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DETAILED COMPUTATIONAL PROCEDURE FOR DESIGN OF CASCADE BLADES WITH PRE-
SCRIBED VELOCITY DISTRIBUTIONS IN COMPRESSIBLE POTENTIAL FLOWS !

By Grorae R. CostELLO, RosErT L. CuMuings, and JorN T. SINNETTE, Jr.

SUMMARY

A detailed step-by-step computational outline i presented for
the design of two-dimensional cascade blades haring a prescribed
relocity distribution on the blade in a potential flow of the usual
compressible fluid. This outline 1s based on the assumption
that the magnitude of the reloctty in the flow of the usual com-
pressible nonviscous fluid is proportional to the magnitude of
the relocity in the flow of @ compressible nonviscous fluid with
linear pressure-volume relation. The computational procedure
includes sereral ways of adjusting the prescribed relocify lo sal-
igfy restrictions imposed by the method. Tables of coefficients
are given for evaluating the necessary integrals, including the
determination of the harmonie conjugate function. Numerical
examples are included.

INTRODUCTION

A method for computing blade profiles with preseribed
velocity distributions based on the assumption that the pres-
sure-volume relation is linear is presented in reference 1.
The method uses the prescribed velocity distribution and
compatible free-stream conditions to determine a mapping
function that transforms an incompressible flow about the
unit cirele into an exact compressible flow, with linear pres-
sure-volume relation, about a cascade of blades having the
desired velocity distribution.

In order to apply this method to the design of a cascade
with a given velocity distribution end free-stream conditions
in & flow of an “actual” fluid (the usual compressible non-
viscous fluid), the relation between the actusal fluid and the
fluid with the linear pressure-volume relation must be approx-
imated so that the required velocity distribution and free-
stream conditions for the second fluid may be determined.
In this investigation, which was made at the NACA Lewis
laboratory, the magnitudes of the velocities in the two fluids
are assumed to be proportional and the constant of propor-
tionality is determined by the continuity equation using the
same upstream and downstream flow angles for the two fuids.

By use of this relation, a computetional procedure was
developed to obtain the blade profile with & minimum of
effort. The procedure, presented herein, includes the adjust-
ment of the preseribed velocity distribution to satisfy the
restrictions on the mapping function and the numerical
computation of the harmonic conjugate function.

SYMBOLS
The following symbols are used in this report:
A, B, (%, ... constants
(s, D

a,b,ec constants

C(e'?) function of ¢ defined by equation (18)

d spacing of cascade blades

I;I (e function of ¢

H(e") final values of H{e")

Im imaginary part

IS(G) distorted velocity defined by equation (22)

K(9) modified K(8)

k constant determined by range of potential

M Mach number

r constant determined by trailing-edge angle of
blade

Q(s) dimensionless velocity on blade in direction of
increasing 8

q magnitude of dimensionless velocity (ratio of
velocity to stagnation velocity of sound} for
flow with linear pressure-volume relstion

7 final value of g after modification of ReH(e™)

Re real part

A(ReH) change in ReH({e™)

r ratio of velocities (determined by equation (4))
8 arc length along blade measured counterclock-
wise from tail (figs. 1 and 2)

§ arc length along final blade shape

magnitude of dimensionless velocity (ratio of

velocity to stegnation velocity of sound)
for actual fluid

o(6) velocity on unit cirele (incompressible flow)

z=zx+1y complex variable in cascade plane

a angle of velocity in compressible flow (meas-
ured from positive z-axis)

r circulation (positive counterclockwise)

¥ ratio of specific heats

5 difference between Re H(e*) and parabola at
half-interval point

€ including trailing-edge angle of blade

circle angle (incompressible flow plane) pos-
itive counterclockwise

1 Supersedes NACA TN 2281, “Detaled Compatational Procedure for Design of Cascade Blades With Preseribed Veloelty Distributions in Compressible Potential Flows” by George R.

Coatello, Robert L. Cummings, and Johm T Sinnette, Jr., 1951,
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b auxiliary function defined by equation (15)
P density

T variable of integration
@ velocity potential
Subseripts:

c compressible flow

1 incompressible flow

7 leading edge (nose)

t trailing edge (tail)

1 upstream

2 downstream

RELATION BETWEEN FLOWS

In the present problem of designing a cascade, the pre-
scribed conditions are tle upstream velocity wef, the
downstream velocity uge*®s, and the magnitude of the di-
mensionless velocity on the blade as a function of the arc¢
length w=u(s) (see figs. 1 and 2). The upstream and down-
stream velocities are related by the continuity equation

1

L T
(1——u,) %, COS cxl—(l— 211522)’ Uy €08 oy (1)

Consequently, only three of the quantities u;, %2, «;, and
ay may be assigned, and the fourth is determined by equa-
tion (1).

+ In utilizing the method of reference 1 to design the cas-
cade, the prescribed conditions are employed to determine
the upstream and downstrcam velocities and the velocity
distribution on the blade for the fluid with the linear
pressure-volume relation by assuming that the magnitudes
of the velocities for the two flows are proportional; that is,
& g=ru (2)
The constant of proportionality is determined from the
additional assumption that the flows have the same free-
stream directions by substitution of equation (2) in the
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Fraure 1.—Cascade in z-plane.
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FIGURE 2.—Presoribed veloeity distribution on cascade blade,

continuity relation for the flow with the linear pressure-
volume relation:

1 ) .
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Hence, the upstream velocity ge’, the downstircam ve-
locity qe'2, and the velocity distribution on the blade

_q=¢(s) are now determined for the flow with the lmoar
- pressure-volume relation.

Other approximations to the relation between the two
flows cau_ld be used but, with the present cascade inter-
pretatioii; the upstream and downstream fow angles and the
spacing are the same for the two flows. The two densily-
velocity relations are also in good agreement, as shown in
figure 3 where the density-velocity relations are plotted for
u1—0.700 and #:=0.500. When the upstream and down-
stream velocities are equal, the density-velocity relation, as

given b} this interpretation, is the same as the density-

veloc1ty relation in the Kérmdn-Tsien approximation.
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FiourE 3.—Comparison of density-velocity relatlons for uim=0. 700 and #1=0. 500,
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NUMERICAL PROCEDURE

After the free-stream conditions and veloeity distribution
on the blade are determined for the flow with the linear
pressure-volume relation, the method of reference 1 is used
to obtain the blade sbape. In this method, the given
conditions are used to select an incompressible flow about
the unit cirele and to determine the mapping function that
transforms this flow into a compressible flow with the circle
transforming into the desired blade.
for determining the circle fow and the mapping are given in
the following paragraphs.

