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SUMDMARY

Interferometer measurements are given of the flow fields near
two-dimensional wedge and circular-are sections at zero angle
" of attack at high-subsonie and low-supersonic velocities. Both
subsonic flow with local supersonic zone and supersonic flow
with detached shock ware have been inrvestigated. Presgure
distributions and drag coefficients as funetions of IJach number
hare been obtained. The wedge data are compared with the
theoretical work on flow past wedge sections of Quderley and
Yoshihara, Vinecenti and Wagoner, and Cole.

It ¢ shown that the local Aach number at any point on the
surface of a finite three-dimensional body or an unswept two-
dimensional body, morving through an injinite fluid, has a
stationary ralue at Alach number I and, in fact, remaing nearly
constant for a range of speeds below and abore Jach number 1.
On the basis of this concept and the experimental data, pressure
distributions and drag coefficients for the wedge and circular-are
sections are presenged throughout the entire transonic range of

velocities.
INTRODUCTION

DIFFICULTIES OF THEORY AND EXPERIMENT IN THE TRANSONIC RANGE
OF YELOCITIES

The difficulties inherent in studying transonic fow are
well-known. Theoretical analysis is made difficult by the
nonlinearity of the differential equations of compressible
fluid motion. This nonlinearity leads to a change-over in
type of the differential equations from elliptic to hyper-
bolic when transition is made from subsonic t0 stupersonic
speeds. Since the essential feature of transonic flow is this
mixed subsonic-supersonic character, it is obvious that no
linearization of the differential equations (at least in the
physical plane) can adequately describe the flow.

Wind-tunnel studies in the transonic range are made
difficult by the large lateral extent of the perturbation flow
field around bodies in this range. This means that models
which are small compsred with the test section must be
used. Even then there is still a range of speeds from just
below 3f,=1 to just above 3/_=1 where the model and/or
its support configuration are “choked,” that is. where local
supersonic zones embedded in the subsonic field extend from
the model to the tunnel walls, or, in the supersonic case,

where embedded subsonic zones extend to the tunnel walls,
or shock waves, reflected from the walls, impinge on the
model. Some progress has been made recently in modifying
wind-tunnel test sections so as to minimize these effects,

but, on the whole, the majority of good test data in the
range very close to 1/, =1 has so far come from free-flight
tests. Some good transonic data are available, however,
from transonic-bump tests made in wind tunnels (reference
1). Using small models usually results in low Reynolds
numbers so that difficulty is often experienced in extrapo--
lating data to full-size Reynolds numbers; this seems to be
particularly true of the transonic speed range since the
effects of boundary-layer and shock-wave interactions séem
to be quite large there (references 2 and 3).

In this paper it is shown that in many instances tests need
not be made in the region very close to 1/, =1 since the
flow in this range can be inferred from testing below and
above this range and using an interpolation based on the
fact that the local Mach number at any point on the surface
of unswept two-dimensionel bodies and finite three-dimen-
sionsal bodies hag a stationary value at 3/, =1.

" EXISTENCE OF POTENTIAL TRANSONIC FLOWS

Guderley (reference 4) has made a detailed investigation
of the possibility of smooth transonic flows (i. e., subsonic
flows with an embedded supersonic zone in which no shock
waves appear). He proposes that such smooth flows are
exceptionel, that they are discrete cases occurring for only
particular body shapes at particular free-stream Mach num-
bers. Any perturbation of the shape with the Mach number
held constant (or viee verss), Guderley claims, would result
in a shock appearing in the flow. This bears an analogy to
the well-known Busemann supersonic biplane which theoret-
ically has no shocks (and hence no drag) at a diserete value
of free-stream Mach number and angle of attack (reference
5, p. 154). Guderley's proposal is still controversial (e. g.,
see the paper of Sears who has made a critieal survey of the
work to date on the existence of transonie potential ﬁows
(reference 6)).

It is obvious that the potential flow must break down for
a given body shape at some Mach number less than 1. The
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argument whether this breakdown occurs precisely when a
supersonic region first appears on the body or at a slightly
higher Mach number seems somewhat academic (although
very interesting), since it is well-known experimentally that
the drag-rise Mach number (i. e., the Mach number where
noticeable shocks first appear) is very close to the critical

Mach number (i. e., the Mach number at which sonic velocity

first appears on the body) for most bodies without surface
slope discontinuities.

Kuo (reference 7) proposes that supersomc compressmn
is unstable to disturbances; that is, a supersonic region on
& body in subsonic flow must end in & shock with no com-
pression occurring in the supersonic flow ahead of the shock.
There seems to be ample experimental evidence to show
that this is not strictly true since, for example, the com-
pression region of a A-shock is clearly supersonic. However,
the A-shock configuration is believed to be & phenomenon
associated with laminar-boundary-layer and shock-wave in-

teraction; with turbulent boundary layer (2 condition more

closely approaching nonviscous flow) hardly any noticeable
supersonic compression occurs before the shock ending the
supersonic zone (sce reference 8).

CHOICE OF MODELS

T'wo-dimensional flow is much simpler to handle than
axially symmetric flow both in theoretical work and in inter-
ferometry. Hence it was decided to study two-dimensional
flows despite the well-known difficulties in approximating
two-dimensional flow in a wind tunnel.

Because of the considerations mentioned previously it
was decided to test very small models which would be of
such a shape that viscous influences would not materially
affect the flow over them. This led to the choice of “half
airfoils”—wedges and circular-arc sections followed by

straight sections. These models have favorable pressure

gradients on their surfaces over most of the transonic
range so that boundary-layer separation, if it does oceur,
will only occur because of shock-wave influence. Further-
more, such separation will occur downstream of the parst of

the body being studied and hence will not affect the measure- |

ments. Certain viscous effects will still be evident, however,
for instance, the effective rounding off of the shoulders and
leading edges of the wedge models. 5

Both theoretical advantages and practical need make the
study of thin sections desirable. Consequently, the semi-
wedge angles chosen were 44°, 74°, and 10° (a 26.6° wedge
was also used in order to make a comparison with some avail-
able theoretical work on a wedge of this angle). The circular-
arc section chosen was essentially the front half of an 8.8-
percent-thick biconvex circular-arc airfoil, followed by a
straight section. Models of sections much thumer than this,
with the same chord lengths used, run into suuct.ural
difficulties and also the ratia of boundary-layer thickness to
model thickness becomes large enough to cause considerable
deviation from nonviscous flow.

TRANSONIC-FLOW THEORY AND EXPERIMENTS

The investigations of Von Kérmén, Busemann, Guderley,
Frankl, end many others have contributed significantly to
methods of approach which can be used to study transonic
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flow (references 9 to 14). The detailed numerical calculations

for specific cases made by Maccoll and Codd, Emmons,

Drouggc, Drebinger, Guderley and Yoshihara, and Vmccntl
and Wagoner (references 15 to 21) have helped to dispel the
idea of a ‘“sonic barrier.” Recently Cole at GALCIT has
given an analysis of the flow past wedge sections at high-
subsonic speeds (reference 22). By combining the results of
Guderley and Yoshihara's, Vincenti and Wagoner's, and
Cole’s calculations, the flow past thin wedge scctions can
be given completely through the transonic range permitting
a comparison with the present experiments. Some of the

investigations mentioned above will be discussed in more

detail further on in the present paper.

Available experiments in the transonic range on thin wedge
sections are surprisingly few. Pack (refercnce 23) deseribes
some inferferometric experiments on 10° and 20° semiangle

wedges made at Braunschweig. His subsonic data appear

to be good, but the flow in the supersonic interferograms
appears to be somewhat nonuniform and not very closely
two-dimensiongl; only one supersonie Mach number was
tested where detached shocks occurred. His conclusion that
the p/p., distributions on the surface of the 20° semiangle
wedge gre very much the same for 3£,=0.803 and AM,=
1.40 is interesting, but the statement that this agrees with
the theoretical predictions of Maccoll and Codd is incorrect
since they indicated that the p/p, distributions would be
nearly the same.

Griffith at Princeton has just recently published tho
results of some very carefully done experiments on flow past
wedge sections of semiangles of 7°, 10°, 20° 30° 45° and
90° (and several other shapes) with detached shock waves
(reference 24). These experiments were,done in a shock

tube and interferograms are presented of the flow fields.

The experiments clearly show that the shape of the detached
shock and its detachment distance from the sonic point on
a wedge depend only on the body thickness and the Mach
number (not the wedge angle) when the Mach number is
well below the shock-attachment Mach number. This is in
general agreement with Busemann’s
paper on detached shock waves’ (reference 10).

Liepmann, Ashkenas, and Cole (reference 8) made sone
careful pressure measurements on the surfaces of 6- and
12-percent-thick biconvex circular-arc airfoils at zero angle
of attack at high-subsonic speeds in connection with studies
of shock-wave and boundary-layer interaction. Some of the
results of their tests are combined here with corresponding
low-supersonic test results from the present investigation to

indicate the hehavior of the pressure distribution on circular-

arc airfoils at zero angle of attack through the entire transonic
range.
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ing out the experimental work. Some of the results of these
experiments have already been reported in reference 25.
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ubscripts and superscripts:

conditions in free stream

Je  reservoir conditions

}¢  reservoir conditions behind a shock wave
¥

S

. Ja

-“\P\"\‘\m'o o,

conditions at sonic velocity
vmbols used without subscripts indicate local conditions.

APPARATUS AND METHODS
WIND TUNNEL

The meesurements were made in the GALCIT 4- by
10-inck trensonic wind tunnel. For & description of the
tunnel and the flexible nozzle employed see reference 26.
The tunnel cen be run at both subsonic and low-supersonic
velocities with continuous Mach number variation through
use of the flexible nozzle and a variable second-throat nozzle
downstream of the test section.

