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STRESSES IN A TWO-BAY NONCIRCULAR CYLINDER

By GEORGE E. GIUFFITH

UNDER TRANSVERSE LOADS

SUM IIARY

.-l method, taking into account the ejects of $exibility and
bawd on a general eighth-der diJerentiul equation, is pre-
Mntedforjinding the Wrewesin a two-bay, nontircular cylinder
the crow sectiuri of which can be composed of circular arm.
Numerical example~ are gicen jor two case~of ring $exit-ility
-for a cy[inder of doubly ~mmetrical (esaential[yelliptic) cromr
Hwtiun, wb@ted to concentmted radial, moment, and ta.n-
gentiat load~. Tht’ results parallel those a[ready obtained jor
sML9 un”thfi”rcu[arrings.

INTRODUCTION

In airplane fuse~ages with flexible rings subjected to con-
centrated loads, the stresses in the neighborhood of the load
differ markedly from those gi~en by the simple engineering
formuhs, and more rdned methods, which take into account
the interaction of rings and shell, are needed to predict. the
stresses accurately. The bt paper on this subject, pub-
lished in May 19!4, was that of V&not, Combs, and Ensrud
(reference l), who treat ed the circular cylinder subjected ta
concentrated loads but neglected the effect of the extensional
deformations of the shell. Hoff (reference 2) gave a more
complete analysis, including the effects of many rings, for
the case of symmetric transverse loads. The resuIts ~ere
corroborated expwimentslly by Kuhn, Duberg, and GrifEth
(reference 3), who also extended the theory to include con-
cent rat ed moment and tangential loads. Later, D uberg and
Kempner (references 4 and 5) reduced the labor of computa-
tion by giving the results in the form of charts and showed
that for practical purposes it w-as usually WYicient to con-
sider only a region within 2 bay lengths of the load. Further
investigate ions considered additional effects, heretofore neg-
lected, such as the shearing and axial deformation of the rings
(references 6 to S), bending rigidity of stringers (references
8 and 9), shear carried by the stringe= (reference 7), and
eccentricity of ring and sheet (references 6, 7, 8, and 10).

Ml irmestigations referred to dealt exclusively with rein-
forced monocoque cylinders of circular cross section. The
present report gives an analysis for a two-bay noncircuIar
cylinder, encIosed between ring bulkheads rigid in their
planes, with the middle, fle.tible ring subjected to concen-
trated anti distributed loads. The fundamental assumptions
used in the analysis are the same as those previously used for
circular cvlindcm.

llany noncircular fuselages can be closely approximated
by usi& circular sections ;f different ratil ‘an; joining the
sections at points of tangency. The rings discussed herein
are of this form. Associated with each ring sect-ion is a two-
bay paneI (fig. 1), any number of similar panels composing
the complete two-bay cylinder. The solution for the strews
in such a structure is based on the development of a general
eighth-order difTerent.ial squat ion, -written in terms of the
moment at the skin center Iine. A separate differential
equation of the same general form applies to each curved
paneI in the structure. Application of the correct boundary
conditions results in sets of simultaneous equations which
yieId the unknown constants in the moment eqmssion.

Although a two-bay cyIinder does not conform to the usual
fuselage structure, it is believed, on the basis of comparisons
with some of the viork previously mentioned, that the results
obtained are indicative of those found in more compIicat ed
structures. in accordance with the findings of prior investi-
gations, shear and axial deformations of the loaded ring are
neglected, but eccentricity of ring and sheet is included.

The numerical exampks deal with a doubly symmetrical,
two-bay cyliider of nearly elliptic cross section (fig. 2), sub-
ject ed to concentrate ed loads.
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FII;UHE2–’lWo-bsY cYIinder,compwd of four cirmlar anelsjwith doubly symmctrfcnl
ncmcirmiar~ usedfornumericflcrampk.
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shear moduIus in sheet, pounds per square inch
axial force acting on sheet, powds
moment of inertia of ring section, inches t
length of bay, inches
bending moment at sheet center line, inch-pounds
applied concentrated moment, inch-pounds
bending moment about neut.raI axis of ring, inch.