FLOW IN CIRCLE PLANE

The velocity potential ¢.(s) and the circulation T, on the
blade are obtained by integrating the preseribed velocity
distribution q(s). For this purpose, it is convenient to
define @(s) by

W3)=—q(s) 0<8<s,
Q(8)=q(s) 8, <827
then
Pcl8)= I: (s} da (5)
r,— f)  o(s) ds (6)
J
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FI4URE §.—Velocity and potential distribution for fluid with linear pressure-volume relation.

A detailed procedure

where the total are length has been taken equal to 2=x.
These integrals are evaluated by Simpson’s rule using suf-
ficient points so as to obtain accuraté values of ¢,(s). The
values of ¢.(s)} should be plotted on the graph with Q(s)
(fig. 4) in order to obtein ¢ easily as a function of the circle
angle later in the computation. Fhe spaeing d of the
cascade is given by

d= L . @

¢y Sin.a;—¢, Sin @

- From equation (35) of reference 1, the incompressible
potential function for points on the unit circle may be
written

_ _y co0s 6 - _; tang
¢(f)=—2 Re Atanh ok k—l—(Im A+4+1Im B)tan —tnnhk+
o _, sind '

(Im A—TIm B)tan s—inhk+D 8
where D is chosen to make the potential zero at the tail
i i ion is—~ -y sing
stagnation point 8,, the angle convention is 2<tan Sob

<§; and tan~! t;#u;lg]‘- is taken in the same quadrant and the

same direction as 8. The values of B¢ A, ITm A, Re B, and
Im B are determined from the free-stream conditions and

spacing by

d |cos ay] :
Re A=T10125%) 9
¢ 21"\ ].-l‘ql2 ( )
Im A=—+v1+g2Re Atuno (10)
Re B=—Re A {11)
ImB=+y14q. Re Atana, (12)

The value of the constant £ is determined by the condition
that the potential range on the circle is equal to the potential
range on the blade:

@:(27") - ¢c(8.l) = Sai(al +2T) - ‘Pl(el) (1 3)
The proper value of k is computed by assuming & value for &

and computing the stagnation points 8, and 6,, which are
the roots of the equation

—{Im A+Im B)sinh k

sin (64+N)= 2 Re A sec ) (14
where ) is given by
N tan-t (Im A—zIf;r; i) tanh k (15)
Ky x
<M<z
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and then determining the value of ¢,(8,427)—e:(6,). This
process is repeated for different assumed values of £ to ob-
tain a plot of ¢,(6,+27)— ¢.(0.) as & function of k. The valueof
k satisfying equation (13) is then obtained by interpolation.
A computational outline of this process for use with a desk
calculator is given in table I, in which the usual column op-
erations are written as lines.

When k has been determined, the flow sbout the circle
is known with the value of the potential on the circle given
by equation (8) and the velocity on the circle given by

0(0)_4 Re A cosh k sec )
" cosh 2k —cos 260

sin (8-+\)—sin (a,A-)\)] (16)

A computa.tlonal outline for »(6) and «,(#) based on 80 pomts
is given in table II, lines 1 to 19. ™

DETERMINATION OF MAPPING FUNCTION

The mapping function (equation (62), reference 1) may be
written in the form

o 4 g2 — (%2 cosh 2k —2 cos 2¢) ‘_(_H' +o— ‘“ff" m: l;i.;u) 26
4 g, €¥4/2 cosh 2k —2 cos 26
(17

where

gi= [2 —2 cos (at-_ 0)] n/!e [Re C(ett)+(2 cosh 2k—2 cos 26) Re H{eih)]

- (”JF‘" )—H’m C(e')+(2 cosh 2k — 2 cos 26)Im H(e")

and
1r

where ¢ is the trailing-edge angle of the blade in radians.
The mapping function is completely determined when
Re C(e*), Im C(e®), Re H(e%), and Im H(e*) are known.

Determination of Re C{e*) and Im C(e®).—The function
((e®) is defined by equation (44) (reference 1) and may be
written in the form

Aeia1+k(1 + _‘/1 _|_q12)
(1 —e“n —k)n

etert (14 14 ¢57)
(1+e%"5g,

O(et) = (1 tet- “) In

S—e=0 = 9)

Hence Re C(e*) and Im C(e¥) are obtained by takmg the real
and imaginary parts of equation (18):

ReO(e")=%[(0,+ C)+eH(Cy— C cos b+¢H(Cy— ) sin a]
(19)

ImC(e®) =%[(05+ Co-+eH(Cy— C) cos 6—eH(Cy— C)) sin e]
(20)

where
Ci=In {LL—— "’;*‘g"m FATTM A o5 (2 cosh k—
1

2 cos 0,)]‘"”}

2 cos 0,)]‘"’2}

.Im A -1 —Si-n- 6[
Re A)+a‘_n tan (e"— cos @,

ImB _ sin &,
ReB)_I_a’—n tan l(e"+cos 0,)+T

The quadrants for the are tangent terms in C; and Cy are se-
lected by considering the numerator and the denominator of
the argument as signed quantities and choosing a quadrant
in which the sine has the same sign as the numerator and
the cosine has the same sign as the denominator. For con-
venience, these angles are taken as positive and the resulting
values of Cjand C; are changed by multiples of 2x until |C',|
and |Cy| are each less than 2.

Determination of Re H (e?).—In order to obtain Re II (e*),
the preseribed velocity along the blade must be determined
as a function of the circle angle ¢g=¢(6). This relation is
obtained from the equality of the potentials at corresponding
points in the two planes. Because @(8) and ».(s) are plotied
on the same graph (fig. 4), the magnitude of the preseribed
velocity at a given circle angle # may be found directly by
reading the sbsolute value of @ (¢g=|@[) at the abscissa
where ¢.(s) equals the calculated value of ¢.(8) (table II,
line 19). The preseribed velocity is thus obtained as a
function of the circle angle ¢g=¢(6).

From equation (48) (reference 1)

Cy=tan~!