MODELS

The models used were helf airfoils followed by straight
sections. Four of the models were wedges (semiangles
4.53°, 7.56°, 10.00°, and 26.57°) followed by straight sections
and the fifth was half of a biconvex circular-arc airfoil (8.80
percent thick) followed by a streight section (see fig. 1).
The distance from the leading edge to the point where the
straight section began was of the order of ¥ inch for all five
models. The models were made of tool steel and were very
carefully machined and lapped so as to give exact cylindrical
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FIGURE 1.—(eomelry of seetions tested. Al dimensions sre o Inches.

surfaces. Two pressure orifices on opposite sides of the air-
foil were pla.ced exactly the same distance from the leading
edge to aid in setting the model to zero angle of attack by
belancing these pressures on an alecohol U-tube. Because
of the very short chord lengths vernier-protractor measure-
ments of the opening angles of the leading edge were of
doubtful accuracy, so the angles were measured by lettmg
the leading edge split a beem of parallel ].xght and measuring
the position of the reflected spots on'a wall behind the

model. In this manner the angles could be measured to_

3-0.03°.
INTERFEROMETER

PR,

The interferometer used i in this mvestlgatxon is described '

in references 27 and 28. One of the main features of th.m"

interferometer is that both light beems are passed through

the teat section, one over the model and the other shead of
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the model in the uniform flow field, that is, where the velocity
is nearly the free-stream velocity. The advantages of this
are: (1) The fringe shifts are in relation to the free-stream
density and (2) the effects of the side-wall boundary layers
are approximately canceled out since both beams traverse
nearly the same boundary layer at each side window. This
leads to improved accuracy when the interferograms are
evaluated on the basis of the absolute value of the fringe
shift from no-flow conditions. For these tests finite-fringe

interferograms were used and another method of evaluation

was devised which is mueh simpler and more accurate than
the above-mentioned technique. Infinite-fringe interfero-
grams, while they give the constant-density contours im-
mediately, are less accurate than the superimposed finite-
fringe interferograms because any optical inaccuracies in the
system cause the contour fringes to. be distorted. These
inaccuracies are calibrated out in the superimposed finite-
fringe interferograms. Also there are times when one does
not know whether the density inerement between contours
of an infinite-fringe interferogram is positive or negative;
this trouble does not arise with the finite-fringe interfero-
grams. A typical finite-fringe interferogram is shown in
figure 2,

Fiourrg 2.—Typlesl ﬁmtc-l'ringé Interferogram. 8.8-percent clreular-arcsection at Mg, =1,200.

METHOD OF EVALUATION OF INTERFEROGRAMS

The method of evaluation used here depends on two
techniques: (a) Photographic superposition of disturbed
and undisturbed interferograms and (b} fringe identification
by a pressure measured on the model.
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Direct photographie superposition of a ‘“no-flow” finite-
fringe interferogram on a “with-flow” finite-fringe interfero-
gram gives rise to dashed shadowy lines (the dashes being
where the dark fringes of one picture cross the light fringes

"~

FuiURE 3.—Typleal superlmposed fnite-fringe Interferograni. 10° seminngle wedge at
M =1,278.

of the other); see figure 3 for an example of this type of
picture. These shadowy lines can easily be shown to be lines
of constant density for two-dimensional flow and are the
same contours as would be obtained on an infinite-fringe
interferogram made with perfect optical surfpees. The
inerement in density between these shadowy lines is a
constant dependent only on the span of the model and the
wave length of the monochromatic light being used. This is
easily shown since the difference in optical path lengths of
the light rays between two adjacent constant-density con-
tours must be 1 wave length of the light being used. For
two-dimensional flow the difference in optical path length
will simply be {An, where [ is the span of the model and An is
the difference ih index of refraction between the two light
paths. Thus

[An=\ _ (1)

But the relation between index of refraction and density in a
gas is given by
n—l=kp (2)

where k£ is the Gladstone-Dale constant (a function of the
light frequency and type of gas). Therefore
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@)

where Ap is the difference in density between two adjacent
constent-density contours. For these experiments

Ap=\[kl

A=5461 A (mercury green line)
k=0.1162 cu ft/slug
[=3.50 in.

Ap/p,=0.0250 per fringe shift

where p,=0.00211 slug per cubic foot was the usual tunnel
stagnation density.

The advantage of photographic superposition is not only
in time saved but elso in increased eccuracy of eveluation.
Any slight changes in fringe specing or fringe orientation
with respect to the no-flow interferogram which occur before
the with-flow interferogram is taken can be almost exactly
canceled out by causing the two superimposed interfero-
grams to coincide exactly in e region where it is known that
the flow was uniform, since in such regions there should be
no isopyenic contours. This is particularly easy to do for
supersonic flow if & portion of the flow field ahead of the nose
shock wave is included in the interferogram. For subsonic
flow care must be taken to include enough of the flow field
ghead of the model in the interferogram to have some of the
nearly undisturbed flow field for comparison; this was quite
simple to do for the small, thin models used in these testa.

The actual superposition technique used here was first fo
make a print (3)% times enlarged) of the with-flow interfero-
gram. This print was then placed under the enlerger and
the no-flow interferogram negetive was put into the enlarger.
By changing the enlargement scale and moving the with-flow
interferogrem under the enlarger the fringes were made to
coincide exactly in the regions of uniform flow. The con-
stant-density contours could then be drawn in on the print.
Alternatively, the first print could be made on transparent
paper (Ansco Reprolith Ortho was used) and when the super-
position was accomplished a piece of photosensitive paper
was slipped under the transparent print and a print of the
two interferograms was obtained. This was the technique
used for figure 3.

In order to identify the density values with the fringes a
pressure tap was placed on each model approximately half-
way from the leeding edge to the shoulder (a region where
the pressure gradient was expected to be large). From the
pressure reading the density at the pressure tap weas calcu-
lated using reservoir fluid properties (taking into account
entropy changes through shock waves). The pressure tap
will always lie between two fringe contours or on & contour,
so that. by knowing the density increment between fringe
contours, the values of the density on the adjacent contours
can be obtained by interpolation The whole interferogram
is determined once the density is known on one contour (ex-
cept for the shifts through shock waves).

INTERFEROMETER SENSITIVITY

It is interesting to note that the interferometric method
has its greatest sensitivity in the transonic range. As
pointed out previously, the density increment between two
adjacent contour fringes is & constant

27248354 ——47
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Ap=M\kl

Now in any part of the flow field where the stagnation
density is constant glong & stresmline,

2(1475= m) =

@)

I
—(1+"—;—1 .w) U MdAM (5)

Hence the increment in Mach number between adjacent _

contour fringes is given approximately by

o

(1+7 O \
since
Ap A
klp,

This function has a minimum at J[=J1% which ‘is

M=0.911 for air (y=14). A graph of this function is

shown in figure 4. Note that the Mach number increment

per fringe for these tests was always closely equal to 0.05.
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Fi3URE 4—Increment tn Mach number per fringe contour agatnat local Msnhnumherﬁn
air (y=1.4). For these tests Mhkipe=0.025--0.001.

Similarly, the expression for the increment in pressure
coefficient between adjacent contour fringes is approxi-

mately
(1 +75 M*) \

IPU

™
1z (1+’L§—1 ar =

For values of Af close to Af,, this expression has & minimum
at A = '

‘,_2_7 which is 1.832 for air.

SIDE-WALL BOUNDARY-LAYER EFFECT ON LPPBOIIMATING.
TWO-DIMENSIONAL FLOW
A close approximation to two-dimensional flow over the
whole span of the model was required since the interferometer
integrates the value of the density from wall to wall. In a
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nonviscous fluid letling the model extend from wall to wall
would theoretically give two-dimensional flow over the whole
span. If the model did not span the whole tunnel, the flow
would correspond to that past & model of infinite span with
periodic gaps in it where the gaps were equal to twice the
distance from the edge of the model to the wall. The effect
of the side-wall boundary layers, for & model that does not
span the tunnel, is roughly to decrease the size of this gap.
Approximately, the gap size would be decreased by twice
the displacement thickness of the wall boundary layer. By
making the gap between the edge of the model and the wall
approximately equal to the wall-boundary-layer displace-
ment thickness, one might hope to approximate closely two-
dimensional flow over the span. ‘This phenomenon is, of
course, very much more complicated than this, particularly
in the supersonic case where the shock waves interact with
the wall boundary layer. However, by taking circular-
cylinder and wedge models and varying the gap size in in-
crements of ¥y inch, it was found that the detached bow wave
became closely two-dimensional when the gap size was % inch
(1. e., there was no blur ahead of or behind the shock pictures)
which-is almost exactly the boundary-layer displacement
thickness when measured without a model in the fest section,
When the gap was ¥, inch the shock was blurred ahead of
the main shock and when the gap was ¥ inch it was blurred
behind the main shock. These tests were further sub-
stantiated by some schlieren pictures, which Mr. Walter G.
Vincenti of the NACA Ames Aeronautical Laboratory
kindly made available, showing a view looking down on a
wedge model so that the leading edge of the detached shock
appeared as a line; by varying the model span a discrete
value of the span was found where this line was almost exactly
parallel to the leading edge of the model, while for just
slight variations from this gap size the shock was curved
forward or backward. Figure 2 shows a finite-fringe inter-
ferogram of the circular-arc section with a detached shock
where the definition of the shock wave was unusually sharp.
This is strong, but, of course, not conclusive, evidence that
the flow was closely two-dimensional over most of the span.
Further evidence that the flow differed from two-dimensional
flow only slightly is given in the next section.
SIDE-WALL BOUNDARY-LAYER EFFECT ON INTERFEROGRAM
EVALUATIONS

A result of the method of interferogram evaluation de-
seribed above is that the effect of the side-wall boundary layer
is approximately canceled out, since the over-all fringe shift
from no-flow conditions is unimportant, only the relative
fringe shifts from a point of known density being used. This

is strictly true only if the integrated side-wall boundary-layer -

density, defined by
. .
J pdy _ (8)

0

where y is the direction perpendicular to the tunnel wall and
y=0 is the wall, is the same over the entire field of view of

the interferometer. Obviously, this can never be exactly

true since thie pressure ficld caused by the model, the
boundary-layer growth, and the shock-wave and boundary-
layer interaction all tend to change this value. An indica-
tion that all these effects might be small was obtained from

REPORT 1094—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

the model tests where pressures were measured at two
points on the model in the center of the span, where the
flow is closely two-dimensional; the density increment be-
tween these two points on the model was compared with
the density increment given by the interferogram. The
standard deviation from zero of the difference between these
two increments over the whole range of test Mach numbers
was about 1 percent of the stagnation density. Also, the
values of pressure-drag coefficient obtained interferomet-
rically for the atltached-shock-wave cases checked the
obligue-shock theory very closcly, and it is well-known that
the oblique-shock theory checks experiment quite well.
DETERMINATION OF FREE-STREAM MACH NUMBER

An interesting result of the method of cvaluation just
described is that the frec-stream Mach number in subsonic
flow can be determined from the interferogram and the
measured pressure on the model, provided a large enough
field of view shead of the model is obtained in the inter-
ferogram. This can be done by noticing that a certain
number of compression contours appear around the leading
edge and then expansion contours follow these toward the
back part of the airfoil; the center fringe corresponding
to free-stream density can then be traced out into the flow
field (see, e. g., figs. 9(a) to 9(d) of the 10° wedge in subsonic
flow). The exact value of the density can be determined on
this fringe as described previously and, hence, knowing
the stagnation density in the settling chamber, the effective
free-stream Mach number can be determined from the
isentropic-flow relations. It is believed that this effective
Mach number is 2 good approximation to the free-flight
free-stream Mach number and would give the samo flow as
that measured in the wind tunnel for the very small models
used in these tests.