pounds
applied concentrated radial load, pounds
radius to sheet center line of circular panel, inches
radii of circular panels composing cylinder, inches
applied concc.ntrated ttmgential Ioad, pounds
shear force, pounds
complex roots of audiary tilgebraic equation (used

when real roots also occur)
compIex roota of auxiIiary algebraic equation (used

when no reaI roots occur)
eccentricity of ring ancl sheet (distance between

.shcct center line and neutral axis of ring), inches
distributed radial Ioad acting on sheet, pounds per

inch
distributed axial load acting on shcetj pounds per

inch
. ,—

real roots of auxiliary algclxaic equation
distributed moment acting on sheet, inch-pounds

per inch
normaI force in stringers, pounds pm inch
ahcar flow in sheet, pounds per inch
distance in circumferent.iaI direction, inches
thickness of Sheet, inc.hm
thickness of all material carrying bending stresses

in panel if uniformly spread around circum-
ference, inches

displacement. of sheet in axial clirmtion, inches

‘o displacement of shee~ iu circumferential direction,
inches

h , displacement of shccL in circumferential direction
at ring, inches

w “displacement of shed or ring in radial direction,-.
inches

x distance in axial direction mm?urcd from loadMI
ring, inches

7 shear strain in sheet
e, normal strain in sheet in circumferential direction
e= normal strain in sheet in z-direction
e angular distance, degrees or radians
u stringer normal stress, pounds per square inch
fl~ - normal stress in sheet in circumferential direction,

~ pounds per square inch
r :shear stress in sheet, pounds per square inch

GENERAL DIFFERENTIAL EQUATION

TLLCbasic cIement of the present analysis is a two-buy
pmel, as shown in figure 1, composed of sheet, longitudim~l
stiffeners or stringeq and transverse stiffening ring sections
of constant radius. Distributed or concentrated loads arc
applied in the plane of the middle or flcxibla ring. J3~
joining several panek at points of tangency, many t,wo-IJIIy
cylinders of various cross-sectional shapes can be tichimwl.

In actutd practice the sheet covering is outside Lhe rin&w,
and this eccentricity of shccL and ring is henceforth LAW
into account. For convenimm t-ho monmnt conaidcrcd is
the moment which exists at the sheet center line rather than
at the neutral axis of the ring. From this momenL tIw
bending moment in the ring is easily found.

The underlying assumptions used in the analysis arc RS
foIIows:

(1) The shear stress, carried by W sheet alone, mny vary
in the circumfcre.ntial dircc~iou IJULremains constant in th{’
~sial directiou.

(2) The rnatcriaI in the cross section of the panel (shccL
and stringers) capable of carrying normal stresses due to
bending of the panel is assumed spread around the circum-
fmence in a fictitious ahect of thickness t’.

(3) The loaded ring lMS no torsional stiflncss or bendi] (g
stiffness out of its pIa.ne.

(4) The end ring supports are rcstrainccl from deforming
in their planes but arc free to warp out of their planes,

Under them assumptions, for any panel with constant
geometrical properties, a general differential equation is
developed for the moment at the sheet center line, All
forces, strcaaes, and displacements in tJM panel may k
obtained from that moment. The gcmeral differential equa-
tion (see the appendix for development) is

(1)



STRESSES IN A ‘IWO-BAY NONCIRCULAR

[ ( -%+%+IF ~f+(l–3Rj$&3 B

tle.4
R–( )]

1–;+;2 f +

~ d%
{

3B)$+
(

6eiA d3m
~+(2– )

&611+~ ~—

‘[+%+:)1%}
}Vhen the ratio e/R, a measure of the eccentricity of the

(; ,Igring and sheet, is very amal~ —~ it can be neglected;

equation (I) then contains only the two nondimensional
parameters A and ~, which are re~atecl to the geometry and

~ t’Rfi EfR’
physical properties of the panel: =~ and B=~.

GLL-
‘NLe ratio A/B is an index of the orer-all flexibility of the
structure. When this ratio is rery small the ring section is
rather rigid. A large value of .4/n (500, for example) indi-
ca.tm that the ring section is somewhat flexible, so that. radicaI
departures of the stress distribut.ioos from the elementary
values result. In actual practice the parameter .B nmies
over a small range (between about 10 and 80), whereas A
is usually much larger and may be as great as 2X 107, or
even more; consequently, flexibility may be thought of in
twins of parameter .4 alone. Values of A less than about
2~J usually indicafe relatively inflexible ringa, and increasing
Vidues indicate increasing ring flexibility.

The right-hand side of equation (1), F(6), contains terms
resulting from the application of distributed Ioads; if onIy
concentrated loads are present- F(t?) becomes zero.

TABLE I.—ROOTS OF AUXILIARY ALGEBRAIC EQUATIOX

CYLIX~ER UNDER TR.WSY?ZR8E LOADS 813

SOLUTION OF GENERAL DIFFERENTIAL EQUATION

The solution of equation (1) depends upon the nature of
the roots of the au.xihary algebraic equation associated with
the differential equation. Of the required eight roots of the
algebraic equation, four may be reaI and four complex, or
all eight may be complex. (For the speciaI case of no
eccentricity of ring and sheet, sets of roots for several com-
binations of parameters A and B are given in table 1.)

