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DAMPING IN PITCH AND ROLL OF TRIANGULAR WINGS AT SUPERSONIC

By CLINTOK E. BBOTN and MAC

SUMhIARY

kl method is dwiced for cakula&”ng the dam~”ng coefieienti

in pitch and ro?l for a series oj ti”angular wings and a restricted

series of sweptback wings at supersonic ~peed~. l%e elemenfmy

‘~supersonic source’s solution oj the tinemized equation of motion

i8 used to jind the potential junction oj a line oj doublets, and

the jlows are obtuined by wrjwe di8ttibUtiOn8 oj the8e doublet

lines. The damp”ng dert”vatiws jor triangular wz”ngsare found
tobe afinction oj th~ ratio oj the tangent oj the apex angle to the

tangent oj the Mach angle. As this ratio become8 equal to and

greater thun 1.0 for ti”angukr un”ng8, the damping derizxdire8,

in pt”tch and in roll, become corwtant. l%e clamping deriuatire

in roll become8 equal to one-hdj the calue eulculated jor an

injinite rectangular mung, and the dam~”ng dem”ratice in pitch

jor pitching about the apex become8 equal to 3.376 times that oj

an in@ite rectangular mung.

INTRODUCTION

In reference 1, a straightforward method was found for
calculating the Iift and the drag due to lift of triangular
wings. The present paper intends the method to the cal-
mdation of roIIing and pitching motions of the wings. The
damping coefficients in roll and pitch for the limiting case of
very slender wings have been calculated (reference 2). The
present theory is not limited by the size of the apex angle,
and triangular wings with leading edges ahead of and behind
the Mach cone originating at the apex of the wing are treated.

In the present theory, badd on the linearized equations of
mot ion, the wing is represented by a doublet distribution
which can be shown to be equiwdent to a vortex distribution.
AU integral equation-is found which can. be easi.Iy solved by
tmaIogy with known relations for two-dimensional incomp-
ressible flow. The pressure distributions presented may be
used to calculate the damping coefficients of a limited series
of wings for which the trailing edgea tie cut- off so that they
lie ahead of the Mach cone springing from their foremost
point.

SYMBOLS

b maximum span of wing
c root chord
z mean aerodynamic chord

i ClPbts o\

C. ADAMS

doublet-line-distribution function
angular velocity of roII
angular velocity of pitch

SPEEDS
,.----

incremental veiocity component in a--direction
z-cumponent of velocity
coordinates of field point (see fig. 1)
coordinates of a source or doublet .—
point about which the wing pitches
source or doublet strength
tangent of half-apex angle. — . .

(
RolIing moment

rolling-moment coefficient
; p~72~b

)

(

Pitching moment
pitching-moment coefficient

; p’vw
)

lift coefficient
Lift force

.()
; ~J72s

complete elliptic integral

(srli‘,11–(I–&@)siu2n dn
o )

complete dipt ic int egrid.

(sW12 dn

n @ — (1 —@2C”~j2n -)

Constailt ..
Mach number ,.

Iift-ing-pressm.e coeficiqnt

(

Lifting pressure

F+’” : pv’

$“”

)

*area”
free&ream veloci&
haIf of apex angle of wing
smaU quantity

‘fachm~e(sh-’a
density of fluid
disturbance-potential function -
potential of supersonic wmrce
potential of supersonic source distribution
potential of supersonic doubIet distribution
potential of Q line of doublets

-.
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Subscripts:
i incompresaible

P rolling condition..

!7 pitching condition. _
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Solutions must be found that. satisfy the linearized cMer-
ent.ial equation of a nonviscous compressible fluid written

where x, y, z are Wtmian coordinate. (see fig. I), and + is
the disturbance-potential function created by the wing: An

z

v
9 /
/9

‘q

FIGUEE1.—Coordinate system.

elementary solution of this equation kown
of a supersonic source may be writtem

–A

ccne

a9 the potential

potentials as shown in reference 3. For example, a distribu-
tion of sources ovor a por~ion of the ~-pla.nc would give tho
potential

SS.43”“’“ —-—#====&==–A(G, ,)dq dy,
-.-.-.(3)

a: al J(z-xl)z-p (y—y*)*-/3%~

where th~ limits chosen must bo such that aJl source-s will be
located !vithin the. forward Mach cono fro~ the. ficlfl poin~ +. -”
(x, y, Z). Another solution may now bfi obtained by differ- ‘-
entiation_with respect” to any of the coordinate directions;
that is,

This solutim, however, may be considered the vertical or
z-compommt velocity of the source-distribution potent id &
and as shown in reference 3