This method is more accurate ai high-subsonic speeds
than at low speeds since more contour lines are obtained on
the airfoil at the higher speeds (see above discussion). The
estimated accuracy in determining free-stream Mach num-
ber in this way was =£0.01 for the range of subsonic Mach
numbers tested.

The free-stream Mach numbers for the supersonic tests
were obtained by calibrating the flexible-nozzle jack settings
against Mach number with a static-pressure probe i the
center of the tunnel. The probe was traversed upstream
and downstream in the region where the models were to be
tested and an average Mach number was obtained there.
The standard deviations from this average value were of the -
order of 40.005 in Mach number for the range of supersonic
Mach numbers tested.

WIND-TUNNEL CHOKING

In 2ll the subsonic testing the embedded supersonic zone
was not allowed to touch the upper or lower walls. In one
or two of the low-supersonic tests there was a question
whether the embedded subsonic zone touched the ceiling or
not. In case i did, it is well-known that in such cases the
detached shock changes its curvature near the ceiling so as
to come in nearly normal to the walls. Since the models
were so very small (4s in. thick compared with the 10-in.
height of the tunnel), it is believed that the effect of this on
the pressure distribution was negligible.
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BEYNOLDS NUMBER

The value of the Reynolds number for all of these tests
was approximately 60,000 based on the chord of the model.
The boundary layer on the models was laminar and no
effort was made to trip the boundary layer to make it
turbulent. The compression region in the shocks shown in
the high-subsonic-flow interferograms is believed to be
associated with the laminar boundary layer, as mentioned
previously.

THEORETICAL WORK ON TRANSONIC FLOW
BRELAXATION CALCULATIONS

In 1946 Maccoll presented a paper at the Sixth Interna-
tional Congress for Applied Mechsanics in which he deseribed
& relaxation calculation of the compressible flow past a 20°
semiangle wedge followed by & straight section at Mach
numbers of 0.7 and 1.5. The flow field in both cases con-
tained both subsonic and supersonic velocities. His main
assumptions were: (1) Sonic velocity oceurs at the shoulder
and (2) the streamlines of the flow are perpendicular to the
sonic line (i. e., the line where sonic velocity occurs in the
flow). The first assumption can be shown to be correct (see
reference 22) so that, indeed, it is not an assumption. The
second assumption, as Maccoll realized, was only approxi-
mately correct for Af_,=1.5 and certainly quite incorrect
far away from the wedge at A, =0.7 (since the assumption
leads to an infinite supersonic region above the wedge). In
effect, his solution at Af,=0.7 was ‘““choked’” in the sense
that the back part of the body could have no influence on
the front part. It is well-known that for bodies at high-
subsonic speeds a finite, closed supersonic region oceurs in
the flow, so that the sonie line makes all angles possible with
the streamlines, including 0°. The method of solution used
was to assume positions of the shock wave and sonic line,
caiculate the residues in the relaxation net using the isen-
tropic-flow equations (an approximation since flow behind a
curved shock is not isentropic), and then readjust the shock-
wave and sonic-line location, calculate again, and so forth,
iterating untii the solution closely repeated itself. Maccoll
found that the p/p, distribution on the wedge surface at
M, =15 was nearly identical with the p/p, distribution at
M _,=0.7. This led him to propose that the pressure in the
transonic region, on bodies with distinet corners, varied as
the stagnation pressure and he presented a drag curve
through 3f_ =1 for the 20° semiangle wedge calculated on
this basis.

Drougge in 1948, following Maccoll, calculated the flow
past & finite cone of 45° semiangle with detached shock wave
at M,=180 and 3f_=2.15, using the same assumptions
as Maccoll (reference 18). He also made experiments on
this cone and found the sgreement with his theory rather
good. He made several tests at lower supersonic Mach
numbers also and found that the pfp,’ distribution on the
cone surface did remain nearly constant except as the Mach
number became close to the attachment Mach number,

Drebinger in 1950 showed how to calculate, by relaxation
techniques, the flow past finite cones and wedges with de-
tached shocks, eliminating the isentropic-flow assumption
and the assumption on the streamlines being perpendicular
to the sonic line (reference 19). He calculated a specific

example—a 26.6° semiangle wedge at Af, =1.440—and |

checked the calculated shock-wave shape and position exper-
imentally. His calculations showed that, even for the de-

tached-shock case, the streamlines differed from being per-

pendicular to the sonic lines by angles as large as 30°. His

calculation was checked in detail experimentally in th&e o

tests and agreement was found to be excellent.
TRANSONIC PERTURBATION THEORY

By assuming that the velocity component paraliel to the
free-stream direction differs only by a small quantity % from
a*, the critical velocity, and keeping only the highest-order
terms in the differential equation, the equations of two-
dimensionsl irrotational fluid motion are reduced to

('Y"[" 1) S?l_ay
2u bv o_, (9)
oy oz :

It was from these equations that Von Kfrmén and Guderley
independently arrived at the transonic shmilarity laws
(references 9 and 4). For two-dimensional steady flow past
sections whose shape functions are the same, these laws
imply that

A2 A,
- D] f{ r+ l)flc?"} (10)

where 1f is the local \Ia.ch number on the surface of the

section. The similarity in pressure and drag coefficients ~—

is then_
("0, ( M.—1 :
Ee)y™ {£(7+ 1)t/c1’“} (D
B0, M—1 :
ey {[(H- 1)ije "'} (12)

These quantities will be cailed reduced local Mach number,

reduced freestream Mach number, reduced pressure coef-
ficient, and reduced drag coefficient, respectively, using
symbols £, £,, (5, end Cp.

By interchanging dependent and independent wvariables
in the perturbation equations, the problem becomes linear:

_by+

or by —0 13)

o7 ou
where |

T=(r+1)

7=(v41) %

and, by eliminating x by differentiation, the Tricomi equa-
tion is obtained:

The main dificulties with this hodograph (u, r) plane are:
(a} The mapping of physical boundaries into the hodograph

(19 .
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plane is, in general, not known until the solution to the
problem is known so that it is not known where to apply the
boundary conditions in the hodograph plane and (b) the
mapping is often multivalued, complicating the solution.
Two interesting cases are known where these difficulties
are avoided. They are: (a) The free jet, studied by Tschap-
lygin in 1905, and (b) the finite wedge, studied recently by
Guderley and Yoshihara, Vincenti and Wagoner, and Cole.
These latter studies came to the author’s attention after the
present experimental study of the finite wedge in transonic
flow had begun and served to make the study more interest-
ing since the data could then be compared with the theo-
retical results.

THEORETICAL STUDIES OF TRANSONIC FLOW PAST THIN WEDGE SECTIONS

Guderley was the first to formulate the problem of the
thin finite wedge in the hodograph; he and Yoshihara found
an approximate solution to the problem of the flow past a
thin double-wedge profile at zero angle of attack at Mach
number 1 using the transonic perturbation equations
(reference 20)..

Vincenti and Wagoner considered the thin double-wedge
profile at zero angle of attack for low-supersonic Mach
numbers where the shock wave is detached (reference 21).
Their solutions were effected by relaxation calculations in
the hodograph plane. Here the bow shock wave and the
soni¢c line are fixed boundaries (their posmons are not
known originally in the physical plane) and the boundary
condition on the shock is the slope of the streamlines (or
the lines y=Constant). This boundary condition was
first shown by Busemann, who aptly called the configura-
tion a ‘“hedge hog.”

Cole (reference 22) has recently given a simple approxi-
mate analytical solution to the flow past a thin symmetrical

wedge followed by a straight section at high-subsonic -

speeds (M, =1). His solution satisfies the Tricomi equa-
tion and the boundary conditions on the wedge and at infinity
but not the boundary conditions on the sonic line. Effec-
tively, his solution gives a finite vertical sonic line from the
shoulder which is also a limiting line. Cole has indicated
that this solution is the singular part of the solution in the
hodograph and as such is most likely the main part of the
solution. It is interesting to note that the drag-curve slope
and curvature at Af_ =1 obtained from Cole’s solution
agree exactly with the values obtained from the simple
physical considerations of the next section. Also, the pres-
sure distribution on the wedge at M_ =1 agrees within 1
or 2 percent with that obtained by Guderley and Yoshihara.

Since the back half of a double-wedge profile has only a
very weak influence on the pressure distribution on the
front half for A{,>1 (only through the “last Mach wave”
from the shoulder point to the sonic point on the detached
shock), it is ressonable to take the solution of the double
wedge at M,=1 and use the front-half solutions in con-
nection with Cole’s results for 4/_<1 for the wedge fol-
lowed by a straight section and thus have a solution for the
latter semi-infinite body completely through the transonic
range. By using linearized subsonic theory and the shock-

.
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expansion supersonic theory, the zero-angle-of-attack flow
is obtained for all possible values of A7,.