If there are four real roots &k,, +ka and four complex
roots +(a+b~], the solution for the bendii moment is —

Al= CIe’16+ QUe-’lfi+ Cn,e%e+ CI,.e-~+
~@@~MM+Cme@-MIC+ &Ie-(c+Mld+

~wIIe- ~-~~ @+Part.icular sohlt ion (2]

vrhlch can be written in real form as

31= c’, Sinh I@+ c, Cosh k,t?+ c, sinh k#+ C.. Cosh kfi+
C6 sinh a6 cos b6+ C6 sinh at3sin M+ C, cosh a8 sin bO+
C, cosh a~ COS68+g~(8) (3)

If there are four pairs of complex roots + (Cl+dli) and
& (cz+dai), the bending moment is

ilf= cle (CI+%tj @+ clle (C1-%i) @+ clne – (cl+%:) @+ cl@-- (CX+fl t +

Cve W%’) f+ ~vI~%-4i)t +emIe-@s~40@+ ~nne-f%l%t}l+

Particular Solution (4)

which, written in real form, becomes

31= Cl sinh c,8 cos dl@+ Cl sinh c,6 sin did+ Ci cosh C16sin d,~+
C, cosh c,e cos d,a+ C, sinh @ cos d#+ C, sinh C,e sindti+
C’,cosh C# sin d#+ C, cosh Cl@cos d#+jJ(8) (5)

Since the particular solutions gJ(oj and j~(e) depend upon
the form of F(8), no formal solutions are gi-ien here. Further

WHEN u=O FOR SEYER~L CO1lBIX~TIOXS OF .4 AXD B

[
.4=’$; B=%]

.
: ‘..
,.

: ,4 “8..B m a I m m Root symbd.s “1
\ ~

I

*1. 250205
~

+0. 956180 1

I I

+0. 743842 *O. 571042 * kl
lot +7. 745793 & 13.416404 *21. 213’203 *33. 403439 + h

~ (O. 612234*1. 467988i) & (O. 475554A L 297397i) & (LL371310 & L 189335tJ + (o. 290s65 ● L L1314A3 * (a+b~~

+2. 027436 + L 6136S9 +1. 326187 + L 092601 HI
lCP +7. 7&229

I
* 13.416370 +21. 213202 +32. 403439 + k~

~ + (o. 547534* L 3740!)00& (O. 972538&1. 99890123 ~ (O. 798821&L 71%25~
i–

+ (O. 661073 ~ L 52 1962P *(a*bi)

\ +3. 157270 *2. 523294 *a 117014 \ ~ L 795392 MI
I(Y *7. 728363 “ i ~13. 416028 *2L 213188 I * 32. 403+39 ~kz

+(1. 447531A2. 818390i) ] *(L 23639*+2. 38895113 & (L 052130&2 085072iI~ & (O. 896469*1. S4578S13 ~fa~tn~

t
+5. 016203 j +3. 835266

I
+3- 230542

I
+2. 769566 +kl

1P +7. 539604

I
+13.412609 *2L 213049 & 32.403431 +ki

+ (2. 058771&4. 030199t~ ~ (L 837706~3. 417722~3 & (L 595017~2. 959562~ ~ & (1. 37~74&2, 593gg9~ +(a+bi)
,

J
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remarks concerning the solution of equation (I) are confined
to tho soIution in reaI form, either equation (3) or equation
(5).

13quation (3] or equation (5) expresses the moment in any
particular panel where A, B, and R are constant; such a
solution exists for each panel constituting the structure to
be analyzed. For the case of a circular cylinder, solution
(3) or (5) is the same as the energy solutions of references
2 and 3 for a simiIar two-bay structure.

RELATION BETWEEN THE MOMENT M AND OTHER FORCES
AND DISPLACEMENTS

All forces and displacements in the paneI may be expressed
in terms of the moment given by equation (3) or (5) and
deri ratives of this moment. & previously noted, this

moment is the moment at tho sheet center Ike, and with the

exception of the ring bending moment alI other forces and

dispIac.ements are those at the center line of the sheet. When

no eccentricity is invoIved t.hc sheet center line coincides with

the neutral axis of the ring. Of major interest in a structure
such as the one described herein me the forces, stresses

(obtainable from the forces), and displacement listed in
the following paragraphs, together with their mathematical
expressions which are readily obtained in general form in the
appendix. These expressions become considerably simpli-
fied in the absence of distributed loads. (For positive sign
convention of the displacements and forces see figs. 1 and
3, respectively.)