Cy=tan™?

|p()|v2 cosh2k—2cos28 |
Re H( “)_ln K(6)[2—2 cos (6, —6)]""* ReCe*)+k B
cH =T 3 cosh 2k — 2 cos 20 ,
21)
where

2¢(8)

+itgpr @Y

Lines 20 to 36.of table II show the detailed computation for

obtaining Re H(e*), including the cvaluation of Re ('(e®).
Adjustment of Re H(e®)—Restrictions on the mapping

function require that Re H(e®) satisfy the conditions

K(f)=-—F——==

f " Re H(e") do=0 (23)
f_’ Re H(e")sin 6 d6=0 (24)
f_r ReH(e*%)cos 6 d6=0 (25)
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These integrals are evaluated numerically (in the manner
developed by Dr. Glenn H. Peebles, while at Douglas Air-
eraft Co., Inec., in his work on isolated airfoils in incom-
pressible flows) by using a parabolic variation of Re H(e*}
between three consecutive points and integrating analyti-
cally. The point spacing used in the examples of this
report is an equal spacing of 80 points (designated whole
points and numbered 0, 1, 2, . . . 79) around the circle
beginning with point 0 at 4=—180° and continuing around
the ecircle at 4.5° intervals. YWhere Re H(e®) has large
fluctuations (usually in the neighborhood of the stagnation
points), the midpoints of these intervals (called half-points)
are also used. The coefficients for evaluating the integral in
equation (23) are the Simpson’s rule coefficients. The
coefficients for the integrals in equations (24) and (25),
which are obtained by integrating anslytically the product
of the parabolas and sin 6 or cos 6, are given in tables III to
VI. When half-interval spacing is used, it should begin and
end at even-numbered points of the original 80 points and
the integration coefficient to be used at the beginning (or
ending) even-numbered point is one-half the sum of the
whole-point coefficient and the half-point coefficient at that
point.

If the values of Re H{(e¥) from equation (21) do not satisfy
equations (23), (24), and (25), the velocity distribution
chosen is incompatible with the chosen free-stream conditions
and must be modified to make these integrals zero. The
most desirable method of modification will depend on the
magnitude of the integrals in equations (23), (24), and (25)
and on the features of the original prescribed conditions that
are to be preserved. Usually the original free-stream con-
ditions are retained and the velocity distribution is modified.
When the integrals are large, however, changing the circle
flow may be desirable in order to minimize the changes in
the essential characteristics of the original velocity distribu-
tion (such as limits on maximum velocity, diffusion rate,
and so forth).

Modification of the ecircle flow provides essentially one
additional degree of freedom, as can readily be seen from
equations (9), (10), (11), and (12). The strength of the
singularities A and B are determined by the free-stream con-
ditions and the spacing. The range of potentiel is deter-
mined by the location of the singularities, that is, by the
constant k. Only the ratio of tbe potential range to the
spacing is important, however, because changing both to-
gether merely changes the dimensions of the cascade by a
scale factor. This additional degree of freedom may be con-
veniently represented by the ratio of arc lengths of the upper
and lower surfaces. Consequently, this ratio has a large in-
fluence on the size of the integrals in equations (23), (24),
and (25). The selection of the ratio may be based on the
ratio for a blade having a similar velocity distribution; or,
in some cases, it may be advantageous to try several ratios
of arc lengths and roughly approximate the integrals using
only 20 points and from these results select the proper ratio
to minimize these integrals. The final adjustment to reduce

95

these integrals to zero may then be obtained with a fized
circle flow by adjustment of Re H(e™).

VWhen adjustments are being made in Re H(e®), the change
in profile are length and profile velocity ¢(6) produced by
these adjustments must be considered. The local arc length
ds corresponding to df will be decreased in the same ratio
that the velocity is increased in order to maintain the same
potential. The change in arc length is automaticelly ac-
counted for in the final integration for the blade coordinates.
The change in the velocity produced by changing Re H(e®)
by an amount A(Re H) is indicated by the change in the
“distorted”” veloeity K(8), which is related to ¢(¢) by equa-
tion (22) (fig. 5).
given by

E(a)=K(a) e—(zcoshzk—zeosu)-_\mzﬂ‘) (26)

Making a change in Re H(e®) therefore has the effect of mul-
tiplying the distorted velocity by a factor. This factor varies
widely with the eircle angle and produces the smallest change
in K(8) at 8= +x or =0 and the largest change 2t §=-x/2.
Hence, for a given percentage change in K(6), the greatest
values of A(Re H) occur near = += or §=0. The effect of
& on these values of A(Re H) for a given ratio of E@©)/K@®)
is shown in figure 6.

Consequently, for small values of the integrals in equations
(23), (24), and (25), complete adjustment can frequently be
made by merely changing the slope of the distorted velocity
E(6) at the stagnation points. The changes in the integrals
produced by this change in slope are given by

f: ARe H)do

l-' A(ReH) sin 8 d@

f' A(Re H) cos & d@
L2
/
yis] L
L '//
8 //
/

) //
~.5 v
< /
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2 /

o 2 4 & 8 o 2 124 5

qfe)

FIGURE 5.—Distorted velocity K(#) as function of g(8).

The changed value, denoted by K(0), is
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where A(ReH) is determined from equation (26). These
changes in slope are effective in eliminating or reducing
S Re H(e*) do6 and S Re H(e*) cos 6 d6. " (See figs. 6 and 7.)