Tsien and Baron (reference 29) have shown that the
shock-expansion theory can be expressed in the transonie
similarity form for thin bodies in pure supersonic flow near
M, =1. :

Voo Kérmén (reference 9) has indicated also how linear:
ized subsonic- and supersonic-flow results may be written
in the transonic similarity form since, from the Prandtl-
Glauert similarity, in linearized subscnic theory,

ol (= r_———,g) |
C,= Wf(c,\l 27 Y (15)
and; in linearized supersonic theory,

{

W/_‘;_ g (% VAT g) (16)
and from the expressions for reduced pressure coefficient
and Mach number, multiplying both sides by (l(t:}-z)l,z—:f;
these equations may also be written as:

(+1C,  flEhge®
(tfe)r® 1—AL,°0
r {
o (v+1)t/c1’“[('*+ )¢ ] } (i5e)
(r+1)C, ‘,/[(7'+ )
(tfe)*? M -1
g [ M.—1 tJay N
sVt 0] ¥ ase
but
(7+1)”‘C’ .
&=
; M —1 .
= v+ Dife]

y=I(v-+1)fc) Py

80 equations (15) and (16) may be written in transonic form

br(3l=r) a7)
t=a(54\%) as)

The subsonic pressure-distribution and drag-coefficient
curves have been calculated here from Cole’s analytical
expressions and, combined with the results of Guderley and
Yoshihara, Vincenti and Wagoner, and Tsien and Baron,
the curves for reduced pressure and Mach number distribu-
tion and reduced drag coefficient ? are given in figures 5 to 8
for the finite wedge followed by a straight section.

1 The reduced drag coeficient given In figure 8 Is that for the hulf wedge and s uqhnl to

1‘:;,-.];l tpe (£)
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It can be shown that Cole’s solution for large negative
velues of £, goes over exactly into the linearized subsonic
solution (see appendix A). The reduced-pressure-coefficient
eurve for £,=—2.02 in figure 7 is so nearly identical for both

.solutions that they cannot be told apart (except that Cole’s
solution goes to C_ at zfce=1 while the linearized solution
goes to —w) This is to be expected since the transonic

" flow but apply equally well to completely subsonic and
completely supersonic flow.® The transonic equation can
be written in the form

1 This was pointed out to the author by Dr. Milton Van Dyke of the NACA Ames Aero-
naugtleal Laboratory.
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Op O
52 5o (19

(-2 T+ T6=2Le (14171

where ¢ is the perturbation potential such that u=U +g—::

] v===%- Thus it is clear that for completely subsonic or
completely supersonic flows the term on the right is negli-
gibly small but becomes of paramount importance in transonic
flow.

CHARACTERISTIC FEATURES OF TRANSONIC FLOW PAST
WEDGE AND CIRCULAR-ARC SECTIONS

CHARACTERISTIC FREE-STREAM MACH NUMBERS

Critical Mach number.-—The Mach number at which
sonic velocity first appears on the wedge is A, =0 (within
the inviscid theory) since subsonic flow cannot turn 2 sharp
corner. Because of the fact that the boundary layer rounds
off the corner, and perhaps also because of the spatial
resolution limita.tions of the interferometric method, sonic
velocity was not found there experimentally until
approximately £,=—0.80 for the wedges.

The critical Mach number for a half circular-are airfoil
followed by a straight section can be obtained approximately
from linearized subsonic theory. This theory gives the
surface pressure distribution as

C . \He] -—-4(5/0)

=M [1-(-5) e ] @
which yields

Poin I—M.,

at z/¢=0.783 (see appendix B). This equa,ti:an can also be
written in transonic similarity form by multiplying both

13
sides by (l(t—}_T)ls,)rT‘ (as shown in the previous section):
~ —1.626
O, =——=— . - -(22)
pmn !__ Ew .
Now, within the transonic perturbation theory,
Cp=—2(t—t.) (23)
Hence
Cy, =2ts (24)
Equating 5?..;,. to 5,,“ one obtains the critical reduced
Mach number
£,,=—0.871

For the thickness ratio #/c=0.088 used in these tests, this
predicts a critical Mach number of 0.834 at z/c=0.783.
Experimentally, the critical Mach number was found to be
0.825 and occurred somewhere between zfe=0.75 and 0.95
(the pressure distribution was very flat in this range). It is
interesting to note that the experimental Af,,, was higher
for the wedges than for the circular-arc profile of the same
thickness ratio. This was probably due to a combination
of three effects: (1) The boundary layer for the same

. zones near the shoulder.
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Reynolds numbers used here was fairly thick in comparison
with the dimensions of the model and thus it “rounded off"
the shoulder more than would be the case at higher Reynolds
numbers. (2) The height of the supersonic zone, even for
an ideal nonviscous flow past thin wedges, appears to be
quite. small until the free-stream Mach number is quite
close to 1. This is apparent from Cole’s theory and also
from the argument in reference 25 that the height of shocks
in the supersonic zone must be of the form

[+ 0f] =g

(8) The spatial resolution of the interferometric method may
not have been sufficient to detect very small supersonic
There is also a large refraction
error near the shoulder due to the high density gradients
which tends to obscure details of the flow there.
Shock-attachment Mach number—The shock-attachment
Mach number depends only on the opening angle of the
profile at the leading edge and can be predicted quite pre-

- cisely by oblique-shock theory. If #is thescmiopening angle,

then it can be shown that approximately, for thin profiles,

M, 3
[(v-l— 1)0]"" 4irs

(25)

(see appendix C). If t/e is the thickness ratio of the circular-
arc section, #=~2(¢/¢}). Hence for the circular-arc profile
3 .
beu=gm (26)

Mach number at which sonic velocity appears behind an
oblique shock.—The Mach number at which sonic velocity
appears behind an oblique shock M, is just slightly higher
than M, and again is a function only of the opening angle.
These valu% can also be found qult,e precisely from oblique-
shock theory and approx1mately in 51m11ar1t.y form can be
given as . S _

M, 2~1 "
=Gttt T @D

for the wedge (see appendix C) and
| =2 - o - (28)

for the circular-are section.
CHARACTERISTIC YALUES OF LOCAL MACH NUMBER

Mach number at leading edge.—The Mach number at the
leading edge is zero (a stagnation point) for all free-stream
Mach numbers less than the attachment Mach number.

Mach number at shoulder of wedge.--The Mach number
at the shoulder of the wedge just before the turn is always 1.
This is easily seen in the case of flow with detached shock
since-the only characteristic distance of the fnite wedge is
the distance from the leading edge to the shoulder which
must determine the shock-detachment djstance, and, if the
sonic point occurred ahead of the shoulder, the shoulder
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:ould not influence the shock position. Subsonic flow cennot
:urn a sharp corner so the fiow must therefore reach Mach
aumber 1 right at the corner. In the case of subsonic free-
stream flow the argument is not so simple (see referenee 22).
At the shoulder the flow around the corner is locally a
centered Prandtl-Meyer fan starting from 3=1. The Mach
number just behind the corner is thus determined only by
the wedge angle and is independent of the free-stream Mach
number. Behind thjs point the flow will recompress to the
free-stream Mach number through a shock or series of shocks,
for free-stream Mach numbers less than the attachment
Mach number. The expression for Mach number 3fpy
behind an expapsion from 1f=1 through an angle 8 is

§= rt1 tan™!

r—1 + 1 Y 41[1»;; 1—tan~!4'2 A p—1 (29)
Expanding the right-hand side in powers of +/3fp —1
(assumed small}, the first nonzero term yields

2 (*"IPH —1p
G 7T (30)
which is in transonic similarity form so
Meu®—1 E)"'
= Pesn(3 31)

PRESSURE DISTRIBUTION ON BODIES MOVING TBROUGH
AN INFINITE FLUID AT SPEEDS NEAR RIACH NUMBER 1

STATIONARY VALUE Of LOCAL MACH NUMBER AT FREB-STREAM MACH
NUMBER 1

During the course of these investigations it was found
that for the wedge and circular-are sections the local Mach
number distributions on these sections at very high subsonic
speeds (above Af_, but below choking Mach number)
and at very low supersonic speeds (where the detached
shock wave was a chord length or so ahead of the section)
were nearly identical. In trying to understand why this
should be so, the following explanation was derived: (1) At
low-supersonic speeds the bow shock wave is detached a
greet distance ahead of the profile and a subsonic flow region
is embedded in the flow feld between the shock and the
sonic line. The part of the shock directly ahead of the
profile is nearly normel over quite a distance (of course, the
slope of the shock asymptotically tends to the slope of the
Mach wave of the free-stream flow at large distances lateral
to the flow direction). Nagamatsu (reference 30) has pre-
viously indicated this and points out that the flow past the
profile should be closely approximated by assuming the
profile is in a high-speed subsonic flow where the velocity
distribution at infinity is slightly nonuniform, the minimum
velocity being directly ahead of the profile and equal to the
velocity behind the normal shock and then increasing in
both lateral directions. (2) Now the normal shock near
Mach. number 1 is nearly symmetrical in the sense that the
Mach number behind the shock is just as much below 1 as

135

the Mach number shead is above 1. This follows from the
normal-shock relation: o -

[—My= 2M -t S N
1+ " - (AL2—1)

where 1f; is the Mach number ahead of the shock and Afy
is the Mach number behind the shock; so near M;=1,

1=yt M1 6
1—.1.[;“41[1—] (34)

Therefore if 3M,=1+e¢, where ¢ is smell, the flow past the
profile is nearly the same as the flow past the profile at

or

- M, =1—c¢ since the Mach number behind the central part

of the detached shock wave is almost exmetly 1—e. It ~—
follows therefore that the local Mach number distribution =~ ~
on the profile surface must have a statmnary value at

3, =1 and furthermore vary only slowly in the neighbor-

hood of 1/, =1. "Mathematically this means oo

oM =0

It should be noticed that this wrgument is based on two =~
assumptions:¢ (1) The detached bow wave moves very far
ahead of the profile as the flight Mach number decreases ~
toward 1. (2) The radius of curvature of the detached bow
wave at points directly aheed of the profile becomes ex-
tremely large as the flight Mach number decreases toward 1.

Exammmg these assumptions, it would seem that the
same reasoning should appiy to any finite three-dimensional
body id an infinite fluid traveling at speeds near Mach
number 1, except that now two radii of curvature at points —
on the detached bow wave shead of the body must be
assumed to become large as the flight Mach number de- ~
creases toward 1. The detached bow wave is 80 far away
from the body at speeds just slightly above Mach number 1
that the body eppeers as only & very small objegt in relation
to the radii of curvature of the bow wave and, hence, it
would appear as though the shape and attitude of the body
could have no appreciable effect in changing the argument
presented above.