FIGUREtL-Free.body dfngrem of ring sectionshowing posftire dfrwtfom of forces

The eight quantities Iist.ed in this paragraph are associated
with the boundary conditions (discussed in th next section).
These quantities-the forces and displacements t-it the
floxiblc ring, the shear flow at the panel edge, find the axial
displacement between the flexibIe ancl rigid rings at the pmel
edge-are:

(1) Bending moment, 31
(2) Shear force

~, ~ dilf
‘R do ‘m

COMMITTEE FOR AERONAUTICS

(3) AxiHl force

11=–$ ~+f?j +$ --

(4) Sheet shear flow

{ ‘- [ “ ‘(”+%31}1 dill $M
q=~Z ~+ d@ R’ h+z+z

(5) Axial displacement

Lz

{
d’~~ d’h~ ~2

‘== dt?2+ de4 [%+%++(%+$31
(6) Tangential displacement

La

{ [ )11=f~f–R2 ;;+$$+; (~+~
6R4Et’ dfl + dti

(7) Radial displacement

_L d~hl d4ilI
{– –-R2E+$Y+w%+$m+‘==t d02 + do’

LZ

{

d4J~ d6A~

[

dab. ~ 1 dsna d%
6@EtI ~+ d~ (—+—)]}+‘–f12 @+d@+~ dt?q dti

~ (fi~+~ $$eRf–e ~ )

(8) Rotational displacements

dw O.
{

d8Jl dbfi~

– -R,[h+g+g+~+~=–&~ %+2 d~ ‘~

H ‘)I}+G7%%+~&+2 d~+~~
[d~h d4h dgf d~f 1 d2m

2$$+.$#.P ~+m+w+~+z(w+

2%+%)I}+M*+%$’R%’
The shear and normal stresses in the two supporting pare%

follow. TIM shear stress r in the sheet is given by

{ –-’’2P+%+K”+%91“)Idill d3ill
‘=~ @ de’

The stringer normal stress a is

{
.=:~~ ‘~p~ ~ ‘~; R2

[ %+%+;(%+%)]) (T)

The ring bending moment--thtit is, t.ho bending moment
about the neutral axis of the rnng-is

e d2hl
~&=i!i+~ doz

—–eR~–e %
(8)

For no eccentricity the moment at the sheet center line be-
comes the ring bending moment.
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BOUNDARY CONDITIONS

Inasmuch as a general differential equation of the form of
equation (1) applies for each of the panels composing a
given structure, a like number of bending-moment solutions
of the form of equation (3) or (5) results. For the deter-
mination of the unknown coefficients appearing in these
solutions a sufficient number of boundary eonditiona must
be found, one for each coefficient. Regardless of the number
of panels, the boundary conditions involre only the eight
expressions listed in the pretious section, consisting of the
forces and displacements which occur at the sheet center
line.

Although, for a partictiar problem, the application of
these expressions depends upon the structure to be analyzed
and the loading, all the boundary conditions may be
summarized in one general statement: No change in
displacement or forces can occur across a boundary unless a
concentrated force is applied at the boundary, in which case
the change in forces must equal the appliwf force. Any
concentrated load in the plane of the ring can be resolwd into
a radial or shearing force, a tangential or normal force, and
a moment. Then when a concentrated load is applied, the
boundary conditions require that. the ditlerence in shear forces
of the adjacent panels be equiralent to the applied radial
load, the difference in axial forces be equimlent to the
a ppiied tangential [oad, and the difference in moments equal
the applied moment.. In the absence of any concentrated
loads, all the forces and clisplacements must be continuous;
that is, alI eight expressions in one panel must equal the
rcmresponding expressions in the adjacent panel. If a con-
centrated load is applied within a panel, it is necessary in
the analysis to consider the point of application of the load
M a boundary and, hence, to consider the panel as two
panels, one on either side of the load.

Although terms associated with distributed ioads appear
in the expressions for the boundary conditions, distributed
loads affect the boundary conditions only indirectly inas-
much as they affect the displacements.

Further discussion of boundary conditions, as they apply
to one of the numerical examples, is given in the foIIowing
section.