Another method for adjusting Re H(e%) is to use a multi-
plier on the entire velocity distribution; that is,

K(o)=eK(6)

then

a
2 cosh 2k—2 cos 28

A(Re Hy=

and
f_' (ReH)do=—3"—

f " AReH) sin 8 d9=0

f' A(Re H) cos 8 d9=0

Changes in the sine and cosine integrals may be obtained
by using different multipliers over the upper and lower
surfaces:

R@=K@ e
R@=K(@® e s

8, <8<86,

0, <0<6;+27
then
AReH)= it

3 cosh 9k —2 oos 05 IS0tk

3 cosh 0F—2 cos 29 (<050t 2w

A(Re H)=

and

[/ 3} _, tan @
f A ReH)do=( 5y tan™ oy a.+

tan ¢ \deter

(72 —1
5 sinh 2% """ tanh £ )b

tanh-! 080 cos @

L g . _ a
f_rA(ReH) sin 6 do= <4 cosh 7 codh F k N

cog § \ fiter
4 cosh k tanh~* cosh k)
r _ ar -1 SiIl @
f_,A(ReH) cos ¢ d"_(4 Snh F 0 s e, T
s _y Sin @ ot
<4 b % 0 Sk % e

These integrals may be easily evaluated because the inverse
trigonometric functions all enter into the computation of
¢1(8) and have been calculated in the determination of %.
A possibility for making small adjustments in Re H(e%) is
to use a multiplier that is a simple function of 6, such as
K@=

K(g} g—(atboosdtecatn

then
a-+b cos 8¢ sin §
2 cosh 2k —2 cos 28

A(Re H)=

and

f A(ReH)do= smh ok

f' A(ReH) sin ada=9.’"_(1...—_2tﬂ&h,ﬂ.__ _
i s bx (1—t-§nh k)
J‘_'A(ReH) cos 0 9= 2 tanh k

Various combinations of these methods for adjustment of
Re H(e®) have been used in the illustrative examples of this
report.

After the adjustments in Re H(e"?) have been made, the
final values should be checked in equations (23), (24), and
(25), as indicated in table II, lines 42, 43, and 44. At this
time, K(6) should be computed in order to determine whether
EK(6)<2, as required by part (d) of equation (5}, reference 1.
If K(6) does pot satisfy this inequality, a different modifi-
cation of Re H(e%) is necessary.

I4p

2

0

[+
1

A(Re H)
o

A Moz

1-=30

7N o 0 /7

&
FIGURE 6.—A(Re IT) as function of k and @ for ratio of distorted velocitles J(@)/K (0) m0.050.
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FIGURE 7.—Products A(Re I1) cos 8 and A(Re I sin 0 for k=0.20 and for E(8)/E () =0.050.
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The final values of Re H(e¥) and ¢(6) should be plotted in
order to insure that no excessive fluctuations have been
introduced. At this time, ¢ () should be compared with the
original ¢(f) to make certain that the velocity has not been
changed beyond acceptable limits. Because the potentisl
range is fixed, these changes will change the are length. If
desired, §(f) may be obtained as a function of the new arc
length % by

FOr=2[63)]=7(%)
and

"1z (0
b 7@ ¢

The values of %g%l are given in table II, line 50.

S =

9:5656‘:4-21'

Computation of Jm H(e®).—When Re H(e') satisfying all
requirements has been obtained, the computation of the
conjugate function I'm I?Z'(e") is done by direct numerical
integration of Polsson’s integral

Imﬁ(_e”)=,,1—1_ r Reﬁ(e") cot T;e dr

on the 80 basic points using an extension of the method
developed by Dr. Glenn H. Peebles. The integration is
accomplished by replacing Re H(e*) by 40 parabolas on the
80 basic points and integrating analytically the produet of
the parabolas and the cotangent term. The two sets of
R0 coefficients so obtained for the integration are given in
tables VII and VIII. (See appendix A for derivation.)
The set in table VII is used for the computation of the con-
jugate at the end points of the parabolas; that is, at the even-

numbered points 0, 2, 4, . . . 78. The set in table VIII
is used for the computation of the conjugate at the odd-
numbered points 1, 3,5, . . . 79. Thus, to obtain I'm H(¢'%)

at one of the basic points, for example, point 7, the value of
Re E(e'® at this point is multiplied by the first coefficient
(0.000000) in table VIIT, the next value of ReH(e"% (at
point 8) is multiplied by the next coefficient (0.412368),
and so forth, and the sum of these 80 produects is the desired
value of I'm I;I(e“} at that point. Hence to obtain I'm H(e'9
at the 80 points requires 80 such accumulative multiplica-
tions. This computation is done very efficiently on an elec-
tronic calculating punch using only 415 cards and taking
approximsately 2 hours, including the time for key punching
and verifying.

When Re H(e*) has large fluctuations so that some of the
80 basic intervals are divided by half-points, the preceding
values of Im B (e*fy must be corrected to take into account
the difference between the values of Re H(e!*) and the basic
parabolas at these half-points. The correction to be added
to the calculation is the harmonic conjugate of these differ-
ences. The coefficients for computing the value of the con-
jugate (at the 80 basic points) of these differences are given
in table IX. (See appendixB.) This computation has been
arranged on two concentric disks—the coefficients are carried
by the outer disk and the differences (denoted by &) are
entered on the inner disk in the proper places (fig. 8). Itis

272483 —54——8

FicvrE 8,—Wheel for computing correetion minl;m_sgf(e"). Indicated setting gives eorrection
at poi 18,

easy to see where these differences will make a significant
contribution to I'm H(e™) and to obtain the contribution by
accumulative multiplication. This correction is then added
to the calculated results.

COMPUTATION OF BLADE COORDINATES
After the corrected values of the conjugate have been
obtained, the blade coordinates are given by equation (17),

which for convenience of computation may be written in the
parametrie form

[ ] -t 2 -
()= _f'é’(—(?)l cos I:e+’2—r+g, (6)—tan* c———O:l;a_ae,,‘] 48 (27
’ : in 2
¥ (f’)=f_=r lg((?)l sin [9+§+gz (@)—tan™ &%_e—éu:l d8 (28)

where

&(f)=n (1+—;'_—e)+1m C (M +(2 cosh 2k —

2 cos 26) I'm f[(e“)

These integrals are evaluated by Simpson’s rule. In order
to obtain sufficient accuracy, use of at Jeast the same number
of points as were used in the eveluation of Re H(e%) is
advised. Because the values for Im H(e") were caleulated
at the 80 basic points only, interpolation of ¢.(f) is necessary
when half-points are used. The values of x(f) and y(6) are
given in table IT, lines 70 and 71.

EXAMPLES

Several examples have been computed to illustrate some
of the variety of conditions to which the method may be
readily applied. No attempt hes been made to pick the
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best velocity distribution or to obtain the most desirable blade
shape, as to do so would lead to many considerations far
beyond the scope of the present investigation.

In these examples, the adjustment of the prescribed veloc-
ity altered the arc length slightly. For uniformity, figures
9 to 12, which show the final velocity distribution and blade
shape, were therefore scaled to give an are length of 2x.