The reasoning should also apply to an infinite yawed
cylinder (whose cross section may be finite or, if the angle
of attack is 0, may extend infinitely far downstream) pro-
vided that the Mach number considered is the component
of the Mach number normal to the generators of the eylinder.

These arguments are for steady-flight speeds. Large
accelerations through sonic flight speed could conceivably =~
modify the phenomenon. Thus it is difficult to judge
whether or not the available flight-test data confirm the
concept since nearly all such data come from missile tests

(35)

¢Ii Is bellevad that these are not actually ssamptions But are capable of demonstratlon
if one assamey & smooth variation of drag through Mach nnmber 1,

- -
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that involved large accelerations (or decelerations) through
sonic flight speeds. The transonic-bump tests of Weaver
on sweptback wings (reference 1) would seem to support
these conclusions since they show drag-coefficient maximums
very near Mach number 1, & necessary consequence of the
concept for finite three-dimensional bodies and finite,
unswept, two-dimensional bodies as will now be shown.

SLOPE OF -PRESSURE- AND DRAG-COEFFICIENT CURVES AT Mg =1

Equation (35) enables one to calculate the slope of the
pressure- and drag-coefficient curves at Mach number 1
as follows:

pv=£;a = (36)
y—1 2\
9 I4+-—5- M 1
(=73 — —1 (37)
MIN 14+ A
for isentropic flow so
.d_gl’_ — 4 __2Cr|"“u_;‘
daf,, M,,-1~‘Y+1 v+1 (38)
using
dM ;0
dM |s e

Now for a two-dimensional body the pressure-drag coefficient
(based on the chord) is given by the contour integral

1

=" Cylth)ds (39)

where

£ unit vector in stream direction

A unit vector normal to profile pointing outward

ds element of length along profile contour

so if the angle of attack is constant and Af, is changing

Acs| 1 C 2C, I, -I)_ .
AN Jraei™ Sﬁ(vﬂ yF1 ) bhds (40)

But ii-ﬁ ds=0 for a closed contour, so

4Cp.
dAf_

Cpla, (41)

'H-l

= ——
Mu-l

For the front part of a profile (defined as that part ahead
of the maximum thickness) the usual definition of a dra.g
coefficient is

(ppm—a J C t-hds (42)

]
where J means the counterelockiise line integral from the

point of maximum thickness on the upper surface to the
point of maximum thickness on the lower surface; thus

dCp, =é_}_f’(_ 4 20, |apm t-Ads
dll!.M -] CJa 'Y+1 'Y+1
80
) de 4 ¢ __2;
7 T = W Rk L P
where
¢t maximum thickness of profile
a angle of attack of profile
Similarly the drag coefficient for the rear part is
. 1 '
0”‘*:—3, ; Cpt-fds (44)
S0
dCp — t 2
H_Hfu,,-x ‘Y+1 ¢ s~ +i0n3l‘"n-1 (45)

For the tests on wedge and circular-arc scetions followed
by straight sections the concept of drag coefficient of the
front part of the section will often be used.

For bodies of revolution (which include spheres, cone-
cylinders, etc.) the pressure-drag coefficient (based on maxi-
mum cross-sectional area) at zero angle of attack is

'0 1 (Y d( r)!
= : 46

P Tt =0 i R ( )
where
R maximum radius of body
! length of body ‘
z distance from nose along axis
Therefore

dCp
daf,

Mm-l_: v+1

as before in the two-dimensional case. However, for front

and back drag coeflicients

R 2
CDF=J:-O(-",([(;E) (47)
SO
dﬂ;p My =1 + 1 y+1 0"![.\4,-; (48a)
and similarly
ac 4 2
dlt;ky - ——‘Y+1_7+1 DB]M m] (48b)

and these differ from two-dimensional values obtained above
in equations {43) and (45) by not involving the fineness
ratio of the body (this is- of course due to the different
reference areas for drag coefficients).

For the general finite three-dimensional body the pressure-
drag coefficient is given by
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(49)

where .4 is some reference area of the body and S is the
surface of the body. It follows as it did previously that

A4Cp
dif.

SLOPE OF DRAG-COEFFICIENT CURVE AT M =11IN TRANSONIC SIMILARITY
PARAMETERS FOR TWO-DIMENSIONAL FLOWS

—.7%001,,,-1

Mog=l

Within the fransonic approximation

Cp=—2(t—E.) (50)
S0
=) 2
dif .
Now PETR -_1=0 implies that dE.I fam =0; hence
@, _
dEu 'En -0_ (52)
Now
~ L ~ e
m=—%§0ﬁ1dt) (53)
S0
dCp|
EE £ -0— (54)
Similarly it is easy to show that
dCh,
d&u. £ -°=2 (55)
and
d C'Dg
dE. E’_D——-Z (56)
bTHEB DATA SHOWING SLOW VARIATION OF LOCAL MACH NUMBER NEAR
Meo=1

As mentioned previously, Maccoll in 1946 had already
proposed the slow variation of local Mach number near
M.=1 on “bodies having distinct corners.” It appears
-that this latter restriction is not necessary. Mlaccoll’s pro-
posal was based on rather slim evidence and it is believed
that here, on the basis of the argument presented concerning
the normsal shock, the principle is explained more convine-
ingly. Also the experimental evidence given here and by
Drougge (reference 18), Bleakney and Griffith (personal
communication), Weaver (reference 1), and by some NACA
reports tends to bear out the conclusions of slow variation of
local Mach number on bodies near 3f_=1.

This fact is sometimes slightly obscured in the NACA
reports because pressure coefficient was plotted instead of
p/p. or local Mach number. However, constant Mach
pumber lines weré sometimes drawn in these plots and there
the evidence shows up strongly (see, e. g., reference 31, figs.
7 to 11, pp. 36 and 37). The relative constancy of local

ST2483—B4——1%
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Mach number distribution near 1f,=1 for airfoils at an
angle of attack is also shown clearly in figures 8, 9, and 10
of reference 32.

ON COMPARING THEORY AND EXPERIMENT

In references 21 and 25 discussions were presented on the
philosophy of comparing experiments with epproximeate
theories, and these discussions will not be repeated here,
except to mention that in some of the theoreticel curves
presented here the values have been shown with a certain
spread which results from using a pressure coefficient equal

to —25?/&—01' —2“ Uu"

(the formar value is the one that

fits into transonic similarity theory; the latter value is the
one more commonly used in perturbation analysis).

In connection with the idea presented in reference 25 of
extrapolating experimentsl data to zero thickness in order
to compare with results from transonic perturbation gnalyses,
it is interesting to note that the characteristic Mach numbers

mentioned in the section “Characteristic Features of Tran-

sonic Flow past Wedge and Circular-Arc Sections” can be

presented in powers of the thickness of the wedge (or equiv-

alently in powers of the wedge angle), the first term of
which gives the transonic similarity expression; two of these
values are

A1
Ty F D

2‘“[1 +1 g.,: 2 %)m s+ 0(9*“)] (57)
E[p_\( —1
R T

(See appendizes D and E.) In transonic perturbation
theory the terms in 6 on the right-hand side are neglected.
This can lead to fairly large errors for even moderately
large values of @ since the approach to #=0 is nonlinear and

dEuy d ty
<o 2 g

—=—>x asf—>0 (59)
Judging from this one might expect that quantitative
agreement of transonic perturbation analyses with experiment
would not be so good. However, in comparing two similar
shapes with only slightly different thickness ratios by
transonic similarity considerations one would expect fairly
good agreement.

EXPERIMENTAL RESULTS
FLOW FIELD NEAR 1* WEDGE
Figure 9 shows interferograms of the flow past the 10°

semiangle wedge for 14 Mach numbers from 0.700 to 0.892
and 1.207 to 1.465 (the interferograms for the 4%° and

7%° wedges were very similar and hence are not shown here).
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)

(@) My, =0.700; 5 /pa=0.781, (b} Ao =0.704; pogfpe=0.743,

F16URE 0.—~Interferograms of flow past 10° semiangle wedge for varfous Mack numbers.

{c

(©) Mo =0.852; pgo/pam0.712. () Mg m0.892; poyfpam0.001

F1oure 9.—Continued,
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(1Y M gy = 1,356; 0y foom0.457,

(Y Mo, = 1375 oo fpa=0.449,
Ficurk §.—Continued.
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670, 650-
L0605, Al L
72, : =0.701",
746 -_-_.‘._..-'L;.-l_ . . Po 1
(k} (2

(B} M =1.391; oo fpom0.441.

() My, m1.411; 5o fe,=0.432.

Fraoure 9.—Oontinued,
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M) Mg =1.436; pou/pe=0.422.
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AND CIRCULAR-ARC SECTIONS

L.
o 0623,
o

M) Mg m=1.485; pou/pe=0.409.

FrcUrE 9.—Conelnded.