NUMERICAL EXAMPLES

TIM numerical examples deal with two geometrically
similar cylinders constructed of four panels forming a
doubly symmetrical, essentially elliptic cross section (fig. 2),
with the flexible ring subjected to concentrated radial,
moment, and tangential Ioads at an intersection with the
major axis. Cylimder 1 has a rery stiff loaded ring and
cyliuder 2, a relat i rely tlexible loaded ring. For each cylinder
the sheet thickness is constant, there is no eccentricity of
ring and sheet, and the radius RI of the top and bottom
panels is one-third the radius R, of the middle panels. The
moment of inertia of each ring is constant, but because of
the change in radius, the rings chmge in relative stfineas
from one sect ion to another as indicated by the change in
.4/B giren in table II. As seen in figure 4, the top panel,

CYLINDER UNDER TRANWEBSE LOADS 815

TABLE 11.—NUMERICAL V.4LUES USED IN COMPUTATIONS
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2.50

+0.236301
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*(O.1O9747 & 1.019532fl

+1.061451
+7.745880

+(0.521510 * 1.35449313

-H
20

92.59
*(2.509702 A 0.6216650

T *(O.915513*2.1O19WJ

*5.5344 i5
20 7500.00
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~7.395633
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FIGGWc-c~ Onddewofhalf d Iowied ringnwi flx nnmdd ●sampk.

section 1, joins the middle ~anel, section 2, at 0=00”, and
the midili panel job th~ boitosn pane’1, section 3, at.
l?= 120°. (These dirnensio~ were also used in constructing
fig.~.)

Comparisons of the calculated distributions of bending
moment, shear fome, and axial for~ in the ring and of
shear flow in the sheet vit.h the distributions giren by the
elementary theory are shown in figures 5 to 10. The neces-
sary numerical values used in the calculations are given in
tabks 11 and 111. For ease in reading figures 5 to 10, the
abscissa, although it actually represents dist a.nce along the
perimeter, is giren in degrees measured from the rert ical
asis of symmetry (as shown in fig. 4). Thus, since the ring
perimeter of section 2 (fig. 4) is three times that of section 1
or ~~tion ~, ~-hema$ the an~ar d~tan~ for all t]lree

sections is the same (600), the distance in figures 5 to 10
along the abscissa from 120° to 60° (correspondhqg to
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c,

C1O
CI1

cl!
G
C14

f%

G

C17

cm

C19

Gu

C:l

cm
c.
C24

TABLE 111.—VALUESOF COEFFICIENTS ~..-—. .......... . . .

Cylinder 1

Radial

--------------
0.670031-01

--------------
. 125895-05

-------- -------
—. 525229

------- . . ..—
. 282018-01

. 171565-01

. 303490-01
—. 264559 –10

.889303

.329176 -01
—. 400646

.192013

. 720834-01

-.119460
.315057

—. 898224-08
–. 711275432
—. 64034s-01
—. 531867
—. 254629

. 194401+1

Load

Moment

0.147507
--——--.—— . . . .

.275041 -04
--------------

—. 136156
---------- —.

—.-165618
-- —------ -----

.188166
—. 121785

. 116591–10
–. 508263-01.
—. 296012

.373871 -01
—.” 184225

.274929
,.. .

—. 164389--01
363960

:174922-09
—. 259599

. 207820-02
131177-01

—:304436
—.242335-01

Tangential

0.249767
-_ -.=----__--.=---

–.157406--03
------------ b--

.754809
--------- -------

. 236338-03
--- A--------- _-

.202467
—.111398
—.116591–10

.851830

.472934

.2’30987
—. 160403
—.400188-01

,..

174960
:224540
. 301271-07

—.364881
. 128917+01
. 506058-01

–.328941
—.613555+3

O_R NLJh113RICAL EXAh!PLES,
b . . ,. ... . . . . ..=

C.vlinder2

2. ...”.+.-

Radial
: :.
.. ,

------- -------
* - c1 949137-04
--------------

.+-L 284700--O3
---------—---
..—. 197121-02
-----F ------- -

-. 3549~42

.—. 657213--08
—. 534558--01

.= .397040 -09
—. 479259
–. 122989-01

.829422 -03
-.117551-02

. 131739-01
<..

–.119054+5
,.v.202194+01

. 342801-04

. 216297-i-01
.—.49750941
—. 226239-01

. 375148-01

.632861-01

Load

bfomcnt

-0.860733-03
------- -------

. 29273143
--------------

—.148018-01
------------ —

—. 521539-02
--------------

. 140829-06

.270768
—. 161540-08
—. 380612+01
—. 361474-4)1
= 4912964)1

471184-01
:392728-1

.778086 -04
–. 711069+01

.80487744

. 882602-FO1
—. 1421’34
–. 709217-01

.124468

.167720

jTh? fdIowfng umventkm la med to fndlmb muIt!@fattion factors: +OI-XIO; +OZ-X1G%-O1-XIH; -02- XIO_%andsoforth.

section 2) represents three times the distance from 180°
to 120° or from 60° to 0° (corresponrling to sections 1 and 3).

