frewp, Va., December 12, 1947.
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Fieure 2.—Pressure distributions for rolling and pitching about apez.
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APPENDIX

METHOD FOR DIFFERENTIATION OF EQUATION (12)

The expression for w (equation (12)) cannot be used directly when z is set equal to zero because of a troublesome singularity
in the term Z_él-
surface, however, it is possible to integrate and then set z equal to zero. The troublesome parts of equation (12) come from

the terms involving f’r " These terms, written out, may be mteg1 ated as follows

=R [ H0) (=80 ;0 s 1 _ 255 a—pay
2 2 2,2 2
o (1=F Gopiy+U—5e) B2 () | Go—pi 41— P2 | f

3 (o) )*Y #( T d(Ba) ( ) d ﬁf(‘(r) (1—5)256)2]

e Bf(e) (1—pB*a8)*v1—B*¢(Ba—pB6) 7 Bo) (Bo—B8 1—Fad)?

== — i - — B’Zs +'\1_B9 f—BC R e -iz_g d(ﬁ_g’) — ) (J’&I) -
(1—8%")* | (Bo—B0)*+(1—p%") = (Bo—B6)*+ (L—p%") —

Introducing the limits and then setting z=0 glves o o
8f(c) (1 —B%a6)

_HQ—poONT=FF_H(—OU+FIONI—FF s (* dgo) ‘L a—FA
(1—FC(6C—p) A—FCyEC+en Y ~sc Br—pb d(8o)

(A2)

and the occuirence of an indeterminate form under the integral sign. To obtain the valuo of w on the = . __

The 1ntegra1 term of the expression (A2) is improper, however, and must be evaluated at the singular point 8=¢. If the

expression (A2) is now integrated by parts, account being taken of the singular point, there is obtained with z=0

80=0 " _Bf(a) (1—B%a6)* — Bf (o) (1—B?a6) _2f(6)1—5°¢
lim { VI=F o [ aen [+ ii=me [ [ i 460 |FHOT=EE, g
Equation (12) may now be rewritten for w/z with 2=0:

‘w=1im{fﬂ(‘—n) ﬂf(a‘)-\/l 8264 (1— ﬂzca)zd(ﬁo’)—sﬂf(o—) (1—pB%ab) GOth;If d(ﬁ‘-’)_}-w d(ﬂa’)]-{-

2 o0 lJ-sc . — B2 (Bo—F6)* (1—p)" (1—F%

8) /1—3%#(1—52 0? 35,y 38/@ (1—B'o8) coth™s .\ . 36/(o) VTP HOVT=FP) 4,
o e 4060~ TGRS s+ g5 g [HINEEE] s

Following Leibnitz’ rule for differentiation under the integral sign and collecting terms gives finally:

d(w/z) _hm { (B [3,330']’(0) coth!¢ d(Ba) B8* (380128048060 f (o) d(Bo)+ 865 (o) d(Be) —

o6 1 J-sc BT VI—FF(1—Fc)* Vi—FP(Bo—Bo)*
w/1—ﬁfaﬂ<1ﬁjé:2r’) Go—pn) ¢ ")+2ﬁf(£ﬁ?l_'lﬁe__)‘§_ a8 )]+f o+ 338(0{ (62‘3 co)%’ £ dgp)
32(35;+§f0233—62?25(6) 4(6e) —wf% o) fl—ﬂ’e*uyfg:«)r’) (Bo—p0) " @(fe) ¥
TR ] O _ESHGITT T g
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" The second differentiation now gives

Q*wfr) 1. =g [ _£S) (% _BY() 4 | L), F8) _
oF {6 g -8C (Ba—ﬁG)‘d(ﬂa)_Fﬁ‘l BWJ;(H) (ﬂf—ﬁa)**d(pa) 441 MI: 7 + ﬂ“]“}' (AG)

The same process may be carried through for an incompressible, two-dimensional flow. The potential of a single doublet at
a point (3, 0) in a two-dimensional field (y, 2z) would be (reference 8)

2 _ . A
¢_(y1—y)’+ ’ (A7)
from which wy, the velocity normal to a flat plate extending along the y-axis from '—O to C’, would be
o [ 0o [ G grrs] 49
Integrating by parts, then setting 2=0 as in equations (A1) to (A4) gives for z=0 o
. - d bi (yl)dyr i) .
=i {f’ "f(?l:)ﬂ f f
b n—%l ¢ =" Jyta =9 n (49
Differentiating twice with respect to ¥ gives
Qw1 % J‘"" 8f(y1)dy: j‘c 8fw)dn_ @) _ 47 (y)} _
2 lim YAY)EY: — _ .
ot wol)-c (2/1—2/)‘+ i Gyt 7 ) (410)
This equation, except for the factor /1—g, is a'.nalogous. to equation (AS). -Whe-l’i the boundary conditions require the
2
term Q(aume to be zero, the factor may be omitted and solutions of equation (A10) are then seen to be solutions of

equation (A6).
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