Notice that the lines of constant density in the subsonic-flow -

interferograms are roughly elliptical in shape as predicted
by the theory (see appendixes A and B). A supersonic
flow region was first detected between 1{_,=0.700 and 0.794
(the sonic line is shown as a dashed line in the figures) and
a shock emanating from the corner appears in the super-
sonic zone at AM_=0.794. As the Mach number was
increased, this zone grew larger and a shock appeared at
the rear of it, while the shock emanating from the corner
weakened and disappeared. This rearward shock was of
the typical \ type associated with a laminar boundary
layxer, and the interferograms clearly indicated the separation
of the boundary layer ehead of this shock. The similarity
between the fow field at Af_=0.892 and at Af_=1.207
(figs. 9 (d) and @ (e)) is striking; the base of the rearward
shock has moved quite far back on the wake of the blunt
trailing edge at Af_=1.207 but in the vicinity of and ahead
of the sonic line the two fields are nearly identical except
for the detached shock wave which appears about 1% chord
lengths ahead of the wedge at 1f{_,=1.207. As the Mach
number was increased above 1.207, the detached shock
moved in closer to the leading edge and finally “attached”
at a Mach number quite close to the theoretical attachment
Mach number of }f_=1.418. Notice that the process of
attachment is very continuous. The effect of the boundary
laver is quite noticeable in the last few interferograms:
This can be roughly sccounted for by considering the

boundary layer to change the shape of the bedy by its
displacement thickness and then considering & nonviscous
flow past this revised shape. On the wedge the boundary
layer will not grow so rapidly as on a flat plate because of the
favorable pressure gradient and, in fact, the effect of the
strong expansion around the corner is known to cause an
almost complete collapse of the boundary layer there. As
the bow shock wave gets close to attachment, the velocities
in the subsonic region behind it are getting very close to
sonic velocity and hence the flow in this region is very
sensitive to any slight curvature of the “revised shape”
of the wedge. This accounts for the shift of the base of the .
sonic line forward to the leading edge as the shock ap-_

proaches attachment. The nonviscous theory would in-
dicate that the sonic line would always begin at the corner
and, at a Mach number just slightly above the shock-
attachment Mach number, .the whole subsonic region would
become sonie; then, with increasing Mach number, the flow
behind the shock would be completely supersonic. As

observed, the boundary-layer effect is to make the wedge

have & curved surface and the sonic line actually moves

slowly from the corner to the nose. Even with an attached .
shock wave at 1f,=1.465 the flow behind the shock is not_
quite uniform (as nonviscous theory would indicate it
should be} because of the effective curved sprface caused
by the boundary layer.
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LOCAL MACH NUMBER DISTRIBUTIONS ON THREE THIN WEDGES

Figure 10 shows the variation of local Mach number
distribution on the surfaces of the 4}4°, 7%°, and 10° semiangle
wedges with free-stream Mach number. This should be
compared with figure 5 which shows the corresponding
theoretical curves in terms of the transonic similarity param-
eters. The general behavior of the theoretical and ex-
perimental curves is quite definitely in good agreement.
Particularly noteworthy is the slow variation of the local
Mach number distribution near free-stream Mach number 1.

PRESSURE-COEFFICIENT DISTRIBUTIONS ON THREE THIN WEDGES

The slow variation of the Mach number distribution in
the rapge near Af_ =1 is obscured when the results are
plotted in terms of pressure coefficient, since the pressure
coefficient changes a great deal if local Mach number is con-
stant while the free-stream Mach number changes. A better
parameter for presenting transonic pressure distributions
would be p/p. (p/p, in case of a detached shock). Typical
C, distributions are shown in figure 11 for the 7X%° wedge
(the results for the 10° and 4}4° wedges were very similar
and hence they are not presented). The points shown were
where the isopycnics intersected the body in the interfero-
grams.
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Cp=0
— —— Position of sonic veiocity

x/c
fal Subsonie.
Fraunz 11.—Pressure distribotions for 734° semiangle wedge.

Since for & wedge the drag coefficient is proportional to the
average (,, the drag rise is evident in the subsonic distribu-
tions as the point where (',=0 moves rearward with increasing
free-stream. Mach number. Linearized subsoniec theory
(which predicts Cp=0) locates the C,=0 point at 2/e=50
percent. Figure 7 shows theoretical reduced C, distributions
at various reduced free-stream Mach numbers. Again the
qualitative sgreement of these curves with experiment is
evident.

SHOCE-DETACHMENT DISTANCE FOR THREE THIN WEDGES

Figure 12 shows the shock-detachment distance against
reduced free-stream Mach number for the three thin wedges
and includes the theoretical values from reference 21. Here
Vincenti and Wagoner's values for ¢, have been multiplied
hy -——-——E"["'m'

i I in order to make the transonic perturbation
®40=0® :

value of detachment reduced Mach number agree with the
value from oblique-shock theory for the 7%° wedge:® The
reason for this was discussed in the section “On Comparing
Theory and Experiment,” namely, the difficulty of comparing

¥In terms of Mach numher, for the 7}4* wedge the shock theory predicts attachment at

AMep =133 (fu ,=1.68), wkile the transonie perturbation theary predicts Mm ;=125 (fe,
=1.19).

PAST TWO-DIMENSIONAL WEDGE AND CIRCULAR-ARC SECTIONS

‘ment.
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(b) Supersonie.

Ficurx 11,—Concluded.

transonie perturbation thec;n‘jY quantitatively with experi-
Notice how rapidly the shock wave moves away
from the wedge as the Mach number is decreased toward 1.

DRAG-COEFFICIENT VARIATION WITH MACH NUMBER FOR THREE THIN
WEDGES

It was shown in reference 25 that the viscous effects on
the wedge tend tc compensate each other at the leading

edge and the shoulder so that the over-all pressure drag is

nearly the same as if the flow were inviseid. Thus it would
be expected that the pressure-drag coefficients obtained by
integrating the experimental pressure distributions would
check the inviscid transonic perturbation theory. The
reduced drag coefficient used here was

~ 1

8o=|. C,d(%)
which is, in essence, the reduced drag coefficient of the
upper (or lower) half wedge. This was done since the wedge

model was regarded as the front half of a double-wedge
profile and hence the value given here is the part of the re-

(60)
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Fiaurg 12,—8hock-detachment distance against reduced Mach number for & wedge.

duced drag coefficient contributed by the front half of such

an airfoil (Cp, as in equation (42)), based on the chord of the
double-wedge profile, which would be twice the chord of the
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model used here. Of course, this viewpoint is valid only for
supersonic free-stream Mach numbers.
Figure 13 shows the reduced drag cocfficients for the three

thin wedges plotted against reduced Mach number. It is
3-0 J’ f
|- e
%5 —_— e TR
T y "l
20— —m==m- ¢
fP—c g / {'\Q
G s . - i\\\
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o

_FIGURE 18.—Expertmental reduced drag coefficient against reduced Mach numbarona wudg:v.

seen that the results give nearly a universal curve, which
they should if the transonic similarity law is true, but that
there are.systematic variations with wedge angle. This is
to be expected based on the discussion of the section “On
Comparing Theory and Experiment.” The vertical lines
through the experimental points indicate estimated accuracy
of the data. This figure should be compared with figure 8,
the theoretical reduced-drag-coefficient variation with re-
duced Mach number. It is obvious that the qualitative
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Free -stream Mach number, A,

FIGURE 14.—Drag coefMcient against Mach number for 434°, 734°, and 10° semlangie wedges. Comparison of theary with experiment.
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agreement of theory and experiment is good. In figure 14
the theory and experiment are compared directly for the
three thin wedges. Here the theoreticel drag coefficients
are shown with a vertical spread, the upper values for
M, >1 corresponding to the use of the pressure coefficient

— My —
(',=—'%*—ul) and the lower values, to the use of the pres-
— 2y —
sure coefficient C,= # The situation is vice

versa for M_<{1. From this figure it is evident that the
transonie perturbation theory gives a good approximsation
to experiment.

FLOW FI1ELD AT Mx=1.44 FOR THE 26.5° WEDGE

Figure 15 shows the experimental and theoretical constant-
velocity lines in the subsonic region behind the detached
shock wave for a 26.57° semiangle wedge at I, =1.44.

Theoreticd
(Drebinger)
Experimental

FicURE 15.—Constant Mach number contours for 26.6° semiangle wedge at Mo, =1.440,

The theoretical analysis was made from relaxation calcu-
lations by Drebinger (reference 19) who used the flow equa-
tions with entropy variation behind the shock taken into
account. The experimentsl constant-velocity lines were
determined from the isopycnic lines of the interferogram by
taking into account the lateral stagnation-pressure gradient
behind the curved shock. The isopyenic lines mnear this

45

strong shock wave were probebly slightly in error because of
the “smearing out” of the pressure discontinuity across the
shock in the side-wall boundary layers. It is seen that the

sgreement between theory and experiment on detachment ~—

distance and constant-velocity contours near the wedge is
Figure 16 shows the surface pressure distribution from

reference 17 and the present experiments.

that the agreement is good.

11 - T

Theoretical

(Drebinger)
o Experimental

1.0

1

s

5
“0 2 4 I3 8 Lo
x/c

FicURE 16.—Pressure distrihution on a 26.6* semlangle wedge at M, = L440.

FLOW FIELD NEAR TEE $38-PERCENT CIRCULAR-ARC SECTION

Figure 17 shows interferograms of the flow past the
8.8-percent circular-gre section for 14 Mach numbers from
0.718 to 0.936 and 1.11 to 1.500.

Supersonic velocity first occurred at 1f_,=0.825 (see the
section “Critical Mach number”) and in figures 17 (¢) and
17 (d) a nearly symmetric supersonic zone is shown =t
M_=0.848. No shock waves were apparent in this zone,
although a sensitive schlieren epparatus might have shown’
some weak shocks there. At }f_=0.890 the supersonic
zone has grown rapidly and now terminates in the A-shock
configuration. Further incresse of the Mach number to
M.=0.935 (figs. 17 (e) and 17 (f)) shows the supersonic
zone increasing laterally and the terminating shock moving
rearward into the wake of the body. Figures 17 (e) and
17 (f) also show the density distribution at 3f, =~1.11 (the
detached shock wave was just out of the field of view of the
interferometer) and it is interesting to note the similarity
between the flow field at J3f_,=0.935 and }M_=~1.11. It -
would appear as though the shock terminating the super-
sonic zone at Af,=0.935 had moved rearward to form the
trailing-edge shock (which is actually in the wake here
because of the blunt trailing edge) and the supersonic zone
had grown laterally until the sonic line joined with the
detached shock far away from the body at 3f_ =1, thus’
csusing an embedded subsonic zone in the supersonic flow
with further increase in Mach number. '

Again if is seen
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795,

819,

{a}

(@) My, =0.718; p o /pe=0.783. (b) Mg =0.819; p g /pe=0.730.

Floure 17.—Interferograms of fow past 8 8-percent circular-are soction for varfous Mach numbers,

(0} Mo, m0.848; o, foom=0.715,

(d) My =0.800; poy/pe=0.606.
Fraunx 17.—~Contioued,
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F1oure 17.—Continued,
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F16URE 17.—Continged.
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(m) My, =1.450; poafpemi.418,

WEDGE AND CIRCULAR-ARC SECTIONS
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Fraver 17.—Concluded.
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FusURR 18.—Locsl Mach number agalnst rfe for increasing free-stream Mach nomber, 8.8-
percent clrcular-arc section.