Ezample 1.—For this example of a cascade blade with
low turning and a cusped trailing edge (¢=0), the free-stream
conditions were taken as . . . ... )

1y =0.488 a=170°

4y=0.478 a3=180°

The velocity distribution prescribed on the blade was the
velocity distribution for an isolated Joukowski airfoil. Ad-
justments to Re H(e*) altered this distribution somewhat
and the resulting blade (which is very similar to a Joukowski
airfoil) and velocity distribution are shown in figure 9.

Exemple 2.—For an example of an impulse-type blade .

with rounded leading and trailing edges (e=w), the free-
stream velocities were assigned the values

u;=0. 555
u2=0. 555

a;=135°
a2=225°
and the prescribed velocity distribution on the blade was

constant over most of the upper and lower surfaces with
different values on the two surfaces and wvaried linearly

©;~/80°
- 1% u, =478

—
.

a x en
s

FI1GURE 9.—Final velocity dist.rlbution and blade shape for Example 1. AMi=0.500; e=0
cusped trafling edge).

through the stagnation points. In this example, the expres-
gion for » (equation (4)) is indeterminant and the value of r
was .obtained by taking the limit as a; approaches 225°.
In this example, complete adjustment of Re H(e*) was made
by multiplying the velocities on the upper and lower surfaces
by constants. The resulting blade shape and velocity dis-
tribution are shown in figure 10. A smaller nose or tail
radius of curvature could be obtained by increasing the slope
of the velocity dlstrlbumon through tho nose or the tail,
respectively.

Example 3.—The free-stream velocities chosen for this
example were representative of a compressor stage with

u=0. 583
uy=0. 417

a1=135°

cy=155°

In order to keep the changes in the prescribed velocity to u
minimum, three ratios of lower surface length to upper surface
length of 0.95, 0.90, and 0.85 were used with. the same pre-
scribed velocity distribution (but, of course, different cirele
flows) and the integrals in equations (23), (24), and (25) were
quickly approximated using only 20 points. By use of these
results, & ratio that would give the smallest integrals was
chosen (a ratio of 0.93) and the blade shape with rounded
trailing edge (e=#) was computed in the usual manner.

T

d=2.64
u,=0.555
LT :
=5 s
u,=0.555

L

o ” éx
§
FIGORE 10. —FInal velocity distrfbution and blade shape for Example 2. Mim=(.573; am=x
(rounded tralling edge).



DETAILED COMPUTATIONAL PROCEDURE FOR DESIGN OF CASCADE BLADES 99

The blade shape and the velocity distribution are shown in

figure 11 (2). By use of the same circle flow and a change

in q(#), a blade having a 10° trailing-edge angle ( E=1_"§ and

similar velocity distribution was obtained (fig. 11 (b}).

Example 4.—In this example of a highly loaded cascade
blade with a rounded trailing edge (e==), the free-siream
velocities were

My ={. 579
u=1). 369

a;=135°

rx,=180°

The prescribed veloeity distribution, which was similar to
the distribution on a Griffith airfoil, had an abrupt decrease
in value on the upper surface for use with suetion. The
blade and velocity distribution are shown in figure 12 (a).
By use of the same circle flow and a change in ¢(#), a blade

having a cusped tail (e=0) and essentially the same velocity
distribution was obtained (fig. 12 (b)).

DISCUSSION

Specification of the trailing-edge angle of the blade requires
T— If the

prescribed velocity does not go to zero in the proper manner,

that ¢(s) have 2 zero of order ats=0and s=2x.

14

d =228
u,=0.4/7

\ w, = 05683
\<T¢, -/if‘
y

LG

o x én
s

(a) emx (rounded tralling edgs).

Re H{e") will be infinite at §=8,. Fairing Re H(e") smoothly
through =4, and keeping the values finite will, however,
insure obtaining the specified angle at the trailing edge of the
blade. The shape of the blade in the immediate vicinity of
this point will depend on the velocity preseribed in this
vicinity. If desired, the blade shape at the tail can easily
be modified by changing Im H(e*), which changes the angle
of the tangent to the blade (the angle in equations (27) and
(28)). The corresponding change in Re H(e") is computed
from Poisson’s integral with the constant term zero, and
the modification in the velocity is obtained from this change
in Re H{(e®). The change in Im H(e"), denoted by A (Jm H),
should be chosen to satisfy the following conditions:

|7 sanmae=o
f_' AUIm H)cos6 d8=0
f’ A(I'm H)sin§ 46=0
For a prescribed velocity distribution requiring only mod-
erate changes, the blade shape can be obtained in approx-
imately 50 computing hours using 80 points and 4-decimal

accuracy. The time depends, however, on the degree of
familiarity with the method and on the extent of the permis-

4

d=3.06
‘ | &, = /55°
u,=2.583
\<7«.=._/35"
\ o,

Lo

u .5
L 1
a r Zn

s

(b) =% (10° trailing-edgs angle).

FIGTRE 11.—Final velocity distribution and blade shape for Erample 3. Mi=0.604.
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 d362

(o) emx (rounded trailing edge). .
FiouvRE 12—Final veloclty distribution and blade shape for Example £,  AMi=0.509,

sible modification to the velocity. When several examples
have the same free-stream conditions and cascade spacing,
the time is considerably reduced because the circle flow nee
be computed only once. '

With the calculation based on a spacing of 80 points with
half-points around the nose and the tail, the method gives
accurate results in all cases in which the parameéter % is not
Jess than 0.10. Experience has shown that for cascades of
moderate stagger and turning £ will usually be greater than
0.10 when the solidity is less than 1. In examples 1, 2, 3,

( ;= 180°
- ——A—u, =0,.369

w=0.573
a, */35°
x
Z e
u .5
I :
g x er

s
. (b) em0 (cusped trafling edge),

and 4, the values of k were 0.2600, 0.1100, 0.2008, and 0.2851
and the solidities were 0.91, 1.01, 0.92, and 0.74, respectively.
In applying the method to other cases, a finer point spacing,
which would require new coefficients for the integrations,
should be used.