The step taken in equation (4) also corresponds to the forma-
tion of” a ““doublet potentia~; that is, & reprc.sente a distribu-
tion of doublets over the xy-plane with strengths
proportional to A(xl,yl). For any known doublet distribu-
tion, the velocity component parallel to the surfuce in wy

directions may immediately be obtained from equotion (5)

(6)

The. fQEgoing results are analogous h incomprcssibk!-f low
reiatiofi &id it maybe stated in general that for every doub-
let distribution there is a vortex distribution which” will
produce a similar flow. The vortex distribution nnd doul.dr~
distribution are directly related by equations (5) anti” (6).
These simple concepts, given first by Prandtl (rcfcrencc 4],
may be tied chrectl+ to obtain the solution of problems in
which t.hc pressure distributions are given, such as airfoils of
uniform loading. E the equation of the surface is givcm aml
the pressure d~tribution.is requirecl, integral equations must
be solved. In certain ewes, the problem may bc simplified
if the form of the final potmtial is known. In reference 2 the
disturbance potentiil for wings of very low twpccl rntio was
found to be in the form

()CjJKdj % ~
xx (7)

This. form of the potential appears quite logical from tho

The quantity A is the strength coefficient of the source.
New solutions may be obtained by superposition of such

]. standpoint of satisfying the boundary conditions for stwdy,a.
rolling or pitching. In the following analysis, the assump-
tion of a potential in the form of equation (7) is showIL to he
correct; however, it should be pointed out thwt the potcntinl
of this type must be restricted to the lineariz~d theory and is
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not of the same general nature as that of a conical fie~d -which
exists even in the nonlinear prob~ems.

From equation (7) the doublet distribution over the surface

and under the assumptions of the
lifting-pressure coefEcient is now

~=g=
~7

(8)

linearized theory the

The formation of the integral equation follows the method
of reference 1. A potential that represents a line of doublets
in the zy-plane at an angle tan-% to the z-tis is derived in
the form of equation (7). Use is made of the boundary con-
ditions to set up an integral equation that introduces the
unknown dist.ribut ion function -f(u). The potential of the
doublet line may be obtained by following a procedure
similar to that used in obtaining equations (3) and (4), and
by substituting the expression for A given in equation (8)
into equation (4). The expression obtained in the following
equation may be seen to represent a line of doublets along
which the doublet strength increases as &

(lo)

where ,, Ii

and z’ is the value of xl for which the denominator of the
integrand vanish-. The potential of the complete wing
may now be obtained by an integration with rapect to the
dimensiodess parameter u

(11)

where tan-lC=c, the half-apex angle, and j(u) is an urt-
known distribution function. The z-component velocity w

can be written for B ~ approaching zero

y for convenience.where 6=2 The boundary conditions for

rolling may now be written

w. —N

or

:= –pe (13)

For pitching about the y-axis, there is obtained

.w=-qz

or

‘w
—= —
x !2 ““(14)

Production of equations (13) and (14) into equation (12)
provides integral equations which theoretically can be solved
for the unlmown function j(u). Sipler relations, however,
may be obtained if equation (12) is differentiated twice with

W(w/@ The method fOrrespect to 8 to obtain the quantity ~.

Mferentkting is indicated in t-he appendbi and gives . ... ...

(15)

The boundary conditions require the foregoing quantity to
be zero for both rolling and pitching with the additional
requirernerits’ OHj (a) that, for rolling, at the point 0= O

()
—

‘w

FP =0 (16) -

and, for pitching,

Equation (15) now yields, for rolling;

(18)
and, for pitching,

u‘-~ y(a). du J [c j(u), du_4 -tC$!h+-tt]}=o
fim 6
*O -c (a —6’)’ ‘6 * (u—e)’

Equations (18) and (19) are identical to the equations that
would be obtained for sinilar boundary conditions on a two-
dimensionsd flat plate if an amdogous process of distributing
the doublets were followed. (&e appendix.) The analogue
for the rolling motion of a triangular wing would be a
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two-dimensional flat plate rotating abcmt its midchord point
in a stationary stream. The s~face potential distribution
and therefore the doublet distribution would be, . . ... .

f(d.=bd=k -“ ‘- ‘PO)

For the pitching condition the analogue Would.. be. a tvTo-
dimensional flat plate in a stream flowing normal to the
surface. The potential or. doublet distribution would be

+(U)Q=KO’JG2” “““’”““- “- -“(21) “-

“These potkmtials, which can be found. in ..ref.erenc~ 2. and 5,
satisfy equations (18) and (19) by analogy; .J-iowevei, we
conditions of equations. (16) and (17) must be shown to .be

— —

?)(w/x),,and

satisfied. For the calculations of (w/x)p and —bT

the evaluation of K, and KC, only one value of O need be.
conside&~.. This vahe may conveniently be. set equal to
zero. For rolling motion, equation (2o) indicates the.doublet
distribution to be antisymmetric. Thcrefo~e the value of .
w/z at 6= Omust be zero, and the condition of equation (16)
is satisfied. For the pitching motion, the doublet distribu ~io.n
is symmetrical about d.= O and thercfo~e the quantity
d(w/x)
~ must be zero at 0= O, and the condition of equa-

tion (17) is satisfied.