With further increase of Mach number above 1f_=1.11,
figures 17 (g) to 17 (n) show that the detached shock agein
approached the leading edge and the embedded subsonic
zone decreased in size until finally the shock “attached’”
somewhere between 1{,=1.400 and 1/,=1.450 (the theo-
retical value being M, ,=1.423).

LOCAL MACH NUMBER DISTRIBUTIONS ON $A-PERCENT CIRCULAR-ARC
SECTION

Figure 18 shows the local Mach number distributions for
the 8.8-percent circular-arc section as obtained from the
experiments at various free-stream Mach numbers. Again
it is apparent that the variation of local Mach number
distribution near Af{_=1 is very slow and, indeed, the dis-
tribution for 3f,=1 could be interpolated from this figure
with good accuracy.

Figure 19 is a cross plot of the data of figure 18 except
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that here the data are given in transonic similarity param-
eters. This figure shows contours of constant reduced
local Mach number on a plot of reduced free-stream Mach
number ageinst chordwise position. The dashed lines repre-
sent subsonic local Mach numbers; the solid lines, supersonic
local Mach numbers. Note again the slow variation of
local Mach number distribution with free-stream Mach
number near sonic velocity. '
PRESSURE-COEFFICIENT DISTRIBUTIONS ON $3-PERCENT CIRCULAR-ARC
SECTION

Figure 20 shows the pressure-coefficient distributions on
the 8.8-percent circular-arc section for various free-stream
Mach numbers. The points shown are where the isopycnics
intersected the body in the interferogram. Again the
presentation in this manner obscures the interesting fact
observed in figure 18. ‘
DRAG-COEFFICIENT VARIATION WITH MACH NUMBER FOR 83-PERCENT

CIRCULAR-ARC SECTION

Figure 21 shows the experimental détermination of the
drag coeficient of the front part of the 8.8-percent circular-
arc section. This again is of the nature of a fore drag coef-
ficient and, as shown in equation (43), it should have a

I: Sonic point
— 6p L3 o

Zero for My =
0935

848

819

Ny

(0)_ . : - ’W';
»

0 .2 4 6 8 10
x/c :

(a) Bubsonie,
FiGURE 20.—FPressure distributions on an 8.8-percent elrcular-are section,
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Fievrx 20.—Concluded.
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is how the subsonic data have been joined with the super-
sonic data. The vertical lines through the experimental
points again indicate estimated accuracy of the dats. For
the case of an attached shock the pressure distribution cen
be calculated using characteristics theory and-the shock
polar; however, a close approximation is obtained by con-
sidering the flow behind the shock wave to be Prandtl-
Meyer flow. (This yields, approximately, parabolic-shaped
bow and trailing-edge shock waves; see reference 33.) From
this pressure distribution the drag was calculated and is
shown in figure 21. Taking into account the ‘“reflected”
characteristics from the shock wave would give more com-
pression and increase the drag coefficient so that it would
agree better with the experimental values at A, =1.450 and
1.500 shown in figure 21.

Note that the tests were made at low enough supcersonie
speeds to get definitely below the drag-coefficient maximum
at M, ~1.20. ’
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FiaTrE 21.—Drag coefficfent against Mach nnmber for 8.8-percent clrcular-are section.

OCAL MACH NUMBER DISTRIBUTION3 ON A I2-PERCENT EBICONVEX
CIRCULAR-ARC AIRFOIL ——

Figure 22 shows local Mach number distributions from
reference 8 for high-subsonic-speed flow over a 12-percent
biconvex circular-are airfoil (with turbulent boundary
layer). The data for the 8.8-percent circular-arc section at
two supersonic speeds have been scaled according to the
transonic similarity laws to the 12-percent cese and are
shown for the front half of the 12-percent airfoil in figure 22.
The back half for these two cases has been faired in using a
Prandtl-Meyer expansion which should be approximately
correct (& more accurate determinstion could have been
made using characteristics theory and the shock polar).
At M _=1.58, the theory indicates that the shock is attached

with sonic speed just behind the shock on the leading edge,
so that the distribution can be obtained by standard methods

mentioned above; agein the Prandtl-Meyer expansion ap-
proximsation was used for the distribution at Af,=1.58 in
figure 22.

The behavior of the Mach number distributions is similar
to that of the distributions shown previously, except in this
case the movement of the shock terminating the local super-
sonic zone is shown. Apparently little change in local Mach
number distribution occurs between M _=0.936 and
11[_=1.29.

DRAG-COEFFICIENT VARIATION WITH MACH NUMBER FOR A 12.PERCENT
5 BICONVEX CIRCULAR-ARC AIRFOIL

The data of figure 22 were converted to pressures which
were integrated to give the pressure-drag coefficient for the
various free-stream Mach numbers. The results are shown
in figure 23. In addition the drags of the front and back
helves are shown separately. The drag-coefficient variation
between M _=0.96 and Af_=1.20 was based on constant local
Mach number distribution at values interpolated between the

20

—}——Uepmcnn, Ashkenas, and Cole
Similarity extension of present tests
—T-——Prundﬂ-Meyer flow approximation

6 - T - t

4
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Figurx 22.—~Laesl Mach number against z/e for increasing free-stream Meach number. 12-
percent biconvex elrenlar-are afrfofl,
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F1ouRE 23.—Drag coefficient against Mack number for 13-percent biconvex clreular-are airfoll. (From dats of Ag, 22 on basis of constant Mach number distribution from M, =0.98 to 1.20.)

curves for AM_,=0.936 and M_=1.29. The date were faired
into the curves for attached shock wave calculated on the
Prandtl-Meyer expansion basis. It is seen that the fore drag
coefficient has a maximum after M,=1 while the drag coeffi-
cient of the rear part has & maximum before M_=1. The
over-all airfoil has a maximum drag coefficient just before
AM_=1 in order for the curve to have the slightly negative
slope at A4,=1 given by equation (41).
CONCLUSIONS

An experimental investigation of transonic flow past two-
dimensional wedge and circular-are sections was made using
a Mach-Zehnder interferometer. The conclusions may be
stated as follows:

1. The transonic similarity theory of Von Kérmén and
Guderley was checked and found to be in good agreement
with experiment for thin wedge profiles near a free-stream
Mach number of 1.

2. The results of theoretical calculations, using transonic
perturbation theory, made by Guderley and Yoshihara,
Vincenti and Wagoner, and Cole for a wedge in transonic
flow were checked experimentally at high-subsonic and low-
supersonic speeds for three wedges of different angles and
were found to be in good agreement with experiment.

3. The Aow field and the surface pressure distribution for
8 26.6° semiangle wedge at 2 free-stream Mach number of
1.44 were obtained experimentally and were found to be in
excellent agreement with the theoretical calculations of this
flow made by Drebinger.

4. The pressure distributions and drag cocfficients for an
8.8-percent circular-arc section followed by a straight section
and for a 12-percent biconvex circular-arc airfoil were pre-
sented completely through the transonic range. It was
shown that some difficulty arises in comparing two-dimen-
sional transonic perturbation theory with experiment, since
this theory neglects thickness-ratio terms of order (¢/c)*?
and higher; for even moderate thickness ratios this will
cause noticeable deviations from more exact theory.

5. It was shown from some physical arguments that the
local Mach number distribution on bodies traveling through
an infinite fluid has a stationary value at free-stream Mach

‘number 1. This was verified experimentally for the caso of

two-dimensional flow. It wasshown that this concept implies
a drag-coefficient maximum just below free-stream Mach
number 1 for all bodies in steady flight. This fact can be
used to obtain the variation of local Mach number distribu-
tion on bodies completely through the transonic range of
velocities from wind-tunnel tests, provided small models
are used so that tests can be carried well above critical Mach
number and to low enough supersonic Mach numbers. so
that the bow shock wave is detached a chord length or so.

Cavirornia INsTITUTE OF TECHNOLOGY,
Pasapena, Cautr., June 1, 1951.



APPENDIX A

ASYMPTOTIC REPRESENTATION OF COLE'S SOLUTION FOR LARGE NEGATIVE VALUES OF REDUCED FREE- STREAM
MACH NUMBER

Cole’s solution for the high-subsonic-velocity flow past &
thin wedge (reference 22) is given as follows (in Cole’s
notation):

9~ 173 - ¢
y(Z 284 21) (2; ) l‘g[; g;m—o_@J_glz()\Z)J_]n(kzl)hdl

(61)
x(e,0;21)

T oosh Mea=2) g ) a(hzdhdA

(62)

=1—z,32%3 -
! ¢ Jo sinh Ao,

where the center line of the wedge is at y=0; the leading
edge, at r=0; the shoulder, at x=1; and

9 9 12
s=Fa—arp=S—a+n 4]

L2 TR
a=j =3 =3] ~r+1)
ve=(y+1)0

and the other notation is the same as that in the present
paper.