Lewis Fricar PropuLsioN LABORATORY
NaTionaL Apvisory COMMITTEE FOR -AERONAUTICS
CrevELAND, OHIo, August 28, 1950
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APPENDIX A
COEFFICIENTS FOR DETERMINING CONJUGATE FUNCTION

The coefficients for determining Im H(e") are obtained
by considering the contributions of one of the parabolas to
the conjugate at one of the basic points. The contribution
I of the (k-+13th parabola through the points Re H(e%x),
Re He*a+1), and Re Hie%=+2) to the conjugate at any
point =06, is given by
(@ O— s+ BO— B )+

1
I=52 ),

b— "de

(A1)

Re H (et +1)] cot

where

Re Hiett2e+ny—2 Re Hie*s+1)+ Re H(e'®)
242

Re H(e*®2e+2)— Re H(e**)
2h

b=

and % is the length of the basic interval. By substituting
9?.!+1=0n +lh

in equation (A1) and expanding in series, equation (A1) can
be integrated to give

I=R,Re Z:I(ei [(r—1y -“'“-‘)-I-S;Re He* O3 tow)
T; Re H{g! 16+ d¥tal)

where (for [0, 1)

Ri= [3 ) +15(h) +155(3) +osa5(3) T :l_

9 (VL2 VoLt VL0 4 - - )44 (V. L+
W34+ WL - - .)}

+1

] sin —— — k
Si==| I —=—— S (W, L+ W34+, L5+ - - )
x —1
sn——h
A% 73 h
'_ri 3( 15() 100 2 +2835( )+ ]+
9 (T L2 Vo Li+ VRl - - -)+4 WL+
WL, L5 .- ) 2
and ’
t}.iIJ.ﬁ
I——2 -
tan%

(tan %) l: <tan )
=\ L -erotere
(ta.n h) (tan %)G

(2J+5) 5 TEiFn 7

(tan ]
(2J+9) 9

. h 2
i <tan —2—) |: 1
T=\"r"/ Lai+n~

(el

(2J+3) 3
4
23<tnn %) 44(tan ")
@j¥s5 45 (2_;+7) 105
h\
! 563<tan§ _'_,; }
@j¥9 - 1575
When [=0, )
So=0

5(3) w5 -
1 AN
42,525 (E) - ]

1 1 /AN 1
=—Re=[1-5(3) ~z55

When I=1,

_4/71 R ht h® h® )
1(2 36 1350 26,160 425,250

244 RS
(18 Y875 88°0+212625+ )

and R; is undefined because the mtegrand becomes infinite.

The final integration coefficients, denoted by N, Ny,
N3, . . . are obtained from the preceding values of E;, S,
and T;. When 64 is an end point of a parabhola (m is even),
then

.E\Tu= 0 3
) N=S;

AT.‘!=T1+R3 L (A2)

Naj_1=821
Ny=Ty 1+ By J

where N is determined by Cauchy’s principal value. When

6. is a midpoint of a parabola (m is odd), then
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N0=So=:0 .. h
Ni=To+R,

Ny=8, > (A3)

Nz.f—1= T21—2+Ru
AT!.f:S!J P

The coefficients for 80 points given in tables VII and VIII
were obtained from equations (A2) and (A3) using h=2x/80.
The coefficients for other point spacings can be obtained from
equations (A2) and (A3) by using the proper value of k.
Because of the symmetry of the coefficients, only half of
them need be calculated.

APPENDIX B
COEFFICIENTS FOR CORRECTION OF CONJUGATE

The coefficients used in the wheel correction are obtained
by determining the contribution of one of the half-point
differences to the conjugate at one of the basic points.
Denoting the contribution of the difference. 8i+3 (the dif-
ference at §=0:+}) to the conjugate at §=0, by I, then

fpa1 46"_(_*
r T2

which, on substituting

— b0

6
(0_3k+§)2+5k+§] cot 3 de

B y=On -+l

becomes

g A [ (ergr)]

By }cot o—_zﬁ de | (B1)

Integration of equation (B1) by series expansions nges
(for 1540)

sin ({4+1) %

I=am+,+;% I ————2(EG+ EG+ B+ .. )
sm—2—
where
tan& :
4
tan @+1) 7 - o
and

4
23(tan-i£)

h 2
. _(4 tan Z) [ 1 2(Lan4)
AN 3 @7+ 3@5+3)

(2]+5) 45
44 (tan Z) 563 (t&n 4) il
(2j+7) 105 T(234-9) 1575
When =0,
J—s §(l_ h? N __)
=%+ 7 \27 288 43,200 3,386,880

Consequently, the coefficients for the wheel correction
denoted by N3, Ni+}, Nati, . . ., are

N ( 2 R kS __)
=7 \47 288 743,200 3,386,880
sin(4+1) & o
Nieg=- In .—Zh——z(ElG+ EG+EG+ ..)
sin 3 - -

The coefficients in table IX, which are for 80 points, were
obtained from equation (B2) using & = 2x/80. By use of
other values of A in equation (B2), the cocfficients for dif-
ferent point spacings can be obtained. Because of the sym-
metry of the coefficients, only half of them need be computed.
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TABLE I—OUTLINE FOR COMPUTATION OF &

Line Operation Remuarks
1| Assume a value of k
2 | sinh (1
8 | cosh (1
‘ I l.14.(11 B
m —-im
[ 2Re A X (4)
6 { tan-t (5} (0) Is \; expross In degrees; ~90°<A<90°
7 | sec (8} .
g | UmAtim B), (2)
. 2Re A (7
0 | sin1 (8) 0) I8 A+t-6a; —90° SA+0, <K
9| Do 0y —1600 N e
B b )
13 { sin Elog
14 | eos (10 -
15 { tan (10)
16 | sin 212;
17 | cos (12
18 1
19 | (a8)+(2)
20 | (13) +(2)
21 g: +{3)
22 | {14)+ 32
23 | (18)+(4
24 | (15 +(4
25 | tan-1 (19) Express in radians; —-%((25) <%
20 | tant (20) Express in radlans; —§<(20)<—;-
27 | tanh— (21
28 [ tanh-t ;?.‘Z;
29 |"tan-! (23) Express i:x radians; same quudrant and
n as
30 | tan-! (24) Express lbn‘rna'lans: same quadrant and
slgn as
g; (Im -1 Imij ;25? (26)] )
33 ImA Im B! (30)
3¢ é‘.! (3-2) I Must, equel ¢ (2x)—epd(ss) for cotrect
value of &
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TABLE II—OUTLINE FOR COMPUTATION OF BLADE COORDINATES