The constants K, and K, mtiy uow be evahated from the relationa obtnined .ig the appendix; for 6=0

(22)

Equations [22) and (23) may be integrated by use of
(reference 6) to give

p=TK, [~-i’(f&*, F’@c)]

g=rK, [~ E’@C)+&i mm)]

tables

(24)

(25)

F’ (PC) and E’ (13C)are complete elliptic integrals of the tit
and second kind. .

The pressure distribution for the rolling wing may now be.
obtained from equations (9), (20), and (24), and the pressure
coefficient is

Integration. of the pressures over the. wing surface gives the.
forces and moments. acting on the wing. The nondimen-
sioiml derivative (?b may then be found

In the analysis the pitching axis has been taken a.t the
wing apex; however, in application it is desirable b obtaiu
the pressure distribution and the forco and moment co-
efficients for pitching about any point. A superposition of
motions is thereforo required. The, pitching motion about
any’ point w can be. made up of a pure pitching motion

about the apex of the wing combined with. a vertical

translational mot ion .ofvelocity qrO. Tl~e pressure distribu~ion
for this translational motion corresponds to that of a wing

at a constant angle of attack of ~ (%c references 1

and 7.) The pressure distribution for the constant angle of

attack -~ is

.. ..

Comb@ing equations (9); (21), (25), and (28) gives for the
pressure distribution in the pitching case -.

(20)/

Integration of the pressures over the. w’ing surface and for-
mation of the nondimensional derivative yields

(31)
where Z is the mean aerodynamic chord.

Calculations of these derivatives for triangular wings
having their leading edges outside the hhmh ccme. m mosL
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eady made by the source distribution method. In this
method, the upper and lower sides of the wing may be con-
sidered independent of each other. The source distribution
function for the rolling wing is

9,(% w) =4/1 (32)

whereas thut for the pitching wing is

The calctiation of the pressure distribution is not presented,
since the subject of the integration of scmrce distributions
has been weu covered in reference 3.

The pressure distribution for rolling wings outside the
Mach cone has been crdculated to be

P
4pC%

[
(l+@ce) Cos-’ ;pfl–

‘rv@W-1)*~

10 –l!?%%)COS-l1+C6m (34)

Integrating the pressures o~er the wing and expressing the
derivative in nondimensional form givws

(?’,= –~ (35)

For the pressure distribution due to pitching about the
point ZO,a combination of flow patterns must again be used.
The preesure distribution of a wing at uniform angle of

att ac.k —~ is (reference 3)

P= 4qqC

[

_l1—#zce
rvd~ Cosw-t?)+~%if%] ‘3’)

The pressure distribution for pitching then becomes

The nondimensional derivatives CLc and C?., then become

(38)

(39)

DISCUSSION AND CONCLUS1ONS

E.spres.sions for the Ming-pressure coefficients over

triangular wings in ro~ are given in equations (26) and (34)
and in pitch, in equations (29) and (37). Equations (26)
and (29) are for wings inside the Mach cone and equations
(34) and (37), for wings outside the Mach cone. Typical
pressure distributions are shown in figure 2 in which the
pressure distributions for the two wings in pitch are for
pitching about the apex.

Expressions for the quantities C%, CL,, and Cm~are given

in equations (27), (30), and (31), respect iyely, for the case
of the wing inside the Mach cone and in equations (35),
(38), and (39) for wings lying outside the Mach cone. It
wiH be seen that the purametera fld%, PCLC, and 19L?~Cmay

be expressed as functions of fIC where

tan e
/9c=—

tan #

The stability derivatives may therefore be plotted against
this parameter to give curves -ivhich.will hold for all triangular
wings at any Mach number. These CUJWMare given in
figures 3 to 5. For value: of PC approaching zero the vahes ‘--
of the derivatives closely approach those given in reference z
which were based on the assumption of very low aspect.
ratio.