For the numcrical examples, the labor of computation
nc!cl’ssmy to calculate the bending moment and other
desired quantities may be shortened somewhat through cog-
nimmce that antisymmetrical loading produces an ant.i-
syrnrnetrical momc.nt distribution about th~ vcrtica] axis
md symmetrical loading yields a symmetrical distribution.
IIence, ordy half the cylinder at the ring need be considered
(fig. 4). The procedure used in obtaining the numerical
results is illustrated by taking as an examplc cyhnder 2
subjeckd to a concentrated radial load at 0= 180°. The
discussion to follow is confined to cylinder 2 so loaded.

D~ERENTIALEQUATIONS AND SOLUTIONS

III the top panel, section 1 (fig. 4), the diflercntial equation is

d8A~ 14 d6J,f 37 ~~ 2(3 $~i 900000
——— .—

dl!7 3 dP ‘~ dtP ‘~ “d@
729 ill=o

The resulting auxiliary algebraic equation yields the eight

compIex roots (see table II):

... =
.-”. —-.. _

Tangent ial

0.119301-03
----------- ---

—, 37151844
--------------

.221238 -02
------------ --

. 484959-03
--------- ..----

—. 161423-07
—. 6!)7692-01

. 710774–09
638771

: 486805–02
. 702!)0S -02

—. 668234--02
—. 527300 –02

—. 192398 q-l
.872951

16813944
—: 112279+01

. 194136–01

.37073 I -02
—. 101012-01
—, 341024-01

—. -.

& (C,+dli) = + (2.509792 &O.621065i)

+(c~~~~= + (0.915513 &2.101999i)

Since symmetrical loading is applied to the structure, the
moment iu this section is given by only the symmetric terms:

L&., ,=C2 sinh c,8 sin d,fl+ Cd cosh c,d cos dlfl+

C8 sinh c,13sin d#+ G cosh c.# cos d~e (9)

In the middle panel, section 2, tho differential equation is

The auxiliary algebraic equation has the cigflt roots (SCC
table 11):

&k,= &5.534415

+k,=+7.395633

+ (a+bi)= &(2.181206 +4.291882il
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The moment in section 2 is Lhen

M&,- – ~,’ Shh k,(?+ c’,; cosh k,9+ C,,’ SiIlh kfi +

(’u’ cosh kfl+ Cla sinh a8 cos bt?+

[;, sinh m?sin &9+CUcoshad sin M+

CIGcosh ad cos btl

but since k# and k#, when 6=60° and 6=120°, are large
enough so that their respective hyperbolic sines and cosines
are of almost equal magnitude, it. is better for computational
purposes to rewrite the moment in section 2 as

.l[e,= C#+CL~-k18+ C1lek*+ C&-~d+

C,3 sinh tie cm be+ (?14sinh ad sin be+

Clbcosh ad sin bt?+C’16cosh ad cos b8 (10)

For the bottom panel, section 3, the differential equation
is the same as for the top panel and the au-xiliary algebraic
equation has the same roots. Hence, the moment ia given by

AIA&t= c,+sinh C,Ocos d,O+ C,{ ain.hCI@ Sk dlo+

dl; cosh c,d sin dlo + CM’cosh c,6 cos d,o +

C*, sinh C,8 COS d,e + & sinh ca6sin d,ti +

(2Ucosh c,d sin d# +C*4coah cZ8cos d#

\
\ \

o .

-.2

(b)
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e,deg

g, :%j’&fPz
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Howeverj for @=120° and 8=180° the hyperbolic sines and
cosines, respectively, of c19 me ahnost identical, and it is
advisab~e for computational purposes to revrrite the moment
in the bottom panel in the form

lf~, a= C~iecl~cos dltl +Cue “16 cos dltl +

Cl,$cloSiIl (i16 +Cw41@ Sill dle +

C,, SiRh c,8 COS d,O+Cfi sinh WI sin d,t) +

CM cosh C,6 SiIl d,9 +~1, COSh C,8 COS d.~ (11)

BOUNDARY COSDITIOXS

Equations (9] to (11) contain twenty unknown constants;
hence, twen@- boundary conditions are needed. No bound-
ary conditions are found at t?= O, since continuity of all
forces and displacements ia already satisfied as a consequence
of taliii advantage of the symmetry of the structure and
loading. The boundary conditions to be used in the calcu-
lationa must be found at 8=60°, t9= 120°, and 19=180°.