103

Line Operation Remarks Line Operation Remarks
1 Assign values of & at 4.5° intervals Halt-g)lnts may be added later to these 4 A{Re H) Changes in Re H(eif) to mske integrals
beginning at f=—x basle 80 polnts where necessaury TEro; see Lext
3|39 a | eo+un (41) 1s Re Ficetn)
4 | cosh'2t—(®) -
8 | (4Re A cash ksee ) +(4) sec ) Is line 7, table I 2 f G a Mnst be zero
6 @m«) )15 line 6, table I —r
[
§ | @—sin Gty o Gt Islne 8 {table s f * (1) sin ¢ d8 Mast be zero
] )% (6) ®ise
10 sing -z
| “ | [Tuncsods Mnst be zero
H {i‘x’}*’ms‘“hi =T
~+
15 | (12)+tenh & i SGox e
1 — P z 57 is ; must have K
1: tan -1(1(31)4) Express In radians;—2<(16)< a7 | (48)X(23) ‘(eqmﬁf,’& m),mmmcgd
tanh 48 | 4—Em
18 | tan—t (15) Express gn rudians; same quadrant and || g 4(4-,(-)2(43) (19) s @)
as
19 | (Im4-Im ByXu6)— (% I3 $(9 and a
2Re AX AN+ P I L she 5 | l@ban (650} is 75
(rm_4+ m B)X(18)+D =—(Im A—Im B) ten~ st 51 EC‘_C';‘.XEH)
52
2Re A tanht Bl 8 | KCrtCorin—@ni+2 (9) Is Im Clei®)
tan 54 Uncorrected ImH A Obtained from machine calcalstlon
(Im A+Im By tan— ol n i g v A T e sl
2 le@ Obtain by matching potentials 55 | Correction for Im H(e%) Otgldned &og &mmmﬁ; ﬁgg
2 | e e Ragenolas nsing
2 I+ y (21 . -~
z 3‘_ N (23) Is the dfstorted velocity E(#) s | GHEED 56} is Im Ef(eisy
% ) Omit these lines when 2=0 gz | HHICIXS (673=0 when 3=0
2% 2—2 (2% 58 (29) X p—
o 2 - _;) s | 572958 [(88)+
o0 a (‘ - @ (57 (60 Is ga(8) In degrees
28 | (NX(28 (28) = (28) when n=0 1 18
5 | g B g .t
ress as & tive n £
§é 'é)éxme-(m) 61 Exp : cm?eogl” e o0g (u(?‘) (ﬁ%s
33 Ci—Ca)ei X (10) ave same signs as .
34 Cy— Cpe¥X (1) o5 ()60 +90°— (88 respectively
35 Eaﬂ; CO+@)+GY]+2 g;!sm Cleit) g | cos
36 — (35) -k} -+ (29) 1s Re H(e*%) 6 515% %
tn I (36) do Evaluate by Simpson’s rule 5 &o;x )
- (]
70 f (68) a9 C70) Is {d); evaluate Integral by Simpson's
38 J.r (36) sin # d# E%aluate by coefficlents in fables IIT and —r rule
—_ .
! f (89) d¢ 1) is y(®); evaluate integral by Simpson’s
EY) J' * (38} cos # 5. Eyaluste by coeflients ia tables IV sad ~r 'rale
TABLE III—WHOLE-POINT COEFFICIENTS FOR SINE TABLE IV—WHOLE-POINT COEFFICIENTS FOR COSINE
INTEGRAL INTEGRAL
0 10 PN % 0 50 00 0 0 10 0 0 0 50 0 0
o!| o.00000 |—0.03707 |~ 05202 1003707 | o.00000 | o.03707 | 0.0s2a2 | c.osnOw 0 |—o.0242 [—0.08707 [ o.00000 | c.03707 | 0.05242 | o.03707 | o.00000 {0 0507
—.00821 | —.07958 | —. — 08TV | L0082 . 1083 | .087er 1]~ 06797 | .00821 f .07938 [ .1 -067% | —. 00821 | —.07038
3| O | Omet | Toaba | Tiooomi | oosan| -oizar | osis | -oaosi 3| Costes | —.ose1 | -oosa0| Coioil | Cosiis | -esosi| —.oos | —lowou
3| —lgoags | — 10170 | —.0546S | .02443 | .0823 | .10178| .03468 3| — 1018 | —osi8s | o283 | - i018 | os@s | —o2u3 | —.

# oo | Z0aee | = TRl N b | owmes| oios L] 00 L 0B | Dios| 0%os | ooes | -owos Z:Oios | 0500
- - - - 01005 | - . . - — . : . . - -
| T | TR | o | ) (e o) lumy) | |8\ | omm) emo) omt) o) o —em) oo
- - - —o2u3 | -os8| .ro1me| - . - - s | . . . - iy
& [ = ooet g0 gvrsid By 081 | _omis | Coses1 | Coos2 o1 Toion | Tlooseo | -osos1| Cosiss| o1 |  Loos20 | —.03081 | —. 08178

o[ —omw | — -0 - Looer | - Joress | o-o0sz 8| —m —.00821 | .06vET [ -10483 | 07 100831 | —. 06797 | —.
TABLE V—HALF-POINT COEFFICIENTS FOR SINE TABLE VI—HALF-POINT COEFFICIENTS FOR COSINE
INTEGRAL INTEGRAL
0 10 20 3 9 50 & ) a 10 20 30 0 L] & 0

o, |8 00000 |—oo1ss2 |—0.0o010 —0.018% | 0.00000 | 0.01852 | 002618 | 0.01852 ux ~0.0019 |-0. 0182 0.00000 | 001852 | 0.0201¢ | 0.018%2 | 0.00000 .08
| | Zeat | = “ol701 | -00%6 | -a1%1 Imml So150t L —f%g —-uin1 memsm Igheﬂ Ig:gé SolmL —Immog ‘:3122%

- - - - 00815 | L0411 [ .06 . 134 | — - . : . -o3241 [— -
¥E [0 | Zioame T | Thae | ooup | Cois | lozr| -ousm 2 | Zlooser | —oua39 [ 00410 | -02110 | .02587 [ OLE30 {—.004I0 | —.02120
214 |-.ouml | — 0438 om3s | —0po0s | 01021 | S04353f .0m35 | .02008 B4 | .03 —-02008 | 01031 | [oiasy | 00133 02008 (0101 | —.