For values of 19CZ1 (that is, for the wing lying outside
the Mach cone), the quantities PC% and #f?~c become con-

.
stant and equal to —$ and —1, respectively (the pitching

being about the ~ c point). In comparison, the ~alues of

PC% and @mC for infinite-span, rectangular wings are –~

and —$ respectively (the pitching being about the leadigg

edg=).

It should be pointed out that. the pressure distributions
given in this paper may be used directly to caIculate the
damping in pitch and roil for wings having trailing edges
cut off ahead of the Mach cone, the most interesting of this
series being the so-called “arrow wings.”

It is apparent that a suction force exists at the leading
edges of wings in pitch and roll whenever the leading edges
are s-wept behind the Mach cone. A method for obtaining
the values of these suet ion forces was derived in reference 1.

.-

,—.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,

NTATIONAL ADVISORY COMWMIEE FOR AERONAUTICS,

LANGLEY FIELD, VA., December 1$2,19.47.

.
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Rolling - ~~ ~~ —. . Rolling

.—???-----..,., - -

(4
Pitching

m
Pitching.-

(a) Leading edge behind Mach WM... . .(01 kad!% edgQahead Of p~ach.cone,.L.

FIQURE 2.—Pressure distributions for rolling and pitching about apex.
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APPENDIX

METHOD FOR DIFFERENTIATION OF EQUATION (12)

The expression for w (equation (12)) cannot be used directly when z is set equal to zero bccrmse of n troublesome singularity

in the term ~ and the occumence d an indeterminate form under the integral sign.
J

To obtain the vtiluo of w on th. .._.

surface, however, it is possible to integrate and then set 2 equal to zero... The troubkaome parta of equation (12) come from

t These terms, written out, may be integrated as follows:the terms involving ~.

Introducing the ~imits and theu settingz= O g@s

_-!.m -_pj(C) (1–19’ec)’4m_ll?(-Q (l+@’Wm+ ~/*@ N ~(&)
(1–@’)’(f3c–/9e) (1–f?’ @)2(W+@) J+Cpu—~ed(pu)

.

(A2)

The integral term of the expression (A2) ia improper, howqvy,. gn~. gmst -be ~valuatcd at the singulay point 8=cT. If the
expression (A2) is now integrated by parts, account being taken of the.&@r point, there is obttiined with Z=-O

.-

pf(c) (l–#’u@)’ —F ~ –Jfo~
:% { ~-f’.;;q) [(l –/9%’)~(&-/9e)~ dG9u)]+ ~h-@?’ S[fy(a)(1–@?)’ —.W3a)]–?wwLw+d(~—P’u’)’(b–wI(A3)

Following Leilmitz’ rule for clifferentiation under.. the integral sign and .yollecting Jergs gives finally:

@@=) 3~Gj(u) coth-l~~?!=~ {,J_,c
[

~@a) _@’(38C+ZB8+dd~2ti~(u) l%W@)d(l.%r)+ ~~@@a-pe)2(l–B’u’)’/’ d(&r) –
~/1—@Jyl -p’o-’)’

By(a)

>-(1 –p%’) (&7-/3l3)
d(pu) +- d(w]+j’:’q) ~~;{’~!y;)-’~ d(pu) –

/32(3/3u+XM+fw%’)j(u) fwlf(~) Pm)
~~d(l –#’a’)’ ‘(p”) + +=FwB@-/m2 ‘w- Ill –Bwl-B2d (I&w ‘(pa)+

2gi9j(e)_4.JGPme) --—_____
I

.—.....-.. . ..... ...... .....-—

-----(A5)2@~(u)J-@ d(/3a)]-q,/m. .— ~ .-. ..- ..
(flu-t?e)~ ,. -. -.

66
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The second differentiation now gives

The same process may be carried through for rm incompreseible, twcdimeneional flow. The potential of a single doublet at
a point (yI, O) in a two-dimensional field (y, 2) would be (reference 8)

from which w,, the velocity normal to a flat plate extending along the y-axis from —C to C, would be

(A8)

Integrating by parts, then setting z= O as in equations (AI) to (A4) gives for Z=O

w,=lim
+ {s‘-q.f(wxfyl :

J

c f(vlwl V(Y)——

-c (?/1-!/)2 }
(.49)

u-l%(Y1 —l/)* T

Differentiating twice with respect to y gives
.

(AIo)

This equation, except for the factor ~~, is &alogous” to equ~tion (A6). When the boundary conditions require the

,..

bz(w’x) to be zero the factor may be omitted and soIutions of equation (A1O) are then seen to be solutions ofterm ~ ?

equation (A6).

1.
2.

3.
4.
5.
6.
7.
8.
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