Eight of the boundary conditions are supplied at t9=60°,
where, in the absence of any concentrated loads, all eight
expressions in section 1 must equal the corresponding expres-
sions in section 2. That is, the moment, shear force, dis-
placements, and so forth must be continuous. For example,



820 REPORT 1097—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

the first condition requires continuity of the moments or

Ilf&. ,–il!fti,m,=o

which can be written

‘1’he other seven boundary conditions appearing at 0=60°
are written in a similar manner, The same continuity of
the forces and displacements must esist at 6=120°. Thus
sixteen boundary conditions are provided, with the four
remaining conditions to bc found at t?= 180°.

For an applied radial load, the sum of the shearing forces
on either side of the cut must equal the applied ahearing
load P. Because of the symmetry of the structure and load-
ing, haIf of this load is carried by section 3 and the other
half of the load is carried by the panel to the Ieft, which
need not be considered. Furthermore, the. shear flow in the
sheet is O at 8=180°, there can be no tangential or sidewise
displacement at 0= 180°, and there are no angular displace-
ments caused by a concentrated radid load at this point.
Ilence, the four boundary conditions needed maybe summed
up as foIIows:

v,’p=o.5P (12a)

q,’@=o (12b)

–o~ol’@— (12C)

(’%+*)lW=O (12d)

Equations (12a)
substitution to

to (12d) can be reducccl by prop~~r

dM(–)de MW
=0.5PR1

~3~,f

() 7P”- ,gfp
=–0.5PR1

db~~

()z?- ,8*
=0.5PR1

dzh~

()
——
de’ ,~p

=–o.5PR,

For example, equation (12a) can be written
C,7ed’T(clcos dlr –d, sin dir)– C1~e-’m(c,cosd,m+d, sincz,r)+
C,9e”1”(c1sin dlr+dl cos cllr)– Cne_’’’=(c,sin dl~–dl cosd,~) +
(&(ca cosh C2Tcos &r–d, sinh C27sin d,r) +
C,Z(C2cosh c,m sin d,zr+d, sinh c,ir cos d,~) +
t’zg(C, SiDh C~?rSin d,~+dz COSh C*T COS &T) +

C,,(C2sinh c~r cos d~–d, cosh c,r sin &T)= 0,5PR1

The solution of the tweuty equations given by the boundary
conditions yields the values of the unknown coefficients Cz,
Ck, . . . Ck, C*, shown in table III. The bending moment
in the loaded ring at any angle 8 is then found by using
equation (9), (1O), or (11) with the appropriate coefficients.
For example, substituting cocfficionts Cl, to CM from tuldc
ITI into equation (11) for 6= 180° gives

ilf,~= – 0.119054x 10-51%’, (2.656444X 10’) (–0.372983) +
(– O.202194X 10’PRI)(0.376443X 10-’)(–0.372983] +
(0.342801X 10-4~Zl,)(2.650444)( 10’) (0.927839) +

“(0.216297X 10IPL?,)(0.376443 X10-’) (0.927839) +
(–O.497509X 10-’F’Z?,) (8.444906) (0.949098)+
(–O.226239X 10-’PL’,)(8.44490L3) (0.314983)+
(0.375148X 10-’PI?,)(8.901257) (0.314983) +
(0.532861 X10-’PR,)(8.901257) (0.049098)

=0.161390PEI

CONCLUDING REMARKS

The rcsults obtained from the numerical examples agrw
with those previously obtained for circular cylinders (see,
for example, references 2 and 3) in indicating thwt conccn-
tratd loads applied to flexible ringa produce strcwcs in the
rings and shelI considerably {Iifferent from thosa computwl
from an engineering analysis (wherein the ring is treated m
a free ring supported by the usual elementary torsion and
bending shears). Ring flexibility is essentially indicntcd I]y

_t’RO
()

the parameter – ~~ ; where A is cvcrywherc lcss t.hun

about 200 the cnghwering analpis is adequak, but if A
exceeds 200 such an anal}wis is inadcquato.

The main effects of flexibility arc to change. consideraldy
the distribution of stress and the magnitudca of the maximum
stresses. The change in maximum stresses iE indicatwl in
the foIIowing table, which gives the appro.ximatc ratios of
the absolute values of the maximum stress coeflicicnts for
cyhnder 2 (xl-206 near the load but 150,000 some disttincr
away) to the maximum stre9s coticicnts obtained from nn. .
engineering analysis:

\

+ - +

TYP#

CM c. c% Cx
bad

\

Radial O.b 4.8 1.0 ‘.4

Moment 1.0 47.6 8.4 6.s
Tangential .3 h4 .2 1.0

For much larger values of A—that is, for greater flesil)ility—
the ratios greater than unity would inc.rcaso considerably,
those less than unity would decrease somewhat, and tlw
ratios of unity would remain unchanged.