— - ma _.m- —.mms - -m -0234.( -m _-ml _.m -m .02541 - '.-ml —
3!4 Zonh | oot | —owa o5 | ouat [0utes | [0S0 | 025 B [ — 05 w0258 | -0Leat (088 | 05009 | 02508 | 0121 | —

iy 07333 | —.024901 | —.0L 00300 | .02838 | .0%a81 | - - - L0333 [ lo2 : —.00500 | —.
114 |— 01812 | — o475 Zromiz | = oista | 0a | 0wz | 2102 45 | —onu —- gzt .gi% ‘0grst | Loita | j2len | QISI2 | — Osiss

- iy —.2418 | — o1 T to2¢10 | Loeaio | - - — : i TR - iy
P g Teie | oo T2l i0oies | otz | -odmss | -omsiz 51§ | —.ours4 | —o1s12 | Jopre2 | Coserz | Cosrot | .oisi2 |-.ozie2 | —.oum2
6 |—omse | —o2 | —om33 | — ouiso | Cos01 | -o233 6 | —02333 | —00s09 | [OLISO( _0240E | 02383 | . —. 01189 | — 02461
6% |— 02558 | — — 0458 | —ou: | . os02e | -osses | Loren 634 | — 04568 | — o1 205030 | .04568 | -01421 |— 02388 [ — 05039
T |08 | —.oog ) B8 | OO0 | Obce | -osi3s | -osss | .onoz T4 | Toum X0 | -oraca | 0atas | 0sss | .otoet |—ozmes | —
e R AR R ik AR AR REAE e R R AR e
s 1— —.05199 | — 04111 | — 00815 | - comoe | -o4mxl . - - i : . . - iy
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o |- —0531 | — —.00208 | - omm - 00206 84 |~ .—00208 | - omal | . - 00206 |—. —.05231
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TABLE VII—COEFFICIENTS FOR CONJUGATE AT EVEN- TABLE _VII[—COEFFICIENTS FOR CONJUGATE AT ODD-
NUMBERED PQINTS NUMBERED PQINTS
0 10 20 30 40 50 a0 70 =] 10 20 a0 40 50 6 70
o lo.000000 0. 020031 |0.008328 |0. 063449 | 0. 000000 |—0. 003249 | —0. 008328 |—0. 020081 0 [0.Goodo |0. 040322 0. 016877 [0.008908 | 0.000000 |—0.006008 [—0. L6677 [—0. 040322
1 | .636402 | 036217 | . 015418 | . Q06152 |—. 000655 | —. 007686 | —. 018042 | —. 045204 1}.412368 | . 038012 | .007604 | .003073 |—. 00327 | —. 003839 | —. 009002 | —. 022467
2 | .060368 | -16305 | .007110 | . 002708 |— 000885 | —. 004243 | —. 000748 | —. 025472 3| .298708 | . 032750 | . 014242 | .00B417 {—. 001312 | — 008408 | —, —.0b1d62
& | (144119 | (026790 | .013148 | .004702 |—. 001973 | — 009338 | — 021159 | —. 050845 3| .065520 | . 014841 | 1006563 { .002340 |—. 000988 | —. Cos063 | —. 01 —. 020252
4 | 030044 | .013568 | .006040 | .001990 |—. 001810 | —.005102 | —. 011440 | —. 034277 4| 100402 | 027228 | . 012115 | . 004003 |—. 002841 | —. 010218 | —. 022060 | —. 069820
5 | 1084430 | 024068 | . 011141 | 003316 |—. 003316 | —. 011141 | —. 024068 | —. 084480 5| .01 | . 012446 | .005563 | . 002657 |-—-.001857 | —. 005863 | —. 012446 | —, 041111
§ | 034217 | LOLIAGD | 005102 | . ULS1O {—. 001900 | 000040 | —. 014508 | —.050044. 6 | -060520 | .022060 | . 010218 | 002041 |—.004003 | —. 012115 | —. 027228 | —. 106503
7 |.050345 | .021189 | .0 -001978 }—. 004702 | —. 013146 | —. — 144119 7 | -029283 | . 010654 { .004663 | 000086 |—. 002349 | — 006503 | —. 014841 | —, 065820
8 | .025472 | .000748 | .004243 | - 000855 [—. 002708 | —. Q07110 | —. 016305 | —. 050356 8 | -05146D | . 010528 | .DOS40Y | .0OIB1Z j—.005417 | —. 014242 | —. 032750 | —. 223706
9 [ .045204 | 018042 | .007CR0 | . 00065 [—.006181 | — 015415 | —. 036217 | — 636402 9 | -020467 | 1000002 | 003830 | .000827 |—.003072 | —. 007604 | —. 01801} | —. 412368

TABLE IX—COEFFICIENTS FOR CORRECTION TO CON-

JUGATE
e am o MR = =S . =

[ 10 20 30 40 50 60 70
0 |0.636365 (0.010061 |0. 008014 0.003262 {—0.000164 |—0.0G1645 (—0.008069 |—0. 021304
1§ .144611 | . 017188 | .007400 | . 002800 | —.000402 | —. 004042 | —. 009379 | —. (24049
2 | .083301 | . 015506 | .006840 | .002528 | —.000821 | —. 004455 | —. 010186 | —. 027496
3 | .060408 | .014222 | .006300 | .002175 | —. 001153 | — OQ4885 | —.0L1011 | —.(Q8L974
4 [ .046782 | .Q13021 | .005800 | .001820 | —. 001488 | —. 005835 | —. 011960 | —. (38045
] 011060 | . 005335 | . 001488 | —.001820 | —. OURBV0O | —. 013021 | —. 0467
6| .081974 | .QILO1Y | . 004885 | ,OOLLS3 | —. 002175 | —. —. 01 —. 000408
7 | 027496 | .0L0166 .000821 | —. - —. Q15506 | —. 0856301
8 | .024049 | .009379 | . 004042 | , 000402 | —. 002800 | —. 007406 | —. Q17188 | —. 144611
8 | .021304 003645 | , 000164 | —. 003202 | —. 008014 | —. 018061 | —. 0