N 3 v, v. A=l
2, =u,”3y-—
N 2zz2 13 =

3 Da e. ]

Making use of the asymptotic formulas

Using the standard methods of partial-fraction expansion,
one may write

sinh Me,— v)—-l-——+2Esm nr—

Aip 2 -
sinh Ao, i ))\’ J+nixt (64)
cosh AM(z,—1) 1

— )\v.
smh o, L2 ?:,‘l cos (nr ) (85)

Substituting these into the integrals above and making use
of the integrals

[ s T T sndn= . o

{‘—C‘!I—lla(a'Y)K—lfa(aﬁ); B>v>0 86)
—a’Km(a‘y)I__[,g(aB); ¥y>B>0
end
u, (63) f T T B M)A =
E;]’ ) N
—aly{ar)K_yfaf); B>¥>0 -
{ | (67)°
aR(ay) I _1a(eB); v >8>0
equations (61) and (62) cen be written as
”3 i nr sin nrf—)f_m(nr Bz—-) K_”;(n‘n’%{'); 21>2>0
’ ) (68)
S sin (nrvi') K_m<n.1r f-) I_I,;(nar%f); 2>250
v - .
1 +2( )1/a<_ " Enr cos (nr —) Im(nn-;z:) K_m(nrzp—i); z21>2>0
- L (69)7
9 _U_o 1/3 (E 2/3 ;?:‘—{‘nﬂ_ cos (n-‘-;v:) K,“<nr-:—c) I_”,(nr-':—:).: Z> 21>0
i‘: £3% 008 npp—— 03 rr—e ™ * (73)

1
I(2)=—73 e‘—E— .88 2@ (70)
v2
.(Z)z\/— “—I— .88 2w (71)
and the simple summations
- . _ sin rx -
ée S RE T =5 osh ¢ —2 cos 77 - (72)

=1 2 cosh a—2 cos ¥

one can write equations (68) and (69) for large values of z
and z; as

. v
smwx —

2\ 2 z,\"V8 T ]
2( ) a) Shf(z—zl)_ ,U_r e zl—,m.

cosS «m
] Q

(74)

1 Equation (87) It from reference 34; equatton (88) Is obtained by differentistion of equation (67} with respect to v.

1 Flgures 5, &, and 7 were calealated from this equation for s=0, for the cases £, 20,
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cos ——e"’“"l”’

_ ) 2>
‘ﬂ’(z—'ﬁ) cosir_i’_o' B>ae

1/
1+ (21) )
v (75)
cos ri—-e ra-din,

‘<21>m cosh WE—21 1r(_z )

Eliminate » between equations (74) and (75) for 2, >z«
2 (2/27)”66_'('_'1”'0 2
LSl

_ Gz | Gled™ '
2(32,/2) " sinh [x(z2 —2,)/v,) 2 sinh [r(z~z;)/v,,]

Gy 2 >2>o

To

(76)

and for 2>2,—» simply replace z by #—1 and z—z by
£ in equation (76). Thus the lines of constant M ach
numbcr are ellipses with centers on y==0, with ratio of semi-

axes equal to . _
(321/2)2=+/T :M—,,’- o N

which is precisely the solution given by the linearized
subsonic theory (see appendix B).

Now, in the notation of the present paper,
2—z) 2
e i ST

and since §— £, is small on the wedge and since

Cr=—2(¢—¢.)

one can write

T(z—zt)__g?' 5# “_
e e et
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Hence,

M_%’E(_ E"“)s‘ll’{[l—-% L

3

Te

so, approximately,

r(z-—z:) _( E yaf =T Cpy1—31.2 —M i

Do 2 2,2, (78)

Similarly, for large values of z and 2 it follows that

1/8
(—-— ~1; 2,2, —» for z—z; small

Substituting equations (78) and (79) into equation (16), one

gets the exact linearized subsonic solution for constant-
velocity lines (see appendix B). Therefore on the wedge
(y=0), from equations (76), (78), and (79), one has approxi-
mately for large values of z and 2

e —=k '
N R
Solving this for 8’,,,
_Eu__-— Iog‘- Sk

or
—24 z
Co= lo
vl oz
which is precisely the linearized subs'onic solution for flow
past a wedge (see appendix B). Thus Cole’s solution far

away from M,=1 tends exactly to the linearized subsonic
solution,

(80)

APPENDIX B
LINEARIZED SUBSONIC AND SUPERSONIC FLOW PAST WEDGE AND CIRCULAR-ARC SECTIONS

LINEARIZED SUBSONIC FLOW PAST A WEDGE

Let the wedge center line be on y=0, with the leading
edge at =0 and the shoulder at z=¢. Then the incom-
pressible-flow problem is o find an analytic function u—iv

such that v=0 on y=0 except for 0<z<c where v=U8

and ¥—ip=0 at infinity. Such & function s
zfe

u—gu—z 108, Gy 81)

where z=z-+1iy and U ig the free-stream velocity. Thus on

y=0,
—2u —26

0,,= - log z/c

—(z/c)

Using the Prandtl-Glauert transformation, for linearized
subsonic flow

(82)

O Oy, —2¢ z/e
vy 7 SN v 7 W

(83)

or in transonic similarity notation

~ -2 z/c
e 1 ;
o= = B Tl

(84)
For the incompressible case the lines of constant pressure
in the fluid will be where

zfe
{zfc)—1

but these are circles with centers at

==Constant

—wCy ) N
et -

and radii

In the Prandtl-Glauert transformation the y distance is
stretched by the factor v/1—A4,? as is the pressure coeffi-

(79) -
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cient so the lines of constant pressure (and hence density)

are ellipses with ratio of axes equal to y1I—M_,7 given by
the equation

: y
![1/21-‘1—_%{-’ sinh (xC,/1—21_2 /25)]+
e.—c,ﬁ—x.z[u 2
J"+2 sinh (= C,y1—AL_%[26) | =1 (86)
1/sinh (x 0,/ 1—21_%/26)

LINEARIZED SUPERSONIC FLOW PAST A WEDGE

From the Ackeret theory the pressure coefficient in super-
gonic flow is proportional to the slope and for the wedge
yields simply
24

[ L A—" - 87
’ “fm . (, )
ar R
Cpm—r= (88)
1 Ea .

LINEARIZED SUBSONIC FLOW PAST A CIRCULAR-ARC SECTION

For the circular-arc section, the slope of the surface
varies almost Hnearly with distance from the zero-slope
point along the axis of the profile. For the section shown
in figure 1 then, with the center line on y==0, the leading
edge at =0, and the zero-slope peint at z=e, the incom-
pressible-flow problem is again to find an analytic function
u—iv such that on y=0, 1=0 except for 0<x<e where

p=20 i(1 —E) where t is the half thickness at x=¢ and 4(t/e) \ T
¢ ¢ Cy = ( ) (95)
u—ir=0 at infinity. Such a function is VM j—1 ¢
or
u—iv=—20 L . o =i(1—5) 96
u—ip= [( 1)1 0% 27T /c) T ] {89) e . (96)
APPENDIX C
TRANSONIC SHOCK POLAR
The equation of the shock polar in the hodograph plane is | Letting
z ot w=(r+1) g;l
e T - (100)
02:([. _i)ﬂ Ej_l_ U % (gl) . U’=(‘Y+ 1) &255
C'y+1a* ot oue.then has S
200" P=(u'—u' (¥ +ua") (101}

where U is the velocity ahead of the shock and % and 7 ere
velocity components bebind the shock parallel and perpen-
dicular to the direction of U, respectively. M\laking the
transonic approximation in this equation, let

I

u=a*+u
F

ll

(98)
U =a*+u,,

Substituting into equation (97), neglecting higher powers of
the perturbation velocities, one obtains

'7+1 (u _u)z( +_T')

(99)

755
On the wedge (y=0,0<x<¢), then

ot (1) ] o0

so the linearized subsonic. solution is

Cr=— =5 —@

[( =) loe —x{cn ]

The minimum , is obtained by differentiation, and one
finds that i,

or

(92)

dafey "
at the point where log, T a:(/: 7% :z:_/c and numerically the
solution of this transcendental equation is
xfe=0.783 (93)
- which gives
_ —1.626(c)
Comn=" 77 (04)

LINEARIZED SUPERSONIC FLOW PAST A CIRGULAR-ARC SECTION

The result here is again simple from the Ackeret theory:

The wedge angle for detachment of the shock will now
be given by the maximum value of »’. This is éasily seen

to occur at u =-—%u, gw—mg Dmar =§~,3 u 3, Since
within the transonic appmnmatxon
=(y+1)8
on the wedge and :
u, ~ 3 — (102)
this implies that
(r+ lmes g (P 1 (103)

[( ) log, _a:[c___l_ l:l (9 lj

or, viewed in another light, this implies that the reduced
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attachment Mach number is

(104)

=19

Similarly, the wedge angle for obtaining exactly sonic ve-
locity behind the shock is given by the value of v where

u'=0. Thisis v’=v71-§ (u,”)¥2. Again using equation (102),

this can be written

(r+1)6,= (M f—1pn (105)

and, viewed in another Iight, this implies that the reduced

Mach number for which sonic velocity is obtained behind,
the shock on a wedge is

Moy=1 .

ol RSV

(106}

APPENDIX D

VARIATION OF REDUCED MACH NUMBER AT WHICH SONIC VELOCITY OCCURS BEHIND AN OBLIQUE SHOCK WITH
FLOW.DEFLECTION ANGLE

The oblique-shock relations can be written

1+*——M, . s
Y — — Mo B (107)
+M,? sin? B——— 1472 ]l[l sin’g
.AI), sin® 5—1 )
tan 8=2 cot BMI’('y—}-cos 28) 2 (108)

where

M, Mach number ahead of shock

M; Mach number behind shock

g shock-wave angle

¢ flow deflection angle

For M,=1, eliminating g hetween these two equations yields

v+ 1
o) My—1 =T 1)
T I—F( Ly

tan == (109)

1+ o)

where

J(My)=

ﬂfl —1

—1+y 142 01 —1)+(M—' l)

Esxpinding the right-hand side in powers of M,2—1 (assumed
small}, one obtains

1+10'r
e e=v+... | aio)

Reverting this series and letting f~tan ¢ and Af==M
one finds

g Mg — 13|:
[(7—1-1 R

For v==14,

.. 2__ 1y3/2
(v+1) tan 6=@—I—‘?‘,,—1)-—[1

*8

1410y _ 1410y 92;3_{_0(94 ] (111)

12( +1)

1410y

=1.176
Ifs
12( ytl

APPENDIX E

VARIATION OF REDUCED MACH NUMBER BEHIND A PRANDTL-MEYER EXPANSION FROM M=1 THROUGH AN

ANGLE ¢, WITH ¢

The exact relation here is

_ jrt1 - fr—1
o= \/——“" \/m

Expanding the right-hand side in terms of VM ei—1, using

& x?

z
tan~! z=z ____|_ +
one obtains

(r+ 10=2 (Mg — 1y 35 S 1S 2l = 17

nw] 1+__

_rt+1 . ok
h="g [1 7+1 ]

- (113)

where

'V‘ﬂlpuz—' l—iﬁn“\/M,y’;- 1 . (T12) .

" Reverting this series, the first few terms are

Mo 1= 3(7; Dol (1423041, m+0(e4")}

(114)

5(7+1)

Therefore,

E Mp_u —1 .
N CER VoL

=(§)m {1 By + 1)|:3(~Hr 1)]”8 "E”“LO(W)} (118)

For y=14,

4y [3(+HUTA . oan
1) J=tom
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