LANGLEY AERONAUTICALLABORATORY,
NATIONAL ADVISORYCOMMITTEE FOR AERONAUTIC.

LANGLEY FJEL~. VA., August 1, 1961.



APPENDIX

DEVELOPMENT OF GENERAL

Consider the two-bay panel with uniform geometrical
properties (fig. 1), loaded in the plane of the middle ring.
[n accordance with the assumption that the shear stress in
the sheet may vary circumferentially but remains constant
in the axial direction, a-n infinitesimal element of the sheet
is subject ta the stresses shown in figure 1.

Equilibrium in the r-direction requires that

Since
rt=q

mid

af=p

equation (AI) becomes

(M)

(A2)

integrating equation (AZ) vrith respect. to x gives

Elowerer, since the end ring supports are free to warp out
of their planes, p= O at z= L, and therefore

l’hP strain relation in the xdirection gives

au
z= “=lk’

so that

(A3)

Integrating equation (&l) with respect to z gives

“u=w+2+f’@
hut since, from symmetry of the structure
u=(I at x=O,

f,(g) = o
so that

‘=+(’’-%$.
The shear strain can be expressed as

and loading,

(A4)

(A5)

from which u can be ehninatcd and u can be found in terms
of q, Differentiating equation (A4) with respect to s and

DIFFERENTIAL EQUATION

substituting the result into equation (.%5) gi-res

Integrating with respect to z yields

~=&=-M’;’ :)%+”8)

but since the end ring supports are rigid in the-w planes,
v=O at x=L, and

Ls a’q
f3(s)=-& q+3Et, b.#——

so that

This displacement in the sheet at the ring, where z= O,
beeomes

(A6)

The relation between the strain in the sheet in the circum-
ferential direction and the deflections at the ring is

where by continuity w is the radiaI deflection of both ring .
and sheet. Since the strain q in the sheet is the strain at the
outermost fibers of the ring,

ebfE=—= ——
“ ; EI

Thus the radial deflection can be exp~ed as

(A7)

Differentiating equation (A6) and substituting the result into
equation (A7) yieIds

(A8)

The relation between the ring bending moment and the
radid deflection is given by (see, for example, reference 1I)

“’=-0%(%+”) (A9)

Performing the indicated differentiation of equation (All)
and substituting the resuh into equation (A9) eliminates w
and gives

[(

eR d2.3fR L d3q dq_—Ax.= ,(RE_1e12~ ~+~~n)–~ (~a-+~)+

(AIo)

821
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It is now convenient to find the relation between the shear
flow in the sheet and the moment at the sheet center Iine,
as well as to express the moment. at the ring center line in
terms of the moment at the sheet center Iine. Figure. 3
shows an infinitesimal segment of the loaded ring and the
positive directions of the forces. For the fit of the three
equations of equilibrium, taking moments about the origin
gives

–dM+RdH+R2hdt?+Rm d&+2Fq d6=0

Summation of the tangent id forces (neglec’tkg
higher order) gives

Vd&-Rhd6-2Rqd8- dII=O
or

(Al 1)

terms of

(A12)

Summation of the forces in the radial direction gives

–Hd8+Rjdo-dV=O

(A13)

Substituting the value of ~ from equation (A12) into equa-

tion (Al 1) yields the shear force at 8

(A14)

Diffmentiating equation (A14) and substituting the result
into equation (AI3) gives the value .of the normal force at
the sheet center line at @

(A15)

Differentiating equation (A15) and substituting the result
into equation (A 11) gives the expression for the shear flow
in the sheet at 6

The bending moment about the ring center line can be seen
to be composed of the moment 31 and the prod-uct of the
axial force H and the eccentricity e or

DifTercntiation of equations (A16) and (A17) and sub-
stitution of the result into equation (A1f)) leads h the.
desired differential equation

(A18)
where

F(e) =R2
[
$$+(1 –3W dfla 1fi-3B$$ +

[
F d#+(l–3B)

%-3(’- %1)3+

!#(,-;+$),]+

{
R %+(2

(
–3B) ~+ 1 WA dam

)
– W+ -R<– ~da—._

‘P-w-fi+wl
Equation (A18) is the general form of the differential w~ua-
tion for the bending moment at the skt center line for any
of the panels composing t.lw structure. The bending
moment in the ring for any such pti IN1 is given by cquat ion
(A17).
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